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Abstract

It is widely believed that understanding data structure is a crucial ingredient to push
forward our comprehension on how (and why) modern machine learning works. Still,
most of the theoretical results we have are obtained under very simplifying assumptions
on the structure of the training data.

In this Thesis, I review some novel results on the problem of characterizing the ge-
ometric structure of datasets and the consequences that this structure has on learning
algorithms. I also provide pedagogical introductions to manifold learning, random geo-
metric graphs theory and supervised binary classification.

I focus on three different aspects of the problem. First, I spend some time reviewing
techniques to characterize the intrinsic dimensionality of datasets: this is the first "exper-
imental" step towards proper theoretical modelling of data. Then, I focus on the problem
of finding null models of data in high-dimension: does Euclidean structure survive when
the dimensionality of data becomes larger and larger? Finally, I study how geometric
data structure alters the expressive potential of simple classifiers.



iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization and main results . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 What I left out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Chapter bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Intrinsic dimension estimation 5
2.1 Manifold learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 The need for manifold learning . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Some applications of intrinsic dimension estimation . . . . . . . . . 8
2.1.3 A model of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Intrinsic dimension estimation . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Two paradigmatic estimators: CorrDim and PCA . . . . . . . . . . 12
2.2.2 A brief overview of intrinsic dimension estimators . . . . . . . . . . 17

2.3 The Full Correlation Integral estimator . . . . . . . . . . . . . . . . . . . . 19
2.3.1 The correlation integral of spherical datasets . . . . . . . . . . . . 20
2.3.2 Robustness on simple datasets . . . . . . . . . . . . . . . . . . . . 23
2.3.3 The multi-scale approach . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Multi-scale FCI on datasets of synthetic bitmap images . . . . . . 27
2.3.5 Comparison with other estimators . . . . . . . . . . . . . . . . . . 29

2.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Chapter bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Random geometric graphs in high dimension 35
3.1 Network theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Graphs are a key tool in modern science . . . . . . . . . . . . . . . 36
3.1.2 A primer in graph theory . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Unstructured graphs: the Erdös-Rényi model . . . . . . . . . . . . 38
3.2.2 Spatial networks: hard and soft random geometric graphs . . . . . 38

3.3 A central limit theorem for distances in high dimension . . . . . . . . . . 42
3.3.1 The central limit theorem . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 The structure of the covariance matrix . . . . . . . . . . . . . . . . 44

3.4 M -clique densities in random geometric graphs . . . . . . . . . . . . . . . 47
3.4.1 Average number of generic subgraphs . . . . . . . . . . . . . . . . . 47
3.4.2 The case of M -cliques . . . . . . . . . . . . . . . . . . . . . . . . . 47



vi Contents

3.4.3 Comparison between hard RGGs, soft RGGs and Erdös-Rényi graphs 49
3.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Chapter bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Expressivity of linear classifiers on geometrically structured data 57
4.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Learning paradigms in artificial intelligence . . . . . . . . . . . . . 58
4.1.2 The ingredients of a supervised learning task . . . . . . . . . . . . 58
4.1.3 The training set: models of data structure . . . . . . . . . . . . . . 61
4.1.4 Predictor functions: measuring expressiveness . . . . . . . . . . . . 65

4.2 Expressivity of linear classifiers on unstructured data . . . . . . . . . . . . 68
4.2.1 The number of classifiable labellings . . . . . . . . . . . . . . . . . 69
4.2.2 Expressivity of linear classifiers . . . . . . . . . . . . . . . . . . . . 73

4.3 Expressivity of linear classifiers on structured data: segments . . . . . . . 76
4.3.1 The number of classifiable labellings of segments . . . . . . . . . . 76
4.3.2 Expressivity of linear classifiers on segments . . . . . . . . . . . . . 78

4.4 Expressivity of linear classifiers on structured data: polytopes . . . . . . . 83
4.4.1 The number of classifiable labellings of polytopes . . . . . . . . . . 83
4.4.2 Expressivity of linear classifiers on polytopes . . . . . . . . . . . . 85

4.5 Geometric structure may forbid separability . . . . . . . . . . . . . . . . . 87
4.5.1 Locating the new phase transition . . . . . . . . . . . . . . . . . . 87
4.5.2 The new transition is a SAT/UNSAT transition . . . . . . . . . . . 91

4.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.7 Chapter bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Bibliography 99



CHAPTER 1

Introduction

1.1 Motivation

Deep neural networks have profoundly changed the way we look at machine learning in
the last 10 years. State-of-the-art architectures perform comparably, or even better, than
humans; yet, humans outperform algorithms whenever distortion or noise alters the data
[GTR+18]. Moreover, deep neural networks can be described effectively as "black boxes":
we can test their performances experimentally, but in the vast majority of cases we are
not able to explain their inner workings.

These observations foreshadow a near future where learning algorithms will aid, if not
substitute completely, humans in decision making tasks, possibly with repercussions on
how we understand, for example, healthcare and policy making, without many guarantees
of robustness or explainability. It is thus of primary importance to understand at the
theoretical level the ins and outs of modern machine learning algorithms. Currently, we
lack a satisfying analytical framework.

One of the many difficulties of modelling deep neural networks, but also simpler ar-
chitectures such as linear models and support-vector machines, is that many ingredients
conspire together to make them work. Obviously one has to take into account the spe-
cific architecture that learns to solve a task. Fully-connected networks, Gaussian pro-
cesses, ResNets, they all differ crucially in how they process data. But this is not nearly
enough. The nature of the task to be learned imposes constraints on how to engineer
the learning architecture: image classification calls for convolutional neural networks due
to translational invariance, speech recognition calls for recurrent architectures that store
some memory of past signals due to the contextuality of languages, and the list goes on
[BBC+21]. Again, this is not enough! Training is often modeled as an high-dimensional
risk minimization problem, which is often non-convex, presenting many global and local
minima. The outcome of learning algorithms will thus be non-unique, depending on the
training data and on the specific initialization of the architecture. And finally, the nature
of the training data will itself play a role in what the algorithms learns, how fast and
reliably it learns it and how well the architecture will generalize to unseen examples. All
these ingredient are interconnected even in the simplest learning tasks, so that analytical
models often fail to describe realistic settings.

In this Thesis, I would like to take a step back from all the complexity to look at the
least studied aspect: data structure. Both Statistical Learning Theory (SLT), which is the
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branch of statistics that aims to characterize learning algorithms, and Statistical Physics,
which has often been used as a tool to understand average properties of optimization
algorithms, have traditionally studied overly-simplified models of data in order to model
all the remaining components faithfully. Classic SLT provides bounds on the generaliza-
tion performances of learners in the worst-case scenario, or uniformly over large classes of
model functions. This approach is bound to be of low usefulness, as worst-case/uniform
analyses have to account for rare and pathological situations. On the other side, Statis-
tical Physics looks at the average case, which while hopefully being more directly useful,
needs simplifying assumptions on data structure in order to obtain usable analytical re-
sults. To be fair, on both sides there have been recent progresses towards understanding
more complex data structures, see for example [CLS16; GMK+20; RLG20], but there is
still a long way to go.

In this Thesis, I approach data structure from three different points of view. In
Chapter 2, I focus on the problem of estimating structure from real data, which is a crucial
step towards understanding which models of data structure are realistic. In Chapter 3,
I focus on understanding how high-dimensional datasets behave with respect to their
Euclidean properties, such as their mutual distances. Indeed, most real world datasets
live in extremely high-dimensional spaces, where concentration properties constrain the
allowed geometries. Finally, in Chapter 4, I present some results that generalize classical
expressivity studies of linear classifiers in order to take into account a particular form of
geometric structure, inspired by concepts from neurobiology.

1.2 Organization and main results

This Thesis is organized in three self-contained chapters that can be read independently.
Each chapter presents some novel results obtained by my collaborators and myself in a
pedagogical way, introducing broadly the matter before delving into the details. Many
technical details that are not fundamental to follow the discussion are enclosed in grey
boxes: feel free to skip them if you are not interested in technicalities!

The main theme is the Euclidean structure of datasets, declined in different ways from
chapter to chapter.

Chapter 2 focuses on the problem of intrinsic dimension estimation, i.e. the prob-
lem of estimating how many degrees of freedom are really necessary to encode an high-
dimensional dataset. Intrinsic dimension estimation can be performed using a long list
of algorithm, and features many possible applications in Physics and Computer Science,
but its limitations hinder the usability of many of the results. With Marco Gherardi and
Pietro Rotondo, we proposed a novel estimator [EGR19] that tries (and in some cases
succeeds) to overcome these limitations. Chapter 2 motivates the estimation problems in
the more general setting of manifold learning, and presents some simple, yet paradigmatic
estimators to equip the reader with some basics on the subject. It then presents the novel
estimator in detail.

Chapter 3 focuses on high-dimensional random geometric graphs, i.e. graphs whose
nodes are connected only if they are near enough in some high-dimensional ambient
space. The community is still puzzled by a seemingly simple question: in high-dimension,
where concentration properties greatly affect the geometry of sets of points - forcing
them to be all roughly orthogonal and equidistant - are geometric graphs distinguishable
from common random graphs, with no underlying Euclidean structure? With Sebastiano
Ariosto, Marco Gherardi and Pietro Rotondo, we explored this question through the
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lenses of a set of local observables, k-cliques densities, and found that at least in some
cases the answer to the previous question is no, with the Euclidean structure of the graph
still detectable through local observables [EAG+20] even in infinite dimension. Chapter
3 frames the problem in the language of random graphs, before delving into central limit
theorems and simulations to motivate our findings.

Chapter 4 focuses on machine learning, and more precisely on how the geometric
structure of datasets alters the properties of simple classification tasks. This work fits
nicely into a broader and very active line of research investigating the implicit biases
that structured data impose onto learning architectures such as neural networks and
support vector machines. With Marco Gherardi, Mauro Pastore and Pietro Rotondo, we
studied a simple model of structured learning inspired by biological considerations, and
found that data structures greatly affects the expressivity of linear classifiers [PRE+20].
Data structure introduces also a new phase-transition which appears to be of universal
character. Chapter 4 starts with a broad introduction to supervised learning problems,
detailing commonly used models of data structure and measures of expressivity for binary
classifiers. It then presents in detail the novel results.

1.3 What I left out

I would like to spend a couple of phrases on other projects and results that contributed to
my Ph.D. experience, but didn’t make it to this Thesis. The least common denominator
of these projects is again given by Euclidean correlations in disordered systems, but the
flavor was far away enough from the applications to data science and machine learning
to justify their absence from this Thesis.

A big part of my Ph.D. has been dedicated to the study of Euclidean random com-
binatorial optimization problems, i.e. optimization problems that depend on the random
position of points in some Euclidean space. In particular, I studied the concave-cost 1d
random Euclidean bipartite matching problem, i.e. the problem of finding a minimum
assignment between N white and N black points on the line, with cost function depending
on the distance between points as cpxq “ xp, 0 ă p ă 1. The analytical structure of this
problem is very rich, and bears connections with lattice paths (Dyck paths) and unusual
probability distributions (the area-Airy distribution). In a series of works with Sergio
Caracciolo, Matteo D’Achille and Andrea Sportiello [CDE+20; CES20; CES21] we inves-
tigated the structural properties of the optimal solution to this problem with techniques
from analytic combinatorics.

More recently, with Mauro Pastore and Pietro Rotondo we investigated analytically
and numerically a deterministic spin model that features a glassy-like phase without
explicit quenched disorder [EPR21]. The glassy phase is induced by the peculiar Euclidean
form of the interaction. This model has direct experimental applications, as it models the
interaction of Bose-Einstein condensates in confocal electromagnetic cavities.
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CHAPTER 2

Intrinsic dimension estimation

Intrinsic dimension estimation is the art of guessing how much geometrical information is
contained in a cloud of points. A quick example: a set of aligned points in 300 dimension
could be easily described by a single parameter, as it lays on a one-dimensional manifold,
while points sampled from the 300-dimensional hypercube need 300 parameters to be
described. This information is crucial in order to properly compress data, to study high-
dimensional datasets (coming from large scale experiments, for example) and to apply
dimensionality reduction techniques for visualization purposes.

In this chapter, I will guide you into the basic methods and assumptions of intrinsic
dimension estimation. I will then present a novel estimation framework [EGR19].
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2.1 Manifold learning

2.1.1 The need for manifold learning

You are given a dataset of 100 points in 3 dimensions, that is, a set of 100 vectors in R3.
You have no prior knowledge about this dataset, and I ask you to obtain some insight on
it (nothing specific, just tell me something about this bunch of vectors). What would you
do? Well, if I were you, I would start by plotting the dataset to take a good look at it1.
At this point, we may realize that the points lie (for example) on the surface of a sphere,
and suddenly we know that we may gather very useful information on the dataset by
estimating the radius of the sphere, or something along this line. Visualization is crucial
in order to study datasets. It allows researchers to use one of the best pattern recognition
tools, their own vision, to come up with good observables to study and to spot general
trends in the data. Conclusions, or new theories, then follow easily (well, sort of).

But if you are reading this boring Ph.D. thesis, I guess you wouldn’t be very impressed
by my small, three-dimensional dataset. To level up the game, you may want to try the
same task on a more complex dataset, maybe composed by 60000 points in 784 dimensions
(these numbers are not random, they come from the MNIST [LCB10] dataset, a famous
benchmark dataset of images of handwritten digits). Well, this is much harder, as we
have no idea how to plot sets of 784-dimensional points! Thus, in order to study high-
dimensional dataset we have to come up with a set of analytical and computational tools
that replace our own vision in performing qualitative analysis on the data.

This is, at its core, the motivation for manifold learning, a set of techniques that allow
the user to gain some intuition on the datasets they have to study. To give you a flavor
of what manifold learning can do, here you have some examples.

Intrinsic dimension estimation More often than not, datasets are represented in
a redundant fashion. In low dimension, you may have three-dimensional data that lay
along a curved line. In that case, two of the three dimensions are effectively spurious,
unneeded to fully describe the dataset. To give you a less trivial example, think of a
dataset of images of flying eagles. Most of the pixels representing the sky will be colored
with a uniform, bluish color, and will be completely uninformative. In both the examples,
we would like, as a first step, to estimate the minumum number of degrees of freedom
(dimensions, pixels) that we need to fully encode the variability inside the dataset. This
is typically called intrinsic dimension estimation. I will give you a more detailed look at
it in what follows, as this is the main topic of the chapter.

Dimensionality reduction After gaining some intuition on the number of degrees of
freedom actually needed to describe the dataset, you may want to estimate which of the
dimensions of your dataset are the important ones, or which of the pixels of your images
are the most informative. To get back to the trivial three dimensional example described
in the previous point, you may want to highlight a point along your line to serve as an
origin and give a notion of distance along the line so that each of the points in your dataset

1This was actually one of the very first pieces of mathematical advice that I have ever got. When
you are given some mathematical object to study, you should always ask: "How do I draw it?". Thanks
Prof. Palazzi!
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Figure 2.1: Example of dimensionality reduction. The plot is a two-dimensional representation
of a sample of 60 images taken from MNIST, 30 representing the digit 2 and 30 representing the
digit 7. The reduction has been performed using the t-SNE algorithm [vdMH08]. In the low
dimensional representation, we see that images representing the two digits are basically linearly
separable, with the exception of a couple of images of 2’s in the bottom left portion of the plot.
Notice how similar images are projected next to one another.

can actually be represented by giving just one number, its distance from the origin along
the line. This task, that is finding low-dimensional coordinates for your dataset, is called
dimensionality reduction.

In the following, I will give you some details about the most famous dimensionality
reduction technique, which is Principal Component Analysis (in short, PCA), as it com-
bines dimensionality estimation (see above) and dimensionality reduction. As you may
imagine, there exists a whole world of techniques that go well beyond PCA. If you are
interested, here are some good starting points to get into the literature [Row00; Ten00;
BML06; LV07; vdMH08].

Figure 2.1 shows an example of dimensionality reduction applied to the MNIST
dataset.

Clustering On a different line, you may want to know if your data is clustered, i.e. it
is composed by multiple different clouds of points. For example, think about MNIST, the
dataset of handwritten digits. You may have the intuition that the images representing
ones are well separated by the imaged representing zeros in the space of pixels, as they
mostly use different pixels (the ones use pixels around the vertical mid line of the image,
the zeros use pixels distributed over a circle). The task of recognising that your data
is clustered and of giving the rules that identify that a datapoint is in one cluster or in
another is called, guess what, clustering. Again, there are many techniques to cluster
data; see [SPG+17] for a thorough review.

Figure 2.2 shows an example of clustering on a dataset of points extracted by a mixture
of Gaussian distributions.

A word of caution is needed here. You may now think that manifold learning solves
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∆ “ 4 ∆ “ 2

Figure 2.2: Example of clustering. The plot represents the result of the k-means clustering algo-
rithm [Ste56; Llo82] applied to a dataset of points sampled from two different 2d Gaussians (with
mean p˘∆, 0q and identity covariance). Blue and orange points are points that the clustering
algorithm correctly classifies as belonging to the left or right Gaussian cluster. Red points are
misclassified points. We see that as ∆ gets smaller we get more and more misclassified points.

our visualization problems in high dimensions, allowing us to get a full overview of the
geometrical properties of a dataset just as our vision does in low dimensions. This is
sadly not completely true. Often, manifold learning techniques are proven to be effective
under a restrictive set of assumptions on the dataset, assumptions that in practice one
cannot explicitly verify or that are explicitly violated. Even worse, most of the tools may
only be benchmarked on synthetic datasets (i.e. artificially generated datasets whose
properties are known by construction). Let me give you an example. Suppose that
you have to benchmark an intrinsic dimension estimation algorithm. Of course, you can
verify its performance on a dataset of points that lay on the surface of a d-dimensional
hypersphere: the algorithm works only if it returns the dimension of the sphere, d. But
how can you measure its performance on real datasets, for which the intrinsic dimension
is not known a priori?

Thus, my personal advice if you would like to do some manifold learning is to use and
compare many different tools (for example, different intrinsic dimension estimators) on
the same task, and only moderately trust their results.

2.1.2 Some applications of intrinsic dimension estimation

Before delving into the mathematical details of dataset modelling and intrinsic dimension
estimation, I would like to give a brief overview of the possible applications of this kind
of estimation.

The main application of intrinsic dimension estimation algorithms in the early days
(late 1970’s) was the characterization of the behaviour of dynamical systems. At the time,
chaotic behaviour2 had just been discovered, along with the concept of strange attractors,
i.e. fractal subsets of a dynamical system’s phase space around which the orbits described
by the evolution of the system may converge. Measuring the fractal dimension of these
attractors was a very relevant problem that motivated the introduction of the first intrinsic
dimension estimators [Tru68; FO71; GP83a; GP83b].

2See [Str94] for a wonderful beginner introduction to the subject.
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Around the same time, another problem gained wide interest, i.e. that of determin-
ing whether a time series is stochastic or is deterministic in a chaotic regime. Takens’s
embedding theorem and the related line of works [Tak81; Tak85; SM90; Cao97] provide
a way of answering this question if the intrinsic dimension of a peculiar high-dimensional
representation of the time series can be measured accurately. Among the direct applica-
tions, one could then distinguish whether meteorological or financial time series depend
on a stochastic component or not.

More recently, intrinsic dimension estimators moved further and further away from
particular applications and became a general purpose tools for data analysis. To men-
tion some results, intrinsic dimension estimation has been used to track the compression
effect of hierarchic structure in deep neural networks [ALM+19], to data-mine physical
systems in order to automatically detect phase transitions [MTD+21] and characterize
quantum partition functions [MAR+21], to characterize the variability of observed pro-
tein sequences [FPR+19] and to devise novel clustering algorithms [AFD+20].

See [CRH10] for more examples.

2.1.3 A model of dataset

In order to start developing manifold learning algorithms we need a mathematical model
of what a dataset is. In this section I want to introduce a common model, the so called
manifold model (hence the name manifold learning), that we will use throughout the
chapter. It is a constructive model, i.e. a model that characterizes datasets by telling us
how they were generated in the first place.3

The first assumption is that there exists a smooth d-dimensional manifold, the in-
trinsic manifold, equipped with a probability measure. The intrinsic manifold describes
the intrinsic geometry of the dataset, i.e. the minimal information that we would need
to reproduce the dataset. Of course, there is no guarantee that when we are given a
dataset it is represented in the most efficient way. We model our own representation of
the intrinsic data, as well as possible data corruption, by assuming that there exists a
sufficiently regular map (say, smooth and injective) from the intrinsic manifold into D-
dimensional Euclidean space that we will call embedding map; here D ě d. Our dataset
will then be generated by sampling i.i.d. points on the intrinsic manifold according to the
given probability distribution, and mapping each point into Euclidean space using the
embedding map. To fix some nomenclature, d is the intrinsic dimension of the dataset,
D is the embedding dimension.

Let me try to justify why the manifold model may be a good model for datasets. To
fix our ideas, let me use the MNIST dataset as an example, and let me focus on the
subset of handwritten "ones". The idea that there exists an intrinsic manifold underlying
this dataset comes from the intuition that there is a prototype image of a "one", and
that all other images can be generated from the first one by smooth transformations in
intrinsic space that translate to rotations, translations, rescalings and complicated local
distortions in the pixel space. The intrinsic manifold is generated by this set of meaning-
preserving transformations. In this picture, it is clear that the intrinsic manifold will

3Disclaimer: this section mentions a fair deal of concepts borrowed from differential geometry. I
will not enter into the details, and I will be sloppy in many places. For example, I will use the word
"embedding" in a non-technical sense, even though it has a very precise meaning in differential geometry.
See [PM13] for a more precise treatment.
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Figure 2.3: Comparison between MNIST images and random images. Images carrying semantical
informations, like the images of handwritten digits of the MNIST dataset shown in the top row,
lie on a low-dimensional intrinsic manifold generated by smooth transformations that preserve
meaning. For comparison, the bottom row shows random samples from the high-dimensional
space of 28 ˆ 28 bitmap images.

have a dimension smaller then the number of pixel used to represent the images, so that
there must be an embedding map linking the intrinsic representation and the embedded
one. The embedding map may depend on how we decide to represent that data (fixing the
resolution of the images is a trivial example), and may contain statistical noise corrupting
our data. See Figure 2.3.

I want to highlight an important fact. In this model of dataset, we have three sources
of complexity: the intrinsic manifold, which can be a non-trivial manifold, the probability
distribution associated to the intrinsic manifold, which may be highly non-uniform, and
finally the embedding map, which again may be complex. I will often restrict my atten-
tion to simple probability distributions, as highly non-uniform distribution denature the
intrinsic geometry of the dataset in practice. On the other hand, we will see examples of
non-trivial intrinsic manifolds and embeddings.

Notice that the manifold model can be trivially extended to account for multidimen-
sional datasets, i.e. union of datasets with different intrinsic dimensions. Each component
of the multidimensional dataset is described by the manifold model separately, but with
a common embedding space.

Examples of synthetic datasets

See Figure 2.4 for the graphical representation of some of the following datasets.

Linear datasets The intrinsic manifold is a full-dimensional subset of Rd equipped
with the uniform probability distribution. The most common example is given by the
d-dimensional hypercube Hd, i.e. r´1, 1sd. The embedding map is a linear map from Rd
to RD, such as the natural inclusion map, or the inclusion map followed by a rotation.
A noisy version of the dataset can be considered, where after embedding the dataset we
corrupt it with an Gaussian noise (factorized over each coordinate) with variance σ2.

Digital dataset The intrinsic manifold is the set of vertices of the d-dimensional hy-
percube equipped with the uniform probability distribution. The embedding map is a
linear map from Rd to RD.

Spherical datasets The intrinsic manifold is a d-dimensional hypersphere, i.e. Sd “
tx P Rd`1 | ||x|| “ 1u, equipped with the uniform probability distribution. The embedding
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a) b) c) d)

Figure 2.4: Examples of synthetic datasets. (a) A d “ 2 linear dataset embedded in D “ 3
dimensions. (b) A d “ 1 spherical dataset embedded in D “ 3 dimensions. (c) A d “ 2 Gaussian
dataset embedded in D “ 3 dimensions. (d) A d “ 2 swiss roll dataset embedded in D “ 3
dimensions. In all cases, P “ 10000 points are shown.

map is the composition of the natural inclusion of Sd into Rd`1 and of a linear map from
Rd`1 to RD.

Gaussian datasets The intrinsic manifold is Rd equipped with the standard multivari-
ate Gaussian measure, i.e.

pGausspxq “
e´

1
2 ||x||

2

p2πq
d
2

. (2.1)

The embedding map is a linear map from Rd to RD.

The swiss roll dataset The intrinsic manifold is the two-dimensional square r0, 1s2
sampled with uniform probability. The embedding map is

φpx, yq “ px cosp2πyq, y, x sinp2πyqq . (2.2)

The name is a reference to a cake4 typical of Central Europe.

The Hein dataset This is a peculiar dataset first introduced in the literature by
[HA05], and is characterized by a non-trivial extrinsic curvature. The intrinsic manifold is
the d-dimensional hypercube r0, 2πsd sampled with uniform probability. The embedding
map is

φpx1, . . . , xdq “ px2 cospx1q, x2 sinpx1q, . . . , x1 cospxdq, x1 sinpxdqq , (2.3)

and the minimal embedding dimension is D “ 2d. Higher embedding dimensions can be
considered by using an additional linear embedding map from R2d to RD.

4see https://en.wikipedia.org/wiki/Swiss_roll.

https://en.wikipedia.org/wiki/Swiss_roll
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2.2 Intrinsic dimension estimation

I hopefully have convinced you that manifold learning is a useful tool, and that the
manifold model provides us with a variegated playground of synthetic datasets. We are
now ready to get into the details of intrinsic dimension estimation. Let me state the
problem for synthetic datasets, where the framework is clear: I give you a set of P
points in RD generated with the manifold model, with unknown intrinsic manifold and
embedding map. The intrinsic dimension estimation task is to recover the value of the
intrinsic dimension d. The idea is that when we have an estimator that works reliably
on synthetic datasets, we can apply it to real datasets with some confidence that it will
provide a reasonable intrinsic dimension estimation.

2.2.1 Two paradigmatic estimators: CorrDim and PCA

To give you an idea on how intrinsic dimension estimation works in practice, and for which
reasons it typically fails, I will give you a detailed overview of two simple estimators:
Correlation Dimension (CorrDim) and Principal Component Analysis (PCA). I chose to
get into the details of CorrDim and PCA not only because they are simple to understand
and to numerically implement, but also because they represent well the two main classes
of estimators: CorrDim is a representative of the so called geometric estimators, while
PCA represents the projective estimators. I will come back to this classification later.
Finally, these estimators suffer from complementary drawbacks.

CorrDim and the curse of dimensionality

The CorrDim estimator was first introduced in the literature by Grassberger and Procac-
cia in the eighties [GP83b] in order to measure the fractal dimension of strange attractor
of dynamical systems exhibiting chaotic behaviour. Let me explain how it works.

I will denote our dataset as X “ txµuPµ“1, where each xµ P RD. The idea is to consider
the normalized density of neighbours of each point at scale r, namely

ρµprq “
1

P ´ 1

P
ÿ

ν“1
ν‰µ

θpr ´ ||xµ ´ xν ||q , (2.4)

where θpxq is the Heaviside step function, that equals 1 if its argument is non-negative
and 0 otherwise. This observable measures the fraction of points other than xµ that are
within a distance r from xµ. Why should we do this? Because we expect that the scaling
of ρµprq at small scales r probes the local geometric structure of the dataset, i.e. the
embedded intrinsic manifold.

If the nearest neighbours of the µ-th point are almost uniformly distributed on the
surface of a d-dimensional submanifold, we can approximate the density ρiprq by con-
sidering xµ to be the center of a d-dimensional disk (the sphere plus the volume it
bounds), and the nearest neighbours as uniformly drawn points in the disk. Both
these approximations are valid for small values of r if the intrinsic manifold, the prob-
ability distribution over the intrinsic manifold and the embedding map are smooth. In
fact: (i) smooth manifold are locally linear, i.e. they are well approximated by their
tangent spaces; (ii) smooth probability distributions can be Taylor-expanded, and at
zeroth order they are constant; (iii) smooth embedding maps can be again Taylor-
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expanded, and at first order they map linear spaces into linear spaces (non-trivially if
they are injective).

Thus, for r ! 1, we have that

ρµprq “

ż

dy pDiskpyq θpr ´ ||y||q (2.5)

where pDiskpyq is the uniform measure on a d-dimensional disk with unit radius. Here
we are implicitly assuming that ρµprq is self-averaging, which is true for large number
of samples P . By moving to spherical coordinates, we obtain

ρµprq9 r
d . (2.6)

We see that the local number of neighbours depends on r through a power-law be-
haviour with exponent given by the intrinsic dimension d.

We could average the normalized density of neighbours over all points in the dataset
in order to wash out non-uniformities, obtaining the so called correlation integral

ρprq “
2

P pP ´ 1q

ÿ

1ďµăνďP

θpr ´ ||xµ ´ xν ||q 9 rd , (2.7)

where to write the final scaling we supposed that around each point xµ the intrinsic
manifold has the same intrinsic dimension (this may be false if one considers a dataset built
as a union of two different embedded intrinsic manifolds, i.e. multidimensional datasets).
Again, this derivation holds locally, i.e. for small values of r, and for a sufficiently large
number of local neighbours.

Now, it’s easy to come up with an intrinsic dimension estimator: compute the correla-
tion integral ρprq on your dataset and fit it at small distances with a power-law behaviour
to extract the intrinsic dimension d. The fit is easily done by considering the log-log
version of the correlation integral, namely ρlogpr

1q “ log ρper
1

q, as in log-log scale the fit
becomes linear and the intrinsic dimension can be recovered as the slope of the interpo-
lating line. Refer to Figure 2.5, left panel, for an example.

It seems that CorrDim is a very simple, yet very powerful estimator. Indeed, it ignores
all the complexities of the intrinsic manifold and of the embedding map by exploiting the
local limit. You may be wandering if it has any pitfalls. CorrDim has a major drawback:
it heavily relies on the availability of data points at small distances. In other words, it
needs densely populated local neighbourhoods in order to work. While this may seem
an innocuous request in low dimensions, it quickly becomes a problem when the intrinsic
dimension of the dataset grows. Imagine that you are sitting on the barycenter of a
d-dimensional volume. To sample all directions, you would need to throw some points
in front of you and behind you, at your left and your right, above and below you, and
so on for all the d dimensions. Thus, to minimally sample a d-dimensional volume, you
would need roughly a number of data points that scales exponentially with the intrinsic
dimension d. This phenomenon is known as curse of dimensionality (see Figure 2.6).

In practice, the curse of dimensionality results in a systematic underestimation issue
for the CorrDim estimator that takes place starting at intrinsic dimension d „ 6 for
P „ 103 samples [ER92]. See Figure 2.5, right panel, for a minimal example of this
underestimation effect.
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CorrDim = 4.9 CorrDim = 3.8 - 4.9

Figure 2.5: Example of CorrDim estimation. (Left) CorrDim intrinsic dimension estimation of
a linear dataset with intrinsic dimension d “ 5, embedding dimension D “ 20 and P “ 3000
samples. Open markers denote the empirical correlation integral of the dataset (in log-log scale),
and the shaded line is a linear fit of the first 200 points. CorrDim estimates the intrinsic dimension
as the slope of this linear fit, which in this case equals 4.93. (Right) Same estimation task as
before. Red markers refer to a dataset with P “ 3000 samples while blue markers refer to a
dataset with P “ 50. CorrDim correctly estimates the intrinsic dimension in the P “ 3000
case (CorrDim = 4.9), but it underestimates it in the P “ 50 case (CorrDim = 3.8) due to
undersampling of the intrinsic manifold.

Figure 2.6: Example of curse of dimensionality. High dimensional datasets require an exponential
number of samples in order to be accurately represented. The plot (linear-log scale) shows the
number of points falling withing distance 0.5 from the center of an hypercube as a function of
the dimension of the hypercube for different values of total number of i.i.d. points sampled on
the hypercube. The number of points in the neighbourhood of the origin decays exponentially
fast as the intrinsic dimension grows.
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To get a rough idea of the effect of the curse of dimensionality on the CorrDim estima-
tion, we follow the concise argument of [ER92]. Two conditions must be met in order
for CorrDim to be effective:

• the distances r to be used in the estimation procedure must be much smaller
than the diameter δ of the intrinsic manifold in the embedding space, i.e. r

δ ! 1;

• the distances r must be sufficiently large in order for the number of pairs of
samples at distance smaller than r, let’s call itNprq, to be large. This is necessary
in order to avoid statistical fluctuations. The condition thus is given byNprq " 1.

But

Nprq „
P 2

2

´r

δ

¯d
(2.8)

where we used the power-law behaviour of the correlation integral, and the fact that
at scales r „ δ all pairs of points are at distance lesser than r, i.e. Npδq „ P 2

2 . The
second condition implies

d À
2 logP

log
`

δ
r

˘ . (2.9)

and the first requires that δ
r " 1. Using δ

r “ 10 and P “ 103 gives d À 6 as announced
previously. Moreover, this rough bound makes it clear that to estimate large intrinsic
dimension an exponential number of points P is required.

PCA and curvature

PCA is not directly, or at least not only, an intrinsic dimension estimator. PCA answers a
more general question: what is the most convenient choice of orthonormal basis to study
my dataset? The underlying idea is that by "aligning" some of the axis of an orthonormal
basis to the directions in which dataset varies the most, we could hopefully express our
dataset using a smaller set of coordinates (dimensionality reduction) or we could try to
interpret each axis as a hidden feature of our dataset (responsible for a large variance).

I will state the result first: the optimal basis to encode the variance of the dataset is
given by the basis of eigenvectors of the empirical covariance matrix C “ 1

PX
TX, where

X is the P ˆ D matrix obtained by stacking vertically the P row vectors representing
the data points, and under the assumption that the dataset is centered, i.e.

řP
µ“1 x

µ is
the null vector. Along each of the axes of the basis, the dataset has variance equal to the
corresponding eigenvalue of the covariance matrix. Let me explain why this is the case.

As a first step, we look for the direction along which the projection of the dataset has
maximum variance, i.e.

wp1q “ arg max
wPRD

s.t. ||w||“1

«

1

P

P
ÿ

µ“1

pw ¨ xµq2

ff

“ arg max
wPRD

s.t. ||w||“1

“

wTCw
‰

. (2.10)
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Notice that C is both symmetric

Ci,j “
1

P

P
ÿ

µ“1

xµi x
µ
j (2.11)

and positive semi-definite

wTCw “
1

P

P
ÿ

µ“1

pxµ ¨ wq2 ě 0 for all w ‰ 0 . (2.12)

Getting back to Equation (2.10), we can diagonalize C as C “ UTΛU , with
U orthogonal and Λ diagonal (with non-negative eigenvalues due to positive semi-
definiteness), obtaining

wp1q “ arg max
wPRD

s.t. ||w||“1

“

pUwqTΛpUwq
‰

“ UT arg max
yPRD

s.t. ||y||“1

“

yTΛy
‰

“ UT arg max
yPRD

s.t. ||y||“1

«

D
ÿ

i“1

λiy
2
i

ff (2.13)

where λi are the eigenvalues of C sorted in decreasing order, and where we used the
orthogonality of U to bijectively change variables from w to y. It is now easy to see (for
example by Lagrange constrained optimization, or by bounding yTΛy ď λ1||y||

2 “ λ1

and showing that y1 “ 1 saturates the bound) that the maximum is obtained when
y1 “ 1 and all other coordinates are zero, i.e. when wp1q is precisely the eigenvector of
C corresponding to its largest eigenvalue.

We can now look for a new direction wp2q, orthogonal to wp1q, that encodes the
maximum residual variance. This is easily achieved considering a modified covariance
matrix obtained by subtracting from C the projector onto its first eigenspace, i.e.
λ1w

p1qpwp1qqT . The new covariance matrix has the same spectral structure of the orig-
inal matrix, with the replacement λ1 Ñ 0, allowing us to repeat the above procedure
in order to find wp2q.

By iteration, this gives that the optimal orthonormal basis is given by the basis
of eigenvectors of the covariance matrix C, and the variances of the dataset along the
axis of the basis are given by the eigenvalues of C.

Notice that we implicitly assumed that C is non degenerate, which we expect to be
the case at least in the finite P case; the degenerate case can be treated analogously
nonetheless.

Now we know how to find a convenient basis for the study of our dataset, and we
know the magnitude of the variances of the dataset along these axes. How can we use
this information to estimate the dimensionality of the dataset? The idea is to sort the
directions of variance by decreasing eigenvalue, i.e. decreasing contribution to the variance
of the dataset, and to consider the directions relevant up until the residual variance is
less than 5% (for example) of the total. The intrinsic dimension is then estimated as
the number of relevant directions (see Figure 2.7, blue plot). Typically, the spectrum of
the empirical correlation matrix features clear jumps in the magnitude of the eigenvalues.
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Figure 2.7: Example of PCA estimation. The plot represents the eigenvalues of the empirical
correlation matrix of three datasets: (blue) a linear dataset, (orange) a spherical dataset, (green)
a Hein dataset. In all cases, the intrinsic dimension is d “ 5, the embedding dimension is D “ 20
and the number of sampled points is P “ 200. The PCA-estimated intrinsic dimensions are,
respectively, d “ 5, 6, 10, and are obtained by looking for sharp jumps in the magnitude of the
eigenvalues (in this case, this is equivalent to the residual variance criterion explained in the
main text). On linear datasets, PCA easily recovers the correct intrinsic dimension. On curved
datasets, PCA overestimates the intrinsic dimension.

This aids the intrinsic estimation procedure, and grants that the estimation is stable
against modifications of the residual variance threshold, which is somewhat arbitrary
otherwise.

Again, you could ask: is there any drawback that I should be aware of? PCA has a
severe limitation: it is a linear method, in the sense that it intrinsically reasons in terms of
orthonormal bases and linear subspaces. If two coordinates are correlated, think for exam-
ple to a circle in two dimensions, PCA will consider both dimensions as relevant, as they
both contribute significantly to the variance of the dataset. Yet, as the two coordinates
are correlated, they could in principle be described by a single parameter, resulting in
an overestimation of the intrinsic dimension computed using PCA. In general, non-linear
intrinsic manifolds and non-linear embedding maps will contribute to this overestimation
effect (see Figure 2.7, orange and green plots). On the other side, PCA is not hindered by
large intrinsic dimension as CorrDim is: it only needs roughly „ d log d points [LMR17],
independently on the dimension D, in order to reliably estimate the correlation matrix.

A further drawback that has to be highlighted is that, contrary to the examples
shown in Figure 2.7, the empirical covariance matrix may not have any large jump in the
magnitude of its eigenvalues. If this is the case, the 5% criterion on the residual variance
becomes somewhat arbitrary, and may be subject to interpretation.

2.2.2 A brief overview of intrinsic dimension estimators

CorrDim and PCA are simple intrinsic dimension estimators, yet they are paradigmatic
of more advanced algorithms. CorrDim is the prototype of the so-called geometric es-
timators, that combine the local limit (looking at small neighbourhoods) with the mea-
surement of smart observables, which are explicitly computable in the local limit, and
explicitly dependent on the intrinsic dimension d. PCA, on the other hand, is the proto-
type for the projective estimators, that look for useful decompositions or representation
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of the embedding space in order to highlight relevant and irrelevant directions.
In general, all geometric estimators suffer from the curse of dimensionality (severe

undersampling in high dimension) and need exponentially many points (in the intrinsic
dimension) to work properly, while projective estimators typically rely on matrix decom-
positions/factorizations, and need the number of points to scale roughly linearly with
the intrinsic dimension. On the other hand, projective estimators systematically over-
estimate the intrinsic dimension of curved or non-linearly embedded intrinsic manifolds,
while geometric estimators avoid all this complexity by exploiting the local limit.

In this section, I will give you a brief description of some more recent geometric
estimators without entering into much details; the list will not be exhaustive. I will not
cover projective estimators, as they are less widely used (with the notable exception of
PCA), and I am way less familiar with them; some useful references are [Cam03; LLJ+09;
Cer14; LMR17].

Geometric estimators

Most geometric estimators are variations over the CorrDim estimator. The Takens esti-
mator [Tak85], for example, is given by

dTakens “

B

log

ˆ

h

||xµ ´ xν ||

˙F´1

, (2.14)

where angular brackets denote the average over all pairs of points xµ and xν at distance
lesser than h. h is a cutoff distance that must be fixed externally. Again, the idea is
that the number of pairs of points at distance lesser than h behaves as a power-law with
exponent d for small r.

A maximum likelihood estimator based on the same principles was proposed by Levina
& Bickel [LB04]

dMLEpxq “

«

1

k ´ 1

k´1
ÿ

j“1

log
||x´ xk||

||x´ xj ||

ff´1

, (2.15)

where xj it the j-th nearest neighbour of point x. They also provide theoretical predictions
for the bias and variance of the estimator as the number of points in the dataset goes to
infinity. They observe a systematic negative bias caused by the undersampling issue, and
possibly by data point lying at edges of the intrinsic manifold.

Hein & Audibert [HA05] further elaborated on CorrDim and Takens’s idea by intro-
ducing not only an adjustable reference scale h, but also the possibility of preprocessing
the distances between points using a positive kernel function k. The central object of
their analysis is given by

UP,h,d1pkq “
2

P pP ´ 1q

ÿ

1ďµăνďP

1

hd1
k

ˆ

||xµ ´ xν ||

h2

˙

(2.16)

where h is the reference scale, d1 is a candidate intrinsic dimension and k is a non-negative,
non-increasing function. They then provide, for fixed kernel function and candidate di-
mension, a prescription to optimize the reference scale h. The intrinsic dimension is then
obtained by finding the candidate dimension that better fits the theoretical behaviour of
UP,h,d1pkq. On the level of performance, while they claim to be performing on average
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better than CorrDim and of the Takens estimator, it seems that on complex tasks, like
the dataset they present in section 4.5, they perform comparably with respect to other
estimators.

On a slightly different line from the already mentioned estimators, the minimal neigh-
bourhood estimator proposed by Facco and collaborators [FdR+17] uses the fact that, in
the local approximation, the distribution of the ratio µ between the distance between a
point and its second nearest neighbour and the distance between the point and its first
nearest neighbour is known, and equals

fpµq “ dµ´d´1θpµ´ 1q , (2.17)

with cumulative distribution function

F pµq “ p1´ µ´dqθpµ´ 1q . (2.18)

Thus, the intrinsic dimension can be estimated by fitting the empirical cumulative dis-
tribution F to this analytic form. While this estimator is not based on CorrDim, it
is reasonable to expect that it performs similarly, as it is based on a local geometric
observable.

In the spirit of revisiting non-trivially CorrDim, Kégl proposed an estimator based on
packing numbers [Kég02], that is

dPacking “ ´ lim
rÑ0

logNprq

log r
(2.19)

where Nprq is the number of D-dimensional disks of radius r needed to fully cover the
dataset. Again, the estimator is based on a power-law behaviour in the intrinsic dimension
at small scales. By performing an analysis at different scales, the author shows that on
noisy or non-uniform data the packing estimator may perform better than CorrDim.

Another explored possibility is that of heuristically modifying CorrDim in order to
improve its performances on high-dimensional data. This is the path followed by Camastra
& Vinciarelli [CV01; CV02]. They propose to compute calibration curves for CorrDim for
various sizes of datasets and intrinsic dimensions using synthetic datasets (for example
hypercubes), and to use them to mitigate the curse of dimensionality.

A final line of research worth mentioning is that focusing on enhancing CorrDim-like
methods with informations on the angular distribution of nearest-neighbours [LRC+11;
CBR+14; DQV19].

2.3 The Full Correlation Integral estimator

In the previous sections we saw that intrinsic dimension estimation has two major enemies.
One one side, generic dataset may be well represented by highly curved intrinsic manifolds,
or by non-linearly embedded simple manifolds; this introduces a great deal of variability in
the possible geometries that an estimator needs to be able to deal with. On the other hand,
high-dimensional datasets suffer a severe undersampling issue, the curse of dimensionality,
that hinders the possibility of using local observables to extract informations on intrinsic
geometry. Sadly, we cannot fully escape the consequences of these obstacles with any
intrinsic dimension estimator. How can we improve over existing estimators?

The proposal of my collaborators and myself is to try to combine some features of
geometric estimators with those of projective estimators. In the next few sections I will
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give you the details of our new procedure, the Full Correlation Integral (FCI) estimator,
but let me first provide you with the general picture.

We start by observing that the empirical correlation integral is analytically tractable in
a specific simple case, i.e. for uniformly sampled points on the surface of a d-dimensional
hypersphere, embedded in d` 1 dimensions using the natural inclusion map. By analyti-
cally tractable I mean that: (i) the empirical correlation integral is self-averaging, i.e. its
probability distribution concentrates around the average value; (ii) the average correlation
integral has a closed analytical form depending parametrically on the intrinsic dimension
d. This suggests a procedure to estimate the intrinsic dimension of spherically-sampled
and isometrically-embedded dataset:

1. center the dataset, i.e. subtract from each sample the position of the barycenter
1
P

řP
µ“1 x

µ;

2. project each sample on the unit hypersphere by normalizing it;

3. compute the empirical correlation integral on the normalized data;

4. recover the intrinsic dimension by fitting the analytic correlation integral (computed
for the hypersphere) to the empirical correlation integral, and by adding one to it
to account for the normalization procedure (that a priori lowers the total number
of degrees of freedom by one unit).

In a sense, this estimator is more similar to PCA than it is to CorrDim: it assumes some
global structure on the dataset, and uses geometric information at all length scales to
estimate the dimension. I will show you that, actually, FCI has some advantages over
PCA: for example, it is more reliable in the undersampled regime P ă d. Moreover, the
FCI estimator is robust: when the assumptions on the dataset are mildly violated, it can
nonetheless estimate correctly the intrinsic dimension.

I would like to acknowledge that a very similar approach was proposed by Granata and
Carnevale [GC16]. Contrary to our work, they focus on the probability density associated
with the correlation integral (seen as a cumulative distribution function). This causes
multiple numerical issues with respect to our proposal, resulting in poorer performances
on high-dimensional datasets.

All these ingredients are crucial to the last, and most important step. The FCI
estimator is easily multi-scalable, i.e. it can be applied to local subsets of the dataset to
obtain multiple local intrinsic dimension estimation, in order to estimate the dimension
of more complex datasets. The underlying idea is again that of geometric estimators, i.e.
that locally the datasets are trivial (linear, uniformly sampled and linearly embedded),
and thus the FCI estimator should recover the correct intrinsic dimension locally (up to
the limits induced by the curse of dimensionality). The robustness to undersampling of
the FCI estimator is the key to optimally mitigate the effects of the curse of dimensionality
that inevitably arise when the estimator is multi-scaled.

2.3.1 The correlation integral of spherical datasets

Let me start by studying the analytical properties of the correlation integral

ρprq “
2

P pP ´ 1q

ÿ

1ďµăνďP

θpr ´ ||xµ ´ xν ||q (2.20)
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on spherical datasets, i.e. with txµuPµ“1 i.i.d. samples on the pd´ 1q-dimensional hyper-
sphere. I want to prove two results:

• the average correlation integral equals

xρprqy “
1

2

ˆ

1`
Ωd´1

Ωd
pr2 ´ 2q 2F1

ˆ

1´
d

2
,

1

2
;

3

2
;
pr2 ´ 2q2

4

˙˙

, (2.21)

where Ωd “ 2π
d`1
2

L

Γ
`

d`1
2

˘

is the d-dimensional solid angle, and 2F1 is the hyper-
geometric function. The average is performed over the distribution of the P samples
txµu.

• the correlation integral is self-averaging, i.e. its distribution concentrates around
the average value as the number of samples P diverges. In practice, we will show
that

Varpρprqq “ OpP´1q (2.22)

as P Ñ8.

Average value First of all, as all samples in the dataset are i.i.d., we have that

xρprqy “

C

2

P pP ´ 1q

ÿ

1ďµăνďP

θpr ´ ||xµ ´ xν ||q

G

“ xθpr ´ ||x´ y||qy (2.23)

where angular brackets denote the average with respect to the positions of the points
in the dataset, and in the last expression x and y are two i.i.d. points sampled from
the pd´ 1q-dimensional hypersphere. Thus

xρprqy “

ż

Rd
dx

ż

Rd
dy

δp||x|| ´ 1q

Ωd

δp||y|| ´ 1q

Ωd
θ
`

r2 ´ ||x´ y||2
˘

(2.24)

where we separately squared the addends inside the step function as they are all positive
numbers, Ωd is the d-dimensional solid anglea and the Dirac’s delta functions enforce
the spherical constraints.

To go on, we move to spherical coordinates. By choosing the azimutal axis of y to
be aligned with x, we can write ||x´ y||2 as

||x´ y|| “ 2p1´ cospβdqq , (2.26)

where βd is the azimutal angle of y, or analogously the angle between x and y. Thus

xρprqy “
1

Ω2
d

ż 2π

0

dα1

ż π

0

dα2 sinpα2q . . .

ż π

0

dαd sind´1
pαdqˆ

ż 2π

0

dβ1

ż π

0

dβ2 sinpβ2q . . .

ż π

0

dβd sind´1
pβdqθpr

2 ´ 2p1´ cospβdqqq

“
Ωd´1

Ωd

ż arccos
´

1´ r
2

2

¯

0

dβd sind´1
pβdq

(2.27)

where in the last passage we performed all the trivial integrals in
α1, . . . , αd, β1, . . . , βd´1 using the definition of Ωd and Ωd´1. The integration
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can be performed exactly by first changing variable to t “ cospβdq, and then by
expanding the integrand in Taylor series around the origin

xρprqy “
Ωd´1

Ωd

ż arccos
´

1´ r
2

2

¯

0

dβd sind´1
pβdq

“
Ωd´1

Ωd

ż 1

1´ r
2

2

dt
`

1´ t2
˘
d
2´1

“
Ωd´1

Ωd

ÿ

ně0

Γ
`

n` 1´ d
2

˘

n! Γ
`

1´ d
2

˘

ż 1

1´ r
2

2

dt t2n

“
Ωd´1

Ωd

ÿ

ně0

Γ
`

n` 1´ d
2

˘

n! Γ
`

1´ d
2

˘

1

2n` 1

˜

1´

ˆ

1´
r2

2

˙2n`1
¸

.

(2.28)

Finally, using the fact that

ÿ

ně0

Γ pn` aq

n! Γ paq

1

2n` 1
b2n`1 “ b 2F1

ˆ

a,
1

2
;

3

2
; b

˙

(2.29)

where 2F1 is the hypergeometric function. we obtain

xρprqy “
1

2

ˆ

1`
Ωd´1

Ωd
pr2 ´ 2q 2F1

ˆ

1´
d

2
,

1

2
;

3

2
;
pr2 ´ 2q2

4

˙˙

. (2.30)

Variance The variance of ρprq equals

@

ρprq2
D

“

ˆ

2

P pP ´ 1q

˙2

ˆ
ÿ

1ďµăνďP

ÿ

1ďσăτďP

A

θpr ´ ||xµ ´ xν ||q θpr ´ ||xσ ´ xτ ||q
E

.
(2.31)

It’s easy to see that, for large P , the double sum is dominated by the terms with all
different indices, and that at leading order in P the number of such terms is P 2{4,
giving that

@

ρprq2
D

“ xρprqy
2 `

1`OpP´1q
˘

(2.32)

or, equivalently,

Varpρprqq “ OpP´1q . (2.33)

aThe d-dimensional solid angle measures the surface of the d dimensional unit hypersphere, and is
given by

Ωd “

ż 2π

0
dα1

ż π

0
dα2 sinpα2q . . .

ż π

0
dαd sind´1pαdq “

2π
d`1
2

Γ
´

d`1
2

¯ , (2.25)
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2.3.2 Robustness on simple datasets

As I already mentioned, the analytical results presented in the previous section suggest
the following intrinsic dimension estimator:

1. center the dataset, i.e. subtract from each sample the position of the barycenter
1
P

řP
µ“1 x

µ;

2. project each sample on the unit hypersphere by normalizing it;

3. compute the empirical correlation integral on the normalized data;

4. recover the intrinsic dimension by fitting the analytic correlation integral (computed
for the hypersphere) to the empirical correlation integral, and by adding one to it
to account for the normalization procedure (that a priori lowers the total number
of degrees of freedom by one unit).

This procedure is exact if the dataset has a linear intrinsic manifold sampled with a
rotation invariant probability distribution and is isometrically embedded5 in higher di-
mensions. In fact, in this case the centered and normalized dataset is a uniform sample
from a d´ 1 dimensional hypersphere, and all distances can be equivalently measured in
Rd or RD by isometry.

It is extremely important to characterize the performance of the FCI estimator on
datasets that fail to satisfy the linearity, isotropy and isometry conditions. Figure 2.8
presents experimental results that suggest that the FCI estimator is reliable even if:

• the dataset is not perfectly linear, isotropically sampled or isometrically embedded.
The left panels of Figure 2.8 show that the correlation integral of (centered and
normalized) linear, Gaussian and digital datasets are well fitted by Equation (2.21),
even though they show manifold-dependent features. Notice that the full analytical
form of Equation (2.21) is needed in order to correctly fit the correlation integral in
the case of digital datasets (top left panel of Figure 2.8); a local fit (for example at
small or intermediate r) would be tricked by manifold-dependent features into an
incorrect estimation;

• the dataset is extremely undersampled. The central and top right panels of Fig-
ure 2.8 show that, in the case of linear datasets, the FCI estimator correctly esti-
mates the intrinsic dimension (up to a relative error of the order of 1%) even in the
extremely undersampled case in which the number of samples P is lesser than the
intrinsic dimension d. Notice that PCA needs at least „ d log d samples to correctly
identify the intrinsic dimension;

• the dataset is corrupted by noise. The bottom right panel of Figure 2.8 shows
the intrinsic dimension estimation for a linear dataset corrupted by i.i.d. Gaussian
noise. The FCI estimator has a sharp transition between a correct estimation when
the noise is not corrupting the data, and an incorrect one when the noise completely
covers the original geometric information of the dataset.

5An isometrical embedding is a map that preserves distances. For example, the natural inclusion map
of Rd Ñ RD, followed by a rotation is an isometrical map.
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Figure 2.8: Robustness of the FCI estimator. (Top left) Correlation integral of three digi-
tal datasets (centered and normalized) of increasing intrinsic dimension d “ 5, 15, 30, common
embedding dimension D “ 60 and sample size P “ 500, overlaid to the analytical form Equa-
tion (2.21). Even though the curves present manifold-dependent features, the global fitting
procedure of the FCI estimator averages out these imperfections and correctly estimates the in-
trinsic dimension. (Bottom left) Correlation integral of a digital, a Gaussian and a linear dataset
(centered and normalized) with d “ 15, D “ 60 and P “ 500 (open markers) overlaid to the
analytic form of Equation (2.21). (Center) Estimated dimension (using the FCI estimator) vs
number of samples P for several linear datasets with varying intrinsic dimension d and common
embedding dimension D “ 500. Error bars denote the variance over 10 different datasets at
fixed P and d. The shaded region is the extremely undersampled regime where P ă d. (Top
right) Average relative error |pdest´ dq{d| (over 20 instances) for different values of P and d. For
P „ 100, the average relative error is roughly 1% independently on d, allowing for a reliable
estimation even in the extremely undersampled regime. (Bottom right) Estimated dimension vs
noise level for a linear dataset (d “ 40, D “ 60) corrupted by Gaussian noise with variance σ. As
a function of the noise level, the estimated dimension has a somewhat sharp transition between
the correct value d “ 40 and the incorrect value d “ 60 corresponding to the ID of the noise.
(Reprinted from [EGR19]).

Summarizing, the FCI estimator is a robust and reliable estimators even on datasets that
do not completely comply with its assumptions, on extremely undersampled datasets and
on noisy datasets.

Of course, the FCI estimators has some obvious limitations. On one hand, when the
dataset is highly curved, the FCI estimator will overestimate the intrinsic dimension in a
similar way as in the case of PCA. This can be observed in Figure 2.9, left panel, in the
case of a Hein dataset. On the other hand, when the geometry of the dataset is even more
complex, the correlation integral of the dataset will not be well-fitted by the functional
form in Equation 2.21, and the dimension estimation given by the FCI estimator will be
meaningless. For an example on the MNIST dataset, see Figure 2.9, right panel.
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Hein dataset - FCI d = 10 MNIST zeros - FCI d = bad fit

Figure 2.9: Limitation of FCI estimator. (Left) Correlation integral of a (centered and normal-
ized) Hein dataset, d “ 5, D “ 10 and P “ 200. The dashed line is Equation (2.21) with d “ 4
(not d “ 5 due to the normalization procedure), the solid line with d “ 9. The FCI estimator
overestimates the dimension of curved datasets similarly to PCA. (Right) Correlation integral of
a (centered and normalized) sample of P “ 200 MNIST’s zeros. The solid line is Equation (2.21)
with d “ 14. The empirical correlation integral is not well-fitted by (2.21), as it is particularly
evident for r ą 1.6.

2.3.3 The multi-scale approach

In order to tackle more complex datasets, such as spherical datasets6, the Hein dataset or
MNIST, we have to come up with some trick to ignore all such complexity. The inspiration
comes from geometric estimators. Locally, synthetic datasets are well-described (keeping
in mind the limits of the curse of dimensionality) by uniformly sampled linear datasets.
It is then natural to try to use global estimators such as PCA and the FCI estimator
locally by applying them only to small patches of the dataset U , i.e. to subsets

Upc, rq “ txν P U | ||c´ xν || ď ru , (2.34)

where r is a scale at which our dataset is well-approximated by the linear approximation,
and c is a random point in U . This procedure, repeated for various centers c and various
(small) scales r, provides us with a set of local intrinsic dimension estimations dpc, rq, that
we can study as functions of c and r. Two questions arise immediately. How can we choose
the scale r so that the linear approximation is valid? How can we aggregate all the data
of different local patches to get a single intrinsic dimension estimation? Unfortunately,
it is very difficult to answer theoretically these questions. In this section, I will try to
convince you that we might use some heuristic principles in order to guide our estimation
procedure.

It’s good to start from an example. Figure 2.10, top left panel, shows a swiss roll
dataset. Let us apply the FCI estimator to two local neighbourhoods of this datasets (the
respective centers are shaded in Figure 2.10), and plot the resulting FCI estimations as

6You may wonder why spherical datasets are considered complex, given that the correlation integral
can be analytically computed on spheres. The reason is that you don’t have the a priori knowledge that
a dataset is spherical. In practice, when normalizing a spherical dataset you lose no information, contrary
on what happens on any other dataset. Thus, the last step of the FCI estimator, i.e. adding 1 to the
fitted dimension, overestimates the dimension of a spherical dataset by 1.
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Figure 2.10: Performance of the multi-scale FCI estimator on synthetic datasets. (Left) Multi-
scale FCI estimation on a swiss roll dataset (d “ 2, D “ 3, P “ 2000). Higher local intrinsic
dimension estimations correspond to zones of higher curvature in the dataset. The correct in-
trinsic dimension can be recovered by measuring the height of the lowest plateau in the plot.
(Top right) Multi-scale FCI estimation on a Hein dataset (d “ 6, D “ 12, P “ 104). In this
dataset curvature effects are extremely strong, hence the vertical spread of the local intrinsic
dimensionality curves in the plot. Again, the lowest plateau identifies the correct intrinsic di-
mension. (Bottom right) Multi-scale FCI estimation on a multidimensional dataset, composed
by the union of two linear datasets (d1 “ 20, d2 “ 30, D “ 50, P “ 1000 for each of the two
datasets). The local quality of the multi-scale FCI estimator allows to correctly separate and
identify multiple intrinsic dimensions in the dataset. (Reprinted from [EGR19]).

functions of the scale r (see Figure 2.10, bottom left panel). We can observe some crucial
phenomena:

• the estimations related to the innermost patch of the dataset are systematically
higher than those related to the outermost patch. This is a clear consequence of
curvature: where the datasets is most curved, the FCI estimator will overestimate
the intrinsic dimension;

• the estimations are persistent. They are mostly constant as functions of the scale r,
meaning that the geometrical properties of the dataset are mostly constant in this
range of scales;

• at small and large scales, we observe higher intrinsic dimension estimations. At
small scales, this is due to the lack of datapoints (even though the FCI is robust
to undersampling, it will fail when the number of samples is too small, P „ 10).
At large scales, the FCI starts probing the global structure of the dataset, and
overestimates the dimension due to curvature;

• the intrinsic dimension estimation of the lowest plateau is near 2, which is the correct
intrinsic dimension.

These observations suggest the following heuristic procedure, that we call multi-scale
FCI estimator:
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1. perform many FCI estimations dpc, rq on small patches of the dataset Upc, rq, vary-
ing both the center c and the scale r. A notable variant is to replace the metric
scale r with the number k of nearest neighbours, i.e. to define

Upc, kq “ txν P U | xν is one of the first k nearest neighbours of c in Uu ; (2.35)

2. plot dpc, rq as a function of r, for all centers c. This allows to have a concise
representation of many local intrinsic dimension estimations;

3. consider reliable the curves that show a plateau as functions of r. Longer plateaux
should correspond to neighbourhoods on the dataset where the geometric properties
vary less;

4. select the height of the lowest plateau as the aggregated intrinsic dimension estima-
tion for the dataset. Selecting the lowest plateau should favor neighbourhoods of
the dataset with lowest curvature.

Of course, all this considerations are qualitative, and may break in many situations, for
example if the dataset is severely undersampled. In order to confirm that this heuristic is
reasonable, let us take a look at Figure 2.10, right panels, where the multi-scale FCI has
been applied to a pair of challenging synthetic datasets: the highly-curved Hein dataset
(d “ 6, D “ 12, top right panel) and a multidimensional dataset composed by a union
of linear datasets with common embedding space (d1 “ 20, d2 “ 30, D “ 50, bottom
right panel). In both cases, we observe that the lowest plateaux identifies the correct
intrinsic dimension (or dimensions, in the second case). In the Hein dataset case, where
the curvature is higher, we see that the majority of the curves dpc, rq identify higher
local intrinsic dimensions as expected, and that selecting the lowest plateau is crucial to
mitigate curvature effects. In the multidimensional case, the local estimates are more
concentrated around the values of d “ 20 and d “ 30 as the curvature effects are not
present. Notice that in both cases we decided to use the k-nearest neighbour version of
the multi-scale FCI estimator due to computational convenience.

Thus, the multi-scale FCI estimator provides a useful heuristic to treat complex
datasets. Notice that, in principle, every intrinsic dimension estimator can be multi-scaled
as we did in this section. For example, multi-scale PCA and its generalizations [LLJ+09;
LMR17] have been analyzed in depth in the past. I stress that the multi-scalability of
the FCI estimator in particular is enormously helped by its robustness to imperfections
in the datasets and to undersampling, allowing to mitigate both local curvature effects
and the curse of dimensionality. Other estimators do not share this feature.

2.3.4 Multi-scale FCI on datasets of synthetic bitmap images

To better evaluate the performance of the multi-scale FCI estimator, and to asses whether
it is reasonable to expect that it will work on real datasets such as MNIST, it is useful
to introduce a new kind of synthetic dataset. We consider a dataset of synthetic bitmap
images representing light spots, see Figure 2.11, right panel. We generate each bitmap
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P = 4000Figure 2.11: Performance of the multi-scale FCI estimator on bitmap images. (Left) Multi-scale
FCI estimation for two datasets (D “ 812, P “ 4000) of synthetic bitmap images representing
respectively one (d “ 5) or three (d “ 15) light spots. The heuristics of considering the lowest
plateau is again effective, leading to the correct intrinsic dimension estimation. (Right) Some
samples taken from the two datasets of synthetic bitmap images. (Reprinted from [EGR19]).

image by assigning to each pixel pi, jq of a 81ˆ 81 image7 the value vi,j given by

ai,j “ cos θpj ´∆xq ` sin θpi`∆yq

bi,j “ ´ sin θpj ´∆xq ` cos θpi`∆yq

vi,j “ 1´

d

a2
i,j ` e

2b2i,j
p1` e2qs2

(2.36)

with parameters

∆x horizontal translation uniform in p´20, 20q
∆y vertical translation uniform in p´20, 20q
s size uniform in p1, 3q
e eccentricity uniform in p5, 10q
θ angle of the major axis uniform in p´π{2, π{2q

An image of a light spot has thus five degrees of freedom, i.e. intrinsic dimension d “ 5
(horizontal and vertical position of its center, size, eccentricity and rotation), and em-
bedding dimension D “ 812. Multiple images can be easily stacked by selecting for each
pixel the maximum value between all images, allowing for images with up to three easily
distinguishable light spots, i.e. up to d “ 15 (more than three light spots gives unclear
images).

Datasets of bitmap images are particularly challenging for intrinsic dimension estima-
tors. Simple transformations such as translations in the image translate to very complex
transformations in intrinsic space.

The multi-scale analysis for two of these datasets (the one and three light blobs per
image cases) is shown in Figure 2.11, left panel. Notice that the d “ 15 case is an
example of a very high-dimensional complex dataset. Even in this very complex case, the
multi-scale FCI estimator provides a very good estimate of the intrinsic dimension.

7The pixel p0, 0q is the central one.
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Estimator SwissRoll2,3
Linear20,50

Y

Linear30,50

Hein6,12 Images5,812 Images15,812

CorrDim [GP83b] 1.98 12.53 5.93 5 13.5
Takens [Tak85] 1.97 12.01 5.77 N.A. N.A.

Hein et al. [HA05] 2 13 6 N.A. N.A.

PCA 3 20 & 30 12 40 40

Multi-scale FCI 2 20 & 30 6 5 15

Table 2.1: Comparison between ID estimators on curved and multi-dimensional datasets. Green
digits represent correct estimates, red digits wrong estimates.

2.3.5 Comparison with other estimators

Benchmarking intrinsic dimension estimators is a challenge by itself [LRC+11]. To provide
a preliminary assessment on the performance of multi-scale FCI, we compared a selection
of estimators on the challenging datasets presented above: the swiss roll, a multidimen-
sional dataset, the Hein dataset and the synthetic bitmap images datasets. Table 2.1
reports the results8.

As expected, geometric and projective estimators have complementary performances:
low-dimensional curved datasets are correctly treated by geometric estimators, while PCA
can deal with the multidimensional dataset (in the eigenvalue plot, two magnitude jumps
are visible). On high-dimensional curved datasets, such as the d “ 15 synthetic bitmap
images dataset, both classes of estimators fail. In all cases, the multi-scale FCI estimator
can estimate the correct intrinsic dimension.

2.4 Perspectives

In this chapter, I hopefully gave you an introduction to manifold learning, and in partic-
ular to intrinsic dimension estimation. I presented the FCI estimator and its multi-scaled
version, and I argued that the latter has notable advantages over existing intrinsic dimen-
sion estimators. I think that now it may be a good time for the bad news: throughout the
chapter I have ignored some issues that I should now highlight, and that directly motivate
the possible future research directions related to this topic.

The first issue concerns the significance of the manifold model itself. Given a discrete
set of points, it is always possible to describe it as a random sample over a one-dimensional,
possibly very contorted, manifold. This makes it clear that the existence (and uniqueness)
of the intrinsic manifold is at least a delicate point. It also raises the question of whether
the real intrinsic dimension of a dataset (in the manifold model) is the actually the number
that we would like to compute. Consider, for example, a one-dimensional curve densely-

8The CorrDim, Takens and Hein estimations were obtained using the code available at https://www.
ml.uni-saarland.de/code/IntDim/IntDim.htm. N.A. means that the code could not obtain an intrinsic
dimension estimation. We however expect very similar results to those of CorrDim. The FCI estimations
were obtained using the code available at https://github.com/vittorioerba/pyFCI.

https://www.ml.uni-saarland.de/code/IntDim/IntDim.htm
https://www.ml.uni-saarland.de/code/IntDim/IntDim.htm
https://github.com/vittorioerba/pyFCI
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packed in a two-dimensional square. At which level of packing should we say that a
discrete sample of the curve is one or two dimensional? And how these questions interact
with the curse of dimensionality, that practically hinders our possibility of probing the
local geometry of datasets? These questions are of fundamental and crucial importance,
and constitute a first possible line of further research.

A second issue is given by the level of rigour and usability of the multi-scale FCI
estimator. As we have seen, the multi-scale FCI estimator relies heavily on the user to
perform the actual estimation. In fact, at the current time, there is no automated pro-
cedure to extract the final intrinsic dimension estimation from the local dimensionality
curves dpc, rq. A possible step towards the formalization of the multi-scale FCI is to
develop an error measure to attach to each local estimate. My collaborators and my-
self briefly explored the possibility of using the mean-square error of the fit in the FCI
estimation procedure as an error measure, but we found no promising result.

Finally, and based on a solution to the previous issue, it will be very important to
benchmark the multi-scale FCI estimator using state-of-the-art benchmarking protocols,
such as the one described [LRC+11].
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CHAPTER 3

Random geometric graphs in high dimension

Spatial networks are a key ingredient in Statistical Physics and Computation, modelling
interaction networks between particles and nearest-neighbour graphs for machine learning
applications. It is still not clear whether high-dimensional spatial networks behave as
geometrically unstructured graphs, or if it is possible to detect their Euclidean geometry.
In this chapter, I will explore this question following [EAG+20]. I will focus on specific
observables, M -clique densities, and show that in some cases, even in the limit of infinite
dimension, spatial network may be distinguished from unstructured graphs.
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3.1 Network theory

3.1.1 Graphs are a key tool in modern science

In the last twenty years, the sudden availability of big telecommunication, social and
epidemic datasets fostered a novel interest for graph theory [AB02]. In fact, graphs are
the best mathematical object to describe relational structure in datasets. Consider, for
example, a social network [Net13]. While it is certainly interesting to have data about
all its users, the crucial information here is given by the relations between the users: who
follows whom?

Statistical Physics contributed greatly to the study of complex systems through the
lenses of graph theory [CSS+19]. It was discovered that many models of graphs undergo
phase transitions in the limit of an infinite number of nodes. For example, as the number
of edges increases, many models of large random graphs quickly transition from a phase
in which the nodes are mostly disconnected between each other to a phase in which all
the nodes belong to the same connected component. This has practical implications: as
the users of a growing social network connect more and more with each other, there is a
sharp transition from mostly-disconnected, small communities to a phase where every user
belongs to the same community. Moreover, physicists noticed that many graphs arising
from real complex systems show some form of criticality, meaning that their properties
show fractal behaviour. For example, the average degree of the nodes, i.e. the average
number of nodes linked to a given node, often follows a power-law distribution. This
implies that there is no intrinsic scale describing the number of neighbours in the graph.

Graphs arise often also in Computer Science [BCD+18]. Almost every optimization
problem will be defined on a graph, the more complex the more non-trivial the problem
is. For example, consider what Google Maps does when you try to find the optimal route
between Milan and Naples. It looks for the path of least travel time on the graph of
cities, routes and intersections of Italy. Figure 3.1 shows an example of shortest path on
a simpler graph.

A key model of graph is given by spatial graphs [Pen03; Bar11]. Spatial graphs are
special in the fact that their nodes are points in some geometrical space, for example d-
dimensional Euclidean space. In non-spatial graphs, there is no limit to the connectivity
between nodes in general. In spatial graphs, geometry affects the connectivity between
nodes. For example, consider the network of telecommunications between mobile phones
and cell towers. In this graph, if a cell phone is far from a given cell tower, the probability
that they will be connected will be very small [GGD15]. The same is true for epidemic
spreading in a small community: nearer nodes (people) will have a much stronger epidemic
influence one on the other than farther nodes.

Spatial graphs find their use also in optimization problems and machine learning.
Datasets are often represented as points in some high-dimensional space, and they are
studied using local algorithms that use not only the position of the nodes, but also the
position of the neighbours of each node, to infer properties. For example, many dimension-
ality reduction algorithms try to project high-dimensional points into a low-dimensional
space while keeping the local geometry of a node and its nearest neighbours intact (see
for example Isomap [Ten00], LLE [Row00] or t-SNE [vdMH08]).

While for the study of complex systems low-dimensional spatial networks (dimension
lesser than three) are often enough, it is crucial to understand the properties of spa-
tial networks in high-dimension for machine learning applications (the dimension of the
MNIST dataset is 784, and this is considered a "simple" dataset). Nonetheless, analytical
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Figure 3.1: Example of shortest path on a graph. The graph drawn in gray is generated by
connecting nearby nodes. The highlighted subgraph is the shortest path between its two end-
nodes.

results for high-dimensional spatial networks are scarce, and mainly motivated by pure
mathematical interest [DC02; DGL+11; BDE+16; AB20]. The main question is whether
spatial graphs in very high dimension are still significantly constrained by the underlying
geometry, that is, whether they converge to simpler, non-geometrical graphs or not. A
natural setting to investigate this question is given by random graphs, i.e. graphs where
the attributes of nodes (their position, for example) and their connectivities are deter-
mined by a random process [FK15]. By looking at average properties, we may hope to
obtain some generic insight on certain families of graphs, without limiting our analysis to
specific realizations.

In this chapter I will compare the behaviour of spatial networks to that of Erdös-Rényi
graphs [ER60], i.e. unstructured graphs in which each pair of nodes is connected by an
edge with independent probability p, by studying the average number of highly-connected
clusters that can be found in the graph. I will show that, in some regimes, geometric
structure can be detected even in very high dimension by looking at the statistics of
highly-connected clusters [EAG+20].

3.1.2 A primer in graph theory

Before starting, let me recollect some basic notions and notations about graphs. A graph
is defined by a set of nodes (or vertices) V and by a set of edges E Ď V ˆ V (edges are
denoted by their end vertices). Whenever the order of end vertices does not matter we
say that the graph is undirected, that is edges have no orientation. In the following we
will always consider undirected graphs without self-loops, i.e. with no edges connecting
a node to itself. In mathematical notation pi, iq R E for all i P V . The degree of a node is
the number of other nodes directly connected to it by an edge.

The connectivity structure of a graph G “ pV,Eq with P nodes can be encoded into
the adjacency matrix, i.e. the P ˆ P matrix defined by

ApGqij “

#

1 pi, jq P E

0 pi, jq R E
, (3.1)

where the vertex set V was given an arbitrary ordering.
A path in a graph is a set of contiguous edges, i.e. edges sharing a common node. A

graph is connected if there exists a path between each pair of nodes; in other words, a
graph is connected if a walker can travel between each pair of nodes by walking only on
edges of the graph. A graph is fully-connected if all of its nodes are connected to each
other by an edge.
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A subgraphH “ pG1, E1q of a graphG “ pV,Eq is a graph such thatG1 Ď G, i.e. whose
nodes are a subset of the nodes of the original graph, and such that E1 Ď pG1 ˆG1q XE,
i.e. whose edges are a subset of the original edge set, and are restricted to the new node
set G1.

A M -clique H in a graph G is a fully-connected subgraph of G with M vertices. M -
cliques in a graph denote clusters of highly-connected nodes. The maximum number of
M -cliques in a graph with P nodes is given by

`

P
M

˘

, and is achieved only by fully-connected
graphs. The density of M -cliques of a graph G is defined as

ρM pGq “
# of M -cliques in G

`

P
M

˘ , (3.2)

that is the fraction of M -cliques with respect to the fully-connected graph.
In this chapter we will not need more graph theory than this. Some good general

references on graph theory and more in general complex network theory are [BM08;
Bar11; CSS+19].

3.2 Random graphs

When dealing with the study of general properties of graphs, it is often useful to introduce
models of random graphs. In this way, one can study average properties in the ensemble
of choice.

From a probabilistic point of view, random graphs (with bounded number of nodes)
are no different from any other discrete random variable. Indeed, a graph with P nodes
can be described by

`

P
2

˘

binary variables Aij that equal one if the i-th and j-th nodes (in
some order) are connected by an edge, and zero otherwise. Notice that there may exist
permutations of the nodes that leave the connectivity variables Aij unchanged: these
should be factored out if the nodes are indistinguishable.

There are many models of random graphs that are constructed in order to display
certain properties: random graphs with constant degree, random graphs with a chosen
degree distribution, random graphs with clustered nodes (i.e. with subsets of nodes
having a higher degree of connections between them). I will not provide a review of all
these models: see [FK15] for a complete survey, and [HL81] for a nice maximum-entropy
approach to distributions of random graphs.

3.2.1 Unstructured graphs: the Erdös-Rényi model

The simplest model of random graph is given by the Erdös-Rényi model [ER60]. Given a
set of P nodes, an Erdös-Rényi graph is generated by connecting each pair of nodes with
independent probability p.

The average density of M -cliques in an Erdös-Rényi graph (as a function of the con-
nection probability p) is given by

ρM ppq “ pp
M
2 q . (3.3)

3.2.2 Spatial networks: hard and soft random geometric graphs

Random spatial networks are usually called random geometric graphs (RGG). The mono-
graph by Penrose [Pen03] is the bible of the topic. RGGs are widely used to model
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Figure 3.2: Example of hard and soft random geometric graph. Small circles denote nodes
embedded in R2 drawn randomly with the uniform measure on r0, 1s2 and shaded circles highlight
a region of radius r{2 around nodes. Solid lines highlight the actual edges of the represented
graphs. On the top of the graph representations, the activation function used to build them are
displayed. (a) In a hard random geometric graph at cutoff r, the only selected edges are those
with nodes closer than r (in the picture, the nodes whose shaded regions intersect). (b) In a soft
random geometric graph, edges are selected based on a continuous activation function hrpxq. If
two nodes are at distance d between each other, then the edge that connects them will be chosen
with probability hrpdq. In the picture, dotted edges are those edges that have been chosen by
the soft random geometric graphs even though the distance between nodes was larger than r.
Vice versa, dashed edges are those at distance smaller than r, but not selected in that specific
instance of the soft random geometric graph. (Reprinted from [EAG+20]).

systems in which geometry plays a crucial role: transport networks [BLG17], wireless and
5G networks [GGD15] and social networks [Net13].

RGGs are defined by randomly extracting d-dimensional coordinates for each node,
and by connecting with edges each pair of nodes whose mutual distance is lesser than
a fixed threshold r. Thus, the randomness of the model is limited to the position of
the nodes, and the connectivity structure of the graph is then determined by the mutual
distance between points.

To be more precise, a random geometric graph is defined by:

• a random process that generates P points in Rd. The positions of the points may in
principle be correlated, and their probability density may be supported on complex
domains. In most settings, and in the following, it is hard enough to consider the
simplest case, in which all the positions of the points are i.i.d. random variables.
Moreover, I will consider the factorized case, i.e. the probability distribution of the
position of a point νpxq is factorized in the coordinates, i.e.

νpxq “
d
ź

i“1

τpxiq (3.4)

for some probability distribution τ on the real line with finite first and second
moment. In this case, all the coordinates of all the nodes are i.i.d. random variables,
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with law τ . An example is given by RGGs on the hypercube, in which

τpxq “ θpxqθp1´ xq (3.5)

where θ is the Heaviside step function. A notable exception to the factorized case
is given by RGGs on the hypersphere, extensively treated in the literature of high-
dimensional RGGs [DGL+11; BDE+16; AB20].

In low dimension, many models of RGGs on different geometries have been consid-
ered in the literature, see [ES15; All18] for example.

• a distance function dpx, yq on Rd. As always, Euclidean distance is the natural
choice. In the following, we will consider the more general notion of p-norm distances
dpx, yq “ ||x´ y||

minp1,pq
p , where

||x||p “

«

d
ÿ

i“1

|xi|
p

ff

1
p

. (3.6)

This is motivated by the observation that in some machine learning applications,
using the 0 ă p ă 1 pseudo-norms improves performances, especially in the high
dimensional setting [FWV07];

• a linking probability hpxq, also called activation function, that determines the proba-
bility that a pair of nodes at distance x is connected be an edge. While other options
are possible, we will consider activation function that are monotone decreasing, to
model the fact that nearer nodes should be linked with higher probability, and such
that hp0q “ 1 and hp8q “ 0. Usually, the activation function is labeled by a pa-
rameter r P R` that describes the typical distance at which a pair of nodes will
be considered close enough to be linked with a nontrivial probability, for example
hrprq “

1
2 . In this case, the statistical properties of RGGs can be investigated as

functions of r.

The case discussed in the brief introduction to this section is that of classic RGGs,
or hard RGGs, in which the linking process is deterministic due to the activation
function

hhard
r pxq “ θpr ´ xq . (3.7)

See Figure 3.2, left panel, for an example of hard RGG.

Another possibility is given by soft RGGs, in which the activation function is con-
tinuous. A common example is given by the so-called Reyleigh fading activation
function (often used in telecommunication modelling) [GGD15; KBD19]

hReyleigh
r pxq “ exp

”

´ξ
´x

r

¯ηı

(3.8)

where the choice ξ “ logp2q enforces that hrprq “ 1
2 . See Figure 3.2, right panel,

for an example of soft RGG.

Of course, RGGs at finite dimension are quite different from Erdös-Rényi graphs (for
the sake of comparison, consider Erdös-Rényi graphs embedded in Euclidean space by
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Erdös-Rényi graph RGG graph

Figure 3.3: Comparison between an Erdös-Rényi graph embedded in 2d and an hard RGG. On
the same set of 30 nodes embedded in the 2d unit square, we construct an Erdös-Rényi graph
(left) with connection probability p “ 0.1 and an hard RGG (right) with connection radius
r “ 0.3. The Euclidean structure of the RGG is evident: nearer nodes are linked, and further
nodes are not. On the other hand, the edges of the Erdös-Rényi graph have no correlation with
the Euclidean position of the nodes, even at small values of the connection probability.

assigning random positions to their nodes): the former typically have a higher number of
connections between nearby nodes, while the latter has no such constraint. See Figure 3.3
for an example.

To get an intuition on what may happen in high-dimension, and to why Erdös-Rényi
graphs are a natural choice for comparison, notice that in high dimension Euclidean norms,
distances and angles tend to concentrate (this will be made precise in what follows), so
that the geometrical structure of finite sets of points trivializes into sets of orthogonal
points lying on the surface of a sphere. With this in mind, one may guess that RGGs
could become less and less structured as the dimension grows, converging to Erdös-Rényi
graphs.

This is what is found in a series of technical papers [DGL+11; BDE+16; AB20] that
consider the case of hard RGGs on the sphere. The authors there prove that RGGs on
the sphere converge to Erdös-Rényi graphs in the total variation distance, that is

dTVpG,G
1q “

ÿ

g

|ProbpG “ gq ´ ProbpG1 “ gq| , (3.9)

where G,G1 are two random geometric graphs defined on a shared set of nodes, and
the sum runs over all graphs g on the same set of nodes. They also note that while this
convergence criterion is extremely strong, the rate of convergence provided by their proofs
is quite poor, requiring that the dimension d of the RGG scales as d „ 2P

2

in the number
of nodes P . Nonetheless, simple graph observables may converge much faster, as they
explicitly show in the case of the clique number, i.e. the size of the largest clique in a
graph.

On the other hand, for the case of hard RGGs on the hypercube, it seems that RGGs
retain some geometrical information in the high-dimensional limit. In [DC02], the authors
study the cluster coefficient of RGGs, i.e. the probability that two nodes sharing a
common neighbour are connected, and observe that in the high-dimensional limit it is
different from that of Erdös-Rényi graphs with comparable connectivity.

Thus, it seems that the high-dimensional limit of hard RGGs is delicate.
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3.3 A central limit theorem for distances in high dimension

The first step towards understanding the behaviour of RGGs in high dimension is to
understand how the set of mutual distances between M1 points behaves as the dimension
grows to infinity. In other words, we would like to compute

Πpdp1,2q, dp1,3q, . . . dpM´1,Mqq “

ż M
ź

ρ“1

νpxρqdxρ
ź

1ďρăσďM

δ
`

dppx
ρ, xσq ´ dpρ,σq

˘

, (3.10)

that is the probability that the
`

M
2

˘

distances between the M nodes have values dpρ,σq
for 1 ď ρ ă σ ď M . Recall that the random positions of the nodes are controlled by the
probability density νpxq which is factorized over coordinates as in Equation (3.4).

3.3.1 The central limit theorem

Due to the factorization of νpxq, each distance dppxρ, xνq is a function of the sum of d
i.i.d. random variables, that we expect to concentrate to the mean due to the law of large
numbers. Thus, it’s natural to define the centered and rescaled variables

qpρ,σq “
rdppx

ρ, xσqs
maxp1,pq

´ dµ
?
d

“
1
?
d

d
ÿ

k“1

p|xρk ´ x
σ
k |
p ´ µq “

1
?
d

d
ÿ

k“1

qkpρ,σq (3.11)

where

µ “

ż

dx dy τpxqτpyq|x´ y|p . (3.12)

Again, notice that qk
pρ,σq are, at fixed 1 ď ρ ă σ ď M , i.i.d. random variables with null

mean.
By the multivariate central limit theorem (CLT), in the limit dÑ8, the distribution

of the vector q “ pqp1,2q, qp1,3q, . . . , qpM´1,Mqq
2 converges to a multivariate Gaussian dis-

tribution with null mean and covariance Σpρ,σq,pη,ζq “
A

q1
pρ,σqq

1
pη,ζq

E

, where the average

is taken over the values of xρ1, x
σ
1 , x

η
1 , x

ζ
1 all distributed with law τpxq.

The general proof of the multivariate CLT can be found in [Van00, Proposition 2.17].
Here, I sketch a more down-to-the-earth argument.

The probability that the rescaled distances qpρ,σq assume values hpρ,σq is defined as:

1I don’t use P for the number of nodes in this section in order to stress that here the number of nodes
is strictly finite.

2I will use boldface to denote vectors or matrices whose indices run over pairs of points, in contrast
with standard Euclidean vectors such as the positions of the points.
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Prob

˜

"

1
?
d

d
ÿ

k“1

qkpρ,σq “ hpρ,σq

*

@ 1ďρăσďM

¸

“

ż d
ź

k“1

M
ź

µ“1

´

dxµkτpx
µ
kq

¯

ź

ρăσ

δ
´

hpρ,σq ´
1
?
d

d
ÿ

k“1

qkpρ,σq

¯

,

(3.13)

where we recall that qk
pρ,σq is a function of xρk and xσk . Using the Fourier representation

of Dirac’s delta function, we obtain:

Prob

˜

"

1
?
d

d
ÿ

k“1

qkpρ,σq “ hpρ,σq

*

@ 1ďρăσďM

¸

“

ż d
ź

k“1

M
ź

µ“1

´

dxµkτpx
µ
kq

¯

ż

ź

ρăσ

dλpρ,σq

2π
exp

ˆ

iλpρ,σq

´

hpρ,σq ´
1
?
d

d
ÿ

k“1

qkpρ,σq

¯

˙

“

ż

Dλ
d
ź

k“1

«

ż M
ź

.µ“1

´

dxµkτpx
µ
kq

¯

exp
´

´
i
?
d

ÿ

ρăσ

λpρ,σqq
k
pρ,σq

¯

ff

,

(3.14)

where we have defined Dλ “ ś

ρăσ
dλpρ,σq

2π eiλpρ,σqhpρ,σq . Now we use the fact that k is
mute index, so that

Prob

˜

"

1
?
d

d
ÿ

k“1

qkpρ,σq “ hpρ,σq

*

@ 1ďρăσďM

¸

“

ż

Dλ
«

ż M
ź

µ“1

´

dxµτpxµq
¯

exp

ˆ

´
i
?
d

ÿ

ρăσ

λpρ,σq

´

|xρ ´ xσ|p ´ µ
¯

˙

ffd

.

(3.15)

If M is not scaling to infinity with d, so that the sum in the exponential is finite, and
d is large, we can expand to second order the exponential, obtaining

Prob

˜

"

1
?
d

d
ÿ

k“1

qkpρ,σq “ hpρ,σq

*

@ 1ďρăσďM

¸

»

ż

Dλ
«

ż M
ź

µ“1

ˆ

dxµτpxµq

˙

˜

1´
i
?
d

ÿ

ρăσ

λpρ,σq

ˆ

|xρ ´ xσ|p ´ µ
˙

´
1

2d

ÿ

ρăσ

ÿ

ηăζ

λpρ,σqλpη,ζq

ˆ

|xρ ´ xσ|p ´ µ
˙ˆ

|xη ´ xζ |p ´ µ
˙

¸ffd

(3.16)

The integrals in dxµτpxµq can be explicitly solved. The linear term is null due to
the definition of µ, and in the quadratic term the integrals give exactly Σpρ,σq,pη,ζq.
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Moreover, we can now re-sum the terms in to an exponential, obtaining

Prob

˜

"

1
?
d

d
ÿ

k“1

qkpρ,σq “ hpρ,σq

*

@ 1ďρăσďM

¸

»

ż

dΛ

2π
eiΛ

THe´ΛTΣΛ “
e´

1
2H

TΣ´1H

b

p2πqp
M
2 q detpΣq

,

(3.17)

where we introduced bold symbols to denote vectors indexed by pairs of points.
This computation proves that, in the limit of dimension which tends to infinity,

the probability distribution of the normalized distances among M points tends to a
`

M
2

˘

-dimensional multivariate normal distribution with mean 0 and covariance matrix
given by Σ. This matrix is the most important object in our result, so in the following
sections we study in depth its properties.

It is worth noticing that the corrections to the dÑ8 limit are of order 1?
d
, and may

depend on M . Thus, this d Ñ 8 limit is performed at fixed M , and the result can be
used either to treat generic observables for graphs where the total number of nodes is
fixed, or to treat observables that depend only on a finite number of nodes at a time in
graphs where the total number of nodes may scale with d. Moreover, the CLT presented
above holds for the variable q, and not for the actual distances. However this is not an
issue, as the joint distribution for distances can be derived by a simple coordinate change,
factorized over each direction. Moreover, as we will see in the following, it is often easy
to obtain the observables of interest in terms of the q variable.

3.3.2 The structure of the covariance matrix

The structure of the covariance matrix Σ is quite peculiar. Recall that

Σpρ,σq,pη,ζq “
@

p|yρ ´ yσ|p ´ µqp|yη ´ yζ |p ´ µq
D

(3.18)

where all the y’s are distributed with law τ .
By permutational symmetry, there are only three different matrix elements:

• Diagonal correlations (ρ “ η and σ “ ζ)

α :“ Σpρ,σq,pρ,σq “

ż

dx dy τpxqτpyq|x´ y|2p ´ µ2 ; (3.19)

• Triangular correlations (ρ “ η and σ ‰ ζ or ρ ‰ η and σ “ ζ)

β :“ Σpρ,σq,pρ,ζq “ Σpρ,σq,pη,σq

“

ż

dx dy dz τpxqτpyqτpzq|x´ y|p|x´ z|p ´ µ2 ;
(3.20)

• Pair-pair correlations (ρ, σ, η, ζ are all distinct)

γ :“ Σpρ,σq,pη,ζq “

ˆ
ż

dx dy τpxqτpyq|x´ y|p
˙2

´ µ2 “ 0 . (3.21)

Notice that γ “ 0 due to the definition of µ.
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(a) (b)

N = 8 N = 5

α β γ

Figure 3.4: (Left) Example of a matrix ∆pN,α, β, γq for N=8. The entries with value equal to
β have the same structure of the adjacency matrix of the Johnson graph. (Right) Example of
Johnson graph with N=5. The Johnson graph JpN, 2q is the line graph of the complete graph
over N nodes. It has all the distinct pairs of the original nodes as its vertices, and its vertices
are linked if their pairs share an original node. (Reprinted from [EAG+20]).

In the case of simple distributions τpxq, we can explicitly evaluate µ, α and β.

Uniform distribution on hypercube In this case, τpxq “ θpxqθp1´ xq, and

µcube “
2

pp` 1qpp` 2q
,

αcube “
p2pp` 5q

pp` 1q2pp` 2q2p2p` 1q
,

βcube “
2

pp` 1q2

˜

p2 ´ 2

pp` 2q2p2p` 3q
`

Γ2pp` 2q

Γp2p` 4q

¸

,

(3.22)

where Γpxq is the Euler gamma function.

The general form of a matrix with the symmetries of Σ is given by (see Figure 3.4).

∆pρ,σqpη,ζqpM,α, β, γq “ pα´ 2β ` γqδρ,ηδσ,ζ

` pβ ´ γqpδρ,η ` δρ,ζ ` δσ,η ` δσ,ζq ` γ ,
(3.23)

where δi,j is the Kronecker delta, and
`

M
2

˘

ˆ
`

M
2

˘

is the size of the matrix. We collect here
some properties of these kind of matrices, mainly regarding its spectral decomposition and
its inverse which are useful to numerically sample the multivariate Gaussian distribution
of Section 3.3.1.

An easier decomposition The matrix ∆ can be more easily manipulated when
rewritten as

∆ “ pα´ γqI ` pβ ´ γqJ ` γU (3.24)

where I is the identity matrix, U is the matrix with unit entries and J is the adjacency
matrix (with null diagonal) of the Johnson graph JpM, 2q. The Johnson graph JpM, 2q
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is the so-called line graph of the complete graph over M vertices, (see Figure 3.4, right
panel). It has all the distinct pairs of the original nodes as its vertices, and its vertices
are linked if the corresponding pairs share an original node.

Notice that the three matrices commute. The only non-trivial pair is pJ ,Uq; the
two matrices commute as J satisfies

ÿ

k

J ik “
ÿ

k

Jkj “ 2pM ´ 2q (3.25)

for all rows i and columns j, as all vertices of the Johnson graph JpM, 2q have degree
2pM ´ 2q.

Spectrum As I, J and U commute, they can be simultaneously diagonalized. The
contribution of I to the spectrum is trivial, shifting all the eigenvalues by a constant. J
and U share a common non-degenerate eigenvector, the one with all unit coordinates.
In the corresponding 1d subspace, J acts by multiplying by 2pM ´ 2q, and U by
multiplying by

`

M
2

˘

. In the orthogonal subspace, i.e. the space of vectors with null
sum of coordinates, U is represented by the null operator. Thus, the spectrum is fully
determined by that of J [Bur17], which is given by an pM ´ 1q-degenerate eigenvalue
λJ2 “M ´ 4 and by a MpM ´ 3q{2-degenerate eigenvalue λJ3 “ ´2.

To summarize, the spectrum of the matrix ∆pM,α, β, γq is given by

• λ1 “ α` 2pM ´ 2qβ ` pM´2qpM´3q
2 γ with multiplicity 1;

• λ2 “ α` pM ´ 4qβ ´ pM ´ 3qγ with multiplicity M ´ 1;

• λ3 “ α´ 2β ` γ with multiplicity MpM´3q
2 ;

Trace and determinant The spectrum gives immediate access to the trace and the
determinant of ∆:

Trp∆q “

ˆ

M

2

˙

α ,

detp∆q “ λ1λ
M´1
2 λ

MpM´3q
2

3 .

(3.26)

Inverse matrix The inverse matrix ∆´1 can be explicitly computed by noticing that
∆ and ∆´1 share the same eigenvectors, and thus

∆´1
pM,α, β, γq “ ∆pM,α1, β1, γ1q , (3.27)

where the new parameters α1, β1 and γ1 are functions of the old parameters α, β and
γ, and can be determined by solving the linear system

λipα
1, β1, γ1q “

1

λipα, β, γq
, (3.28)

for i “ 1, 2, 3.



3.4. M -clique densities in random geometric graphs 47

3.4 M-clique densities in random geometric graphs

We are now ready to compute observables on random geometric graphs in the limit of
infinite dimensions; in particular, we aim to characterize the average number of subgraph
with a given structure.

3.4.1 Average number of generic subgraphs

In general, the average number of a certain subgraph G with M nodes of a random geo-
metric graph with P nodes can be factored in two terms. The first one is a combinatorial
factor

`

P
M

˘

, that accounts for the number of ways in which one can extract M nodes from
a set of P of them.

The second one is the so-called density ρGprq of the subgraph G at scale r, that is
the probability that M random points are close enough with respect to the cutoff radius
r to form a subgraph with the same adjacency matrix of G. Recalling the definition of
the joint probability of the distances between M points given in Equation (3.10), we have
that

ρGprq “

ż

dy Πpyq
ź

1ďρăσďM

“

hr
`

ypρ,σq
˘‰AρσpGq

, (3.29)

where ypρ,σq is the distance between nodes ρ and σ, and A is the adjacency matrix of the
subgraph. We can rescale the variables ypρ,σq as in Equation (3.11), and exploit the fact
that for large dimension dy Πpyq „ dqN p0,Σqpqq (here N is a multivariate Gaussian,
see Section 3.3.1) to obtain an expression for ρGprq that is valid in the limit of large
dimension:

ρgprq “

ż

dy Πpyq
ź

1ďρăσďM

“

hr
`

ypρ,σq
˘‰AρσpGq

„

ż

dqN p0,Σqpqq
ź

1ďρăσďM

„

hr

ˆ

”

dµ`
?
d qpρ,σq

ıminp1, 1p q
˙AρσpGq

,

(3.30)

where N p0,Σq is the multivariate Gaussian with null mean and covariance Σ (given in
Equation (3.18)), i.e.

N p0,Σqpqq “ e´
1
2q
TΣq

b

p2πqp
M
2 q det Σ

. (3.31)

In the rest of the section, all results hold in the limit of large dimension.
I want to stress again that this high-dimensional limit is valid only when M is not

scaling to infinity as fast as d. This is always the case if the class of subgraphsG considered
has a fixed finite number of vertices M .

3.4.2 The case of M-cliques

As a paradigmatic example, we consider the average density of M -cliques ρM prq, i.e.
fully connected subgraphs with M vertices, on random geometric graphs with generic
activation function hrpxq; in this specific case, Aρσ has only unit entries, so that

ρM prq “

ż

dqN p0,Σqpqq
ź

1ďρăσďM

hr

ˆ

”

dµ`
?
d qpρ,σq

ıminp1, 1p q
˙

. (3.32)
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We now distinguish the two main classes of RGGs: hard RGGs, where the activation
function is discontinuous, and soft RGGs with continuous activation function.

Hard RGGs In the case of hard activation function hhard, we observe that

hhard
r pxq “ hhard

rp pxpq

hhard
r px` cq “ hhard

r´c pxq , @c P R
hhard
r pxq “ hhard

c r pc xq , @c P R`
(3.33)

so that the p-th root can be discarded along with a factor of
?
d, and the integral reduces

to

ρhard
M prq “ ρhard

M

ˆ

rmaxp1,pq ´ dµ
?
d

˙

, (3.34)

with

ρhard
M pxq “

ż

dqN p0,Σqpqq
ź

1ďρăσďM

hhard
x

`

qpρ,σq
˘

“

ż

dqN p0,Σqpqq
ź

1ďρăσďM

θ
`

x´ qpρ,σq
˘

(3.35)

which is a multivariate Gaussian cumulative distribution function. Equation (3.34) high-
lights the simple dependence of ρhard

M on the parameters p, d and µ.
In the caseM “ 2, the integral in Equation (3.35) can be explicitly solved as it reduces

to the computation of the standard error function, giving

ρhard
2 pxq “

1

2

„

1` Erf
ˆ

x
?

2α

˙

. (3.36)

In the case M ą 2, the integral in Equation (3.36) admits an explicit solution only for
special and simple forms of the covariance matrix Σ, which do not match our case.

Soft RGGs In the case of soft random geometric graphs with continuous activation
functions, one can expand hrpxq to the 0-th order in powers of 1{

?
d for any value of r,

obtaining that in the limit of high dimension

ρsoft
M prq “

“

ρsoft
2 prq

‰pM2 q ,

ρsoft
2 prq “ hr

´

pdµqminp1, 1p q
¯

.
(3.37)

In the special case of Rayleigh fading activation function hrayleigh, one has

ρrayleigh
2 prq “ exp

«

´ξ

ˆ

dµ

r

˙ηminp1, 1p q
ff

. (3.38)

Intuitively, the difference between hard and soft RGGs depends on the freedom in
performing the rescaling of the cutoff radius in the former case [see Equation (3.34)],
which is lost in the latter, and on the regularity of the activation function, which allows
to take the high-dimensional limit in the straight-forward way.
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3.4.3 Comparison between hard RGGs, soft RGGs and Erdös-Rényi graphs

It’s useful to notice that ρ2prq can be interpreted as the probability that two random
nodes in the RGG will be linked at scale r. ρ2prq is monotone increasing in r, so that its
inverse is well defined.

The function rpxq “ pρ2q
´1pxq allows to re-parametrize RGGs by expressing the con-

nectivity scale r as a function of the probability x that two nodes are linked, which is
analogous to the connection probability p in Erdös-Rényi graphs (here we use x to denote
it to avoid confusion with p-norms). This highlights a common ground to compare RGGs
and Erdös-Rényi graphs. In particular, we introduce the modified M -clique densities

ωM pxq “ pρM ˝ pρ2q
´1qpxq , (3.39)

which measure the probability of observing an M -clique as a function of the probability
that two nodes are linked. Notice that the graph of ωM pxq lies in the square r0, 1sˆr0, 1s,
and that, in practice, it can be easily plotted by producing a scatter plot of ρM prq versus
ρ2prq as r grows. Notice that the recent literature on RGGs on hyperspheres [DGL+11;
BDE+16; AB20] adopts this parametrization too.

In the case of hard RGGs, the simple dependence of ρM prq on p, d and µ allows to
write

ωhard
M pxq “ pρhard

M ˝ pρhard
2 q´1qpxq “ pρhard

M ˝ pρhard
2 q´1qpxq , (3.40)

where we notice that the dependence of ωM on p, d and µ cancels out.
In the case of soft RGGs, we have that ωM pxq reduces to the simple form of Erdös-

Rényi graphs (see Equation (3.41)), i.e.

ωsoft
M pxq “ ωER

M pxq “ xp
M
2 q . (3.41)

The question now is simple: does ωhard
M pxq “ ωsoft

M pxq due to some magical simpli-
fications? We have to resort to numerical simulations to answer this question, but it’s
easy to expect that the answer will be a strong no, as multivariate Gaussian cumulative
distributions are complex objects.

Numerical simulations To compare RGGs and Erdös-Rényi graphs by computing
ωM pxq, we have to numerically compute the multivariate Gaussian cumulative function
of Equation (3.35). While this is not difficult, it requires more labour than a naïve Monte
Carlo integration. In fact, the dimension of the integration domain grows as „M2 ifM is
the clique order, and the performance of naïve Monte Carlo integration degrades quickly
as the dimension grows. To numerically approximate Equation (3.35), we resorted to the
procedure described in [Gen92], which I summarize here for completeness.

We wish to compute numerically integrals of the kind

F pa, bq “

ż b1

a1

ż b2

a2

. . .

ż bm

am

dθ
e´

1
2 θ
TΣ´1θ

a

p2πqm detpΣq
, (3.42)

where a and b are m-dimensional vectors defining the integration domain, possibly
with some components equal to ˘8, and θ is a m-dimensional integration variable.
We wish to compute the integral by Monte Carlo sampling. In this form, this is not
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very efficient for large m, as the integration domain may be infinite and as the region
in which the integrand is non-null may be difficult to sample. The idea is to perform a
series of manipulations on the integral in order to trivialize the integrand while avoiding
to complicate too much the integration domain.

Without entering too much into the details, the manipulations are the following:

1. compute the Cholesky decomposition C [Cho05] of Σ, and perform the change
of variable θ “ Cy. This allows to factorize the integrand into the variables
y1, . . . , ym, but couples the integration variables with the integration boundaries

F pa, bq “
1

a

p2πqm

ż b11

a11

e´
y21
2

ż b12py1q

a12py1q

e´
y22
2 . . .

ż b1mpy1,...,ym´1q

a1mpy1,...,ym´1q

e´
y2m
2 dy (3.43)

where

a1ipy1, . . . , yi´1q “
ai ´

ři´1
j“1 Cijyj

Cii
,

b1ipy1, . . . , yi´1q “
bi ´

ři´1
j“1 Cijyj

Cii
.

(3.44)

2. perform the change of variable yi “ Φ´1pziq, where

Φpyq “

ż y

´8

e´
x2

2

?
2π

dx . (3.45)

This trivializes the integrand, while hiding all the complexity into the integration
boundaries

F pa, bq “

ż e1

d1

ż e2pz1q

d2pz1q

. . .

ż empz1,...,zm´1q

dmpz1,...,zm´1q

dz , (3.46)

where

dipz1, . . . , zi´1q “ Φ

˜

ai ´
ři´1
j“1 CijΦ

´1pzjq

Cii

¸

,

eipz1, . . . , zi´1q “ Φ

˜

bi ´
ři´1
j“1 CijΦ

´1pzjq

Cii

¸

.

(3.47)

3. finally, we put the integral in a constant-limit form by performing the change of
variable zi “ di `wipei ´ diq. This introduces a natural priority ordering on the
integration variables wi that allows Monte Carlo sampling to be more effective,
and lowers the number of integration variables by one unit

F pa, bq “ pe1 ´ d1q

ż 1

0

pe2 ´ d2q . . .

ż 1

0

pem ´ dmqdw . (3.48)

Notice that if ai “ ´8, di “ 0, and if bi “ `8, ei “ 1.
In this form, the integral is more suitable for Monte Carlo sampling, giving an easy

algorithmic procedure to evaluate the integral.



3.4. M -clique densities in random geometric graphs 51

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

○

○

○

○

○

△

△

△

△

△

△

△

◇

◇

◇

◇

◇

◇

●

●

●

●

●

▲

▲

▲

▲

▲

▲

◆

◆

◆

◆

◆
d

M = 3

M = 4

M = 5

x
11

2

(a) Hard RGG

1
2

1

●●●●●●●●●●●●● ● ● ●●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●
●
●
●

▲▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲
▲

▲
▲
▲
▲
▲
▲

▲

▲

▲

▲

▲

▲

▲

▲
▲
▲
▲

◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆ ◆◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆◆◆
◆
◆
◆

◆

◆

◆

◆

◆

◆

◆
◆
◆

○

○

○

○

○

△

△

△

△
△

△

◇
◇

◇

●

●

●

●

●

●

●

▲

▲

▲

▲

▲

▲

◆

◆

◆

◆

d

x
11

2

(b) Soft RGG (Rayleigh η = 2)

1
2

1

Figure 3.5: Comparison between finite d simulations and infinite d analytical predictions. Col-
ored solid lines represent the analytical predictions for ωhard

M pxq obtained from Equation (3.35),
for M “ 3, 4, 5 (blue (first line from above), orange (third line from above) and red (fifth line
from above) respectively). Gray solid lines represent ωER

M pxq for the Erdös-Rényi graph (Equa-
tion (3.41)) for comparison for the same values of M “ 3, 4, 5 (second, fourth and sixth line from
above respectively). Open and filled markers show numerical simulations at d “ 20, 200 respec-
tively, p “ 2 and ν “ νcube, for hard RGG (a) and soft RGG with Rayleigh activation function
η “ 2 (b), for the same values of M “ 3, 4, 5 (circles, triangles and diamonds respectively). In
practice, ωM pxq can be represented by producing a scatter plot of ρM prq versus ρ2prq. (Reprinted
from [EAG+20]).

The results are presented in Figure 3.5, where Equation (3.35), Equation (3.41) and
numerical experiments on hard and soft RGGs are compared. The two main messages
are:

1. hard RGGs behave differently from soft RGGs and Erdös-Rényi graphs in high
dimension. In particular, for any linking probability x, the probability of finding an
M -clique is systematically higher in the hard case;

2. numerical experiments on hard and soft RGGs confirm the goodness of the theoret-
ical analysis presented in the previous sections. Notice that the agreement between
theory and experiments starts at very low dimension d „ 20, suggesting that the
high-dimensional limit (and its finite dimensional corrections) may be used to study
perturbatively RGGs in low dimension. More quantitatively, we observe relative
deviations from analytical predictions are of the order of „ 10% at d “ 20, and
„ 2% at d “ 200 for both hard and soft RGGs and M “ 3. Larger M “ 4, 5
shows higher relative errors, possibly due to the harder random sampling procedure
required by larger cliques.

Thus, M -clique densities can be used as an observable to detect high-dimensional
geometry in hard RGGs. High-dimensional soft RGGs instead become more and more
indistinguishable from Erdös-Rényi graphs as the dimension grows, at least in the sense
of convergence of the average M -clique densities.

In the following, I give some details on the numerical experiments.
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Hard RGG To compute the density of M -cliques in simulated hard RGGs, we
implemented a simple random sampling procedure, as exhaustive enumeration of M -
cliques scales poorly, i.e. as O

`

PM
˘

, with the total number of nodes P . For each
realization of the nodes (with νcube and P “ 104), we extracted „ 5 ¨ 105 M -uples
of nodes, computing the minimum cutoff distance at which they formed a clique.
The cumulative distribution of the minimal distances obtained, averaged over different
realization of the nodes, reconstructs ρhard

M prq. We noticed that as P grows, the last
average is well approximated by a single realization of the nodes, suggesting a self-
averaging property for the density of M -cliques; in practice, not averaging does not
affect the results of the simulations.
Soft RGG To compute the density of cliques in simulated soft RGGs with generic
activation function, we implemented again a random sampling procedure. This time,
for each realization of the nodes (as above) and for a fixed radius r, we counted how
many of „ 104 M -uples of nodes tyiuMi“1 where M -cliques, considering each of them
to be a M -clique with probability

ź

1ďρăσďM

hrpdp~yρ, ~yσqq . (3.49)

Normalizing the count over the total number of candidate cliques and averaging over
different realizations of the nodes (order 102) gives an empirical estimation for ρM prq
in the soft case.

3.5 Perspectives

In this chapter I presented a multivariate version of the central limit theorem to compute
average observables of random geometric graphs in the limit of infinite dimension. In
particular, the average number of M -cliques in hard and soft RGGs for different distance
functions induced by p-norms is different in the limit of infinite dimensionality.

This approach highlights that convergence to the Erdös-Rényi graphs prediction for
local observables depends on the choice of the ensemble: soft RGGs in particular seem to
approach this naive limit for dÑ 8, whereas hard RGGs whose probability distribution
of the nodes fulfils the CLT hypothesis deviate systematically from it. This result suggests
that the latter provide a non-trivial null model to benchmark empirical data.

A potentially useful application of these results lies in their guidance with regards to
the choice of null models, which are essential if one is to extract meaningful information
from the data. For example, consider data points from an empirical data set (such
as MNIST, for instance), and a graph constructed on these points, where a link exist
whenever two data points are closer than a given cutoff radius (determining this graph is
the starting point for many learning algorithms, from hierarchical clustering to manifold
learning). Now, say the number of cliques in this graph deviates from the Erdös-Rényi
prediction. If we erroneously believe that RGGs in high dimension are Erdös-Rényi
graphs, then we should conclude that the behavior is due to specificities of the data (e.g.,
deviations from the assumption of independence). This conclusion would be misleading,
since, for the hard activation function, there are systematic deviations from the Erdös-
Rényi prediction even if the data points are uncorrelated and identically distributed. The
analysis presented in this chapter makes clear that ruling out the null hypothesis of RGG
in high dimension is fundamentally different from ruling out the hypothesis of being a
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Erdös-Rényi graphs.
This is a first line of possible development for these results: checking in practice

whether graphs constructed on real data deviate from the Erdös-Rényi or the hard-RGG
prediction for the average density ofM -cliques in order to validate both models as possible
null-models for complex data.

Since the CLT can be formulated in a much more general setting than the one reported
in this manuscript, we expect that our findings hold (possibly with slight modifications)
for several probability distributions of the nodes not included here, e.g. not factorized
over coordinates, but with mild inter-coordinate correlations; factorized over coordinates,
but not identically distributed; factorized over coordinates, but with infinite second mo-
ment. The wide basin of attraction of the Gaussian limit hints to the possibility that
the properties of high-dimensional structured datasets may be faithfully described by our
approach. In this manuscript we worked with the simplest version of the CLT, as ran-
dom geometric graphs are commonly studied with nodes that are independently drawn
in the hypercube. The very relevant case of structured data [BLR+19; RLG20; PRE+20;
RPG20] calls for more sophisticated CLTs, which may be addressed with the same tools
developed here.

Another potentially interesting case is that of RGGs whose vertex measure is sup-
ported on low-dimensional manifolds but is embedded in a much higher-dimensional am-
bient space with noise. Which observables will be hidden by the added noise? And which
will be robust, allowing to recover non-trivial properties of the underlying geometry?

Finally, our numerical simulations show that the infinite dimensional limit is a good
approximation even in finite dimensions of order d „ 10. This hints at the possibility to
improve our results by computing higher order corrections to the CLT, and using d as a
perturbative parameter, to access the low dimensional regime of RGGs.
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CHAPTER 4

Expressivity of linear classifiers on geometrically
structured data

Linear models are the simplest and better understood architectures to perform regression
or classification on generic datasets. They often appear as building blocks of more complex
learning models, such as kernel methods, support-vector machines and, more recently,
deep neural networks. In this chapter, I investigate how a simple model of data structure
can alter the expressivity properties of linear classifiers following [RLG20]. I finally present
recent results on a novel phase transition for the expressivity of linear classifiers that is
specifically induced by data structure [PRE+20].
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4.1 Supervised learning

4.1.1 Learning paradigms in artificial intelligence

What do we mean when we say that "a deep neural network can learn to distinguish
images of cats from images of dogs"?

In machine learning, we typically mean that we have a dataset of P samples txµuPµ“1

(think of images embedded in Euclidean space by assigning to each pixel a different dimen-
sion) labelled with labels tyµuPµ“1 (these may be real numbers, binary numbers, abstract
categories), and an adjustable learning architecture, i.e. an adjustable function that can
associate to each sample a label (possibly incorrectly). The learning architecture is then
randomly initialized, meaning that to each image the learner associates a random label,
and it is trained by adjusting its parameters in such a way that, after each adjustment,
its predictions of the labels for the samples in the training set get better and better. This
paradigm is usually called supervised learning.

We already covered another paradigm of machine learning in Chapter 2, namely man-
ifold learning, where from an unlabelled dataset, under the hypothesis that there is an
underlying geometrical structure, we try to infer properties of the intrinsic geometry.

There are other paradigms that are worth mentioning:

• unsupervised learning is similar in spirit to manifold learning. In this case, from an
unlabelled dataset one tries to learn a compression/decompression algorithm that is
able to reduce the embedding dimensionality of the dataset while preserving all the
meaningful information. More qualitatively, in unsupervised learning one hopes that
the learning algorithm can infer some underlying structure from the training data
in a similar way as humans infer general properties from particular observations.
See [HS+99] for more details;

• reinforcement learning takes a different approach. Instead on relying on sam-
ple/label pairs, it uses as learning material a set of possible moves and a function
to evaluate the performance of a sequence of moves. For example, the task may be
"to learn playing Super Mario", the set of possible moves may be the combination
of inputs that a player can provide to the main character, and the performance
function may be the distance from the end of the level after the characters’ death.
The learner then optimizes its strategy, i.e. its sequence of moves, trial after trial
in order to optimize the performance. See [SB18] for more details.

In this chapter, we will focus on the setting of supervised learning, which is the most
relevant to study modern classification architectures.

4.1.2 The ingredients of a supervised learning task

Let me start by fixing some notations and discussing the components of a supervised
learning task more in detail. A supervised learning task is defined by a training set, a
family of predictor functions (a.k.a. model functions), a cost function (a.k.a. error
function, loss function) and a generalization cost function.

Briefly, the idea is that the functions belonging to the model set are parametrized by
a set of adjustable "knobs" (parameters), that can be tuned to represent a variety of dif-
ferent relationships between inputs and outputs. The training set is a set of input/output
pairs that can be used to tune the parameters of the predictor functions, and the tuning
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itself is done by minimizing a cost function (that depends on both the training set and
the current realization of the predictor function). Up to this point, we are just describing
a fitting procedure to learn the training set by heart. The last ingredient, that transforms
fitting into supervised learning, is that cost minimization is just a proxy for the real deal,
generalization cost minimization. In fact, one is not interested into learning by heart
training samples, but into obtaining a predictor that perform well on unseen examples.

Training set The training set is a collection of P pairs of samples xµ with associated
labels yµ. The samples are typically elements of some metric space, usually RN . The
labels can be either real numbers or vectors (of dimension Nout), or categorical variables;
in the following, we will call Y the set in which the labels take value. In the former case
one talks about regression, in the latter about classification.

Binary categorical variables are usually encoded into binary variables yµ P t´1, 1u or
yµ P t0, 1u. Categorical variables of higher cardinality are encoded in the so-called one-hot
vector representation: if the number of categories is C and the µ-th sample is in category
i, then yµ is a C dimensional vector with components yµj “ δi,j for j “ 1, 2, . . . , C. In
other words, only the i-th component of the label vector is turned on.

In general, the training set should be considered as given once and for all, with no
prior information on the process that generated it. In the analytical practice however it
is useful to consider specific generative models for the dataset. In Section 4.1.3 we discuss
some of the options in this direction.

Predictor function The predictor function is a parametrized set of functions fw :
RN Ñ Y, where w P RQ is the vector of parameters. The idea is that, as the parameters
vary, this set of functions can represent a variety of possible relationships between the
samples and their labels.

Learning architectures typically differ one from another due to the choice of predictor
functions. For example, linear models are defined by (here Q “ N)

fwpxq “ w ¨ x , (4.1)

while deep, fully-connected neural networks are defined by

fw1,w2,...,wLpxq “ wL ¨ σ
´

. . . σ
`

w2 ¨ σpw1 ¨ xq
˘

¯

(4.2)

where wi P RNiˆNi´1 , N0 “ N , NL “ Nout and σ : RÑ R is an activation function.
In the case of classification, both models above can be adapted with minor changes.

For example, linear binary classifiers are just given by the composition of a linear model
with a sign function.

Learning architectures may also differ just due to different parametrizations of the
same set of functions. For example, consider a deep fully-connected neural network with
the trivial choice σpxq “ x and Ni ě minpN,Noutq for i “ 1, 2, . . . L ´ 1. fw is a
composition of linear maps, and thus it is equivalent to a strangely-parametrized linear
model1. Re-parametrization may be useful in order to explore different learning dynamics
for the same set of predictor functions [SMG19].

1The condition on the widths of the layers grants that in the deep case we are not artificially restricting
the rank of the linear map.
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Cost function The cost function is a function that measures how well a particular
predictor function is representing the relationship between training samples and labels.
It is usually factorized over the training patterns, i.e.

Ldatarf s “
P
ÿ

µ“1

`pfpxµq, yµq , (4.3)

and may have additional regularization terms Lregrfws “ gpwq penalizing wildly-varying
values of the parameters w2. The function `pfpxq, yq computes how badly a function f
recovers the correct label y of a sample x.

Most supervised learning problems describe learning as the minimization of the cost
function over the set of predictor functions, i.e. the learned predictor f̂ “ fŵ is determined
by the optimal parameters

ŵ “ arg min
w

rLdatarfws ` Lregrfwss . (4.4)

In regression problems, a common choice for the function ` is the squared loss, i.e.

`py, y1q “ py ´ y1q2 , (4.5)

but other choices are possible.
In classification problems, the natural choice for ` is the error counting loss, i.e.

`py, y1q “ δy,y1 , (4.6)

where the Kronecker’s delta equals one if y and y1 describe the same category, and equals
zero otherwise. In practice though, it is often useful to consider differentiable cost func-
tions. In fact, they can be minimized using local methods (for example, gradient-based
methods). A common choice for the loss function is given by the cross-entropy loss.

Notice that, in general, the cost minimization problem is an high-dimensional non-
convex optimization task, which may have many different global and local minimizers
and are in general difficult to solve (deciding whether cost minimization with a deep
neural network can achieve zero error, for example, is an NP-complete problem [BR92]).
Thus, the actual minimization procedure (i.e. the training) is usually performed using
gradient-based local algorithms, and the optimal set of parameters ŵ is a function of the
details of the algorithm (initialization, properties of the training set, etc. . . ). This is not
a problem, as the aim of supervised learning is not cost minimization, but generalization
cost minimization, as we will see better in the next paragraph. Thus, it may as well be
that local minima of the cost function have better generalization properties that global
minima, and so on . I will not delve deeper into this issue in this Thesis; I would just like
to remark that the relationship between algorithms, cost minimization and generalization
is one of the most challenging open problems of the field.

2Common choices are the L2, or ridge, regularization gpwq “
ř

i w
2
i [HK70] and the L1, or LASSO,

regularization gpwq “
ř

i |wi| [Bre95]. Notice that the regularization depends directly on the weights and
on the specific parametrization of the function fw.
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Generalization cost function Up to this point, the aim of supervised learning seems
to be to fit as precisely as possible the training set. At least, this is what "learning as
cost minimization" seems to suggest. Actually, there is one last ingredient in supervised
learning: a measure of the generalization performance of the optimal predictor f̂ . By
generalization performance we mean the ability of the optimal predictor to correctly label
samples that were never used in the training process.

First of all, where are these unseen examples coming from? When only a fixed training
set is available, it is common practice to split the P samples of the training set into an
actual training set of Ptrain samples, and a test set of Ptest samples. Training is then
performed using the Ptrain training samples, and generalization is assessed by evaluating
the cost function over the Ptest test samples. Notice that the test cost function may in
principle be different from the cost function used in training. This is especially true in
the case of classification, where the cost function may be a differentiable function for
minimization purposes, while the test cost function may be the simple error counting
function.

If a generative model for the training set is available, the test set can be easily gener-
ated by sampling from the generative model Ptest new patterns, with Ptest possibly very
large.

It is worth noticing that cost minimization does not imply generalization cost min-
imization in general. Indeed, even if the cost and the generalization cost functions are
equal and the training and test set are generated by the same generative process, there
may be finite-size effect due to the limited dataset size and learning-dependent effects
due to the choice of minimization algorithm. Moreover, it is common knowledge that the
generalization cost of a trained classifier may be a non-monotonic function of the training
set size (all other ingredients fixed). This phenomena go under the name of "bias-variance
trade-offs" [KW+96] and "double descent behaviours" [NKB+20], and are caused by, for
example, noise corrupting the training samples and labels, or noise due to random com-
ponents of the predictor function (as happening in the Random Feature model [DRB+20;
MM20], for example).

Most of the buzz around Machine Learning is caused by the empirical observation
that cost minimization performed using noisy gradient-based algorithms seems to lead to
unexpected generalization cost minimization [Sej20].

Now that we have an overview on the components of a supervised learning task, we
shall focus on two crucial aspects: the structure of the training set (meaning the structure
of correlations between samples and labels) and the expressivity of a set of predictor
functions (meaning, roughly, the number of sample/label relationship that the model
class can represent). We will see that data structure, at least in a particular declination,
has remarkable effects on the ability of simple predictors to correctly classify data. We
will explore this relationship in a particular case, that of binary linear classification tasks
(Y “ t´1,`1u) with the error counting cost function, without worrying about trainability
or generalization.

4.1.3 The training set: models of data structure

To fix a model of data, we resort to the usual setting of Statistical Learning Theory
(SLT) [MRT18; Wol18]. We suppose that there exists a true sample/label probability
distribution PX,Y on RN ˆ Y, and we extract the P training samples txµ, yµuPµ“1 i.i.d.
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from PX,Y
3. In this setting, we see that:

• the generalization error has a natural expression as an average over the true sam-
ple/label distribution, i.e.

εgenrf s “ E r`pfpxq, yqs , (4.7)

where ` is some loss function, and E denotes the average over px, yq „ PX,Y . In
practice, one can sample a large number Ptest of sample/label pairs, and approximate
the generalization error as

εgenrf s “
1

Ptest

Ptest
ÿ

µ“1

`pfpxµq, yµq ; (4.8)

• if we define the cost function as

Ldatarf s “
1

P

P
ÿ

µ“1

`pfpxµq, yµq , (4.9)

we see that the training error will converge to the generalization error as P grows,
justifying the idea of cost minimization to achieve generalization cost minimization.

In this setting, unstructured data is defined by a factorized PX,Y “ PXPY , so that each
sample has the same probability of being labelled in a certain way, independently on its
position in RN . Given that Y is binary in our case, PY will be given in general by a
Bernoulli distribution

PBernoullipy; qq “ qδy,1 ` p1´ qqδy,´1 . (4.10)

The two most commonly studied paradigms to model non-trivial data structure are
given by the teacher-student setting and the perceptual manifolds model.

Teacher-student setting The teacher-student model has been studied for a long time
(see [EV01] for more informations). It defines data structure in a very practical way. In
this model, samples are i.i.d. samples from a given probability distribution PX as in the
unstructured case. Structure is imposed by generating the label deterministically using a
teacher architecture, i.e. a particular predictor function fT which may or may not belong
to the set of predictor functions of the learner, also called student. More formally

PY py|xq “ δpy ´ fT pxqq . (4.11)

See Figure 4.1 for an example. Thus, in this model, data structure is given solely by
correlations between a sample and its label.

The teacher-student model is extremely versatile. For example, one could account
for data corruption by adding some form of statistical noise to the deterministic label-
generating function. Moreover, data structure is completely encoded into the teacher

3Notice that this is not the only possibility. Indeed, we will focus later on a model of dataset in which
subsets of k samples are jointly distributed with non-trivial correlations.
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Figure 4.1: Example of teacher-student setting. In this example, we generate random points in
the plane, and we label them using a teacher from the predictor function set fa,bpxq “ signpax2

`

bq, with parameters pa, bqteacher “ p1,´4q (black parabola). More explicitly, the model calls labels
points above the parabola with label +1, and points below the parabola with label -1. The red
curve is an example of a "bad" student pa, bqbad “ p2,´3q, i.e. a predictor function that makes
unnecessary labelling mistakes. Indeed, all the points falling between the red curve and the
black parabola are mistakenly classified by the bad student. The green curve is a "good" student
pa, bqgood “ p1.3,´4.3q, i.e. a student perfectly reproducing the classification of the teacher, even
though it has different values of the parameters.

function, which can be compared to the student architecture using techniques from func-
tional analysis (see for example the Reproducing Kernel Hilbert Spaces techniques used
in teacher-student models for kernel regression and classification [DOS99; CBP21]).

More recently, the teacher-student model has been generalized to account for more
complex forms of data structure. The hidden-manifold model for example is an evolution
of the classic teacher-student setup recently introduced in [GMK+20]. In the teacher-
student setup, labels depend directly on the corresponding samples. In the hidden-
manifold model, both samples and labels are generated based on an intrinsic, latent
representation.

More in detail, for each sample/label pair, a latent representation cµ P RNlatent is
generated according to some given probability distribution Platent. Then, the sample xµ
is given by

xµ “ σpF ¨ cµq (4.12)

or some fixed matrix F P RNˆNlatent , called feature matrix, and component-wise non-
linearity σ. The labels are generated as in the classical teacher-student setup, with the
crucial difference that they directly depend on the latent representations cµ, and not on
the actual sample xµ.

In this model, structure is given by a non-trivial correlation between samples and
labels, mediated by the latent representations. Again, each sample/label pair is indepen-
dently generated from all others.

Perceptual manifolds The perceptual manifolds model is motivated by the biological
intuition that similar inputs (that a priori excites neurons in different way) should be clas-
sified similarly. This intuition resonates with recent concepts put forward in neuroscience,
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Figure 4.2: Sketch of the linear classification of a perceptual manifolds dataset. In this qualitative
example, the labels ˘1 correspond respectively to mammals and birds, and each sample in a k-
plet (here k “ 3) is an image of the same animal in different positions. The linear classifier, i.e.
hyperplane, shaded in grey classifies the k-plets with an admissible labelling, as all samples of
each k-plet is labelled coherently with its companions. The geometry of the k-plet is fixed by
the overlaps ρa,b. Notice that for the sake of representation here the samples are not distributed
on the unit hypersphere as specified in the main text. (Reprinted from [RLG20]).

and more recently in machine learning, of invariant recognition (different representation
of the same objects give rise to similar neural responses) [SL00; ALR+16] and object
manifolds classification (sets of inputs giving rise to the same neural response should be
coherently classified) [CLS16; CLS18; CCL+20].

In this model, the dataset is defined as follows. Samples are points on the unit pN´1q-
dimensional hypersphere4, and are grouped in P k-plets txµ,auµ“1,...,P

a“1,...,k . Each k-plet is
generated uniformly on the sphere with the only constraint that

xµ,a ¨ xµ,b “ ρa,b @µ “ 1, . . . , P , @a, b “ 1, . . . , k s.t. a ă b . (4.13)

The constraint that the overlaps equal ρa,b fixes the geometry of the k-plets. Notice that
´1 ď ρa,b ď 1 for all pairs of points in the k-plet. The model is further defined by
restricting the set of admissible labellings to those that equally classify samples in the
same k-plet, i.e.

yµ,a “ yµ,b @µ “ 1, . . . , P , @a, b “ 1, . . . , k s.t. a ă b . (4.14)

Given this constraint, the labels are randomly generated for each k-plet as in the unstruc-
tured case. See Figure 4.2 for an example.

In this model, structure is imposed in multiple ways. Each k-plet has a fixed geometry,
introducing correlations between groups of samples. Moreover, the constraint on the
admissible labellings introduces a correlation between samples and labels, namely that
samples in the same k-plet will have the same label.

A variant of the model is given by margin learning. In this case, samples are not
k-plets, but hyperspheres of fixed radius κ. An admissible classifier labels all points in
the interior of one of the spheres coherently.

4See [CLS16; CLS18; CCL+20] for a similar model defined without the spherical constraint.
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4.1.4 Predictor functions: measuring expressiveness

In this Chapter, I want to focus on a particular aspect of supervised learning, that is
measuring the expressivity of simple families of predictor functions, in particular linear
classifiers. In order to do this we have to define what do we mean by expressivity (limiting
the discussion to binary classification tasks as anticipated).

The qualitative idea is that a more expressive set of predictors will be able to represent
more relations between samples and labels than a less expressive one. More formally,
consider a fixed set of samples txµuPµ“1 and a set of predictor functions fw. For every
possible binary labelling of the samples tyµuPµ“1 (there are 2P of them), we can determine
if there is at least a value w˚ of the parameters such that

fw˚px
µq “ yµ @µ “ 1, . . . , P , (4.15)

that is equivalent to saying that the predictor function is able to represent the given
labelling of the sample set. A more expressive architecture will be characterized by a
higher number of representable labellings. Of course, at this point this definition is ill-
posed, as it depends in the specific set of samples txµu; we will define it more precisely
shortly.

Beyond intuition, the number of classifiable labellings is a central object in classical
SLT, the branch of statistics concerned with providing rigorous bounds on the generaliza-
tion properties of learning architectures (see [MRT18; Wol18] for a good introduction).
In the following paragraphs, I will recall some measures of expressivity related to the
number of classifiable labellings without entering too much into the details.

The fraction of classifiable labellings and the critical capacity The first proper
measure of expressivity is the average fraction of classifiable labellings CN,P {2P , where
2P is trivially the total number of unconstrained binary labellings over P points, and
CN,P is the number of classifiable labellings of P points in N dimensions averaged over
some distribution of the P inputs PX . We expect this function to be monotone decreasing
in P at fixed N , as it is harder and harder to separate more and more points at fixed
ambient dimension and predictor function class. The value P pNq at which CN,P {2P “ 1

2
pinpoints the so-called critical capacity of the learning architecture. More precisely, the
critical capacity is defined as

αc “ lim
NÑ8

P pNq

N
, (4.16)

as we expect the threshold P pNq to scale to infinity as N grows larger5. The ratio α “ P
N

is often call load. Thus, a first measure of (average) expressivity is given by the critical
capacity: a high critical capacity means that one can correctly classify, on average, larger
training sets.

The critical capacity, and more in general the average fraction of classifiable labellings,
hides a fundamental connection between SLT and Statistical Mechanics. The first connec-
tion is that it can be experimentally observed that αc defines a phase transition between

5Notice that more complex architectures may require more complex scaling behaviours than the simple
linear one [DOS99], but the linear scaling is often verified in practice.
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a satisfiable phase 0 ă α ă αc, where the classification problem is typically solvable, and
an unsatisfiable phase α ą αc where the classification problem is typically not-solvable
to zero training error. Thus, the critical capacity can be studied using methods from
the statistical mechanics of disordered systems (as the training set can be thought of as
a form of quenched disorder) just by identifying the correct order parameter describing
the transition. It turns out [Gar88; EV01] that the right order parameter is given by the
volume in the space of parameters of the predictor function class spanned by functions
that correctly classify a random training set. In the case of linear classifiers, this is given
by

V ptxµu, tyµuq “

ż

dw ppwq
P
ź

µ“1

θ pyµ pw ¨ xµqq (4.17)

where xµ are the position of the samples, yµ a binary labelling and ppwq a prior or
regularizing distribution over the parameter space. Samples and labels are considered to
be a form of quenched disorder to be averaged over. The expected behaviour is that:

• for α ă αc, the volume is composed by exponentially many (in the dimension N)
vectors w that, on average, are able to correctly classify a typical sample/label
assignment;

• for α ą αc, the volume shrinks and becomes sub-exponential in N , meaning that a
smaller and smaller portion of the space of parameters is able to correctly classify
a typical sample/label assignment.

Thus, the transition threshold can be found by computing at which value of the load
α “ P

N at which the average free-entropy 1
NE logpV q vanishes6.

For more general predictor functions, the Gardner’s volume can be defined as

V ptxµu, tyµuq “

ż

dw ppwq
P
ź

µ“1

δyµ,fwpxµq . (4.18)

Analogous expressions can be useful to characterize regression problems; see for example
[CBP21].

The second connection between SLT and Statistical Mechanics was noted recently in
the literature [AAK+20], and relates the average number of admissible labellings to the
Rademacher complexity, which is a crucial object in SLT that appears in rigorous bounds
to the generalization error. We will not delve deeper here; see the cited reference for more
details.

The Vapnik-Chervonenkis entropy Another relevant quantity is given by the Vapnik-
Chervonenkis (VC) entropy, which is defined as

HN,P “ log pCN,P q , (4.19)

6This is unprecise, but conveys the correct picture. In problems with continuous parameters the
free-entropy goes to ´8, while in problems with discrete parameters it vanishes.
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where again CN,P is the average number of classifiable labellings of P points in N dimen-
sion. Its relevance stems from a rigorous upper-bound to the generalization error that a
given learning architecture can achieve. This upper-bound depends on the specific distri-
bution of the samples and their labels only through the implicit average in the definition
of CN,P , and is uniform with respect to the particular class of predictor functions.

Let’s have a look at this upper-bound. It can be proven that (see for example [Wol18]),
in the case of binary classification with the error counting cost (and the same general-
ization cost), for any δ ą 0, with probability at least 1´ δ,

|εgen ´ εtrain| ď 2

d

2
HN,2P ` log 2

δ

P
, (4.20)

where |εgen ´ εtrain| is the difference between the training and the generalization cost.
Notice that CN,P , entering the bound through HN,P , is averaged over the sample/label
distribution before taking the log. For this reason, H is often called annealed VC
entropy.

Notice that the VC entropy is defined as above only in strictly binary classification
problems. In the following I will try not to abuse the nomenclature. Indeed, it is not com-
pletely correct to call VC entropy the logarithm of CN,P in the case of k-plet classification,
which is not a strictly binary classification problem due to the fact that an hyperplane
that cuts through a k-plet labels it ambiguously. In other words, the logarithm of CN,P
computed for structured data is just a proxy for the real VC entropy. For this reason,
the generalization bound above cannot benefit directly from any consideration regarding
logpCN,P q on structured data.

The Vapnik-Chervonenkis dimension A final7 measure of expressivity is given by
the Vapnick-Chervonenkis dimension dVC, i.e. the maximum value of P such that there
exists at least one assignment of the positions of the samples for which every labelling
is correctly classifiable by the class of predictor functions. Notice that here there is no
average to be taken. The VC-dimension is a worst-case, and not typical-case, expressivity
measure.

Again, this quantity enters into an upper-bound to the generalization cost thanks to
a provable inequality (see [Wol18]) stating that

HN,2P ď dVC log

ˆ

e P

dVC

˙

. (4.21)

This allows to further relax the upper-bound in Equation (4.20), obtaining a
architecture-and-data-independent bound on the generalization error.

Notice that, while powerful and rigorously-derived, SLT bounds on the generalization
error are mostly too loose to be of any usefulness in the case of modern over-parametrized

7For the purposes of this Thesis, of course!
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classes of predictor functions [Bot15]. For example, in deep fully-connected neural net-
works the VC dimension scales as „ Q logQ where Q „ 106 ´ 109 is the total number of
parameters, and typical datasets are composed of P „ 104 ´ 106 samples.

The main aim of this Chapter will be to study the observable CN,P for linear classifiers,
that is

fwpxq “ sign pw ¨ xq (4.22)

under some additional assumption on the structure of the sample set txµuPµ“1, namely
that is generated by the perceptual manifold prescription and that the classifier coherently
labels samples in the same k-plet.

4.2 Expressivity of linear classifiers on unstructured data

The first step to understand how data structure alters the expressivity of linear classifiers
is to study their expressivity in the unstructured case. Thus, we would like to compute
and study CN,P , that is the number of binary labellings of P N -dimensional points that
can be realized with no errors by a linear classifier

fw “ sign pw ¨ xq . (4.23)

First of all, let’s get a good mental picture of what a linear classifier looks like. A
linear classifier is nothing more than an hyperplane passing through the origin, identified
by its normal direction w. It assigns label `1 to all points in the half-space with positive
projection on w, and label ´1 otherwise. The case in which a points falls exactly onto
the separating hyperplane is a rare event8. In what follows I will provide a mild technical
condition that allows to treat with no headaches this edge case, but for the moment let
us forget about this.

Given a certain dataset of P labelled samples, we may ask if there exists a linear
classifier that can assign the correct label to each of the points. It may not exists, but if
it does, there exists infinitely many of them. In fact, if a separating hyperplane w˚ that
labels correctly each sample exists, i.e.

signpw ¨ xµq “ yµ (4.24)

for all samples µ “ 1, . . . , P , then at least all of its infinitesimal deformations w˚ ` δw
perform equally good, as the function w Ñ w ¨ x is continuous, and small perturbations
on the input do not alter the sign of the output. Here δw is some perturbation with
arbitrary small norm.

Thus, for a given linearly separable dataset and a corresponding separating hyperplane
w, we can identify three regions of the ambient space RN :

8For example, if samples are i.i.d. according to a well-behaved - say absolutely continuous w.r.t. the
Lebesgue measure - probability distribution in the ambient space RN , then the probability of having a
point falling exactly onto the hyperplane is zero.
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• a first region defined by

tx P RN | w ¨ x ą min
µ“1,...,P
yµ“1

w ¨ xµu . (4.25)

This is the region of points that are deep in the region where the hyperplane w and
all other possible separating hyperplanes that correctly classify the dataset assign
label `1;

• a second region conversely defined as

tx P RN | w ¨ x ă max
µ“1,...,P
yµ“´1

w ¨ xµu . (4.26)

This is the region of points that are deep in the region where the hyperplane w and
all the other good hyperplanes assign label ´1;

• the complementary region defined by

tx P RN | max
µ“1,...,P
yµ“´1

w ¨ xµ ă w ¨ x ă min
µ“1,...,P
yµ“1

w ¨ xµu . (4.27)

This is sort of a "grey zone". In this region, each of the good separating hyperplanes
may behave differently from the others.

See Figure 4.3, as a figure is better than a thousand words here. In particular, notice that
if we add a new point to the dataset in one of the first two regions, its label must agree
with that of its neighbours in order to preserve the linear classifiability of the dataset.
On the other hand, if the new point is added to the grey zone, than a non-empty portion
of the good separating hyperplanes will guarantee the linear separability of the enhanced
dataset irrespectively of the label of the added sample.

Equipped with this intuitive notions, we are ready to see how expressive linear classi-
fiers are.

4.2.1 The number of classifiable labellings

It turns out that, under a very mild assumption on the particular instance of the sample
set, CN,P is independent on the actual positions of the samples, and thus equals its average
value with respect to basically all probability distributions PX over samples. This is a
result due to Cover [Cov65], who proved that

CN,P “ 2
N´1
ÿ

i“0

ˆ

P ´ 1

i

˙

. (4.28)

Figure 4.4 shows CN,αN as a function of the load α “ P
N for growing values of N .

The mysterious mild assumption is that the P samples must be in general position,
i.e. all points in a subset X 1 of cardinality |X 1| ď N of the sample set X are linearly
independent. In other words, no subset of points is accidentally aligned, spanning an
hyperplane9. This is a rather weak condition on the sample set. For example, all sample

9This is the technical assumption promised in the previous section. This condition ensures that there
is always some space to slightly rotate the hyperplane in order to eliminate the edge case.
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Figure 4.3: Labelled sets partition the ambient space into different regions. The plot represents
a training set (blue circles have label +1, orange triangle -1) correctly classified by the dotted
hyperplane (in N “ 2, an hyperplane is just a line). The training set partitions the ambient
space into 3 regions. In the dark grey region, all hyperplanes that correctly classify the datasets
assign uniformly the label +1 to every point. The same is true in the white region, with label
-1. In other words, all the hyperplane that correctly classify the training set are contained in the
light grey region. As a consequence, if both w and w1 are hyperplanes that correctly classify the
dataset, they will label equally all points in the dark grey and white areas, and they will possibly
disagree on the points in the light grey region.

sets generated by sampling P i.i.d. points from a probability density are almost always
in general position, as d-dimensional linear subspaces (d ă N) have null N -dimensional
Lebesgue measure. This means also that CN,P is a deterministic quantity if the P samples
are randomly generated with simple laws.

Let’s prove Cover’s result. Suppose that you have a set of P points in N dimension,
and that you know that there are CN,P binary labellings that can be linearly classified
with no error over this set of points. To be explicit, this means that for the given
set of points txµuPµ“1, and for each one of the CN,P classifiable labellings tyµuPµ“1,
there exists a separating hyperplane identified by its normal direction w P RD s.t.
signpw ¨ xµq “ yµ for all µ “ 1, . . . , P .

What happens to the CN,P classifiable labellings when we add a new unlabelled
point? Let’s consider a particular classifiable labelling φ, and see if it can be promoted
to a labelling that correctly classifies also the newly added point. There are two
possibilities (see Figure 4.5 for a graphical representation of the proof):

1. the labelling φ can be realized by an hyperplane that passes through the position
of the new point x (i.e. w ¨ x “ 0). This is equivalent to asking that the new
point is added to the grey zone (see panel b of Figure 4.5). As already argued,
in this case the hyperplane w can be infinitesimally rotated in order for the new
point to be classified correctly irrespectively of the choice of its label. Thanks
to the assumption of general position, this infinitesimal rotation does not alter
the classification of all other points. Thus, for each of these M labellings on P
points, there exist two classifiable labellings of P ` 1 points, one for each label
of the newly added point.

How many of these φ’s exist? There are M “ CN´1,P of such labellings, as we
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Figure 4.4: Fraction of classifiable labellings of αN points in N dimensions. For growing value of
N , we show the number of classifiable labellings normalized over the total number of labellings,
2αN . At 0 ă α ă 1, all labellings are linearly classifiable (excluding pathological sets of samples
that are not in general position). At α “ αc “ 2, the curves at various values of N intersect,
a typical behaviour found in phase transitions. In this case, the phase transition separates an
easily separable phase from an hard phase. In the easy phase, the volume spanned by parameters
that can separate a given dataset is exponentially large in N , while in the hard phase it grows
only sub-exponentially.

are now asking how many classifiable labellings of P points can be realized by an
hyperplane in N dimension, constrained to pass through x (lowering the effective
number of available dimensions by 1);

2. the labelling φ cannot be realized by an hyperplane passing through x (see panel
e of Figure 4.5). Equivalently, x falls in one of the two zones where all separating
hyperplanes associated to φ assign the same label to all points, either `1 or ´1.
In this case, the label of the newly added points matters, and only one choice for
it allows to extend φ to a classifiable labelling of P ` 1 samples.
By subtraction, there are CN,P ´M of these labellings, each of which contributes
with a single classifiable labelling to CN,P`1.

Thus,

CN,P`1 “ 2M ` pCN,P ´Mq “ CN,P ` CN´1,P . (4.29)

The initial condition for the recursion is given by CN,1 “ 2p1´ δN,0q, as a single point
can always be classified irrespectively of its labels (the Kronecker’s delta takes care of
the non-physical zero-dimensional case N “ 0).

The recursion can be solved by noticing that CN,P is a linear combination of the
initial values CN´i,1 “ 2 for all i “ 0, . . . , N´1. If we could compute the coefficients of
this linear expansion, the recursion would be solved. It’s easy to see that the coefficient
of CN´i,1 is given by the number of directed paths tγjuj“1,...,P such that (i) γ1 “ N´i,
(ii) γP “ N and (iii) γj`1 equals either γj or γj ` 1. The number of these paths is
given by the binomial coefficient

`

P´1
i

˘

, as each path is determined by the choice of i
among the P ´ 1 transitions such that γ increases by one unit. Thus,

CN,P “ 2
N´1
ÿ

i“0

ˆ

P ´ 1

i

˙

. (4.30)
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a)

b) e)

c) d) f)

Figure 4.5: Graphical representation of Cover’s argument. We start by considering a fixed
classifiable labelling φ of P “ 19 points in N “ 2 dimensions (panel a). In all panels, the grey
shaded zone denotes by all possible hyperplanes that correctly separate blue circles and orange
triangles. Next, we add a new unlabelled point x. The new point either falls into the grey zone
(panel b), i.e. there exists a separating hyperplane w of the original labelling such that w ¨x “ 0
(dashed line in panel b), or does not (panel e). In the former case, there are two distinct ways
of extending φ to the new point so that the new dataset is still linearly separable: either x gets
labelled as a blue circle (panel c), or as a orange triangle (panel d). In the latter case, there is
only one possibility of extending φ to a classifiable labelling of the enlarged dataset, namely by
assigning to x the label of its neighbours. This justifies Equation (4.29).

Cover’s result is powerful not only because it is independent on the position of the
P samples, but also because it applies to more general classes of predictor functions. In
fact, suppose that before applying the linear classifier of Equation (4.23) each sample is
mapped to a high-dimensional space RN 1 with N 1 ą N through a so-called feature map
ψ. Suppose also that ψ preserves the general position of the samples. Then, we can apply
Cover’s result in the feature space RN 1 , obtaining that the classifiable labellings grow
from CN,P to CN 1,P .

Again, asking that ψ preserves the general position of its inputs turns out to be a very
mild requirement. For example, polynomial feature maps of the form

ψpxqi1,i2,...,id “ ψi1,i2,...,idxi1xi2 . . . xid , (4.31)

where d is the degree of the map and ψi,j,... are coefficients, preserve general position.
Neural network with non-linear activation function with fixed intra-layer weights, as in
Equation (4.2), do the trick too.
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4.2.2 Expressivity of linear classifiers

Inspired by applications and theoretical interest, and keeping in mind the discussion of
Section 4.1.4, it is tempting to look at the high-dimensional limit N Ñ 8 to compute
the critical capacity and the VC dimension of linear classifiers. We let P and N go
to infinity while keeping their ratio α “ P

N fixed, as we expect that linear classification
becomes harder when we try to separate a number of points comparable with the ambient
dimension.

VC dimension The VC dimension can be easily computed by noticing that, if P ď N ,

CN,P “ 2
N´1
ÿ

i“0

ˆ

P ´ 1

i

˙

“ 2
P´1
ÿ

i“0

ˆ

P ´ 1

i

˙

“ 2P (4.32)

as all the binomials with i ą P ´1 are zero by definition, and where we used the Newton’s
binomial theorem. Instead, if P “ N ` 1,

CP´1,P “ 2
P´2
ÿ

i“0

ˆ

P ´ 1

i

˙

“ 2
`

2P´1 ´ 1
˘

“ 2P ´ 2 (4.33)

where we used again Newton’s binomial theorem. Thus, for linear classifiers dVC “ N10

(see Figure 4.4).

Critical capacity To compute the critical capacity αc, we need to compute the value
P pNq such that

lim
NÑ8

CN,P pNq

2P pNq
“

1

2
. (4.34)

We notice that, if P pNq “ 2N ` 1,

CN,2N`1 “ 2
N´1
ÿ

i“0

ˆ

2N

i

˙

“ 2
N´1
ÿ

i“0

1

2

„ˆ

2N

i

˙

`

ˆ

2N

2N ´ i

˙

“

2N
ÿ

i“0

ˆ

2N

i

˙

´

ˆ

2N

N

˙

“ 22N ´

ˆ

2N

N

˙

.

(4.35)

This implies that

CN,2N`1

22N`1
“

1

2
´

2
?
πN

ˆ

1`O
ˆ

1

N

˙˙

(4.36)

10This result may differ by one unit with respect to other references. This is usually due to the fact
that here we consider strictly a linear classifier, while other references often consider linear classifiers with
bias, i.e. with corresponding hyperplane not passing from the origin. In the limit N Ñ8, this difference
vanishes.
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where we used Striling’s formula to approximate the central binomial
`

2N
N

˘

for large N .
Thus, we see that

αc “ lim
NÑ8

P pNq

N
“ 2 . (4.37)

Figure 4.4 confirms this result, and clearly shows that αc pinpoints a phase transition, as
all curves at growing values of N intersect (modulo finite-size corrections).

As already mentioned in Section 4.1.4, the capacity can also be computed by studying
the behaviour of the Gardner’s volume

V “

ż

dw ppwq
P
ź

µ“1

θ pyµ pw ¨ xµqq , (4.38)

and more precisely the corresponding quenched entropy xlog V y, where angular brack-
ets denote the average with respect to the sample/label distribution. Here, ppwq can
be taken to be either the uniform distribution on the sphere, or equivalently (in high
dimension N) a multivariate Gaussian with null mean and unit covariance, as in both
case the two distributions weight equally all possible unit vectors (that identify the
separating hyperplanes).

A detailed computation of Gardner’s volume in the replica-symmetric ansatz can
be found in [Gar88; EV01].

Logarithm of CN,P It would be extremely useful to obtain an explicit expression for
the whole curve CN,αN , without any summation lurking around. This would provide
us with more manageable and intuitively analysable information about the number of
classifiable labellings, and thus about logpCN,P q. While it is not possible to simplify
Equation (4.28) more, we can provide a more explicit form for some parameter regions.

As dVC “ N , we have that

CN,P “ 2P (4.39)

for 0 ă P ď N . Thus, CN,P {2P “ 1 and logpCN,P q “ P log 2 for all 0 ă P ď N trivially.
A less trivial information is obtained by studying the limit of large load α “ P {N for

either fixed or diverging N . I will state the result first, and prove it just afterwards. We
have that, for fixed N and large load αÑ8,

CN,αN „
2pαNqN´1

ΓpNq
. (4.40)

Notice, in particular, that for fixed N this is a monotone increasing function of α, and that
while for α ă 1 the number of classifiable labellings grows exponentially in α, for large
α it only grows polynomially fast (see Figure 4.6). Qualitatively, this is due to the fact
that adding a new point to the dataset generates a combinatorial proliferation of possible
labellings, that are totally unconstrained for α ă 1, and more and more constrained as α
grows larger and larger. Consequently, for large α, also logpCN,P q is monotone increasing.
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Figure 4.6: Behaviour of logpCN,P q as a function of the load α. Log-lin plot (left) and log-log
plot (right) of CN,αN as a function of α for growing values of N . We clearly see in the log-lin
plot that for 0 ă α ă 1, and approximately for 1 ă α ă 2 as N grows, the number of classifiable
labellings grows exponentially fast. In the log-log plot, the polynomial growth for large α is
visible instead.

In order to motivate Equation (4.40) we will set up a computational technique that
may seem cumbersome at this level of complexity, but that will be crucial to gen-
eralize this analysis to structured data later on. We start from Cover’s recursion in
Equation (4.29), and we introduce the family of generating functions (with complex
variable)

gN pzq “
ÿ

Pě1

CN,P z
P . (4.41)

The idea is that the asymptotics behaviour of gN pzq around its singularity of smallest
module z0 is in bijection with the asymptotics for large P of the coefficients of gN pzq,
i.e. CN,P a. More explicitly, it can be proven that

gpzq „ γpz0 ´ zq
´a for z „ z0 ðñ rgsP „ γ|z0|

´P P
a´1

Γ paq
for P „ `8 , (4.42)

where, just for this example, I suppressed the dependence of gN pzq of N , and I denoted
the P -th coefficient of its power-series expansion as rgsP . This is a central result in
analytic combinatorics, see [FS09]. Thus, to obtain the asymptotic form of CN,P for
large N,P and large load α, we just need to study the asymptotic behaviour of gN pzq
around its leading singularity, and this can be done explicitly by using Equation (4.29).
In fact, at the level of generating functions, Equation (4.29) can be rewritten as (for
N ě 1):

ÿ

Pě1

CN,P`1z
P “

ÿ

Pě2

CN,P z
P´1 “

ÿ

Pě1

CN,P z
P´1 ´ CN,1 “

1

z
gN pzq ´ 2 , (4.43)

ÿ

Pě1

pCN,P ` CN´1,P q z
P “ gN pzq ´ gN´1pzq (4.44)
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giving the functional recursion

gN pzq “
z

1´ z
pgN´1pzq ` 2q ,

g0pzq “ 0 .
(4.45)

This recursion can be treated in two ways: exactly and asymptotically. Indeed, on one
side this is a linear non-homegeneous first-order recursion, whose explicit solutions can
be computed with standard methods, giving

gN pzq “
2z

2z ´ 1

«

ˆ

z

1´ z

˙N

´ 1

ff

(4.46)

which has a single pole at z0 “ 1 of order N , and asymptotic expansion

gN pzq „ 2p1´ zq´N for z „ 1 (4.47)

for N ě 1. On the other side, given Equation (4.45), it’s very easy to obtain the asymp-
totic behaviour of gN pzq around its dominant singularity without explicitly solving the
recursion. In fact, given the ansatz gN pzq “ γN pz0 ´ zq

´aN for z Ñ z0, it’s immediate
to see that z0 “ 1, aN “ N and γN “ 2 in order for the recursion to be self-consistent.

Equation (4.47) and Equation (4.42) readily imply Equation (4.40). Notice that
this asymptotic expansion is valid only at fixed N and large P . In out context, this
means that this expansion is valid only for diverging load α, either at fixed or diverging
N . It would be interesting to study the bivariate generating function of CN,P in order
to obtain the asymptotic behaviour for all values of α.

aObviously, under some requirements on the function gN pzq, namely that it is analytic in an open
disk centered at the origin, with radius |z0|, and with one of the half-lines pz0,8q excluded. See [FS09]
for the details.

4.3 Expressivity of linear classifiers on structured data: segments

We are now ready to extend Cover’s argument to structured data, and in particular to
the perceptual manifolds model described in Section 4.1.3. More concretely, we wish
to compute the number of admissible labellings of P k-plets of points on the N ´ 1
dimensional hypersphere that can be correctly labelled by a linear classifier. We shall call
this number CpkqN,P . We will start from the simplest case, k “ 2.

4.3.1 The number of classifiable labellings of segments

We start with the simplest case. We will show in a moment that the number of classifiable
labellings Cp2qN,P satisfies a mean-field recursion equation given by

C
p2q
N,P`1 “ Ψ2pρqC

p2q
N,P ` C

p2q
N´1,P ` p1´Ψ2pρqqC

p2q
N´2,P

(4.48)

with initial condition Cp2qN,1 “ 2 r1´ p1´Ψ2pρqqδN,1s p1´ δN,0q. Here Ψ2pρq is the proba-
bility that two points on the sphere with overlap ρ fall on the same side of a uniformly-draw
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random hyperplane, i.e.

Ψ2pρq “
1

Z

ż

dw δp||w|| ´ 1qθpw ¨ xq θpw ¨ yq “
2

π
arctan

c

1` ρ

1´ ρ
, (4.49)

where Z is the normalization constant

Z “

ż

dw δp||w|| ´ 1q “ ΩN´1 . (4.50)

Notice that Ψ2pρq depends only on the overlap between the two fixed points, and it is
thus constant in our model. Notice also that when ρ “ 1, i.e. each doublet collapses to
a single point, Ψ2p1q “ 1 and the recursion reduces to Cover’s one, Equation (4.29), as
expected.

The recursion can be solved using a technique similar to the unstructured case, leading
to

C
p2q
N,P “ 2

N´2
ÿ

i“0

Ki,P ` 2Ψ2pρqKN´1,P (4.51)

where

Ki,P “

P´1
ÿ

m“0

ˆ

P ´ 1

m, i´ 2m,P ´ 1´ i`m

˙

Ψ2pρq
P´1´i`m p1´Ψ2pρqq

m (4.52)

and
ˆ

a

b, c, d

˙

“
a!

b! c! d!
(4.53)

is the usual multinomial coefficient.
Before proving the recursion and the form of the explicit solution, let me stress that

this recursion is not exact. It is a mean-field approximation, in which when we have to
estimate the probability that two constrained points fall on the same side of an hyperplane,
we estimate it as if the points were totally unconstrained. Moreover, Cp2qN,P is now an
average number over the uniform distribution of doublets on the sphere. Figure 4.8,
panel (a), compares the mean field value of Cp2qN,P to numerical simulations, showing
perfect agreement.

Let’s start by proving the recursion. Again, we suppose that there are, on averagea,
C
p2q
N,P classifiable labellings of P doublets in dimension N with fixed overlap ρ, and we

study how these labellings behave when adding a new doublet px, yq.
We start by adding the first point x. Repeating Cover’s argument, there are exactly

QN,P “ C
p2q
N,P ` C

p2q
N´1,P classifiable labellings of the original dataset with x added.

Notice that in each of these labellings, x has a well-defined label. When adding y,
we again have two possibility for each classifiable labellings φ among these QN,P (see
Figure 4.7 for some graphical help):

1. φ can be realized by an hyperplane passing through y, i.e. y falls in the grey zone
of the labelling (panel b and c of Figure 4.7). In this case, all of these labellings
give rise to one classifiable labelling of the enlarged dataset by deforming the
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hyperplane to correctly classify y.

How many of these labellings exists? There are RN,P “ C
p2q
N´1,P ` C

p2q
N´2,P of

such labellings. In fact, RN,P “ QN´1,P is precisely the number of classifiable
labellings of P doublets and one point in N dimension satisfying a single linear
constraint, leading to an effective dimension of N ´ 1.

2. φ cannot be realized by an hyperplane passing through y, i.e. y does not fall into
the grey zone of φ. In this case, φ can be promoted to a classifiable labelling
over the enlarged dataset only if x and y fall on the same side of the original
separating hyperplane, which on average happens with probability Ψ2pρq

b (panel
d and e of Figure 4.7).

By subtraction, there are QN,P ´RN,P of such labellings.

Thus, combining all cases, we obtain

C
p2q
N,P`1 “ RN,P `Ψ2pρq pQN,P ´RN,P q (4.54)

leading to Equation (4.48).
The initial conditions at P “ 1 for the recursion are the same as in the unstructured

case, except in the N “ 1 case. When N “ 1 in fact, if both points in the doublet fall
on the same half-line, which happens with probability Ψ2pρq, then both labellings are
classifiable, otherwise none of them is. On average, Cp2q1,1 “ 2Ψ2pρq, giving the initial
condition specified in Equation (4.48).

To solve the recursion, we notice once again that Cp2qN,P is a linear combination of

the initial conditions Cp2qN´i,1 for i “ 0, . . . , N ´ 1. The coefficients of this expansion,
let’s call them Ki,P , can be computed again by using the paths analogy. In fact, Ki,P

is the total weight of all directed paths tγjuj“1,...,P such that γ1 “ N ´ i, γP “ N
and γj`1 ´ γj “ 0, 1 or 2. Each transition γj Ñ γj`1 is weighted according to the
recursion, i.e. with weight Ψ2pρq, 1 or 1 ´ Ψ2pρq if γj`1 ´ γj “ 0, 1 or 2 respectively.
Combining all this recovers Equation (4.52), where one should think that m counts the
number of transitions with step-difference equal to 2, and i ´ 2m counts the number
of transitions with step-difference equal to 1 (giving a total height excursion equal to
i as needed).

aHere we have the first mean-field hand-weaving
bHere we have the second mean-field hand-weaving

4.3.2 Expressivity of linear classifiers on segments

As in the unstructured case, we can now look at the various measures of expressivity.

Capacity In this structured case, obtaining analytically the critical load αc correspond-
ing to the capacity is not possible. An approximate value for the capacity can be obtained
by approximating Equation (4.51) with

C
p2q
N,P « 2

N´1
ÿ

i“0

Ki,P (4.55)
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a)

b) d) f)

c) e) g)

Figure 4.7: Graphical representation of Cover’s argument for segments. We start by considering
a fixed classifiable labelling of P “ 20 segments in N “ 2 dimension (panel a). The orange
diamond is the point x (refer to the detail box for the notation), i.e. one of the two extremes of a
new segments that we want to add to the dataset. The addition of the point x follows the original
Cover’s argument, and its location is not important for what follows. We now complete the new
segment by adding the point y, at fixed overlap with x (i.e. at fixed distance). Depending on
the overlap, a subset of the following three options can be realized. Option 1: y falls into the
grey zone (panel b). In this case, point y can be labelled as orange (as its companion) without
breaking the linear separability of the dataset (panel c). Option 2: y falls in the middle of the
other orange segments (panel d). In this case, again y can be labelled orange without braking
the linear separability (panel e). Option 3: y falls in the middle of the blue segments (panel
f). In this case, there is no way of labelling y with the same color as x without breaking the
linear separability of the dataset. The last option never happens in the unstructured case (see
Figure 4.5. Notice that for the sake of clarity, in this graphical representation I moved from
points on the sphere and overlaps to normal points and distances.

for large N . This is equivalent to modifying one among the N initial conditions of Equa-
tion (4.48), and in the limit of large N we expect that this change generates vanishingly
small corrections. We will see that the value of the capacity that this approximation
predicts matches with independent replica computations and agrees with the numerical
experiments, justifying further the procedure.

Leaving aside the validity of the approximation, we now want to compute for which
value of the load α

C
p2q
N,αN “ 2P´1 . (4.56)

i.e., the value for which the sum
řN´1
i“0 Ki,P equals half of its maximum value. We observe

that each summand is the total weight of all directed paths of P steps that perform a
vertical excursion of i units, each step counted with weight Ψ2pρq, 1, 1´Ψ2pρq if it gains
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Figure 4.8: Theory vs numerical results for structured data k “ 2. Numerical simulations (open
markers in the plots) are obtained by training a linear classifier on 1000 randomly labelled dataset
of 2-plets using the perceptron algorithm, and computing the fraction of perfectly classifiable
trials. Circles (˝), triangles (Ÿ) and diamonds (˛) denotes different values of ρ “ 0.6, 0.2,´0.2.
Theory (solid lines) is given by Equation (4.48). (a) For different values of N and ρ, numerical
simulations are in perfect agreement with the mean field theory. (b) The theoretical capacity
(Equation (4.58)) agrees with numerical simulations for values of N as small as N “ 5. The
numerical capacity was computed by linearly interpolating data such as those shown in panel
(a). (c) Finite size deviation between the approximate capacity given in Equation (4.58) and the
theoretical capacity obtained by numerically solving Cp2qN,P “ 2P´1 using Equation (4.52). As N
increases, the approximation get better and better. (Reprinted from [RLG20]).

0,1 or 2 vertical units, and 0 otherwise. If we normalize the weights by dividing them by
their sum, i.e. 2, this is also proportional to the probability that a random directed path
(with transition probabilities given by the weights) of P steps reaches a final height of
i units. In this picture, Cp2qN,P is the probability that in P steps a random walk reaches

height at most N ´ 1. Thus, when we ask for which value of α C
p2q
N,αN equals half of its

maximum value, we are equivalently asking at which value of the step number αN the
total probability that a walk ends at height lesser than N ´ 1 equals 1{2. That is, we
would like to ask at which value of α the median of the distribution of the final height of
the random walks is exactly N . Approximating the median with the mean, this gives

N “ pP ´ 1q
2
ÿ

`“0

`P pγj Ñ γj ` `q “

ˆ

3

2
´Ψ2pρq

˙

pP ´ 1q (4.57)

where the transition probabilities equal the transition weights normalized with a factor
2, and the factor P ´ 1 accounts for the independence of the P ´ 1 transitions of a path.
Finally we obtain, in the large N,P limit,

αp2qc “
2

3´ 2Ψ2pρq
. (4.58)
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Figure 4.8, panel (b-c), compares Equation (4.58) with numerical simulations, and with
the numerical solution of Cp2qN,P “ 2P´1 using the exact form given in Equation (4.52).
There is a very good agreement between the three estimates of the capacity. This justifies
a posteriori our mean-field approach and the approximation on the initial condition of
the recursion. Moreover, Figure 4.8, panel (b) shows that, as expected, the capacity gets
smaller as the geometry of the 2-plets gets more and more extended, i.e. as ρ goes from
1 (unstructured) to ´1 (maximally structured).

As already mentioned in Section 4.1.4 and in Equation (4.38), the capacity can also
be computed by studying the behaviour of the Gardner’s volume. In this case, the
relevant volume is

V “

ż

dw ppwq
P
ź

µ“1

2
ź

a“1

θ pyµ pw ¨ xµ,aqq . (4.59)

Again, ppwq can be taken to be either the uniform distribution on the sphere, or
equivalently (in high dimension N) a multivariate Gaussian with null mean and unit
covariance, as in both case the two distributions weight equally all possible unit vectors
(that identify the separating hyperplanes). Here the samples and labels are considered
to be quenched disorder. Each 2-plet is given independently by a random pair of points
on the sphere with fixed overlap ρ and random label y.

A detailed computation of this Gardner’s volume can be found in [BLR+19].

VC dimension Following the same line of thought (and the same approximation) as
that of the previous section, the VC dimension corresponds to the maximum value of P
such that Cp2qN,P takes its maximum value. Equivalently, we ask that the probability that
a random walk with P steps ends at height lesser than N ´ 1 is 1. This happens for
N “ 2pP ´1q, as the maximum height that a random walk can reach in P steps is exactly
2pP ´ 1q, giving that (at least for large N,P )

d
p2q
VC “

N

2
. (4.60)

Logarithm of CN,P To obtain qualitative informations on the full curve Cp2qN,αN for
large values of α, we resort again to the generating functions technique already used in
the unstructured case. Again, let me give the result first. For large N and α, we have
that

C
p2q
N,αN „

2pαNqN´1

Γ pNq
rΨ2pρqs

pα´1qN
. (4.61)

Notice the similarity with Equation (4.40). The only crucial difference is the factor Ψ2pρq,
accounting for the geometry of the data, that modifies the monotonicity of Cp2qN,αN at
large load α. In fact, in the unstructured case the number of classifiable labellings grows
polynomially with the load, while in the structured case it goes to zero exponentially fast.
This effect can be qualitatively understood as a competition between two effect. The first
one is the combinatorial growth of possible labellings as new samples are added. The
second one is the fact that existing classifiable labellings can be broken by the addition of
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Figure 4.9: Comparison between the number of classifiable labellings of unstructured and struc-
ture data. Fraction (a) and number (b) of classifiable labellings of unstructured (k “ 1, grey)
and structured (k “ 2, red, ρ ‰ 1) data, for growing N (small N corresponding to dark colors,
big N to lighter colors). N equals 5, 10, 20 in (a) and 3, 4, 5 in (b). We see that, while in the case
of the fraction (a) of classifiable labellings the behaviour of unstructured and structured data is
quite similar, with just a shift in the value of the critical capacity, at the level of the full CN,P (b)
the difference is much more evident. The number of classifiable labellings switches from being
increasing to being decreasing at large loads. (Reprinted from [PRE+20]).

new samples, and this effect is greatly enhanced by the extended geometry of structured
samples.

The fact that logpCN,P q is monotone decreasing in the large load phase is crucial, as
it could provide more meaningful bounds to the generalization error in the large-dataset
(P " N) limit. Figure 4.9 compares the number of classifiable labellings of unstructured
and structured k “ 2 data, focusing on the change of monotonicity of CN,P as data
structures enters into play.

Let’s prove Equation (4.61). For the sake of simplicity, I will drop all superscipts
p2q during the next few lines of computation. We again start from the recursion in
Equation (4.48), and we introduce the family of generating functions (with complex
variable)

gN pzq “
ÿ

Pě1

CN,P z
P . (4.62)

We are interested in the behaviour of gN pzq around its singularity of smallest module,
i.e. its dominant singularity.

At the level of generating functions, Equation (4.48) can be rewritten as (for N ě

1):

gN pzq “
z

1´Ψ2pρqz

´

gN´1pzq ´
`

1´Ψ2pρq
˘

gN´2pzq ` 2
¯

,

g0pzq “ 0 .
(4.63)

Notice that, in the same spirit as the previous sections, we are assuming that for large
N the initial conditions of Equation (4.48) provide a negligible overall contribution.
This allows to use the same initial conditions as those of Equation (4.29).
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This recursion can be treated again in two ways: exactly and asymptotically. In-
deed, on one side this is a linear non-homegeneous second-order recursion, whose ex-
plicit solutions can be computed with standard methods, giving a quite complicated
and uninspiring result that it is not worth reporting here; see [PRE+20]. On the other
side, given Equation (4.63), it’s very easy to obtain the asymptotic behaviour of gN pzq
around its dominant singularity without explicitly solving the recursion. In fact, given
the ansatz gN pzq “ γN pz0 ´ zq

´aN for z Ñ z0, it’s immediate to see that z0 “ Ψ2pρq,
aN “ N and γN “ 2rΨ2pρqs

´N . This, combined with Equation (4.42), readily implies
Equation (4.61).

Again, notice that this asymptotic expansion is valid only at fixed N and large P .

4.4 Expressivity of linear classifiers on structured data: poly-
topes

We are finally ready to study the most general case of structured dataset with k-polytope
geometry.

4.4.1 The number of classifiable labellings of polytopes

Looking at the unstructured and k “ 2 casees, we may guess what to expect. If we strongly
believe in inducing patterns out of a couple of cases, we expect the average number
of classifiable labellings CpkqN,P to satisfy a mean-field recursion relation that generalizes

Equation (4.29) and Equation (4.48), depending on CpkqN´l,p for l “ 0, 1, . . . , k, i.e.

C
pkq
N,P “

k
ÿ

l“0

θkl C
pkq
N´l,P (4.64)

for some coefficients θpkql . The coefficients will depend on the geometry of the polytopes
through the kpk´1q

2 fixed overlaps ρa,b (I will call them collectively ρ), but guessing their
explicit form at this stage would be nothing less than pure magic. It turns out that all of
the above it’s actually true, and the coefficients θpkql are recursively determined by

θ
pkq
l “ Ψ̃kpρqθ

pk´1q
l ` p1´ Ψ̃kpρqqθ

pk´1q
l´1

(4.65)

with initial condition θp1q0 “ θ
p1q
1 “ 1 and θpkq´1 “ θ

pkq
k`1 “ 0. The geometrical coefficients

Ψ̃mptρ
a,buka,b“1q (notice that m ď k in general) are the conditional probability that a

random hyperplane that does not separate m vertices of a fixed k-plet does not separate
the whole set of k vertices of the same k-plet, symmetrized on the choice of them excluded
vertices. This can be written as

Ψ̃mptρ
a,buka,b“1q “

C

Ψmptρ
a,buka,b“1q

Ψm´1ptρa,buma,b“1q

G

sym

“

Cş

SN´1
dw

śk
a,b“1 θ

`

pw ¨ xaqpw ¨ xbq
˘

ş

SN´1
dw

śm
a,b“1 θ ppw ¨ x

aqpw ¨ xbqq

G

sym

(4.66)
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where angular bracket denote symmetrization with respect to the excluded vertex, and
txauka“1 are the vertices of the k-plet. A non-trivial fact is that Ψm is a function of the
kpk´1q

2 overlaps ρa,b only, and thus it is independent on the choice of the k-plet, as long as
its geometry is fixed by the model. This can be justified by noticing that Ψm is invariant
if we rigidly rotate the m points xa.

Notice that Ψ̃mptρ
a,buka,b“1q depends both on m explicitly, and on k implicitly. In

the rest of the section, we will abuse the notation by writing Ψ̃mptρ
a,buka,b“1q “ Ψ̃mpρq,

assuming that the dimension of the polytopes k is fixed.
In this more general case, writing the initial conditions for Equation (4.64), and solving

explicitly Equation (4.64) and Equation (4.65) is much more cumbersome than in the
k “ 1, 2 cases. While both elements could be obtained explicitly, we notice that (i) for
k ! N we expect that modifying the k ´ 1 non-trivial initial conditions into those of the
k “ 1 case should not alter the asymptotic results and (ii) the explicit form of CpkqN,P is not
needed in order to generalize the expressivity results of the previous section. For these
reasons, we will not explore these elements further.

Figure 4.10, panel (a), compares the mean field value of Cp3qN,P to numerical simulations,
showing again perfect agreement.

Let’s prove Equation (4.64) and its companions. We generalize carefully the k “ 2
case.

We suppose that CpkqN,P is given, and add a new random k-plet to the sample set.

Among the CpkqN,P classifiable labellings of P k-plets, we have Qk,N,P labellings that
correctly classify the original dataset enlarged with the last k ´ 1 points of the new
k-plet. Qk,N,P will depend on the set tCpkqN´l,P u

k´1
l“0 . This will be clear in the following,

and it’s due to the fact that the logic that we will follow can be applied recursively for
lesser values of k. The subscript k is a reminder that Qk,N,P depends on k variables.

Among these Qk,N,P we have Rk,N,P labellings that can be realized by an hyper-
plane passing through the first point of the new k-plet. The Rk,N,P labellings are all
realizable thanks to the possibility of slightly deforming the separating hyperplane, the
other Qk,N,P ´ Rk,N,P are realizable only if the first point of the k-plet is not sepa-
rated by its companions by the separating hyperplane, which happens with probability
Ψ̃kpρq. Thus

C
pkq
N,P`1 “ Ψ̃kpρqQk,N,P ` p1´ Ψ̃kpρqqRk,N,P . (4.67)

But Rk,N,P “ Qk,N´1,P , as we are just constraining the separating hyperplane with a
single one-dimensional linear constraint. Finally, we notice that Qk,N,P is functionally
determined by the same equation as CpkqN,P , but with k Ñ k ´ 1. Thus,

C
pkq
N,P`1 “ fkpC

pkq
N,P , . . . , C

pkq
N´k,P q (4.68)

where

fkpxN , . . . , xN´kq “ Ψ̃kpρqfk´1pxN , . . . , xN´k`1q

` p1´ Ψ̃kpρqqfk´1pxN´1, . . . , xN´kq
(4.69)

with initial condition f2pxN , xN´1q “ xN ` xN´1. Inserting the ansatz of Equa-
tion (4.64) allows to obtain the recursion for the θ coefficient given in Equation (4.65).
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Figure 4.10: Theory vs numerical results for structured data k “ 3. Numerical simulations (open
markers in the plots) are obtained by training a linear classifier on 1000 randomly labelled dataset
of 3-plets using the perceptron algorithm, and computing the fraction of perfectly classifiable
trials. Circles (˝), triangles (Ÿ) and diamonds (˛) denotes different values of ρ “ 0.6, 0.2,´0.2.
Theory (solid lines) is given by Equation (4.64). (a) For different kinds of geometry (see legend
in the figure) and values of ρ, numerical simulations are in perfect agreement with the mean field
theory. (b) The theoretical capacity (Equation (4.58)) agrees with numerical simulations. The
numerical capacity was computed by linearly interpolating data such as those shown in panel
(a). Notice that the range of ρ in the three different geometries is restricted differently by the
spherical constraint. (Reprinted from [RLG20]).

4.4.2 Expressivity of linear classifiers on polytopes

Capacity and VC dimension To access the capacity and the VC dimension we can
again leverage the random path analogy, if we approximate the initial conditions to those
of the k “ 1 case as already discussed. Indeed, Equation (4.64) is in the same form of
Equation (4.48). Thus, CpkqN,P is the total weight of all walks tγjuPj“1 such that γ1 “ 0,
γj`1 ´ γj “ 0, 1, . . . , k and γP ´ γ1 ă N . Each step of the path is weighted such that if
γj`1´γj “ l, then the weight equals θpkql , and the total weight of a path is the product of
the weights of its steps. Equivalently, if the weights θpkql are properly normalized, CpkqN,P

equals the probability that the corresponding random walk ends at height lesser than N
after P ´ 1 steps.

Thus, the VC dimension is given by the value of P such that the probability associated
to CpkqN,P equals 1. But the maximum height of a random walk is kpP ´ 1q, giving (at
leading order in P,N Ñ8)

dVC “
N

k
. (4.70)

The critical load αc is instead given by the value of P “ αcN such that the median
of the distribution of the final height of the random walk equals N . Approximating the
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median with the mean, this gives

N “ pαcN ´ 1q

řk
l“0 lθ

pkq
l

řk
l“0 θ

pkq
l

(4.71)

that is (at leading order in P,N Ñ8)

αc “

řk
l“0 θ

pkq
l

řk
l“0 lθ

pkq
l

“

˜

k ´
1

2
´

k
ÿ

l“2

Ψ̃lpρq

¸´1

. (4.72)

Figure 4.10, panel (b), compares Equation (4.72) to numerical simulations for k “ 3 and
three different families of one-parameter geometries (equilateral, isosceles and general tri-
angles). The mean field theory agrees perfectly with the numerical simulations, validating
a posteriori all the approximations.

Notice that the critical capacity can be computed by studying the associated Gardner’s
volume, which is the same as that given in Equation (4.59), with the substitution 2 Ñ k.

The last equality can be derived as follows. If we define λpkqm “
řk
l“0 l

mθ
pkq
l , Equa-

tion (4.65) implies that

λ
pkq
0 “ λ

pk´1q
0

(4.73)

i.e. λpkq0 “ 2 for all values of k as the initial condition is given by λp1q0 “ 2. Instead

λ
pkq
1 “ λ

pk´1q
1 ` p1´ Ψ̃kpρqqλ

pk´1q
0

(4.74)

with initial condition λp1q1 “ 1, giving

λ
pkq
1 “ 2k ´ 1´ 2

k
ÿ

l“2

Ψ̃lpρq . (4.75)

This recovers the last equality in Equation (4.72).

Logarithm of CN,P Again, the behaviour of logpCN,P q entropy for large load α can
be derived by generating functions techniques. This gives that, for large P,N and large
load α,

C
pkq
N,αN „

2pαNqN´1

Γ pNq

”

θ
pkq
1

ıN´1 ”

θ
pkq
0

ıpα´1qN

. (4.76)

Notice that θp2q1 “ 1 and θ
p2q
0 “ Ψ̃2ptρ

a,bu2a,b“1q “ Ψ2ptρ
a,bu2a,b“1q, so that we obtain

the k “ 2 case as a special case of the last equation. Again, for large α the asymptotic
behaviour is an exponential decay induced by the geometry (notice that θpkq0 ă 1 if not
all overlaps are equal to 1, as it is a product of the Ψ̃kpρq coefficients).

Equation (4.76) is again implied by Equation (4.64) by (i) defining the corresponding
generating functions, (ii) obtaining a recursion for the generating function and (iii)
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studying the recursion at leading order in the dominant singularity. For the details,
see Section 4.3.2 or [PRE+20].

It turns out that the dominant singularity of gN pzq is a order N pole located at
z0 “ 1{θ

pkq
0 , with coefficient 2rθ

pkq
1 sN´1rθ

pkq
0 s´N . Singularity analysis then implies

Equation (4.76).

Table 4.1 compares the results obtained up to this point for the expressivity of linear
classifiers on structured and unstructured data.

Model dVC Capacity CN,P at large load

k “ 1 N 2 „
2pαNqN´1

ΓpNq

k “ 2 N
2

2
3´2Ψ2pρq

„
2pαNqN´1

ΓpNq
rΨ2pρqs

pα´1qN

k ą 2 N
k

´

k ´ 1
2
´
řk
l“2 Ψ̃lptρ

a,b
u
k
a,b“1q

¯´1

„
2pαNqN´1

ΓpNq

”

θ
pkq
1

ıN´1 ”

θ
pkq
0

ıpα´1qN

Table 4.1: Summary of expressivity measures for structured and unstructured data. The main
qualitative difference between structured and unstructure data is the behaviour of logpCN,P q for
large load α. In the structured case, logpCN,P q converges to zero, while in the unstructured case
it diverges logarithmically.

4.5 Geometric structure may forbid separability

Figure 4.9, and its logarithmic version Figure 4.11 suggest to look more closely at the
large load regime of logpCN,P q. Both figures show that at large load α polytopes are
much more difficult to separate than points. Qualitatively, this can be easily understood.
If α is large, there may be so many polytopes in the dataset that all hyperplanes intersect
at least one of them, meaning that there is no admissible linear classifier. In this sense,
geometric structure forbids separability even before knowing anything about the labelling
of the samples.

This remark closely resembles the definition of a constraint satisfaction problem, sug-
gesting that the change in behaviour may be sharp and due to a phase transition. This
is further supported by the fact that in Figure 4.11 the curves at different values of N
intersect at the same value of the load.

4.5.1 Locating the new phase transition

To pinpoint the value α˚ that defines the transition, we follow Figure 4.11 and we look
for the (smallest) value of the load such that

lim
NÑ8

BN logCN,α˚N “ 0 . (4.77)

To compute explicitly α˚, we resort to the asymptotic expression of CN,αN for large load α
that we derived in the previous sections, and that are summarized in Table 4.1. Notice that
these expressions are valid for fixed large N and large α, while Equation (4.77) would need
an asymptotic expansion for fixed α and large N . We will validate this approximation
a posteriori by showing that the estimates of α˚ that we will obtain match with the
numerical simulations.
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Figure 4.11: Comparison between the logpCN,P q of unstructured and structure data. The plot
shows the logarithm of the number of classifiable labellings of unstructured (k “ 1, grey) and
structured (k “ 2, red, ρ ‰ 1) data, for N “ 5, 10, 20, 40 (small N corresponding to dark colors,
big N to lighter colors). The number of classifiable labellings switches from being increasing to
being decreasing. For α “ α˚, all curves intersect. This is a typical sign of a phase transition.
In this case, the phase transition can be interpreted as a SAT/UNSAT transition between a
low α regime in which at least a small number of configurations of labelled polytopes is linearly
separable, and a high α regime in which the extended geometry of polytopes completely prevents
linear separability, irrespective of the actual labelling. (Reprinted from [PRE+20]).

According to Equation (4.76),

logCN,αN „ log

„

2
Γ pαN `Nq

Γ pNqΓ pαN ` 1q



` pN ´ 1q log θ
pkq
1 ` pα´ 1qN log θ

pkq
0 . (4.78)

Deriving with respect to N , and imposing Equation (4.77), we find

log θ
pkq
1 ` pα´ 1q log θ

pkq
0 ´ ψpNq ´ αψpαN ` 1q ` pα` 1qψpN ` αNq “ 0 , (4.79)

where ψpxq “ Bx log Γpxq is the digamma function, whose behaviour for large argument
id given by ψpxq „ logpxq. Thus, taking the leading order in N , we obtain that α˚ is
determined by

log θ
pkq
1 ` pα˚ ´ 1q log θ

pkq
0 ` pα˚ ` 1q logpα˚ ` 1q ´ α˚ logpα˚q “ 0 . (4.80)

Figure 4.12 compares numerical and theoretical estimates of α˚, showing good agree-
ment and verifying the goodness of our approximations. Notice also that when the ge-
ometry is trivial, i.e. if all overlaps tend to ρa,b “ 1, α˚ diverges to infinity as, in the
unstructured case, there is no transition.

It may be worth now to determine explicitly the geometric coefficients θpkqj , j “ 0, 1,
using Equation (4.65). For j “ 0, we see that the second term of Equation (4.65) is
null, so that the recursion can be easily solved. Thus

θ
pkq
0 “

k
ź

l“2

Ψ̃lptρ
a,buka,b“1q . (4.81)

For j “ 1, Equation (4.65) simplifies to a non-homogeneous linear recursion when the
explicit form of θpkq0 is used. The recursion can be solved with standard techniques,
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Figure 4.12: Comparison between numerical and theoretical values of α˚. (a) Numerical esti-
mates of α˚ at varying θpkq0 for two different geometries: k “ 2 (where θp2q0 is just Ψ2) and k “ 3.
In the latter case we fix tρa,bu3a,b“1 by requiring that the three points in the k-plet form an
equilateral triangle of varying size. (b) Theoretical results (red curves) for α˚ as a function of
θ
pkq
0 for increasing values of θpkq1 , within its allowed ranges given by Equations (4.88) and (4.89).
Dashed lines in both panels are the k-independent upper and lower bounds for α˚ obtained from
Equation (4.88) and Equation (4.89). (Reprinted from [PRE+20]).

giving

θ
pkq
1 “

˜

2´ k `
k
ÿ

l“2

”

Ψ̃lptρ
a,buka,b“1q

ı´1
¸

k
ź

l“2

Ψ̃lptρ
a,buka,b“1q (4.82)

Specializing to k “ 3, for instance, yields

θ
p3q
0 “ Ψ̃3Ψ̃2 ,

θ
p3q
1 “ Ψ̃3 ` Ψ̃2 ´ Ψ̃3Ψ̃2 ,

(4.83)

where all Ψ̃ depend on tρa,bu3a,b“1.
It is also useful to study the interdependence between θpkq0 and θpkq1 as the geometry

of the k-plets varies, as the two quantities are not independent. While it is not possible
to do this in general, one can provide interdependent bounds on both quantities under
the simplifying assumptions that the geometric quantities Ψ̃k are independent variables
ranging in the interval r0, 1s. It’s easy to see than that the range of θpkq0 is the interval
r0, 1s. To compute strict upper and lower bound on θ

pkq
1 at fixed θ

pkq
0 , we resort to

Lagrange constrained optimization. First of all, let us simplify the notation. Define:

xm :“ Ψ̃m`1 , @m ě 1

fpkqpx1 . . . xkq :“ θ
pk`1q
1 pΨ̃2 . . . Ψ̃k`1q , @k ě 1 .

(4.84)

Explicitly:

fpkqp~xq “

˜

1´ k `
k
ÿ

m“1

1

xm

¸

k
ź

m“1

xm , (4.85)
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where ~x “ px1 . . . xkq.
Our problem is to optimize (i.e., to find the infimum and the supremum) fpkqp~xq in

the hypercube ~x P r0, 1sk, subject to the constraint

k
ź

m“1

xm “ t P r0, 1s . (4.86)

We will prove by induction that

sup
~xPr0,1sk

fpkqp~xq “ 1´ δt,0 , @k ě 1

inf
~xPr0,1sk

fpkqp~xq “ φpk, tq , @k ě 1
(4.87)

where φpk, tq “ p1´kqt`kt1´
1
k . Notice that φpk, tq is a monotone decreasing function

of k, and it is always lesser than 1.
The case t “ 0 is special, as the constraint restricts the domain to the origin and

fpkq is null; in the following, suppose that t ą 0.
If k “ 1, the constraint implies that x1 “ t, so that fp1qpx1q “ fp1qptq “ 1. The

fact that φp1, tq “ 1 proves that the proposed bounds are indeed true.
If k ą 1, we first look for critical points inside r0, 1sk using Lagrange’s theorem for

constrained optimization; then, we optimize our function on the boundary of r0, 1sk to
look for non-critical extrema:

• inside the domain, Lagrange’s theorem gives that ~x˚ “ pt
1
k . . . t

1
k q is the only

critical point, and fpkqp~x˚q “ φpk, tq;

• on the boundary, we have that at least one of the x variables (without loss of
generality, let us take xk to be this boundary variable) must be either 0 or 1;
the former is not compatible with the constraint as t ą 0, so xk “ 1. But
fpkqpx1 . . . xk´1, 1q “ fpk´1qpx1 . . . xk´1q, and t “

śk
m“1 xm “

śk´1
m“1 xm, so

that the constrained optimization of fpkqp~xq on the boundary of the domain
is equivalent to the constrained optimization of fpk´1qp~xq on the full domain
r0, 1sk´1.

Thus, the candidates for the infimum and the supremum of fpkqp~xq are given by φpk, tq
(inside the domain, by Lagrange’s theorem) and 1 or φpk´1, tq (on the boundary of the
domain, by induction hypothesis). The properties of φ imply that 1 is the supremum
and φpk, tq is the infimum of fpkqp~xq.

Finally, again by induction, we see that the supremum is realized on the point
pt, 1, . . . q and by all the distinct permutations of its coordinates, and that the infimum
is realized by pt

1
k . . . t

1
k q.

Thus, we have shown that

piq θ
pkq
1 ď 1,

piiq θ
pkq
1 ě pk ´ 1q

´

θ
pkq
0

¯1´ 1
k´1

` p2´ kqθ
pkq
0 .

(4.88)

The lower-bound is monotonically decreasing with k at fixed θpkq0 ; therefore, by letting
k Ñ 8 one obtains a global lower bound that depends on k only implicitly through
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θ
pkq
0 :

θ
pkq
1 ě θ

p8q

1 “ θ
pkq
0

”

1´ log θ
pkq
0

ı

. (4.89)

4.5.2 The new transition is a SAT/UNSAT transition

It’s now useful to rationalize the new phase transition as a SAT/UNSAT transition, akin
to that happening at the critical load αc.

The constraint satisfaction problem (CSP) related to the critical load transition can
be defined as follows:

Constraint satisfaction problem 1. Given a set of P input-label pairs ttxµ,auka“1, y
µuPµ“1,

find a unit vector w such that signpw ¨ xµ,aq “ yµ for all µ and a.

In other words, CSP 1 is the training problem of a linear classifier: we look for a
parameter vector w that defines predictor function that can correctly classify the dataset.
A random version of this CSP can be defined by specifying a probability distribution
over the dataset. For example, for k “ 1 we could study the random CSP defined by
sampling i.i.d. sample/label pairs uniformly on the sphere and with random label, i.e.
with probability density

PX,Y px, yq “
1

Z
δp||x|| ´ 1q rδy,1 ` δy,´1s , (4.90)

where Z is the proper normalization. For k ą 1 and for fixed set of kpk ´ 1q{2 overlaps
tρa,buka,b“1, this can be generalized to k-plet/label pairs as follows

PX,Y ptx
auka“1, yq “

1

Z

«

k
ź

a“1

δp||xa|| ´ 1q

ff

ˆ

«

ź

1ďaăbďk

δpxa ¨ xb ´ ρa,bq

ff

rδy,1 ` δy,´1s ,

(4.91)

where again Z is the proper normalization, now depending on the overlaps. The random
CSP is then said to be in the satisfiable (SAT) phase if the deterministic CSP admits
solution with probability that tends to one in the thermodynamic limit P,N Ñ8 at fixed
load α “ P {N . Viceversa, the random CSP is in the unsatisfiable (UNSAT) phase if the
deterministic CSP admits solution with probability tending to zero in the thermodynamic
limit.

The critical load αc identifies precisely the threshold of this phase transition. The
corresponding Gardner’s volume

V “

ż

dw ppwq
P
ź

µ“1

k
ź

a“1

θ pyµ pw ¨ xµ,aqq , (4.92)

translates the probability of existence of a solution of the CSP to the volume that solutions
of the CSP occupy in parameter space: the SAT phase corresponds to an exponentially
large volume of solutions, and the UNSAT phase to a sub-exponentially large, or vanishing,
one. The probability density on the dataset translates in this picture to a form of quenched
disorder.
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At this point, it is useful to remind that making the link between the critical load,
the corresponding random CSP and the relevant Gardner’s volume is extremely useful.
Indeed, in many problems the critical load may be accessible only through Gardner’s
approach, which is more general than the combinatorial approach described before at the
cost of describing only the transition point and not the full CN,P curve. Thus, obtaining
intuition on the nature of the phase transition happening at α˚, i.e. rationalizing it as a
SAT/UNSAT transition and deriving the corresponding Gardner’s volume opens up the
possibility of computing α˚ in other models, where the combinatorial approach may not
be readily applied.

The correct CSP is obtained by promoting the label variables from quenched disorder
to dynamical variables, i.e.

Constraint satisfaction problem 2. Given a set of P inputs txµ,auP,kµ,a“1, find a set of
labels tyµu and a vector w such that signpw ¨ xµ,aq “ yµ for all µ and a.

In this modified CSP, we are just asking whether there exists a labelling of the given
inputs that is linearly separable. The corresponding UNSAT phase is thus given by the
values of α such that CN,αN Ñ 0 in the thermodynamic limit. This is precisely what is
happening in the structured case where CN,αN is monotone decreasing to zero at large
values of the load α. On the other hand, in the unstructured case, the CSP is always
trivially solved by almost all hyperplanes w11 choosing yµ “ signpw ¨ xµq, and this is
reflected in the fact that CN,αN is monotone increasing for all values of α. The relevant
Gardner’s volume is given by

V “
ÿ

tyµ“˘1u

ż

dw ppwq
P
ź

µ“1

k
ź

a“1

θ pyµ pw ¨ xµ,aqq , (4.93)

where the summation over the labels states that the labels are now regarded as dynamical
variables.

In [PRE+20; RPG20], this redefinition of the Gardner’s volume was used to compute
α˚ for the polytope k “ 2 model of data structure treated here, and for the margin
learning problem. The details of the replica computation used lay outside of the scope of
this Thesis, and can be found in [PRE+20]. Here I report the results.

Polytope model The value of α˚ can be obtained by averaging log V over the random
realizations of the sample set, and looking for the value of α at which the entropy goes to
´8. As it usually happens with replica computations, different approximation schemes
of increasing computational complexity can be used12: annealed, replica symmetric (RS),
one-step replica symmetry breaking (1RSB), etc.

At the annealed level, i.e. assuming that xlog V y „ log xV y, the transition threshold
equals

αA˚ pρq “ ´
1` log 2π

2 log
`

1
2 `

1
π arcsin ρ

˘ . (4.94)

11Almost because there may be hyperplanes intersecting exactly a point. These have null measure in
parameter space, and can be disregarded.

12Notice that the right scheme for a replica computation is determined by the problem, and more
complex schemes do not necessarily mean higher accuracy.
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Figure 4.13: Comparison between combinatorial and replica estimates of α˚ for k “ 2. Circles
represent the combinatorial result, which is in agreement with numerical simulations. All the
different approximation schemes used for the replica computations display the same qualitative
shape. However the annealed and RS ansatz fail in reproducing quantitatively the combinatorial
result. Using a 1-RSB ansatz it is possible to obtain a one-parameter expression for α˚ in
Equation (4.96) that fits the combinatorial result tightly. (Reprinted from [PRE+20]).

A comparison of the annealed approximation and of the result obtained with combina-
torics in Equation (4.80) is shown in Fig. 4.13. Although the annealed approximation fails
in reproducing quantitatively the behavior of α˚pρq, it bounds the combinatorial result
from below, and qualitatively recovers the expected divergence for Ψ2pρq Ñ 1 when the
geometry trivializes (ρÑ 1).

At the RS level, the transition threshold equals

αRS
˚ pρq “

π

2 arctan
a

p1´ ρq{p1` ρq ´
a

1´ ρ2
. (4.95)

The result is reported in Fig. 4.13: the RS curve presents the expected limits for ρÑ ˘1,
but again we do not observe quantitative agreement with the combinatorial curve. This
leads to conjecture that one needs at least one step of replica symmetry breaking (1RSB),
obtaining

α1RSB
˚ pρ; q0 “ 0, wq “

´ logr1` ws

2 log

«

1
2 `

1
π arcsinpρq `

2 arctan
´b

p1`wq 1´ρ1`ρ

¯

π
?

1`w

ff ,
(4.96)

where q0 and w are 1RSB parameters to be optimized. This last result is not the optimal
1RSB solution: in principle we should consider the full expression of α1RSB

˚ pρ; q0, wq and
optimize upon the remaining parameters q0 and w. Here, the objective was only to verify
that the functional form α1RSB

˚ pρ; q0 “ 0, wq allows to fit nicely the combinatorial result,
by adjusting the parameter w (see Fig. 4.13). This simple observation strongly supports
our conjecture that this SAT-UNSAT transition exhibits at least one step of RSB, but it
does not rule out a full-RSB scenario.

Margin learning To show the versatility of Gardner’s formulation, we report the re-
sults for the value of α˚ in the case of margin learning, which cannot be treated with the
combinatorial approach.
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The synaptic volume relevant to this case is

Vκ “
ÿ

tyµ“˘1u

ż

dw ppwq
P
ź

µ“1

θpyµpw ¨ xµq ´ κq , (4.97)

where κ is the margin. Note again that here, as in the case of Equation (4.93), the outputs
yµ are dynamical variables, at variance with the usual Gardner’s volume. The annealed
approximation leads to

αA
˚ pκq “ ´

1` logp2πq

2 logr2 erfcpκqs
. (4.98)

In the RS approximation one obtains the critical threshold

αRS
˚ pκq “

1

2

„
ż κ

0

Dy pκ´ yq2
´1

, (4.99)

where Dy is the standard Gaussian measure. Finally, the 1RSB ansatz again depends
on the parameters q0 and w, which should be investigated numerically. However, in the
special case q0 “ 0 one finds the simpler expression

α1RSB
˚ pκ; q0 “ 0, wq “

´ logr1` ws

2 log

"

2

„

erfcpκq `

ż κ

0

Dz e´w
pz´κq2

2

* .
(4.100)

These results essentially share the same features of those for the k-plets computed above:
in particular, at variance with the usual storage capacity, α˚ computed in all the different
approximation schemes diverges in the limit κ Ñ 0`, when the problem reduces to a
standard classification of unstructured points.

Even in absence of a closed expression for logpCN,P q of margin classification, the exis-
tence of the phase transition at a finite load is a clear indication of its non-monotonicity.

4.6 Perspectives

Understanding how data specificities impact the performance of machine learning models
and algorithms can be considered one of the major challenges for contemporary Statistical
Physics. In this Chapter, we have explored how to deal with a simple model of data
structure, and how to characterize the expressive power of linear classifiers over such
datasets. The presence of input-output correlations in a dataset constraints the class of
admissible predictor functions under consideration.

For simple models of data structure we summarized two phenomena that take place
above the VC dimension. First, logpCN,P q, i.e. a proxy of the VC entropy, becomes
non-monotonic. This is a strong indication that the rigorous bounds in SLT may be
substantially improved by taking data structure into account, and this is the first direction
in which the work presented in this Chapter may be expanded. Second, a novel transition
appears beyond the well-known storage capacity, at the onset of unsatisfiability for a
data-related constraint satisfaction problem. When available, a combinatorial theory à la
Cover allows one to compute logpCN,P q of a finite-size system, and to reveal explicitly its
nonmonotonic behavior. However, this is not always feasible, such as for spherical object
manifolds and margin learning. In these cases, the phase transition can be probed with
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the standard tools of statistical physics, thus allowing an indirect quantification of the
data-dependent behavior.

The new satisfiability transition is due to a competition between the combinatorial
expansion, with sample size, of the space of possible functions and the reduction due
to the constraints [RPG20]. This observation suggests that the emergence of the data-
driven transition, as well as the nonmonotonic proxy of the VC entropy it entails, is not
specific to the two models of data that we have studied here, but is more generally present
whenever the constraints imposed on the set of predictor functions by data structure are
strong enough.

Other possible directions of improvement here are mainly given by the possibility
of extending the analysis to more complex models of geometrically structured data and
learning architectures. As for the storage capacity, the description in terms of a Gardner’s
volume suggests that a form of universality holds for the novel data-driven transition. It
remains to be seen whether this hold in practice or not.

On a more technical level, the combinatorial mean-field approach could be improved
by computing the asymptotic behaviour of CN,P not only at large load, but also at fixed
load. This should be possible within the techniques provided by analytic combinatorics,
but it is a path that remains to be explored.
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