
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 O

ct
ob

er
 2

02
1 
royalsocietypublishing.org/journal/rstb
Introduction
Cite this article: Pesendorfer MB, Ascoli D,
Bogdziewicz M, Hacket-Pain A, Pearse IS,

Vacchiano G. 2021 The ecology and evolution

of synchronized reproduction in long-lived

plants. Phil. Trans. R. Soc. B 376: 20200369.
https://doi.org/10.1098/rstb.2020.0369

Accepted: 2 August 2021

One contribution of 14 to a theme issue ‘The

ecology and evolution of synchronized seed

production in plants’.

Subject Areas:
ecology, ecosystems, evolution, molecular

biology, plant science, behaviour

Keywords:
seed production, climate change, ontogeny,

adaptation, synchrony, proximate mechanisms

Author for correspondence:
Mario B. Pesendorfer

e-mail: mario.pesendorfer@yahoo.com
© 2021 The Author(s) Published by the Royal Society. All rights reserved.
The ecology and evolution of
synchronized reproduction in long-lived
plants

Mario B. Pesendorfer1,2, Davide Ascoli3, Michał Bogdziewicz4,5,
Andrew Hacket-Pain6, Ian S. Pearse7 and Giorgio Vacchiano8

1Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and
Life Sciences, A-1180 Vienna, Austria
2Migratory Bird Center, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA
3Department of Agricultural, Forestry and Food Sciences, University of Torino, 10095 Grugliasco, Italy
4Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland
5INRAE, LESSEM, University Grenoble Alpes, 38400 Saint-Martin-d’Hères, France
6Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool
L69 3BX, UK
7Fort Collins Science Center, US Geological Survey, Fort Collins, CO 80526, USA
8Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy

MBP, 0000-0002-7994-7090; DA, 0000-0002-2671-5122; MB, 0000-0002-6777-9034;
AH-P, 0000-0003-3676-1568; ISP, 0000-0001-7098-0495; GV, 0000-0001-8100-0659

Populations ofmany long-lived plants exhibit spatially synchronized seed pro-
duction that varies extensively over time, so that seed production in someyears
is much higher than on average, while in others, it is much lower or absent.
This phenomenon termedmasting ormast seeding has important consequences
for plant reproductive success, ecosystem dynamics and plant–human inter-
actions. Inspired by recent advances in the field, this special issue presents a
series of articles that advance the current understanding of the ecology and
evolution of masting. To provide a broad overview, we reflect on the state-
of-the-art of masting research in terms of underlying proximate mechanisms,
ontogeny, adaptations, phylogeny and applications to conservation. While
the mechanistic drivers and fitness consequences of masting have received
most attention, the evolutionary history, ontogenetic trajectory and appli-
cations to plant–human interactions are poorly understood. With increased
availability of long-term datasets across broader geographical and taxonomic
scales, aswell as advances inmolecular approaches, we expect that manymys-
teries of masting will be solved soon. The increased understanding of this
global phenomenon will provide the foundation for predictive modelling of
seed crops, which will improve our ability to manage forests and agricultural
fruit and nut crops in the Anthropocene.

This article is part of the theme issue ‘The ecology and evolution of
synchronized seed production in plants’.
1. Introduction
Why are there so many flowers, fruits or seeds on most plants of the same species
in some years and not in others? This age-old question is surprisingly difficult to
answer. Interannual cycles have always played a central role in human inter-
actions with the environment. The relationship between weather and resource
dynamics, such as crop fluctuations and plant regeneration, likely constituted
some of the earliest ecological knowledge passed over generations, particularly
before such dynamics were stabilized with the onset of agriculture [1]. For
humans, the importance of extensive temporal variation and spatial synchrony
in seed production within and across plant populations—a phenomenon broadly
termed masting or mast seeding—has transitioned from a matter of survival, star-
vation or migration to one of arboriculture, forestry, wildlife management,
conservation and disease prevention [2–5].
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Table 1. Five questions about the ecology and evolution of mast seeding and relevant contributions in this theme issue.

level question references

1 proximate what are the mechanisms that drive seed production and its synchrony? [2,7,35–43]

2 ontogeny how do the variability and synchrony of seed production change throughout individual and

population development?

[35,39]

3 adaptation what are the fitness costs and benefits of masting? [37,40,41,43–45]

4 phylogeny how (often) and why did masting evolve? [42,45]

5 application what is the role of masting in plant–human interactions? [2,5,7,40]
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The questions of howandwhymanyplant populations pro-
duce ‘boom and bust’ seed crops, which can be synchronized
over large areas, have piqued the interest of generations of ecol-
ogists concerned both with applications of masting and with
developing a mechanistic understanding of this ‘mysterious’
phenomenon [6]. Progress in the field of masting has often
moved as slowly as the lives of the long-lived plants that we
study [7]; for example, simply capturing the key properties of
masting requires years of observations of seed crops over
many individual plants [8]. Several reviews have guided the
study of masting over the past three decades and encouraged
researchers to make these observations. These syntheses have
developed working definitions of mast seeding [9], explored
the taxonomic and functional breadth of plants that mast
[10,11], quantified the large geographical scale at which mast-
ing can occur [12], explored the role of plant physiological
resource dynamics inmasting [13], distinguished the proximate
mechanisms andultimate (evolutionary) consequences ofmast-
ing [14] and highlighted the need for new lines of experimental
inquiry into masting [3]. Thanks to millions of observations of
seed production, numerous studies asking questions about
the causes and consequences of masting, and syntheses that
put these pieces together, we now have plausible answers to
many of the mysteries of masting (sensu Koenig & Knops [6])
articulated in previous decades.

Several recent advances in the study of masting provided
the impetus for this special issue. These include a renewed
focus on the adaptive consequences and evolution of masting,
crucial interactions with disturbances and work addressing
the response of masting to climate change. Furthermore, the
amount and extent of available data have increased, resulting
in several global perspectives [15,16], elucidating the emer-
ging roles of teleconnections and climate change [17] and
shedding light on the selection pressures for masting [18,19].
Finally, a publicly accessible global database of plant repro-
ductive time series, MASTREE+, was recently assembled by
a team that includes the editors of this theme issue [20].
Inspired by the diverse data sources, we reached out to a
broad international group of colleagues to solicit contributions
that broaden the geographical, taxonomic and thematic scope
of masting research.

Due to unforeseen developments, including the effects of
the COVID-19 pandemic, the special issue endedwith less geo-
graphical representation, thematic breadth and diversity in
authorship than envisioned. It thus continues a long tradition
of masting research focused on temperate forests in Europe,
North America, Japan and New Zealand, biases that exist
more generally across ecology [7,21,22]. In masting ecology,
this is in part a reflection of the underlying biogeography
of masting [16], but it clearly neglects important masting-
dominated systems in other boreal and temperate systems
[23,24], and the emerging evidence that masting is also an
important reproductive strategy in the tropics and arid systems
[25–27]. As evidenced by the pioneering work on the adaptive
value and proximate mechanisms of masting in tropical Shorea
species [28,29], major insights can be gained from studying
these systems. Furthermore, given the value of non-timber
forest products that depend on masting, the cascading effects
of masting on ecosystem processes and the role of masting as
a potential driver of zoonotic disease dynamics, there is an
urgent need to expand the geographical scope of masting
research beyond relatively well-studied regions [30–33]. There-
fore, this special issue is only a first step towards a more
inclusive, as well as geographically and taxonomically repre-
sentative field of masting research. We hope that the articles
in this issue inspire scientists and students from around the
world, particularly from related fields such as physiology,
climatology or molecular biology, to pursue questions related
to the variation and synchrony of seed production in plant
populations in space and time.

To provide a broad overview of the field and the contri-
butions of this special issue, we reflect on the current
understanding of masting along four questions inspired by
the framework by Tinbergen [34], while including a fifth
question of the role of masting in plant–human interactions
(table 1). For each question, we describe the general state of
the science, discuss how recent work, including from this
issue, has changed our understanding of masting, and
sketch out promising avenues of research.
(a) Proximate mechanisms
Masting emerges by combining individual annual variability
in seed production and spatial synchronization among indi-
viduals [13,14]. Resource dynamics, environmental variation,
genetic and hormonal regulation, pollen limitation and their
alignment through space and time are factors that generate
variability and synchrony [3]. The specific way each of these
proximate factors drives masting is highly variable among
plant species and even populations [46], providing an exciting
avenue for research but also creating a challenge in predicting
the responses of masting to climate change [35]. For example,
LaMontagne et al. [36] found that in North America conifers,
masting is cued by the difference between summer tempera-
tures 2 and 3 years before seed fall, supporting the so-called
ΔT model (i.e. ΔT = T3− T2). If climate change affects mean
temperatures more than their interannual variability, masting
would be predicted to be relatively robust to climate change
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under the ΔTmodel [47]. In support, conifer masting in North
America remained stable over 40+ years despite increasing
temperatures [36]. By contrast, when masting is driven by sea-
sonal weather anomalies, the frequency of cues will change
under warming, which can affect the interannual variability
and synchrony of seed production [44,48]. Thus, multiple
cueing mechanisms exist that will generate very different
plant responses to climate change and may result in commu-
nity shifts if reproductive strategies of some plants are better
suited to withstand warming (conifers [36]) than others
(beech and oaks [49,50]). Such differences are further compli-
cated by the way climate change is affecting large-scale
modes of climate variability with uncertain consequences for
the spatio-temporal alignment of proximate cues of masting
in several regions [37], along with different climate sensi-
tivities among species [38]. Moreover, in some species,
interactions with disturbances such as fire, drought, flooding
or windthrows drive the extent and synchrony of seed pro-
duction, as found in fire-adapted scrub oaks in Florida, USA
[39]. The effects of climate change on masting will, therefore,
be additionally complicated by the rate of change in the
relevant disturbance regime [40].

Experiments identifying the proximate mechanisms of
interest and the response of those mechanisms to stress
caused by global climate change are essential for progress
in this field [3,51–53]. Other useful approaches examine pro-
cesses using mechanistic models and increasingly available
large datasets [20]. By combining observations and ecophy-
siological-based models, researchers are starting to untangle
the dynamics of resource allocation [54] and highlight
unexploited potential of process-based models of masting
in larger vegetation modelling efforts [55].

A framework of testable hypotheses is particularly useful
to guide such efforts. For example, if a certain process is an
important driver of masting in a species, how do we expect
masting to change under increasing environmental stress?
The expected insensitivity of the ΔT mechanism to changing
weather anomalies is one example, but examination of plant
responses to other hypothesized mechanisms is also possible
using the temporal depth and taxonomic diversity of large
datasets. Other pressing questions may also be answered
with interspecific comparisons. For example, how do proxi-
mate drivers change across species that have differing levels
of variability and synchrony? How do some species generate
very high synchrony over large areas while others do not?

Finally, few studies to date have used a wide range of
tools in functional genetics to better identify the physiological
processes and pathways involved in masting [41,42]. Tech-
niques such as associational mapping and quantitative trait
locus analysis provide tools to better understand genetic
variation in the masting process [41,56]. By deciphering the
molecular processes that integrate the various factors associ-
ated with large or small annual seed crops, it may not only be
possible to understand masting but also to alter patterns of
seed production through breeding or hormonal cues.
(b) Ontogeny
As a spatio-temporal, population-level phenomenon, masting
emerges from the synchronization of individual-level behav-
iour of plants over large geographical areas [8]. Investigating
differences among individuals, as well as changes within
individuals over time, therefore builds a foundation for
understanding the mechanisms and selective costs and
benefits of synchronized reproduction [10]. Aside from the
commonly observed pattern of extensive growth investment
before first reproduction, the onset and development of seed
production as a function of size (or age) of most perennial
plants is poorly understood [57,58]. It is unclear how the
extent, variability and temporal autocorrelation of seed pro-
duction scale with individual age or size, how these
relationships change as a function of the demographic struc-
ture of populations, or how reproductive synchrony emerges
over time. For example, do complex long-term patterns of syn-
chrony emerge from simple mathematical rules underlying
individual behaviour, as has been hypothesized for bamboo
flowering patterns [59]? What are the trade-offs of flowering
and seeding earlier or later in life? An ontogenetic perspective
is central to understanding life-history trade-offs, particularly
between reproduction, growth and defences [60], linking the
proximate and ultimate drivers of mast seeding. More gener-
ally, the ability to predict mast seeding depends on the
understanding of individual tree behaviour, both on an onto-
genetic trajectory and in response to abiotic and biotic
environments.

Progress has been made in understanding the ontogenetic
development of fecundity [61,62], but the effect of tree age
and size on masting behaviour has often been neglected.
Comparisons among age or size groups have provided impor-
tant initial insights. For example, Bogdziewicz et al. [63] found
that interannual variability in seed production decreased with
plant size and stabilized above a fecundity threshold. Minor &
Kobe [64] found that seed production in Northern hardwood
forests in North America was dominated by a few large
‘super-producers’ that showed lower temporal variability
and higher synchrony than the overall population. Similarly,
when comparing individual valley oaks (Quercus lobata),
Pesendorfer et al. [65] found that large trees with high fecund-
ity exhibited lower variability and more negative temporal
autocorrelation than smaller trees. Combined, these findings
illustrate that the variability and autocorrelation of seed pro-
duction change over an individual’s lifetime. However, even
in the longest available time-series data for individual trees,
only a fraction of the potential lifespan is covered, thus leav-
ing questions about the interactions between ontogenetic
processes and environmental conditions, and the possibility
of changes in synchrony with neighbouring trees.

Ontogenetic studies of masting also have implications for
the demographics of future plant communities and ecosystems.
For example, in forestswheremasting is a keyprocess determin-
ing plant recruitment, age- and size-related changes in masting
will have implications for climate change resilience, with wider
cascading effects on the structure and dynamics of food webs
[66]. Evidence of age-driven changes in masting was recently
reported for Polish forests, where increasing stand age was
themain driver of long-term increases in interannual variability
of seed production, while climate change had negligible effects
on masting behaviour [67]. Direct links between such changes
in masting, plant recruitment and broader trophic effects
have not yet been reported, but numerous modelling studies
indicate the potentially dramatic consequences of such shifts
in masting behaviour (e.g. [68,69]). In newly established forests,
or those recovering from disturbance, ontogenetic changes in
masting will have important implications for management
[5], irrespective of any parallel changes in masting resulting
from environmental change [35].
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As individuals reach the end of their lifespan, the question
of declining fecundity or terminal investment—increased
reproductive effort before death—arises. Life-history theory
predicts that as mortality increases with senescence, resources
should be allocated to reproduction rather than growth
or defences [70]. This phenomenon is commonly found in iter-
oparous animals [71], but ‘folk knowledge’ about similar
effects on plant reproduction drives a persistent misconcep-
tion. While certain stressors drive trees to temporarily
increase reproduction, there is no evidence that impending
natural death is associated with bumper crops. In fact, seed
production appears to stagnate or decline before death
[61,72,73]. Interestingly, evidence is accumulating that long-
lived trees experience ‘negative senescence’ during which
mortality rates decline with age after surpassing a threshold
[74]. More broadly, the growth and reproduction of old and
ageing trees are important aspects of the ongoing discussion
about forest management under rapidly accelerating climate
change [34].

Looking ahead, the study of individual development will
help our understanding of the contribution of genetic and
environmental effects to the reproductive phenotype, clarify
the role of demographic composition and facilitate conserva-
tion planning. Long-term cohort studies, provenance plots
and quantitative genetic approaches will provide critical
insights into the fitness consequences of masting.
(c) Adaptation
What are the fitness benefits of variable and synchronous
reproduction? Research on the evolutionary ecology ofmasting
has largely focused on hypotheses pertaining to economies
of scale (EoS), where density-dependent mechanisms during
flowering, pollination, fruiting and seeding increase reproduc-
tive efficiency and individual fitness [9,14,75,76]. Pollen
limitation, which can hamper seed production, varies between
years as a function of weather conditions or flowering
synchrony [51,76–78]. While effective fertilization is strongly
influenced by pollen availability, it is still unclear what advan-
tage is provided by interannual variation in comparison to
continued flowering at stable levels, though the answer may
lie in the benefit accruing to low-density populations through
mass flowering [76].

Interactions with animals during fructification, seed
abscission and dispersal vary with population-level seed pro-
duction levels in current and previous years. Predator
satiation—the reduced per capita rate of pre- and post-disper-
sal seed predation in years of large seed crops—is commonly
found for seeds infested by insects while on the plant or
depredated by vertebrates once on the ground [11]. However,
there is also evidence that predator satiation effects may not
apply universally, particularly in old-growth forest stands
with slow recruitment [79]. The animal dispersal hypothesis,
which posits that animal-mediated seed dispersal benefits
increase with seed production levels, has received mixed sup-
port, likely because seed fate effects depend on many factors
including disperser life history and mobility [80,81]. Zwolak
et al. [43] use simulation modelling to show that the effects of
masting on the population dynamics and caching behaviour
of scatter-hoarders are mutually dependent. By decreasing
the degree of pilfering, the satiation–starvation cycle induced
by seed masting promotes the evolution and maintenance of
seed caching behaviour.
In the sequential steps of the reproductive cycle, multiple
EoS mechanisms can interact, so that changes in flowering be-
haviour can result in reduced predator satiation. In European
beech (Fagus sylvatica L.) trees, for example, increasing temp-
eratures have reduced the sensitivity of individual trees to the
masting cues, resulting in more asynchronous flowering and
seeding [44]. Asynchronous trees that show reduced variabil-
ity in seed production consequently experienced higher
levels of pre-dispersal seed predation [82], highlighting that
EoS-related fitness consequences can result in selection for
mast seeding at the individual tree level.

Among evolutionary hypotheses overlooked in the past,
the environmental prediction hypothesis is receiving new sup-
port thanks to increased data availability and resulting insights
into spatio-temporal patterns of masting [83,84]. This hypoth-
esis proposes that plant populations synchronize their mast
years based on weather cues that also predict favourable con-
ditions for germination, seedling emergence and survival.
Considering how natural disturbances can favour subsequent
plant reproduction provides a new perspective on this process.
This includes beneficial changes in light regime, soil conditions,
water and nutrient availability for offspring. Vacchiano et al.
[40] highlight how drought, heat waves and wildfires are fore-
shadowed byweather conditions that can also act as proximate
cues of masting. Evidence suggests that changes in disturbance
regimes promote eco-evolutionary feedbacks selecting for
masting behaviour [83,84].

Large-scale modes of climate variability, such as El Niño–
Southern Oscillation (ENSO), have been shown to align
spatio-temporal patterns of both masting and disturbances,
thus increasing the probability of seed dispersal in a dis-
turbed environment that is favourable for seed germination
and seedling establishment [83,84]. Such climate modes influ-
ence reproduction and recruitment both directly via weather
patterns that align proximate mechanisms of masting
through time and space, and indirectly by promoting the
emergence of density-dependent EoS over large areas, and
by synchronizing lagged but in-phase ecosystem dynamics
conducive to survival of offspring [38]. Of course, apparent
cases of environmental prediction and EoS may occur at the
same time and are not mutually exclusive [9,14]. Ascoli
et al. [37] suggest the hypothesis that large-scale modes of cli-
mate variability have the potential to ‘bridge’ proximate and
ultimate causes of masting, selecting for variable and syn-
chronous reproduction. They also discuss the spatial scales
at which reproduction synchrony is relevant to adaptive
benefits for masting.
(d) Phylogeny
Phylogenetic analyses of masting provide potential answers to
many important questions. How is masting as a trait distributed
on the Tree of Life?What are the evolutionary history andpoten-
tial functions of masting? Has it emerged recently, or is
it ancient? Is it consistently associated with other plant traits,
like wind pollination? Are there evolutionary consequences of
masting associated with adaptive radiations, extinctions or
other macroevolutionary events? Historically, a tendency
towards masting in some taxonomic groups of plants, such as
pines and oaks, has been noted. Phylogenetic comparative
studies confirm this observation by demonstrating a phylo-
genetic signal (clustering on a phylogeny) of masting
[16,18,45,85,86].Nevertheless, there is still considerable variation
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inmasting evenwithin closely related plant clades. For example,
within oaks (genus Quercus), the interannual population-level
coefficient of variation of mean seed production—a common
measure of masting—varies roughly six-fold among species,
and crop sizes of different species are associated with different
weather cues [86]. Masting is common in some ancient plant
clades, such as cycads, suggesting that mast seeding might be
nearly as old as seeds themselves [87]. However, using obser-
vations of extant species to infer ancient history may be
misleading, given evidence supporting a model in which mast-
ing can evolve relatively quickly [85]. To date, all our inference
into the history of masting as a trait comes from phylogenetic
comparisons of extant species, and it may be worthwhile to
explore the degree to which masting can or cannot be inferred
from the paleobotanical record.

There has been a long-running debate as to whether mast-
ing is an immediate, short-term response of plants to annual
variations in weather, or if masting is an evolved strategy
over a lifetime that enhances fitness via an EoS such as preda-
tor satiation, increased pollination efficiency or environmental
prediction [11]. Phylogenetic associations between masting
and other plant traits, such as wind pollination, and seed dis-
persal strategy have been one of the primary lines of evidence
to argue that masting is more than a short-term response to
environmental variation [10,11,16]. Nevertheless, other com-
parative studies suggest that our understanding of masting
evolution is far from complete. For example, masting appears
to emerge disproportionately in species that cope with
nutrient imbalances in their tissues and that live in high-
productivity habitats [18]. However, the direction of causality
is unresolved and thus masting intensity could simply be
amplified by nutrient scarcity [88]. Little is known about the
broader macroevolutionary consequences of masting, but
Dale et al. [45] provide important first steps in this direction.
Their analysis indicates that the net effect of masting onmacro-
evolutionary patterns appears to be minimal as it is not
associated with altered rates of speciation.

Partof theproblemin inferringphylogeneticpatterns inmast
seedinghasbeen the lackofdata, alongwith taxonomic andgeo-
graphical biases in studies of seed production.As this problem is
overcome, it is likely that our understanding of the evolution of
masting seeding could drastically change. For example, in sev-
eral parts of the world, synchronous, community-wide mass
flowering and fruiting events in wild and domestic plants have
been observed [2,38], while in other places, even closely related
plant species produce seed crops on their own schedule [89].
These patterns remain amystery, andone thatmaybe addressed
with future phylogenetic analyses.
(e) Applications
One major motivation to study masting is that it is an impor-
tant ecosystem process that affects how we manage the
environment [5]. A consideration of masting is important
when assessing the future of the world’s forests and other
habitats dominated by masting species, monitoring and
managing the populations of rare masting plants and seed-
eating animals, as well as collecting and dispersing seed for
restoration or assisted migration. The forest gap models, land-
scape models and ecosystem models widely used to simulate
vegetation change and inform management rarely include
realistic parametrization of seed production (i.e. masting).
Nevertheless, studies indicate that extending models to
include masting increases realism and can, for example, sub-
stantially affect predicted vegetation responses to disturbance
[3,55,69]. This indicates that future work to incorporate mast-
ing into such models will improve estimates of vegetation
dynamics, and associated management decisions. The Euro-
pean Union’s Biodiversity Strategy 2030 [90] calls for the
planting of an additional 3 billion trees within a decade, an
effort that will be strongly impacted by seed availability
and its spatio-temporal variability. In the Anthropocene, the
focus has also shifted to controlling invasive plants and ani-
mals, forecasting the risk of zoonotic diseases that cycle with
mast crops, and collecting seeds for food [5], as masting also
occurs in many cultivated fruit and nut crops. In agriculture,
this phenomenon is usually known as ‘alternate cropping’ or
‘alternate bearing’ and is characteristic of many commonly
grown fruit crops, including apples, cherries and chestnuts
[2]. Furthermore, patterns present in wild masting species,
such as higher interannual variation in wind-pollinated
species compared to animal-pollinated, are also present in
horticultural systems. This has diverse consequences for the
global food supply and farmer livelihoods, as discussed in
this issue by Garcia et al. [2]. Fundamentally, masting creates
year-to-year variation that has important ecosystem conse-
quences. Accounting for that variation when modelling
community demographics, analysing plant response to cli-
mate change, and collecting seeds for restoration or assisted
migration can greatly improve their success [5,55,91].

Mast crops are often somewhat predictable based on
environmental conditions and previous crops, and this infor-
mation can be used to improve the timing of management
actions. In ecosystems that are influenced by disturbance such
as wildfires, windstorms and silvicultural treatments, the
timing of the next bumper seed year is crucial to the ability of
plants to regenerate, and successful forecasting of mast years
may determine the outcome of chosen restoration strategies
[91]. However, this is extremely challenging to incorporate
into restoration planning, as disturbance events often require
immediate action from land managers. When possible, forest
managers strive to time silvicultural interventions in relation
to masting, to increase the number of dispersed seeds reaching
the ground under improved light and soil conditions, or limit
post-dispersal disturbance of seeds that would hamper natural
regeneration dynamics [91,92].

The ecological applications of masting concepts extend
beyond plants. Bumper seed crops in forest trees create pulses
of food resources and cause population booms in primary con-
sumers that can reverberate across trophic levels and thus affect
the timing ofmanagement actions aimed at animal populations
[93,94]. For example, forecasts of seed and fruit crops in New
Zealand inform both the management of invasive mammals
and translocation programmes of the endangered kākāpō
[95,96]. Similarly, the effect of masting on zoonotic, tick-borne
disease incidents in human populations, driven by the effect
of cycling rodent populations on tick numbers, can be forecast
with a time horizon of up to 2 years [97]. In other cases, where
forecasts of seed and fruit crops are not made, interannual
variation in seed crops is an obstacle to environmentalmanage-
ment. For example, variation in seed crops is a major hurdle to
local seed collection for human consumption [98] and restor-
ation projects [89]. Developing and implementing widespread
predictive forecasts of mast seed crops and failures are one
way that the scientific studyofmasting could improvemanage-
ment actions and accurate predictions of the nexus between
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vegetation ecology, climate change and natural resource
management.
oyalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:2
2. Conclusion and outlook
This issue aims to initiate a broader taxonomic, geographical
and culturally diverse approach to masting research and
applications. Several promising themes of future research
are highlighted, including molecular deciphering of path-
ways underlying flower induction and seed production, the
role of resource-related environmental processes at the indi-
vidual level, expanded analyses based on global datasets,
drivers of synchrony and the potential for forecasting seed
production. Of the five facets of masting considered here,
proximate mechanisms and adaptive value have been
investigated most thoroughly and are thus best understood,
while ontogeny, phylogeny and potential applications to
plant–human interactions are still relatively poorly
understood. With the emergence and increased value of eco-
logical forecasting for interactions between humans and their
environment, we anticipate that masting research and its
many interfaces with other disciplines will continue to
advance at a rapid pace.
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