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COVID-19: Ry is lower
where outbreak is larger
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We use daily data from Lombardy, the Italian region most affected
by the COVID-19 outbreak, to calibrate a SIR model on each munic-
ipality. Municipalities with a higher initial number of cases feature a
lower rate of diffusion, not attributable to herd immunity: there is a
robust and strongly significant negative correlation between the esti-
mated basic reproduction number (Rp) and the initial outbreak size.
This represents novel evidence of the prevalence-response elasticity
in a cross-sectional setting, characterized by a same health system
and homogeneous social distancing regulations. By ruling out alter-
native explanations, we conclude that a higher number of cases causes
changes of behavior, such as a more strict adoption of social distanc-
ing measures among the population, that reduce the spread. This
finding calls for the distribution of detailed epidemiological data to
populations affected by COVID-19 outbreaks.
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1 Introduction

An infectious discase’s basic reproduction number, or Ry, represents the av-
erage number of secondary cases produced by a single infected case in an
otherwise susceptible population: it is typically used as a reference value
to assess the transmissibility of an infectious disease in a given population.
Given a number of individuals susceptible to infection, a discase with higher
Ry will infect a larger number of individuals. There is hence an obvious
positive relationship between the Ry and the resulting size of an outbreak
(Tildesley and Keeling, 2009).

However, the spread of an outbreak does not only depend on ex-ante
features of a virus or a population, but potentially also on the response of
both population and authorities to the outbreak. A stream of literature has
described the possible negative relationship between the prevalence of a dis-
ease in a given population and its rate of spread. Indeed, if a population’s
risk taking behavior is endogenous, then the larger the outbreak size, the
more precautions individuals and authorities will take: this is the essence
of the prevalence-response elasticity (Fenichel, 2013; Philipson, 2000; Laxmi-
narayan and Malani, 2011). This is particularly important in the context of
the COVID-19 pandemic, to which most countries in the world have reacted
with some form of social distancing measures, or lockdown. In absence of
a vaccine or effective drugs, these measures are the best weapon to reduce
the number of deaths, as well as the number of intensive care unit beds re-
quired (Flaxman et al., 2020; Ferguson et al., 2020; Greenstone and Nigam,
2020) and have been shown to obtain a substantial reduction in the speed of
contagion (Kucharski et al., 2020; Wang et al., 2020; Chudik et al., 2020).
However, their effectiveness crucially relies on the willingness of the popula-
tion to follow the recommendations.

Several studies have found evidence of the prevalence-response clasticity
by employing data from surveys of behavior (Oster, 2012; Mullahy, 1999;
Ahituv et al., 1996; Philipson, 1996), observing for instance an increase in
reported condom use in areas with a higher AIDS prevalence. Epidemio-
logical data could allow to overcome the possible problem of response bias,
but the task is made non-trivial by the fact that public policies also react to
the prevalence of a diseases, and by spillovers across regions due to human
mobility. The present study relies on epidemiological panel data on COVID-
19 in Lombardy, the region of Italy most heavily affected by the pandemic
(Cereda et al., 2020 provide an accurate description of the early phase of the
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outbreak in such region). Specifically, we employ daily data on the number
of individuals positive to COVID-19 at the municipality level, focusing on a
period in which the entire country was subject to a lockdown. All municipal-
ities under analysis share the same public health system and, in the period
considered, were subject to the same social distancing regulation. However,
at the start of the period, they were characterized by a strong heterogeneity
in the number of cases, both in absolute and in per capita terms.

We study a period beginning on March 25, 2020, that is, more than
two weeks after the lockdown regulation was put in place, and covering
three weeks, during which such regulations still held: this means that move-
ments across municipalities were severely restricted, requiring any travelers
to present a valid (typically work or health related) justification for their
journey. Hence, such municipalities were living in an exceptional state of
isolation.

We fit a Susceptible-Infected-Recovered (SIR) model (Kermack and McK-
endrick, 1927) on data from each municipality and find that the estimated
Ry is negatively correlated with the prevalence in the municipality at the be-
ginning of our period. This result holds both when considering the absolute
and per capita number of cases, and is robust to different specifications and
sample disaggregations.

We present and compare different complementary explanations for this
finding. Early and widespread testing can increase the reported number
of cases and simultaneously allow the authorities to slow the spread of the
pandemic by isolating known cases. At the same time, where the number of
cases is higher, the population might comply more strictly with the lockdown
measures, thus reducing the rate of spread: we show in Section 4 why this
latter mechanism is most likely to drive our results.

2 Materials and methods

We employ count data of per-municipality (cumulated) recorded cases. These
are updated daily and distributed by regional authorities. We do not rely on
data on recovered and deceased individuals, as such data are not available
with the required geographical disaggregation.

Data are available starting from March 25, 2020. This study focuses on
a period of twenty-one days during which lockdown measures were always in
place: in Appendix A.3, we perform a sensitivity analysis by employing later



QO J oy Ul WN B

AT U UGG UTU G OO BB BB EDDEDNWWWWWWWWWWRONNONRONONNODNNN R PR
GO WNhDPRFRPOWOOW-JdJOoOULd WNDRFRPR OWOJIJOOUd WNREPROWOWOJIJOhUud WNhDERPOWOOJdoOUd WNEP OWOLWJoY U D WDNDEFE O W

data (until April 19).

We verify that only minimal deviations appear between regional data and
the aggregation of municipal data (with the exception of data from March
24, which is indeeed removed from our sample). Out of 1507 municipalities
in Lombardy, 960 had at least one recorded COVID-19 case as of March 25.
Figure 1a displays the number of cases (size of the dots) and the cases per
capita (color of the dots) as of March 25 for cach of these 960 municipalities.
Similarly, Figure 1b displays the number of new cases (size of the dots) and
the number of new cases per capita (color of the dots) recorded in each
municipality during the three weeks under analysis.

It should be noted that official data concerning the COVID-19 outbreak
in Italy has been found to be strongly incomplete, both in terms of positive
individuals and of casualties: several researchers have estimated an outbreak
size much higher than that suggested by official numbers (Flaxman et al.,
2020) and others have corroborated this with an analysis of anomalies in
death rates (Bartoszek et al., 2020). Moreover, local testing strategies are
known to have deviated from WHO guidelines and to have changed over
time, also depending on available resources: towards the end of our period
of interest, more subjects with mild symptoms were tested. For this rea-
son, some researchers have put forwards adaptations of the SIR model that
account for a threshold in the capacity of the health system (Ichino et al.,
2020). Such problems are not specific to Italy, as official data from a number
of countries have been questioned. More in general, the difficulty in obtaining
reliable data on the number of infected, deceased and recovered individuals
calls for refinements of traditional epidemiological models (Atkeson et al.,
2020; Riccardo et al., 2020).

Given our research question, these caveats are of limited importance.
Indeed, the focus of the present work is to document differences in response
across municipalities, rather than to precisely estimate the epidemiological
parameters or expected duration of the COVID-19 outbreak in Lombardy.
Despite the presence of noise in the data, we show in what follows that the
differential patterns identified can be distinguished from such noise.

Data on population size is obtained from the Italian National Istitute of
Statistics (ISTAT).
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Figure 1: Distribution of cases and cases increase

(a) Cases on March 25
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(b) New cases between March 25 and April 14

Note: dot size represent absolute numbers, colors represent cases per one

thousand inhabitants.
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2.1 Methods

We fit a SIR model on each municipality in the period of three weeks be-
ginning with March 25. Given the short time span considered, we employ a
simplified SIR model which does not account for natural rate of mortality.
Hence, the model is entirely defined by setting few parameters: 5, which de-
termines the rate at which susceptible (5) individuals become infected (I);
v, which determines the rate at which infected individuals become recov-
ered (R); the initial number of infected and recovered individuals, and the
population size N (= S+ I + R).

It is worth mentioning that while 5 and v might not be identifiable by
analyzing daily active cases (for sufficiently low prevalence, I approximately
follows an exponential growth of base 1+ 5 — ), this concern does not apply
to I + R (see Appendix A.1).

We consider, for each municipality, a discretized version of the continu-
ous SIR model — each period corresponding to a day — and automatically
explore the parameter space for 3, 7, and the initial value for I and R (we
take population size from official statistics), looking for the combination that
provides the best fit. Specifically, the goodness of fit is maximized by mini-
mizing the sum of square residuals between the cases count and the sum of
the I and R pools sizes. The initial values for the free parameters are set to
those calibrated on the entire Lombardy region. The optimization algorithm
is described in Appendix A.2.

Given that the SIR model assumes a non-null initial population of infected
individuals, we only consider the 960 municipalities satisfying this condition.
We further drop 47 municipalities which had new cases recorded on only
one or two dates, hence reducing to 913 municipalities: the fitting procedure
may become unreliable if provided too few updating points. See Figure 4 in
Appendix A.2 for a comparison of fitted SIR models with actual cases count
in three representative examples.

Once we find the best SIR parameters for each municipality, we regress
the estimated Ry (the ratio of the estimated § and 7) on the outbreak size
within the municipality as of March 25. We focus on the per capita number of
cases, as we expect any effect to be related to the prevalence of the outbreak
— a same number of cases will be perceived in a very different way in Milan
or in a small municipality.
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Figure 2: Distribution of R,
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Note: distribution of estimated per-municipality Ry, computed as g Not shown: five
municipalities with Ry < 0.16, five with Ry > 3.33.

3 Results

Among municipalities with at least one recorded case as of March 25, we
find a strong (-0.38) and strongly significant (p=0.000) negative correlation
between the initial number of cases per one thousand inhabitants and the
percentage increase of cases in the period under analysis.

A strong heterogeneity (partly attributed to statistical noise — several
municipalities count only a few cases each) can be observed in the distribution
of estimated Ry across municipalities: in what follows, unless differently
specified, we trim data by dropping 0.5% of outliers on each side of the
distribution of Ry, hence reducing to 902 municipalities.

Figure 2 shows the distribution of the estimated values of Ry: the mean
value is 0.77 (0.79 before trimming) and becomes 0.82 when weighted on
population; the median is 0.65. In only few municipalities (195) the value of
Ry appears to be larger than the critical threshold of 1: in the remaining 707
municipalities, the outbreak is expected to spontaneously extinguish without
requiring herd immunity.

Table 1 presents the results of the regression analysis. We follow the
recommendation of Lewis and Linzer (2005) who show that, unless an over-
whelming share of the residual in the final model is due to measurement error
in the dependent variable (rather than to actual noise in the relation of in-
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Table 1: Main results

(1) (2) (3) (4) (5) (6)
Intercept 0.888"** 0.887*** 0.876™* 0.786"* 0.818"* 0.831***
(0.021)  (0.022)  (0.022)  (0.015)  (0.019)  (0.019)
cases%o -0.024**  -0.024*** -0.029*
(0.004)  (0.004)  (0.005)
cases -0.000 -0.001*** -0.001***
(0.000)  (0.000) (0.000)
new_cases %o -0.160**  -0.150***
(0.034)  (0.033)
population 0.000 0.000*** 0.000 0.000***
(0.000) (0.000)  (0.000)  (0.000)
population™! 121.738*
(58.473)
Observations 902 902 902 902 902 902
R2 0.047 0.047 0.053 0.019 0.026 0.041

Note: dependent variable: estimated Rj,. White standard errors reported in parentheses.
*p<0.1; **p<0.05; ***p<0.01
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terest), an OLS with heteroskedastic robust standard errors provides better
results than Weighted Least Squares (WLS) — we employ the latter approach
as a robustness exercise in Appendix A.3. We see a negative and strongly
significant relationship between the initial number of cases per one thousand
inhabitants and the estimated Ry (column (1)); this relationship is robust to
controlling for population size (column (2)), and to both the absolute number
of cases and the inverse of population size (column (3)), i.c., a full interaction
model where the per capita count represents the interaction term (Kronmal,
1993). The coefficient for the per capita number of cases can be interpreted
as the reduction in Ry resulting from an increase of one case per one thousand
individuals in the prevalence of the outbreak. The value of -0.024 observed
in column (2), which we consider as our baseline specification, indicates a
sizeable effect: for reference, given that the prevalence in Milan as of March
25 was around 1.7%qg, the above mentioned result suggests that had it been
2.7%o, the average Ry would have been around 0.909 instead of the observed
0.884. The same negative and strongly significant effect is observed if we
consider as explanatory variable the absolute number of cases, controlling
for population size (column (4)). This holds also when we consider as ex-
planatory variable the number of new cases per capita observed on March
26 as compared to March 25, always controlling for population size (column
(5)). While the number of new cases is more noisy than the total number of
cases, it might be considered a more up-to-date information on the hazard
posed at the local level by the epidemic. Hence, both pieces of information
can in principle be relevant for individual behavior: indeed, column (6) shows
that they are both strongly significant even when considered simultaneously.

It should be noted that any intrinsic characteristic of municipalities — such
as demography, location, structure of the economy — which might explain a
larger outbreak size should also favor a larger Ry (Dowd et al., 2020). Thus,
our minimal model will yield a lower bound for the coefficient of interest in
presence of any unobservable variable which influences contagion.

4 Discussion

There are a few reasons that might explain why a larger COVID-19 outbreak
should result in a subsequent lower R.

The first is related to herd immunity, by which areas where the outbreak
is initially more present have less scope for further spread because a large
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share of individuals have already caught, and possibly developed immunity
to the virus. This is in principle not a problem for our approach, as the SIR
model accounts for this effect and should estimate an Ry net of it — in other
terms, Rq describes the evolution of the outbreak in an hypothetical situation
in which the pool of susceptible individuals is never reduced. However, the
problem might still arise if the count data employed severely underestimate
the actual spread of the virus: the number of positive cases could actually
be much larger than the detected one, leading to an estimated R, lower than
the real one because of the undetected effect of herd immunity in reducing
the rate of contagion.

The underestimation of infected population might also suggest an alter-
native explanation of the result, related to test capacity: to the extent that
a lower detected prevalence reflects a lower ability of health authorities to
identify infected individuals, it should then correlate with a lower ability to
isolate, hospitalize and cure them, and hence to a faster outbreak growth.

A third, social, explanation is related to the prevalence-response elasticity
(Philipson, 1996): if the local population is aware of a larger prevalence of the
disease, it reacts by changing its behavior towards a stricter application of
social distancing rules, thus leading to a lower Ry. This might in fact depend
from other motives than minimizing the individual risk of infection. Subjects
may want to reduce the risk for their fellow citizens, and in particular relatives
and family members; likewise, they might want to avoid the risk that a larger
outbreak results in postponing the end of the lockdown. In what follows, we
provide evidence in favor of this social mechanism.

We start by analyzing the first possible explanation, related to herd im-
munity: several sources have argued that the actual size of the infected popu-
lation might lie between four and ten times the official reported numbers. In
the most affected municipalities in our sample during the period analyzed, 57
infections per one thousand inhabitants were recorded, and according to the
most pessimistic estimates this would mean that up to 57% of the popula-
tion was infected. While most municipalities have a number of recorded cases
per one thousand inhabitants which is orders of magnitude lower, to avoid
the possibility that an even partial herd immunity effect might be driving
the results, we re-estimate our main model on subsamples of municipalities,
based on their initial number of cases per capita. Specifically, we split the
sample according to quartiles of cases per capita on March 25. The results,
presented in columns (1) to (4) of Table 2, show that our findings are not
driven by herd immunity, as the coefficient for cases%o is negative in each

10
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quartile. The coefficient is significant, and its absolute value particularly
large, for municipalities with a relatively low prevalence (first three quar-
tiles), including municipalities with 2 cases per one thousand inhabitants or
less (first quartile).

We then consider the second possible explanation: that a lower detected
prevalence signals a lower detection ability, and that this mechanically corre-
lates with a lower ability to track and isolate infected subjects, hence raising
the subsequent rate of diffusion. In order to disentangle this test capacity
explanation from the third, social, one, we sketch two simple models of how
these would be expected to affect Rjy.

Let us represent with u; the unknown real number of infected subjects
per one thousand inhabitants at time ¢ in a given municipality, and with
1; the corresponding known number. We are interested in the extent to
which unidentified infected subjects (which are u; — i, cases per one thousand
inhabitants) will raise the Ry for the municipality in the subsequent period.
More specifically, we can assume that identified and unidentified patients
form two different pools of infected subjects and that the latter has a much
higher 5 — probability of infecting susceptible individuals — that leads to
a corresponding higher Rjy. Since [ enters linearly in Ry — and assuming
for simplicity that 7 is constant — the relationship between u; — i; and Ry
would be expected to be linear. Moreover, not only identified patients are
subject to a stronger form of isolation, but also close contacts of such patient
(some of which are not infected) are recommended to self-quarantine: this
does not happen in municipalities with a larger number of undetected cases,
which implies that the effect of each unidentified patient should be more than
linear in increasing the Ry. This would imply a linear or concave relationship
between cases% and R.

Vice-versa, any social explanation (Sabat et al., 2020; Ichino et al., 2020)
is based on the assumption that inhabitants react to the news of the cases in
their municipality. A same increase in per capita cases is likely to be more
salient if the initial number of cases is lower. That is, we can expect inhabi-
tants of two towns with respectively 1 and 11 known cases per one thousand
inhabitants to differ in their compliance with social distancing prescriptions
more than inhabitants of two towns with respectively 20 and 30 known cases
per one thousands inhabitants: a same difference of one percentage point in
prevalence will have a weaker effect on people behavior where prevalence is
higher. This alternative explanation predicts a convez relationship (given
the negative sign) between cases % and Ry.

11
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Table 2: Additional specifications

Q1 Q2 Q3 Q4 Full
(1) (2) (3) (4) (5)

Intercept 1.130*** 1.129**  1.027*  0.713"* 0.952%**
(0.072) (0.133) (0.211) (0.068) (0.030)
cases %o -0.142**  -0.094**  -0.067* -0.004 -0.047
(0.049) (0.041) (0.041) (0.006) (0.009)
cases%c? 0.001**
(0.000)
population 0.000 -0.000** 0.000 -0.000** 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)
Observations 226 225 225 226 902
R2 0.036 0.022 0.014 0.008 0.061

Note: dependent variable: estimated Ry. White standard errors reported in parentheses.
Columns (1) to (4): model restricted to municipalities with a number of cases per
thousand inhabitants in the interval (0.278, 2.173], (2.173, 4.11], (4.11, 6.265] and (6.265,
38.743], respectively. Column (5): full sample. *p<0.1; **p<0.05; ***p<0.01
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To disentangle between the test capacity and the social explanation, we
enrich our basic model by introducing a quadratic term in cases%o. This is
done in column (5) of Table 2. We see that the quadratic term has a posi-
tive sign and is strongly significant, while the sign of the linear term is still
negative and has increased in absolute terms. Hence, while this does not
allow us to exclude that the two other explanations might play a role, we can
conclude that the social explanation is the main driver of the negative rela-
tionship between cases% and Ry. See Appendix A.3 for additional evidence
and sensitivity tests.

Jones et al. (2020) describes two possible opposite reactions to the COVID-
19 outbreak: a precautionary attitude that leads to a stricter adherence to
guidelines, and a “fatalism effect” according to which an individual who is
more likely to be infected in the future “reduces her incentives to be careful
today”. Our results provide strong evidence in favor of the first mechanism.

Chudik et al. (2020) follow a different approach to model how changes in
behavior affect the speed of diffusion in a SIR model. Rather than looking
for variations in R, as originating from changes in  or 7, they consider such
parameters as fixed, and assume instead that in regions with more active
cases, more people will isolate (both because of mandatory and voluntary
social distancing measures). When this happens, the sample S of susceptible
individuals shrinks: this results in a reduction of the speed of contagion,
despite an increase in the infection probability for susceptible individuals.
Intuitively, the latter effect comes from the assumption that, while a number
of sane individuals disconnect from contagion, the remaining ones keep their
frequency of contacts unchanged, increasing their chance 3 ;—; (with Pg being
the size of the non-isolated population) of contracting the disease. Our model
and theirs are complementary, as social distancing can imply a generalized
change of habits in the population but also, as a result, the isolation from
contagion of a share of the population. In their paradigm, the results we
obtain when restricting to quantiles of municipalities (Table 2, columns 1
to 4) and when introducing a quadratic term in the number of initial cases
(Table 2, column 5) can be interpreted as a less-than linear increase in the
number of isolated subjects in response to an increase in the number of
recorded cases.

The endogeneity of risk taking with respect to outbreak size reveals one
of the subtleties in predicting an outbreak’s date of extinction (Geoffard and
Philipson, 1996). As already observed by Philipson (1996), a lower prevalence
might lead to less precautions been taken and hence to a longer outbreak

13
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duration. To the extent that there is habit formation in the population, this
might result in a larger outbreak becoming extinct before a smaller one, all
else equal, and even in the case Ry < 1.

5 Conclusions

We show that in the Italian region of Lombardy, during a lockdown, the basic
reproduction number for COVID-19 reacts negatively to the initial size of an
outbreak at the municipality level, an effect which cannot be explained by the
population having reached herd immunity. Limited test capacity —and hence
a limited ability by health authorities to isolate and treat affected individuals
— appear to have at most a marginal role in explaining our result. Instead,
our results provide support for an important role of the prevalence-response
elasticity: population behavior is key to slowing down the contagion and,
in particular, information about local outbreaks impacts on diffusion rates.
This effect is consistent across all provinces and it is robust to the time period
considered.

This is, to the best of our knowledge, the first time that a change of be-
havior in the population due to the prevalence-response elasticity is observed
within a period of few days. The speed of the contagion and the reduced
human mobility across interested municipalities reduce the relevance of ge-
ographic spillovers. This allows for a novel identification of the behavioral
response directly from local epidemiological data, rather than having to rely
on survey-based measures of health behavior. The fact that the behavioral
response is particularly strong in municipalities characterized by smaller out-
breaks suggests that individuals react more strongly to the first few cases.
This aspect is confirmed by the convex relationship we find between the ini-
tial size of the outbreak and the Ry: the marginal effect on behavior of each
new case scems to decrease in the number of cases.

Our results provide evidence in favor of a precautionary rather than fa-
talistic individual attitude towards the outbreak. This is a socially efficient
reaction, as it reduces the likelihood of contagion precisely where it would
have the highest potential to spread. The evidence provided hence calls for
considering populations as an integral part of the decision making process
(Sabat et al., 2020), and suggests that a timely and transparent provision of
epidemiological data can increase the efficacy of a lockdown, hence reducing
its negative social and economic impact, and yielding public health benefits
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at no added cost.
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A Appendix

A.1 Degrees of freedom in the SIR model

In the simplified SIR model adopted in this study, the number of infected
individuals grows as

6-[25—1515—1

Iy =14 + N

— 1. (1)
In the initial phases of an outbreak — that is, as long as prevalence is low
— we have that S; =~ Sy = N, obtaining

L+ 0Ly —liy =148 —7v) . (2)

By iterating Equation (2), we obtain I; ~ (14 5 —v)'ly. Hence, 5 and ~y
cannot be disentangled by looking at the time series of I, unless the effect
of herd immunity is relevant (that is, S; < Sy = N). In other words, the
exponential curve that describes the beginning of the outbreak has only one
degree of freedom, which is determined by 5 —~ and in turn determines both
the size at any given time ¢, and the curvature.

The number R; of recovered cases until time ¢ grows instead as a propor-
tion ~ of currently infected individuals:

Ry=Ri1+7L1~ Ry +~(1+8—7)""L. (3)

Since Ry = Ztr:1(RT — R,_1), and assuming, without loss of generality,
RO = 0,

t
Ry A(1+5—-7) I

T=1
t—1
=71y (1+8-19)
=0
’Yiﬁﬂylol_(l—'—ﬁ_q/)t_l. (4)

v—08

From Equation (4) it is evident that § and 7 affect the evolution of R,
in different ways: specifically, for a same value of 8 — 7, a smaller value of
v results in a linear scaling down of the entire series, while for a same value
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Ri—R,
of 7, changing f results in changing the rate of growth === Hence, the

parameters 5 and 7 can be obtained from observational data on R;. The
same can be said for the count of total cases I; + R;: since the first term only
depends on 8 — 7 but the second depends on 8 and ~ separately, their sum
does too. Specifically,

_ 1 _ t—1
LR ~1) B(1+6—7)

(5)

V=B
The argument presented above fails when 5 = v, in which case Equation
(4) cannot be derived. In this case, however, [; = 1'I; = [y and R, =

S vl =(t—1)Iy, so that I, + R, = Iy - ((t — 1)y + 1) follows a linear
trend and the (common) value of the parameters determines its slope.

A.2 Optimization procedure

For case of interpretation, the procedure for fitting the SIR model is imple-
mented over the parameters Ry and « rather than 8 and 7, where Ry = g
The optimization procedure works as follows (i denotes an iteration):

1. set ¢« = 0 and, given the initial value © for each parameter 7w, set
(Sﬂ‘i = - 057

)

[=

N

given the current value of 7;, compute 7;; = m;— 6, ; and 7, , =
i+ 0x; (the right and left candidate values for parameter ),

3. measure the fit of the simulation obtained with each of the
three candidates 7;;, m; and m;, by computing the sum of
squared residuals,

4. pick the best candidate as the new parameter value 7,1,

5. if the value of the parameter did not change (that is, w1 =
i), set Opit1 = 0r; - 0.75; otherwise, leave 0r ;41 = 0,

6. repeat steps from 2 to 5 for each parameter 7 among Ry, v, and
the initial values for I and R,

7. repeat steps from 2 to 6 until i < 0.001 for all parameters (that is,
until each parameter is determmed with a precision of 1%o).

We first run the procedure on regional data:
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Figure 3: Calibration of Ry and 7
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e the initial values for R and I are set to the number of infected cases at
the regional level and to the number of recovered or deceased individ-
uals at the regional level, respectively,

e the initial value for Ry is set to 0.9,

e we repeat the optimization procedure using, as starting value for -,
each value in the set {0.050,0.055,0.060, ...0.950}.

With the exception of very low initial values of 7 (for which the opti-
mization procedure misbehaves, given that its speed of exploration of the
parameters space is by design related to the absolute size of parameters),
the resulting values of v and Ry are stable (see Figure 3). In particular, be-
tween 0.050 and 0.950 they have a mean of 0.115 and 0.771 and a standard
deviation of 0.011 and 0.046, respectively. We take such means as initial
parameter values for the SIR fitted at the municipality level.

The initial values for R and I at the municipal level are set instead to the
corresponding regional values as of the beginning of the period of interest,
multiplied by the share of regional (total) cases reported in the municipal-
ity. In other words, given the 20,591 infected and 11,755 recovered patients
recorded in Lombardy as of March 25, respectively 64% and 36% of total
cases, we assume that a municipality with 100 reported cases would have 64
infected and 36 recovered (or dead) individuals. For each municipality we
then follow the optimization procedure described above.

While in principle we could consider a constraint by which the sum of
the initial values of I and R adds up to the initial number of cases, this is
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not required nor efficient. It is not required because the fitting procedure
minimizes the fit error in all periods, including the first; it is not efficient
because the first datum might legitimately be affected by random fluctuations
that bear no larger importance than subsequent ones.

Figure 4a displays the fit between data aggregated at the regional level
and the corresponding simulated SIR model. Figures 4b and 4c are the
equivalent for Milan and Castiglione d’Adda: these are the two municipalities
which, at the beginning of our period of interest, had been most heavily hit
in absolute and per capita terms, respectively. A weekly fluctuation can
be observed: this is in line with documented evidence that less tests are
processed during the weeekend, and the effect reverberates on the number of
positive detected cases with a delay of two to three days. We expect these
fluctuations to affect the entire region homogeneously.

Figure 4: Comparison of fitted SIR model and total cases count
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Note: fit between data and the corresponding SIR model for Lombardy region (left) and
the most affected municipalities at the beginning of our period of interest in absolute and
per capita terms, respectively (center, right).

A.3 Sensitivity tests

In addition to the quantile analysis described in Section 4, we verify that our
main result also holds consistently across the 12 provinces (lower level admin-
istrative regions) of which Lombardy is composed. Results are displayed in
Figure 5a. We see that, for each province, the effect of cases%o on Ry is neg-
ative: although the small sample size results in only few provinces reaching
statistical significance, it is clear that no specific area of Lombardy is alone
responsible for our findings. Interestingly, the effect is relatively small in the
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province of Lodi, which was strongly affected during the initial phase of the
outbreak. In fact, ten municipalities in such province were interested by an
earlier, very strict lockdown, beginning on February 21 and lasting until the
start of the regional lockdown. We verify that four of these municipalities
are excluded from our main sample because they do not have new cases in at
least two dates; of the remaining six, two are excluded because of trimming,
given their very low estimated Rj.

In order to verify that our results do not strictly depend upon the period
considered, we replicate our analysis over different 10-days moving windows
covering up to April 19 (hence going beyond our main period of analysis).
By shrinking the period of analysis, we obtain 17 intervals, allowing us to
study the evolution of our main result over time. For each subperiod, we
fit the Ry for each municipality and regress it on the number of cases per
thousand individuals at the beginning of that subperiod. In accordance with
the selection procedure described in Section 2.1, we reduce this analysis to
the municipalities that feature at least one case on March 25 and, for any
given window, have new cases recorded in at least two dates of that window.
For each window, we also trim outlier values of R as for the main analysis.
The results are shown in Figure 5b. For comparability, we also display, for
each window, the value of the coefficient estimated on the same sample but
for the original 21 days time period.

We find that the effect of interest is robust, that is, the coefficient for
the cases%o variable is consistently negative and significant for each time
window covering up to April 7, becoming indistinguishable from zero on
April 8. Its absolute value is significantly decreasing over time; that is, the
effect of the number of cases on the Ry in the following days appears to be
stronger in the carlier days of the outbreak. While such dynamic might have
different explanations, we remark that the speed of diffusion of the epidemic
has been consistently decreasing. During the outbreak, citizens of Lombardy
had no information on the number of active cases in their municipality at a
given moment in time: hence, they could only infer this from the total cases
counts, which however becomes a weaker proxy as the epidemics progresses.
Whether individual behavior responds more to the number of active cases or
to updates concerning total cases is a relevant issue for further research.

We also verify that all results reported in Table 1, including statistical
significance, are virtually unchanged if we do not trim the data as previously
described.

We also fit a SIR model on each of the 106 Italian provinces (data at the
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Coefficient for cases%o
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Figure 5
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(b) Estimation over 10-days moving windows

Note: estimates are run controlling for population, as in column (2) of Table 1. Error

bars represent robust 95% confidence intervals. In (a), the horizontal line denotes the

corresponding coeflicient estimated on the entire sample under analysis. In (b), crosses

denote the corresponding coefficient estimated on the window-specific sample but over

the original time period (from March 25 to April 14).
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municipality level are not available for other regions). These are observed
over the same period of time (since the day after its introduction, the regional
lockdown was extended to the entire country). We find again a strongly
significant negative relationship between the estimated R, (mean value: 0.85)
and the number of initial cases per one thousand inhabitants. The coefficient
(-0.041 when controlling for population size) is actually larger in absolute
terms than that appearing in column (2) of Table 1. However, it should be
noticed that the interpretation of this result is less straightforward, because
different Italian regions have different health systems: those facing severe
outbreaks might implement specific strategies to fight the diffusion. Hence,
it is not possible to disentangle the effect of an institutional response from
the effect of the population’s change in behavior.

Our main results are obtained by estimating both  and v (simultane-
ously) for each municipality. While this is a feasible approach, given that
we focus on the total number of cases, we also replicate our main analysis
by keeping v fixed (hence only estimating 5 and the initial values for I and
R). We hence derive beforehand + from a SIR model fitted on data from the
entire Lombardy region in the same period of analysis (see Appendix A.2 for
details), and use the resulting value for all municipalities. While our main
approach is more conservative — as a faster growth in the number of cases
might in principle be due to heterogeneity in both § and + — this robustness
test is based on the plausible assumption that the average time to recov-
ery (which is %y) is roughly constant across municipalitics. Results confirm
the negative relationship between cases% and Ry: the coefficient is actually
larger in absolute value (-0.040) than with our main specification, and it is
still strongly significant (p = 0.000).

Finally, given that our dependent variable (Ry) is itself a parameter
estimated at the municipality level, we re-estimate our main model via a
WLS regression where the weights are given by the inverse of the variance
of the normalized municipality-specific errors (Saxonhouse, 1976; Hornstein
and Greene, 2012). That is, defining as C,,; the total cases reported until
day ¢ in municipality m (with C,, its mean), and as fmyt and J%mﬂg the val-
ues estimated according to the fitted SIR model, observation m is attributed
weight

Wy = =3, Where 7, = ot (_ t t)

Zt ("nm,t)2 ’ Cm,t
With this WLS estimation, we still obtain a strongly significant effect (p =
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0.000), albeit with a smaller coefficient in absolute terms (-0.012), presumably
reflecting the disproportionate weight given to more affected municipalities,
where data are more robust and the effect of interest smaller.
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