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Abstract

We study a new kind of nonzero-sum stochastic differential game with mixed impulse/switching
controls, motivated by strategic competition in commodity markets. A representative
upstream firm produces a commodity that is used by a representative downstream firm to
produce a final consumption good. Both firms can influence the price of the commodity.
By shutting down or increasing generation capacities, the upstream firm influences the price
with impulses. By switching (or not) to a substitute, the downstream firm influences the
drift of the commodity price process. We study the resulting impulse-regime switching game
between the two firms, focusing on explicit threshold-type equilibria. Remarkably, this class
of games naturally gives rise to multiple potential Nash equilibria, which we obtain thanks
to a verification-based approach. We exhibit three candidate types of equilibria depending
on the ultimate number of switches by the downstream firm (zero, one or an infinite number
of switches). We illustrate the diversification effect provided by vertical integration in the
specific case of the crude oil market. Our analysis shows that the diversification gains strongly
depend on the pass-through from the crude price to the gasoline price.

Keywords Stochastic differential games - Impulse controls - Optimal switching -
Quasi-variational inequalities - Nash equilibrium - Commodity markets

1 Introduction

Since Hotelling’s [20] seminal study of commodity prices, considerable efforts have been
undertaken to understand the dynamics of the equilibrium price of commodities and in partic-
ular, its long-run properties. The cyclical nature of price dynamics is driven by the substitution
effect, whereby consumers will switch to a different commodity if prices rise too high. In
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a deterministic setting, the switching time to the substitute is simple to analyze, but with
the stochastic economic cycle consumers face a huge challenge in determining when is the
appropriate moment to switch. The succession of booms and busts of commodity prices
complicates the switching timing. In the long run, production capacities adapt to demand and
make the price oscillate around a long-term equilibrium. Indeed, the long-run behavior of
commodity prices exhibits super-cycle patterns. The econometric studies in Leon and Soto
[24], Erten and Ocampo [15], Jacks [21] and more recently Stuemer [31] all find the presence
of super-cycles of several decades in the price of commodities. This phenomenon makes one
wonder whether it is even necessary for the consumers to ever switch and whether it is not
preferable to just wait for the prices to crash again.

The long-run dynamics of commodity prices not only heavily weighs on consumers’ long-
term decisions but is also an important driver of the industrial organization of the production
(upstream) and transformation (downstream) segments. In particular, from the perspective of
industrials, having one foot in each of these two sides of the commodity market is supposed to
induce a natural physical hedge against the undesirable effects of super-cycles. For instance,
Helfat and Teece [19] and Levin [23] find a positive hedging effect procured by vertical
integration in the oil industry, while Mansur [27] and Aid et al. [2] find the same effect in
electricity markets.'

In this paper, we design a dynamic model of competition between production and con-
sumption of a commodity used as an intermediate good, allowing to draw conclusions on
the long-run dynamics of the commodity price and its effects on vertical integration. In our
model, two factors drive the price of the commodity: on the one hand, short-term but persis-
tent shocks of demand and/or production, and on the other hand, strategic decisions of the
(representative) upstream production firm and of the (representative) downstream consumer
firm. The upstream producer extracts the commodity at cost ¢, and sells it for a price X. The
downstream industry buys the commodity and converts it into a final good that has a price
P, non-decreasing in X. This framework covers a wide range of industries. One might think,
for example, of the agricultural sector where soy enters as an input for the food industry
to produce a large range of consumer goods. In the aluminum industry, upstream smelters
produce aluminum to be used by the automotive, transportation and computer industries. In
the oil industry, the crude is extracted by production firms, then transformed into gasoline
and kerosene by downstream refineries, and then consumed in the retail market. For the sake
of simplicity, we identify the downstream firm that transforms the commodity with the final
consumer and this downstream firm’s profit with the consumer’s surplus.

We focus on the role of the commodity price X that intrinsically creates competition
between the representative agents of producers and consumers. In a nutshell, producers
prefer high price X, while consumers prefer low price X. This competition is dynamic and
manifests itself through strategic price effects actuated by the two industries. Therefore, X is
(partially) jointly controlled by the producers/consumers, leading to game-theoretic impacts.

On the upstream production side, the producer needs the commodity price X to be high
enough to make a profit margin. We suppose that the dynamics of investment and disinvest-

! Vertical integration is also intensively discussed in the economic literature from the regulation perspective
of vertical mergers. We refer to Perry [28] for an in-depth review and to Lafontaine and Slade [22] for an
update. Briefly, from the regulation perspective, since there are markets for both the raw commodity and its
transformed products, vertical integration is considered a device to increase firms’ market power and foreclose
competitors. There are empirical evidences of competition distortion by vertically integrated firms (see for
instance the Hasting and Gilbert [18] study of the US gasoline retail market) which can be explained using a
game-theoretic model of foreclosure (De Fontenay and Gans [12]). Despite the importance of the regulation
perspective, we focus in this paper on the firm’s interests in being or not vertically integrated for hedging
purposes procured by diversification effect.
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ment in upstream production is driven by production capacity shocks that cause jumps in
the price X. This assumption is consistent with the theory of real options that predicts the
existence of threshold prices triggering the decision of entry and the exit from the market
(see MacDonald and Siegel [26] and Dixit and Pindyck [14]). It is also consistent with the
observations of quick swings in investment and disinvestment in production, see, e.g., the
boom and bust of commodity prices in 2008-2010.

On the downstream consumer side, consumers induce a long-term effect on the commodity
price only if they switch to a substitute, and they switch to a substitute only if they anticipate
that X will remain high enough for a long time. The downstream side faces slower dynamics
because it involves the transformation of many local installations using the commodity. To
have an example in mind, one may think of the thousands of adjustments required to change
heating systems in buildings, or of the slow effect of the energy saving programs launched
by OECD after the 1970s oil shocks. Thus, in our model, the downstream market for the final
good can be in contraction or expansion regime. The contraction regime corresponds to a
decreasing demand for the primary commodity, i.e., the market is abandoning the use of the
commodity for a substitute, while the expansion mode corresponds to an increasing demand
for the commodity. Depending on the state of the downstream retail market, the drift of the
commodity price takes either a constant positive value in the expansion mode or a negative
value in the contraction mode. Because such consumer shifts are slow and expensive, the
state is persistent (i.e., piecewise constant in time) and changing the state of the final-good
market incurs heavy switching costs. This toggling of the price trend can be interpreted as
endogenous regime switching, a common way of modeling commodity prices through the
business cycle. Indeed, since the seminal paper by Hamilton [17] on the modeling of financial
time-series with regime-switching models, this type of models has been successfully applied
to a large range of commodities spot prices, such as crude oil (Alizadeh et al. [4]), precious
metals (Choi and Hammoudeh [11]), lumber (Chen and Insley [10]) and power (Haldrup
and Nielson [16]). Beyond the impact of producers and consumers decisions, the commodity
price is subject to exogenous short-term stochastic shocks, captured through a Brownian
motion driving risk factor.

Our aim is to construct and characterize the dynamic equilibrium in the commodity market
due to this vertical competition. Our major contribution is to provide an endogenous, game-
theoretic basis for two key stylized features of commodity markets: (i) super-cycles that
manifest as long-term mean-reversion; (ii) fundamental impact of supply and demand that
maintains the price in a range of values rather than a single equilibrium value. Furthermore,
our model allows for three potential types of equilibria depending on the number of demand
switches undertaken by the consumer at equilibrium: zero, one, or an infinite number of
switches. All threshold-type equilibria exhibit the latter qualitative properties. Besides, the
higher the consumer’s switching cost, the more she is compelled to endure an unfavorable
range of prices.

We name the three types of potential equilibria in our model as generic, transitory and
preemptive. In the generic equilibrium described precisely in Sect. 4.1, both the upstream and
downstream representative firms act on the price perpetually: the downstream firm repeat-
edly switches from expansion to contraction, and the upstream firm applies investment and
disinvestment impulses. This equilibrium is likely in sectors where there are easily avail-
able substitutes, e.g., for agricultural products. In the transitory equilibrium described in
Sect. 4.2, the consumer and the producer both prefer a given regime and thus, the consumer
switches at most once when the market is initialized in the opposite regime. Afterward, only
the producer acts to maintain the price within her preferred range of values by appropriate
investment/disinvestment actions. In the last type of equilibrium, the consumer is also stuck
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forever in a regime, but it is a regime she wishes to leave. In that case described in Sect. 4.3,
only the producer acts. Starting in the expansion regime, for instance, the consumer would
like to switch to the contraction regime when the price reaches a threshold. But the producer,
who prefers perpetual expansion, preempts the switch by acting just before the action of the
consumer. Transitory and preemptive equilibria are likely to be observed in sectors where
substitutes are hard to come by and where upstream firms dominate.

Our model relates to the vast literature on the dynamics of commodity prices. An important
stream of the economic literature deals with the joint dynamics of futures and spot prices and
its relation with storage. The seminal references are the papers by Deaton and Laroque [13]
and Routledge et al. [30]. The monograph by Pirrong [29] provides a thorough discussion of
this field of research. In this paper, our focus is to explain the cycles of commodity prices as
the result of vertical competition. The paper which is the closest to our work is Cassasus et
al. [8] addressing long-term competitive equilibrium of crude oil, which also exhibits mean-
reversion and regime switching produced by episodes of over- and under-supply, generated
by lumpy irreversible investment performed by a representative agent. Although our model
shares some features with Cassasus et al. [8] (the absence of storage for instance), we get a
richer set of equilibria generated by the antagonist objectives of the upstream and downstream
sectors.

Along the way, we also make mathematical contributions to the literature on nonzero-
sum stochastic games (see Martyr and Moriarty [25], Attard [5], De Angelis et al. [9],
Aid et al. [1]). To our knowledge ours is the first paper that: (i) considers a mixed
impulse—control/switching—control stochastic game; (ii) explicitly constructs a potential
impulse-switching threshold-type equilibria in nonzero-sum games; provides new ver-
ification theorems regarding best-response strategies for (iii) an impulsing agent in a
regime-switching setting and (iv) switching agent with an impulsed state process. While
our solution is non-exhaustive in the sense that we a priori focus on a special class of equilib-
ria (leaving open the question of existence of other equilibrium families), itis highly tractable.
Namely, we are able to provide closed-form description of the dynamic equilibrium, offering
precise quantitative insights regarding the producer and consumer roles and their equilibrium
behavior.

To emphasize the latter point, beyond several synthetic examples that illustrate and visu-
alize our model features, we also present a detailed case study of the diversification effect
provided by vertical integration in the crude oil market circa 2019, viewed as a competition
between crude oil producers and oil refiners that convert crude into gasoline and other con-
sumer goods. In our case study, we fitted the oil market to the generic type of equilibrium,
considering that oil consumption experiences alternate phases of expansion when the price
is low and contraction when the price is too high. In this setting, we consider a small down-
stream firm asking herself whether she has an interest in getting more vertically integrated.
We show that the gains from integration are directly linked to the pass-through parameter that
links the crude oil price to the retail gasoline price. The higher this pass-through, the higher
production activity dominates the retail activity both in terms of expected rate of profit and
the standard deviation of rate of profit.

The rest of the paper is organized as follows. Section 2 sets up the competitive producer—
consumer commodity market. Section 3 then constructs the respective candidates for
threshold-type impulse-switching equilibria by considering the producer and consumer
best-response strategies. Section 4 illustrates and discusses the different types of emergent
equilibria using toy examples. Section 5 presents the above vertical integration case study,
and Sect. 6 concludes. All the proofs, as well as additional comparative statics, are delegated
to Sect. 7.
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2 The Model
2.1 Description

We use (X;) to denote the (pre-equilibrium) commodity price, modeled as a continuous-time
stochastic process. The two players are denoted as producer and consumer. In what follows
sub-index p (resp. ¢) in the notation will always refer to the producer (resp. consumer). The
market involves the original raw commodity that is being produced and the goods market
(e.g., gasoline). The producer extracts the commodity at cost ¢, and sells it for price x. The
consumer buys it for price x, converts it into a final good, and sells it for price P.

Profit rates The price x of the commodity influences the volume of trade, captured by the
demand function D, (x). A similar phenomenon plays out in the final-good market: the
goods price P leads to sales volume D, (P). Since the consumer is in effect the intermediary
between the commodity and the goods market, she will pass some of her input price shocks
to the output price P = P (x).

We ignore the players’ fixed costs because they can be considered to be integrated in the
investment costs, and concentrate on the variable costs and revenues that are driven by the
respective input/output prices. Based on the above discussion, the instantaneous profit rate
of the producer is

Tp(x) = (x —cp)Dp(x). (1)

Let ¢, be the processing/conversion cost from input commodity to final good and « be the
respective conversion factor, so that one unit of commodity becomes « units of the final good
(e.g., barrels of crude oil, converted into barrels of gasoline). Then, the instantaneous profit
rate of the consumer is

D.(P)
o

7.(x) := D.(P)P —

(x +cc)- 2)

We note that while the consumer has market power, he is not the only user of the commodity
(e.g., crude oil is also used by the petrochemical industry), so there is no direct link between
production volume and consumption volume. Thus, while there is a physical link between
the consumer input volume D.(P)/« and her output volume D.(P), there is no direct link
between D.(P)/a and aggregate commodity demand D, (x).

We shall consider linear inverse demand

D,(x) =dy —dx.

If we further assume that P (x) = po+ p1x (the price of the final good is linearly proportional
to the commodity price), and D.(P) = d|, — d} P (final-good demand is linearly decreasing
in its price P), the profit rate of the consumer becomes:

7o) = De(P(x)) - (P(x) - %)
= (dy — d1 po) <Po — %)
1 . s
+ ((d() —d{po) (1’1 - 5) —dipi (po - %))x +d|pi (& - p1>x2

=1 yo + yix + px’. 3)
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The consumer profit is concave in the commodity price x, y» < 0, if and only if the pass-
through coefficient p; is higher than the conversion factor 1/«. It means that the final-good
price increases faster than the need of the downstream industry to produce one more good,
which is a sound economic condition for having a sustainable downstream industry. To sum
up, the profit rates of both producer and consumer are concave and quadratic in x.

Market Conditions We model the commodity price process (X;) as a controlled It6 diffusion
of the form

dX[ = ,U/[dt +(7th — dN[ (4)

The Brownian motion (W;) captures exogenous price shocks due to random demand or
production fluctuations, or pertinent economic shocks for the industry. In this sense, the
model is agnostic in the reasons why the commodity price fluctuates around its mean trend.
The point process Ny := Y, &1y, <) captures the producer interventions at times (7;);>|
and impulses (£;);>. A positive impulse is triggered by an investment phase and has a
negative impact on the price. A negative impulse is induced by a disinvestment phase and
has a positive impact on the price.

The drift process (;) represents the state of the retail market for the final good. It is either
in expansion or in contraction state. When in expansion, demand is growing faster than the
available production capacity; hence, prices tend to rise: ;t; = 4+ > 0. When in contraction,
the demand is shrinking faster than the production capacity; thus, the price tends to decrease,
and thus, ;; = p— < 0. This modeling corresponds to an imperfect adjustment of the market
as in a sticky price model in macroeconomics. The drift is fully controlled by the consumer,

o oo
e = [+ Z Loy <t<onin) + 14— Z Loy <t<on}> 1=0,

i=0 i=1
where o; is the i-th switching instance taken by the consumer in the case po— = 4 (with the
convention og = 0, so that oy is the first switching time) and analogously when pg— = pu_

by interchanging odd and even switching times. Thus, both players influence (X;), although
their actions are of distinct types, namely impulse control (IV;) by the producer and switching-
drift control (i) by the consumer. The resulting controlled price dynamics are denoted as
X w.N)

The quadratic nature of the upstream and downstream profit rate functions 7 ,(-) and
7.(-) implies that each player has their own natural habitat given by the intervals (xcl, xcz)
and (x;, x%) for commodity price levels with:

d d
xll, = min {cp, d—(l)}, x% 1= max [cp, d—(l)}, (®)]
_ d/ _ d/ _ d/ _ /
xc! := min Po cc/a’ 1 /1]70 ], xf := max Po CC/a, 0 /1]70 } (6)
1/ — pi pid; 1/ — pi pid;

Players make a positive profit only when the price is in the interval ()ci1 , xiz), i €f{c, p}
The concavity of the profit functions implies that players have preferred commodity levels
X, X, that maximize their profit rates, namely:

- do +cpd -
5 .- % + ¢pdi X Y

: = — . 7
» 7 =y, )

Typically, we expect that X, < X, so that the preferred commodity price of the consumer is
lower than that of the producer. The stochastic fluctuations coming from (W;) can generate
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three different market conditions:

X; < X, I: abnormally low prices;

X, < X; <X, 1I: vertical competition;
X p < X; 1II: abnormally high prices.

In the first and last cases, both players have the same preferences to raise or decrease X;; in

the intermediate case, they compete against each other. Because both players can in principle
push (X;) in either direction, the market organization is influenced by their relative gain of
doing so, as well as their action costs. In cases I and III, the players are in waiting mode
because of the second-mover advantage, hoping that the other will act first which allows
the second to benefit from the price effect without paying the cost of (dis-)investment or of
switching. In case II, they are in preemption mode, with the player who moves first being
able to increase her profits at the expense of the other. These dynamic shifts between waiting
and preemption is an important feature of vertical competition.
Objective Functions and Admissible Strategies The objective functionals of the players con-
sist of integrated profit rates 7.(x), discounted at constant rate § > 0 and subtracting the
control costs that are paid at respective intervention epochs. We take the investment cost
function of the producer to be some convex function K, : R — R, and of the consumer as
H :{u_,pnus} - Ri. We denote the latter as H(u—) = h_, H(iuy) = h4. Depending on
the initial drift ;o being positive/negative, the producer’s objective function is given by:

TE N ) = IE[/O e (X, = ep) Dy (Xdt =3¢ P K& o = u* Ko = x| (®)

and, similarly, the representative consumer’s objective function is:
+ - 2 +
JE( N ) = E[/ e Py + X, + ypXDdt =) e’ﬂ”fH(uaj)‘ 1o = =, Xo = X].
0 -
J

(C))

In order for the state variable dynamics and players’ expected payoffs to be well defined,
we give the following definition of admissible strategies. To this end, let (2, F, (F;)s>0, P)
be a probability space with a filtration satisfying the usual conditions and supporting an
(F1)1>0-Brownian motion (W;).

Definition 1 (Admissible strategies) We say that (t;, &;);>1 is an admissible strategy for the
producer if the following properties hold:

1. (7i)i>1 is a sequence of [0, co]-valued stopping times such that 0 < 71 < 72 < -+ and
lim;_, o 7; = 00 a.s., with the convention that 7; = oo for some i > 1 implies 7z = 0o
forall k > i;

2. (&)i>1 is a sequence of real-valued F,-measurable random variables;

3. the sequence (7;, &);> satisfies D ., e P & € LZ(IF’).

Similarly, we say that the sequence (o) j>1 is an admissible strategy for the consumer if

4. each o; is a [0, oo]-valued stopping time, 0 < 01 < 03 < ---, with the convention that
oj = oo for some j > 1 implies oy = oo forall k > j;
5.3 1€ P e LA(P).

The set of all producer’s (resp. consumer’s) admissible strategies is denoted by A, (resp. A;).
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Remark 1 Observe that the property 1 above implies that the producer intervention times do
not accumulate in finite time, so that for all # > 0 the process N; = Zi>] Eilr;<i), t =0,
is well defined, adapted and finite-valued. Moreover, the integrability condition in 5 gives
that o; — o0 (as j — 00), i.e., the switching times of the consumer do not accumulate
in finite time either, so that the dynamics of the controlled state variable (4) is well defined
too. Regarding the expected profits of the players, they are both finite due to integrability
properties in 3 and 5 above.

Remark 2 According to the definition of admissibility above, neither player can intervene
more than once at a time. However, simultaneous interventions coming from both of them
are not excluded. As discussed, the dynamics of the intervention in upstream production
is much faster than the switching of the consumption regime for final good. Thus, in case
both players try to act simultaneously, we assume that the producer has priority. This avoids
unnecessary technicalities and allows for a consistent modeling of the vertical competition.

2.2 Equilibrium
Using this notion of admissible strategies, we give the definition of Nash equilibrium.

Definition 2 (Nash equilibrium) A Nash equilibrium is any pair ((§;, 7;)i>1, (0))j>1) €
Ap x A satisfying the following property:

+/,. B B +/,.
Ty N W) < J5 (s Ny, JE(s Now) < JZ(s N, Vx eR,

for any other pair of strategies ((&/, 7/)i>1, (a}) j>=1) € Ap x A, where in the payoffs
J7(x32).r € {c, p},abovewehave N} = 3, &/1;;/<;yand juy = puy > Yop << 1t
ne 32 Loy <i<yy fort >0, ug_ = p4 and the convention o = 0 (analogously in the
other case i, = pu— by interchanging odd and even switching times).

In line with the envisioned Markovian structure and in order to maximize tractability, we
concentrate on a specific class of dynamic equilibria. Namely, we aim to construct threshold-
type feedback Nash equilibria which are of the form

10=0, r=inf{t>7r1:X,€lpt-)}, i>1, & =8(Xyq, y—), (10)
and
o0=0, oj=inf{t >0;,_1: X, €elc(®)}, j=1, (11)
where
Ur(0) = T L=y + Ty L=y 7 € e, pl,

for some measurable function § : R — R and some suitable Borel sets I f, r ;‘L C R. Thus,
(10), (11) imply that players act based solely on the current price (X;) and demand regime
(m¢), ruling out history-dependent strategies, and moreover, the strategies are characterized
through fixed action regions I'*, FCi and impulse maps §(-). We will denote by 7/ the aggre-
gated intervention times coming jointly from the two players. The fact that in (10) producer’s
intervention times 7; are defined via I',, (1 —) translates the assumption that in case of simul-
taneous interventions, the producer plays first and so her thresholds naturally depend on the
drift u;— just before her and consumer’s actions (compare to Remark 2).
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The action regions ', T' are expected to be as follows. The impulse intervention region

of the upstream production F;‘E = (xzc, x;—L) is two-sided: the producer will act whenever X,

reaches )chjE from below or drops to xzt from above. Note that these thresholds xgt, x;f are

p-dependent. On the consumption side, when u; = 4 (expansion regime), the consumer
will switch to o if X, gets too high: T} = (y;, 0o). Similarly when y, = p_ (contraction
regime), she will switch to p4 if X; gets too low I', = (—o0, y¢). Finally, when the
producer intervenes, he will bring X; to her impulse level x,i* so that the impulse amount is
éri =x* x;t*. The natural ordering we expect is the producer impulses toward X »

;o

xzc < xzt* and x,:f* < xhi, (12)
and the consumer switches toward )_(c,
ye < Xe < yn, (13)

so that when acting both players try to move X toward their preferred levels. However, the
precise ordering between the impulse thresholds x,jE and the switching thresholds y’s is not
clear a priori and will emerge as part of the overall equilibrium construction.

2.3 lllustration of Competitive Dynamics

To further understand the market evolution under competition of the producer and consumer,
we focus on the case where both players are active. The producer’s strategy is summarized
via a2 x 4 matrix C,, which lists the thresholds xjt, xhi and the target levels xzt*, x,f*. Thus,

the no-intervention regions are [xgt, x}jf] and impulse amounts are x;lt — xff*, x;t* — xzt:

+ bk x4
Cp = [xé’ Yo ot xh,] . (14)
X, X, x0T, X,
The consumer has two switching thresholds y,, y;; in a typical setup, we expect them to
satisfy the following ordering

X, < Yo <Yn <x;. (15)
Note that in the expansion regime (drift . ), we assume that y;, < x;:'. Therefore, coming
from below, X} hits yj, first, causing the consumer to switch into the contraction regime with
drift . As aresult, the impulse threshold xh+ is not effective, i.e., it will never get triggered
along an equilibrium path of (X;). Similar argument implies that x, is not effective either if
X, < ye.In the left panel of Fig. 1, we illustrate such threshold-based vertical competition
among the two players.
To illustrate competitive dynamics, the right panel of Fig. 1 shows a sample trajectory
of (X}) (the superscript emphasizing the fact that we are now looking at equilibrium) with
producer and consumer strategies

1.0, 1.3, 1.7, 2.0 B
Cp = [1.0, 13, 1.7, 2.0]’ e yu) = (1.2, 1.8).

According to the above discussion, the effective thresholds are (x?, yp) when pu; = g,
or (ye¢, x, ) when u; = p—. In other words, in the expansion regime, (X;) will be between
[1.0, 1.8] and in the contraction regime it will be between [1.2, 2.0]. In Fig. 1 (Right), we
start in the contraction regime with Xg = 1.5 and o = p—. On this trajectory, (X;)
moves down until it touches the consumer’s threshold y,, where the consumer switches
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Fig. 1 Left panel: dynamic competition between producer and consumer. The blue arrows represent drift-
switching controls exercised by the consumer at levels y, and yj,, while the red curved arrows represent
impulse controls exercised by the producer at levels xzr, x;, that instantaneously push X; to x[* and x, *,

respectively. Right: A sample path of the controlled commodity price (X/) under competitive equilibrium.
Observe that X/ € [1, 2] for all ¢

to a positive drift to draw the price up. Nevertheless, the price keeps decreasing and hits
x? = 1.0, whereby the producer intervenes and pushes it to xzr* = 1.3. Prices then continue
to rise up to y;, = 1.8 at which point the consumer switches again and starts pushing
them back down (supposedly she wishes to keep them somewhere around 1.5). This cyclic
behavior continues ad infinitum, yielding a stationary distribution for the pair (X}, uf).
Note that the consumer uses her switching control to keep X} from going too high or too
low, essentially cycling between y, and yj. Indeed, starting at X; = y,, the consumer
switches to expansion which causes prices to trend up; once they hit yj,, the consumer
switches to contraction, causing prices to trend down. As a result, p, alternates between
4, u— generating a mean-reverting behavior. Throughout, the producer acts as a “back-
up,” explicitly forcing prices from becoming extreme (namely from falling in the expansion
regime, or rising in the contraction regime). These additional interventions by the producer
make the domain of (X}) bounded.

It is also possible that, say, X/T < yp so that in the expansion regime the producer will act
first both when (X7) falls (impulse threshold xj) and when (X}) rises (x,'f), making the con-
sumer inactive. In that case it is plain to see that the drift i, = 4 will stay positive forever;
(X;) will be forced to a bounded domain but will not have mean-reverting dynamics since
the drift is constant. Instead, it will experience repeated impulses downward to counteract
the upward trend due to ongoing consumption growth.

3 Best-Response Functions

To obtain a threshold-type feedback Nash equilibrium, we view it as a fixed point of the pro-
ducer and consumer best-response maps. Therefore, our overall strategy is to (i) characterize
threshold-type switching strategies for the consumer given a pre-specified, threshold-type
behavior by the producer; (ii) characterize threshold-type impulse strategies for the producer
who faces a pre-specified regime-switching behavior of (X); (iii) employ titonnement, i.e.,
iteratively apply the best-response controls alternating between the two players to construct
an interior, non-preemptive equilibrium satisfying the ordering (15).
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To analyze best-response strategies, we utilize stochastic control theory, rephrasing the
related dynamic optimization objectives through variational inequalities (VI) for the jump-
diffusion dynamics (4). The competitor thresholds then act as boundary conditions in the
VIs. To establish the desired equilibrium, we need to verify that the best response is also of
threshold-type and solves the expected systems of equations. We note that all three pieces
above are new and we have not been able to find precise analogues of the needed verification
theorems in the extant literature. Nevertheless, they do build upon similar single-agent control
formulations, so the overall technique is conceptually clear.

3.1 Consumer Best Response

Fixing impulse thresholds x (r = , 1), the consumer faces a two-state switching control
problem on the bounded domain (xzc, x,jf). Namely, given a producer’s impulse strategy
(7, &)i=1witht =inf{t : X; ¢ [xz‘, xff]}, we expect the following stochastic representation
for her value functions w® (x) with x € [xét, xf]

TNO
w* (x) = sup Ex,i[ / e Pre(X)di + e*ﬂln{m}(wﬂxr - s>)
oeT 0

+ P g (T (Xo) — hi)} (16)

where E, 4 denotes expectation with respect to u; € {u—, 4} and hy are the fixed inter-
vention costs of the consumer. The above is a system of two coupled equations, which locally
resembles an optimal stopping problem with running payoff 7. (-), reward wT (-) (last term),
and stop-loss payoff (middle term) wF(-) due to the producer impulse at t. This is almost
the formulation as considered in [3] except with two modifications:

e The domain is bounded on both sides (previously there was a one-sided stop-loss region).

e The boundary condition w* (x;) = wt (x[*) is autonomous but non-local. Therefore,
the two stopping-type VIs for the consumer are coupled only through the free boundaries,
not through the stop-loss thresholds as in [3].

Now, given a producer strategy C),, if the consumer’s response is such that y, < x,” and
xh+ < yn, the consumer will be stuck forever in the initial regime because the price touches
x, before y, in the contraction regime and x;l" before y;, in the expansion regime. In this
case, the price will oscillate between x, and x,° if the initial market is in the contraction
regime, and between x[ and x,j in the expansion regime.

In the case where the consumer’s response satisfies y¢ < x, and y, < xh+, depending on
the initial state, the consumer will switch once to the expansion regime or will be stuck in
the initial expansion regime. If the initial regime is ., the price will touch yy, the regime
will switch to contraction, the price will never touch y, and will oscillate between x, and
x;, . If the initial state is already 1+, no switch of regime will ever occur. The same reasoning
applies for the symmetric case where x,” < y; and x;r < Yh-

Finally, if the consumer’s response satisfies x, < y¢ and y; < x,j, then whatever the
initial regime, the state (u,) will switch many times between the two regimes.

The best response of the consumer consists in picking the best response among the three
possible ones above. Thus, we distinguish three cases:

(a) No-Switch The consumer is completely inactive and simply collects her payoff based
on the strategy (xzth).

Birkhauser



Dynamic Games and Applications

(b) Single Switch  The consumer always prefers one regime to the other. Then, she is inactive
(like in case (a) above) in the preferred regime and faces an optimal
stopping (since there is only a single switch to consider) problem in the
other regime.

(c) Multiple Switch The consumer switches back and forth between both regimes: the con-
tinuation region is (y¢, yp)-

Proposition 1 provides the value function of the consumer in case (a). The system (24)
characterizes the game payoff in case (b), and Proposition 2 provides the value function of
the consumer in case (c).

3.1.1 No-Switch

Regardless of the consumer strategy, in the continuation region, a direct application of the
Feynman—Kac formula on (16) shows that her value function solves the following ordinary
differential equation (ODE)

1
— Bw + pawy +502wm+n€<x> =0. (17)

Solving this inhomogeneous second-order ODE, we obtain w* (x) = &% (x) 4+ u™ (x), where
letting Ozi <0< 91i be the two real roots of the quadratic equation —f8 4+ z+ %02 2 =0,

o ut(x) = )Llieelix +}»§Ee€’2ix solves the homogeneous ODE —Bu + i u, + %azu” =0
and Aiio, i =1, 2 are to be determined from appropriate boundary conditions;
o O (x)isa particular solution to (17), given by

oF(x) = Ex*+ Fix + G4 where

V2 1 V2 1 V2
E=2 Fe=_(n+2sl), Ge=_(w+0*D +pusks). (8)
B B B 5 B )

When the consumer is inactive (denoted by w(j)t), the continuation region is [xzt, x,jf] with
the boundary conditions at the impulse levels

wi(E) = wfeE,  relt h). (19)

From (19) the respective coefficients )Llio, )éfo are solved from the following uncoupled
linear system:

+ + + + + + —~ P

)‘?:0 . [691 LY, ] + )‘3:0 . [862 Xty ] _ wi(xzt*) _ a)i(x?:)7 (20)
+ 4 + s + o+ Fe N N

Mo [ = ] a5y - [ — e ] = g™ 0T ). 2D

For x > x;—L, we take w(jf (x) = w(jf (xff*) and similarly in the contraction regime, we take
woi(x) = w(ﬂ)t(xét*) for x < xét.

Proposition 1 Let (kfo, A;O) € R* be the solution to the system (20), (21). Then the functions

wgi x), x € [xei, xff], are the value functions for an inactive consumer, i.e., w;f (x) =
JE(x; N, uF), where N is the producer impulse strategy associated with the thresholds
(xzt, xét*; xf, x,f*) with xét < x,f.

The role of woi (+) is important for judging the other two cases, and moreover for deciding
whether the best response ought to be of threshold-type.
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3.1.2 Single Switch

We next consider the situation where the payoff in the expansion regime is higher than the
contraction one for any price x, so that the consumer is never incentivized to switch to the
contraction regime. We then expect the consumer’s corresponding best response to be either a
single-switch strategy (to the preferred regime) or no-switch (if already there). Economically,
this corresponds to y; > x;r so that as the price rises, the producer impulses (X;) down,
and the consumer is not intervening to decrease her demand. As a result, the consumer never
switches (except perhaps the first time from negative to positive drift) and lim;_, oo 1ty = pi4.
This can be observed when demand switching is very expensive, so that the producer has full
market power and is able to keep prices consistently low. The consumer is forced to be in the
expansion regime forever, and she is not able to influence (X;).

Suppose that the consumer prefers expansion regime (4; = (44 ) and adopts threshold-type
strategies. Given C,, her strategy is summarized by

ye > x, , Yh = +00,

and the resulting contraction-regime value function w~ should be a solution to the variational
inequality

1
sup { —ﬂw’—i—u,w;—kiazw;(—i-nc; wy —h-—w~}=0, (22)

where war is from Proposition 1 and the continuation region is [y, x, ]. This is a standard
optimal stopping problem. Note that while the above equation for w~ depends on war , the
equation for war is autonomous—the system of equations becomes decoupled because the
two regimes of (u;) no longer communicate.

To solve (22), we posit that her best response is of the form

w(‘)L(x)—h,, x <y,
w(x) =30 (x)+ )»l_eel_x +)»2_e92_", Ve <X <X, (23)
w™(x, ), X, =X,

with the smooth-pasting and boundary conditions:

(0) + A7+ A5 e = Gt (ye) + Af el e + AT e —h- (€% at yp)
() + A7 I +y e = T ) AT P +2y PR (Coatxh_) 24)
@y (ve) + 2707 e 40505 en 0 =B (vo) + A7 0 e o ve + 23465 e v, (C! at yy)

~
w
~
w
/\

The system (24) is to be solved for the three unknowns y¢, A, A5, while A, AJ , are
the coefficients of the consumer’s payoff associated with the no-switch strategy in the p 4
regime, see previous subsection. We can re-write it as first solving for A, , from the linear

system
O e POST I wg o) — @ (ye) — h— 25)
I N P et | [ Ay o (x, ) - (x;)
and then determining y, from the smooth pasting C!-regularity

wy (ye) = wg (o). (26)

The case of a single switch from expansion to contraction regime can be treated analogously
in a symmetric way.
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3.1.3 Double Switch

Finally, we consider the main case where the consumer adopts threshold-type switches,
i.e., the ordering in (15) holds. Given C), the w™ are then supposed to be a solution to the
coupled variational inequalities

1
sup{ — Bwt + u+w;' + Eazwjx + 7¢; max{w™ —hy, wt} — w+} =0, 27)

1
sup{ — Bw™ + pu_wy + Eazw;x + s max{wt —h_,w ) —w } =0, (28)

where we expect continuation regions of the form (x[, yr) and (ye, x; ). To set up a verifi-
cation argument for the consumer’s best response, we make the ansatz

wt (™), x <x;,
wh@) = 1ot + 47! +aFe” ™, xS <x <, (292)
w(x) —hy, X = Yh,
wh(x) —h_, x <y,
w (x) =10 (x)+ A;eefx + A;eefx, e <Xx<x,, (29b)
w™(x, ™), X=X,
This yields 6 equations:
—~ + + —~ Ny _
() + a7 FaF eV — o =B (yp) + A7l Y+ a2 e (€ at yp)
+ + + + + + ok
ot +afet e afe2 e =@t +afeli e pafela e, (€% atx))
- -y Py + +y
& Op) + AT fag e —hy =@ () + AT e AT %, (€ at yp)
D) AT g = () AT g atx;)
~ +y + ~— —n— “y — = .
B3 (vo) + 270 Aot v =B (o) + a0 Y a5 05 (Chat yy)
o - RPN N + +
oy (yp) + 210, e 4 Ay 05 2 = () + )»T91+e91 Y+ A;@;e% yio(clat yp)

(30)
The six equations can be split into a linear system for the four coefficients Afz’s
O ve o0 v —ef e —eta e )‘T
ST SO T i g 0 A
_eﬂryh _69;)% POR e vn )Lf
0 0 A — e e —fhn | LA
& (ye) — @ (ye) — h+
Sty St
o (x, ) -0 (x
_| arem-ateh) 1)

ot(yn) — @ (yp) —h_
o (x, ) —o (x,)

and the smooth-pasting conditions determining the two switching thresholds y; , (viewed as
free boundaries)

wiG) =wy (), 1 el h). (32)
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Fig.2 Value functions woi, w?t and w2i of the consumer given the producer’s strategy (a)

Proposition 2 Let the 6-tuple (AT, )\f, Yh, Ye) be a solution to the system (31), (32) such
that the order in (15) is fulfilled. Then, the functions defined in (29) give the best-response
payoffs of consumer, and a best-response strategy is given by (6;)i>1, where

60=0, & =inf{t>6;_1:X,€Tc()}, i>1,
with T} = [y, +00) and T = (—00, yu].

Figure 2 illustrates the shapes of the consumer’s value function in the different case of
best response. For the strategy given, we have a dominant function in the contraction regime
(w ) and a dominant function in the expansion regime (war ).

Remark For comparison purposes, it is also useful to know the continuation region of the
consumer when she alone controls the market price (X;). As usual, this region is (—oo, yj)
in the expansion regime and (y¢, +00) in the contraction regime, with the natural ordering
y¢ < yp. The value functions w* satisfy:

1
sup{ — Bwt + ,u_,_wj + Eozw;"x + e wT — h+} =0, (33)

2

1
sup{ —,Bw_—i—,u,wx_—i—ia Wy, + e w+—h,} =0. (34)

To set up a verification argument for the consumer’s best response, we make the ansatz

n w™(yp) — hy, X = yn,
wr(x) = 35a
@) {6*(}6) +Atoeol+x +Azoe(’2+x, X < YV, (352)
~ — o - 6
w(x) = o (x) +)\170e 1% +)\270e 2 X x>y, (35b)
+
wr(yg) —h-, x < ye.

Furthermore, in the expansion regime, to keep w™ (x) bounded as x — —oo we must have
){ o = 0 because 92+ < 0. In the contraction regime, a similar argument gives 1| , = 0.

We are left with the four unknowns yy, y;, and Af o and A,  determined from the following
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smooth-pasting conditions:

D () + A5 0e% Y = @t (o) + A e —ho, (€ at y)
O () + e I = B () + 250 M — iy (€ aty)
By (v0) + 2y g5 ¢ = (v0) + 2 {0 e, (Clatyo)
B (n) + 4T o0 e = By () + dg gy €. (Clat )

(36)

3.2 Producer Best Response

We now consider the best response of the producer, given the consumer’s switching strategy
denoted by C, := [y¢, yn]. Once again, we face three cases:

1. The producer is a monopolist, i.e., the consumer is completely inactive;
2. The consumer adopts a single-switch strategy;
3. The consumer adopts a double-switch strategy.

3.2.1 Producer as Sole Optimizer

To begin with, we determine the monopoly-like strategy of the producer assuming the con-
sumer adopts a no-switch strategy. In that case, 1, is constant throughout and the functions
v* of the producer satisfy the variational inequality (VI):

1
sup{ — vt + pvt 4 Eazvf& +7p ,sgp {vi(~ +&) —vE() — Kp(é)}} =0. (37)

Note that the two VIs for v+ and v~ are autonomous, hence uncoupled from each other. In
the continuation region, the general solution of the ODE

1
—Bv+ prvy + Eazvxx +7,(x)=0

. + + .

is of the form v*(x) = vF(x) + u®(x), where ut = vlieel Y+ v;eez *, with Qli, 92i as
before, satisfies the homogenous ODE —Bu+ i uy + %Uzuxx =0,and7F(x) is a particular
solution given by

7T (x) = Ax> + Bix + Cy, (38)

where the coefficients A, B+, C+ are identified as:

A=——, B
B- T B

Assuming the producer adopts threshold-type impulse strategies defined by &*(x) in the
intervention region, her expected payoff is of the form:

d 1 2usd 1
! :—(d()— ks 1+de1>, Ci:E(MiBi-i-Ao’z—cpdo).

vEG) — K (E*(0)) x> xf,
+ +
vE) = {9 () + vliegl Y4 v;eGZ x xZE <x < x,f, (39)
vEGT) = Kp(E*(x) x < xp.
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When applying the optimal impulse &**(x) at the threshold x*, r = ¢, h, the producer
brings X, back to the price level x** := xF — £+* (xF). For optimality, the respective impulse
amounts satisfy the first order conditions

VEGG) = =0 Kp(EF(x5),  vEGGT) = =0 K p(EF(x)). (40)

We reinterpret the above as the equation to be satisfied by 5*(x§t) which are treated tem-
porarily as unknowns and plugged into further equations. To ensure that the value function
is continuous at x*, we further need

VIO = v 00T — K. (41)

Finally, making the hypothesis that the value function is differentiable at the borders of the
intervention region, we have:

vEGE) = vE () — 0K, (EF (x)). (42a)
vEGG) = vF () — 3K, (EF (x0)). (42b)

We consider two cases of impulse costs: (i) constant K, (§) = «q and (ii) linear K, (§) =
ko + k1/€]. In case (i), because the impulse cost is independent of the intervention amount
there will be an optimal impulse level x** so that for any x in the intervention region the
strategy is to impulse back to xri* which is the same at the two thresholds. In case (ii),
0¢ K, = *« and all the smooth pasting and boundary conditions can be gathered in the

following system:

+ + + + + 4% + %
ﬁi(x;,i) + Vliegl o+ Uziegz “h =/v\i(Xhi*) + vliegl TIopeES - Ko — K1 ()chi - xhi*), (Y at xhi)
+ + + + + % + dx
EGE) T F2 T v T e kg — i - x), (€ atx)
sk dod BECER g g e ot
Uy () Hvpore L Th +vy0ye2Th = -k (Chatx;™)
+ + %
ﬁxi(xei*) + vlié)liegl RO véﬂizj:eg2 =k, (€l at x[i*)
+ + + + % + 4k
ﬁf(xhi) + vlif)]iegl *n 4 vziﬁzj:e(92 o= ﬁf(xj:*) + vljzﬁlj:e(;' o4 vg:(ﬂzieez hoo— K1, ! at xz:)
+ + + 4% +
TEaE) +ofFeE T puFerd T =sEGE +uFeE T 1 uFeE 2 1k €' atxi)
(43)

Note that there are two uncoupled linear systems for v and v—. The C° conditions are
from (41), the first two C' conditions are from (40) which determines the optimal impulse
destination, and the last two C! conditions are from (42).

By a standard verification argument, one can show that if both systems above admit
solutions vfz and foh, where the latter satisfy the order condition xét < xhi, then the
functions v¥(x) as in (39) are the value functions of the producer and his optimal strategies
are given by the thresholds xth and impulse amounts &* (xzf,’;). This can be done by following
exactly the arguments in, e.g., [7] (see also their Remark 2.1), which are very standard in the
literature of impulse control problems. Therefore, details are omitted.

3.2.2 Non-Preemptive Response

Suppose the following ordering, which is similar to (15), holds:
xE <y <y < aE (44)
We then expect v* to solve the VIs

isup{ — BT+ i + ool s supe (VT — &) — vt — K,p(8)) =0,

B S P N B (45)
sup{—,BU +p-vy + 500 + 7, supg(v (=& —v —Kp(é))} 0.
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To obtain the producer best response, it suffices to identify the two active impulse thresh-
olds x;, x;, and the respective target levels xzr*, x;, *. The other two boundary conditions
take place at the consumer thresholds yg, y;, so that the strategy (see (47)) is C), =

X i , X * s T +00
éo ¢ . . The game coupling shows up in the additional boundary condition
- [ h h

that when the consumer switches, the producer’s value is unaffected:

vF() =v7 (), ¥ € (=00, ylU [y, +00). (46)

Accordingly, our ansatz is

v (x, ) = Kp(E*(x)), X=Xy,

v () = U (x) + v, —efi ¥ + v, e” Oy x e <X <X, (47a)
v (x), x < e,
v (x), X > yp,

vH ) = {9t (x) + v+e91+)‘ + V+€02+x, xZ' <X <y, (47b)
v (™) — Kp(E* (), x <x/.

To simplify the presentation, let us concentrate on the proportional impulse costs K, (§) =
ko + k1]&]. We have the smooth pasting C! and boundary conditions:

TH(ye) + v e v e =T () + vy e Y vy et (€Y at yp)
T () 4 vy vy e =T () + v e v e, (€Y at yp)
roagh + IJJreﬂl+"‘é‘+ + v;e(’;"? =0t + vfreﬁr“t* + v;eg;xtﬂ — KpE*(xf), (Catx))
VT (x,) + lfegl i 4 vfeef)‘hi —'ﬁ(xf*) + vfeglixhi* + vfegthi* —K,(* (x;)) (C0 atx;)
T + vy o} oS e o5 x} =T + v 6y oF xt oS e 05 ey, (C

atx()

vy (x,) v 00 glh-'rv 92e2h—vx(xh)+v16161 o +v292e2h+x1. (! atx;)

O v ufe e = (Clatx}

Ty () + vy 07 vy 0y e =y, (Clatx; ™)
(48)

Unlike the single-agent setting (43), Eq. (48) are coupled. The coefficients vfz are the solution
to the linear system

O ve o9 Ve O e P e vt

+ o+ o bt R
X 0T QX 0 X 0 0 v;
—e91+Yh _692 Yh Enyh 9;)’/1 ]};
0 0 691_";1_ _ eol_xh 02 X, e@{xh_* Vy

U (ye) =0T (ve)
Tra ) =0t - K

P 49

T ) — 0 () @
v (x, ) -0 (x,)— K,

and the thresholds x, ,x[ are determined by the C! smooth pasting (recall that x,* =

X, = ER ) x = xS — e h)):

vy (x,) = v (x,7),

vt () = v (), 0
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and the first order conditions (FOCs) giving the optimal impulses:
vy () = =0 Kp(ER () ot () = =0 K, (€5 (x)))). (S
Proposition 3 Left the 8-tuple (vft, vf, x;, X, x;l" , x[ ) be a solution to the system (48),

such that the order in (44) is fulfilled and x? < xzr*, x;* < x;,. Let vt be defined in (47)
and assume

(x ) <0, v, <0. (52)

+

Then, the functions v™> are the best-response payoffs of the producer, and a best-response

strategy is given by
=0, ¢ =inf{r>7",:X;el,0-)}, (53)

i
*

g =x"—x. o) =x —-x7  ix=1, (54)
with T () = F;{l{mzwr} + T, Ly =p ), where l"[f = (—o0, x[] and T, =[x, +00),
while (X}) follows the dynamics corresponding to the consumer’s strategy (0;);>1 and the
producer’s impulse strategy (t/*, £/)i>1.

We remark that while we do not have a direct result regarding existence of solutions to
(48), we provide nonetheless a verification theorem that connects a solution 8-tuple to a
best-response strategy.

3.2.3 Preemptive Response

It is possible that the static discounted future profit of the producer satisfies, say, v (x) >
v~ (x) for any x, so that he always prefers expansion regime to contraction regime.

In that case, the consumer switching at y, from expansion to contraction hurts the producer
and one possible strategy for him is to preempt in order to prevent the consumer from
switching the drift to _. This situation could be viewed as looking for best x; < yn, given
yp. In the latter case the constrained solution could be xh+ = y,—, whereby the system (43)
does not hold and the best response is to impulse (X;) right before it hits yj, x;’ = yp—.
This strategy is not well defined (i.e., the supremum is not achieved on the open interval
(x;, Yn)), but the resulting preemptive best-response value in the ju4 regime can be obtained
by using the ansatz (where we slightly abuse the notation to write x;[* =y —&*(yp) for the
target impulse level at yp,)

v )—Kp(f (). X = Y,
vH () = {9t (x) —|—u+ o —1—1)‘L 67 2%, x; <X < yp, (55)
v (™) — Kp(E* (), x<x/,

and the boundary conditions for determining the target impulse levels
vl ) = =i, o () = 4 (56)

Note that we now have 5 unknowns, v1+2, x?, x;*, X, * rather than six as we “fixed” x;r = yp.
This yields the following system

() + v e v et —“*(x**)Jrv+ 9*<Xh*>+v+e92* @~ K" Gn)  (Clat yp)

(S )+v+e‘91 ! +v+e92 5 —'\F(x+*)+v+egl x +v+e9’ A P EX)) (CO atx;)
o)) +vfote o5 +u+9+ 03/ —'\"(x )+ v o e o x; " ufese 05" Ly (€ atx)) (57)
TG v St T = — (C'atx™)
A*(x )+v+9+ o +v;r92+ o) x (" =K. (! atxzr*)

9 Birkhauser



Dynamic Games and Applications

0 1 2 3 4 570 1 2 3 4 5
X X

Fig.3 Value functions v(:)t, vit, and uf,Ee of the producer given the consumer’s strategy C. = (3, 4).

Preemption in the contraction regime writes in a symmetric way.

In general, we need to manually verify whether x;r > yj, (the “normal” case) or x,‘f =y
(the preemptive case) whenever we consider the producer best response. The two situations
lead to different boundary conditions at the upper threshold, and hence cannot be directly
compared. Considering the optimization problem for x,'f, we expect his value function to
increase in x;r on (xj, yp) and experience a positive jump at yj, i.e., conditional on someone
acting, the producer prefers the consumer’s switch to applying his impulse. However, if this is
not the case, the consumer action hurts the producer and assuming the impulse costs are low,
the best response is x,j = yj,. This corner solution arises due to the underlying discontinuity:
on (xzr, ynr) the producer compares the value of waiting to the value of doing an optimal
impulse, but at y; he compares the value of switching to that of doing an optimal impulse.
So it could be that “waiting” > impulsing > switching at y,, leading to preemptive impulse
to prevent the worst (for the producer) outcome.

Proposition 4 Assume po— = . Let the 5-tuple (u1+, v;, xZ‘, xZ'*, x;:'*) be a solution to

the system (57), such that the order in (44) is fulfilled and xZ' < xZ'*, X7 < yn. Let vt be
defined as in (55) and assume

vh M <00 o <o. (58)

Then, the function v* is the best-response payoff of the producer in the expansion regime,
and a best-response strategy is given by

7 =0, " =inf{t > 7", : X, e T, (t—)}, (59)

e =x*—xf, o =m—x" ix=1, (60)

withT (1) = F;{(t) = (—o0, xZ’]U[yh: +00), while X* follows the dynamics corresponding
to the producer’s impulse strategy (t*, £1)i>1.

Figure 3 illustrates the shapes of the producer’s value function in the different cases of best
response. For the given consumer strategy, we have a dominant function in the contraction
regime (v, ) and a dominant function in the expansion regime (vfr).
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4 Equilibria

The best-response functions defined in Sect. 3 lead to three types of potential market equilib-
ria, depending on the equilibrium behavior of the consumer and characterized by the relative
positions of the consumer and producer thresholds:

e Type I—generic: y; < x; and x; < yj.
o Type lI—transitory: —oo = y; < x, and x? < yp;ory; < x, and y, = +o00.
o Type lll—preemptive: y; < x, and xZ = yp;or yg = x, and xg < yi.

In equilibrium type I, the consumer switches back and forth forever between the two
expansion and contraction regimes. The optimal policy of the consumer is given by the
threshold y, in the contraction regime and yj, in the expansion regime, while the optimal policy
of the producer is formed by the pair (xZ', x;’*) in the expansion regime and symmetrically
by the pair (x;“*’xh_ ) in the contraction regime. We anticipate this to be the most common
equilibrium type; it is precisely described and illustrated in Sect. 4.1.

In equilibrium type II, the consumer and the producer both prefer a given regime and thus,
the consumer switches at most once when the market is initialized in the opposite regime.
Afterward, only the producer acts to maintain the price between (x¢, xj,). Consider the case
of a single switch from expansion to contraction; the consumer’s optimal policy consists then
in only one threshold, y,. The optimal policy of the producer is more complicated: in the
expansion regime, it consists of the pair (x[, xzr’*) and in the contraction regime, it consists
of a quadruplet (x, , x, o, x;, o, x;, ). The same reasoning applies in the other single switch
case. This equilibrium is described in Sect. 4.2.

The last type of equilibrium, named type III, resembles the preceding one in the sense
that at most one switch can be observed. But it differs because here the consumer is stuck
forever in a state she wishes to leave. In that case described in Sect. 4.3, only the producer
acts. Starting in the expansion regime, for instance, the consumer would like to switch to
the contraction regime when the price reaches a threshold yj,. But the producer, who prefers
perpetual expansion, preempts the switch by acting at the threshold y,, just before the action
of the consumer.

Threshold-type equilibria offer analytical tractability to describe the long-run market
behavior. The latter can be summarized by the stationary distribution of the commodity price
(X7) and the consumer regimes (j;) as induced by the equilibrium strategies (N;*, u}). To
quantify these effects, we define an auxiliary discrete-time jump chain (M;)>° , which takes
values in the state space

E={S4.S_. 1, . I, . 1. I} (61)

The chain M* keeps track of the sequential actions of the players, where Sy represents the
switches of the consumer (“Sy” stands for the switch u_ — 4 and “S_" for uy — p_)
and IF the impulses (up/down at the two impulse boundaries) of the producer. Thus, M*
summarizes the sequence of market interventions stored within 7;, o; stopping times. Note
that states M’ € {S4, [ 21_1} imply a positive drift 4 of X*, while the rest imply a negative
drift . Moreover, if the consumer adopts a double-switch strategy and the producer adopts
anon-preemptive strategy as discussed in Sect. 4.1, then the thresholds x;[ and x,” will be hit
at most once by X* and therefore the corresponding states /. h+ and I, of M} are transient.
Because the dynamics of X* between interventions are always Brownian motion (BM)
with drift, the transition probabilities of M* can be described in terms of hitting probabilities
of a BM. This offers closed-form expressions for the transition probability matrix P of M*,
and its invariant distribution denoted by 1. Moreover, the sojourn times of M* correspond
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Table 1 Model parameters for

Market Consumer Producer
Sect. 4.1
B 0.1 x} 1 xp 2
2 2
o 0.25 X& 5 xp
jr 0.1 ac 0.75 ap 0.25
h— —0.1 h+ 10 Ko
K1
3 —
—m,
o,

25¢F 1

05} / \ ]
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Fig.4 Producer’s and consumer’s profit rates as a function of x

to (X;) hitting the various thresholds (in terms of the original continuous-time “#””) and are
similarly linked to BM first passage times. Combining the above ideas, we can then derive
a complete description of (u;), namely the long-run proportion of time that the commodity
demand is in expansion/contraction regimes and the respective expected switching time, see
(71).

In the following section otherwise stated, we use the parameter values in Table 1, such
that ; (x) = a; (x — xi])()ci2 —x), i € {c, p}. This yields consumer and producer preferred
price levels of X. = 3, X p = 4. The same set of parameters yields an equilibrium of each
type, showing the non-uniqueness of equilibria in this model.

We remark that while our verification results in Propositions 2—4 rigorously characterize
player strategies, we do not have any existence results for the game equilibrium itself. In
particular, we do not have existence results for the corresponding large systems of equations
that describe all the thresholds. Global existence (i.e., for any admissible competitor strategy)
seems to be out of reach, and it is challenging to formulate any algebraic conditions that would
hold in equilibrium and ensure existence (Fig. 4). Thus, ultimately we numerically find a fixed
point to the (specific type of) best-response strategy maps and then view it as an approximate
(up to numerical round-off error, since we cannot show existence directly) threshold-type
equilibrium. Consequently, technically our discussion below concerns candidate equilibria
that satisfy the equilibrium equations up to machine precision.
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Fig.5 A sample path of the controlled market price (X;) under a type I equilibrium (left), type II (center) and
type III (right) together with IE[X ; ] (black solid curve). The colors along the x-axis indicate the corresponding
i We start with pufy = iy

4.1 Type I—Generic

We look for an interior, non-preemptive equilibrium satisfying the ordering (15), i.e., a
pair of consumer and producer strategies of the form (y;, y;) and (xz, xZ'*, X, *, x;,). To
construct this equilibrium, we employ tatonnement, i.e., iteratively apply the best-response
controls alternating between the two players. This corresponds to the interpretation of Nash
equilibrium as a fixed point of best-response maps B R. The equilibrium is obtained using two
different fixed-point algorithms. Given strategies Cg and C?, we have either an asynchronous

or synchronous algorithm, namely

ckt = BR(CY). cyt = BR(CY),
citt = BR(Cy™, Citl = BR(C)).
asynchronous synchronous.

The resulting equilibrium found using both algorithms is the same and is

2.0, 3.6, —, 400
chr = [_oo . 61}, Ch* =12.2,4.4]. (62)

The dynamic equilibrium of the commodity price X* is illustrated in Fig. 5 (Left). The
market starts in the expansion regime, 115 = (1. We observe that x, * is close to yj;»implying
that once the price has reached the switching level y}, it is likely to touch soon thereafter the
threshold x, *, making the price drop to x, *. The producer “backs up” this mean-reversion by
impulsing down if prices rise too much and impulsing up if they drop too much. Otherwise,
she lets the consumer be in charge via switching control that benefits him as well.

At equilibrium, the price X* fluctuates in a range of values where neither the producer
nor the consumer have negative profit rate. If alone in the market, the optimal monopolistic
strategies of the producer and the consumer are

m . |1.9,3.5,3.5,5.6 m._
Cp = |:2.4’ 45. 45 6.1] cl:=1[1.7,43]. (63)
We see that the equilibrium strategy of the producer C},’* is quite close to what he would have
done if alone in the market. On his side, the consumer-induced equilibrium price range is
wider than he would prefer (2.6 against 2.2 if alone). In equilibrium, it is as if the producer
lets the consumer do the job of bringing back the price to his preferred level X ,. The producer
intervenes only if X/ drops too low or gets too high, after the regime switching has occurred.
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Fig.6 Estimated long-run densities ¢* of X* in a double-switch and one-sided impulse equilibrium. Panel a
overall kernel smoothed ¢*(-). b long-run distributions ¢;"t of X* conditional on ju(t) = pu (resp. () = pu—).
Recall that the domain of X depends on the current regime, so the support of the two densities differs

But, in the long run, the average price lim;_. o E[X}]is close to 3.5, which is the mid-value
between X p and X,.

The players’ equilibrium strategy profile yields a stationary distribution for the pair

(X7, uf). The macro-market u* switches between the expansion and the contraction regimes
back and forth, while the jointly controlled price (X}) is bounded in the range [xzr, x;, ] and
fluctuates in a mean-reverting pattern due to alternating signs of its drift. These stylized
features can be broadly traced in the world commodity markets which undergo cyclical
Expansion/Contraction patterns.
Dynamics of (X[) in the Equilibrium The dynamics of the commodity price (X) are less
tractable due to the impulses applied by the producer. Let ¢*(-) denote the long-run (i.e., sta-
tionary) distribution of (X}). In Fig. 6, we show ¢* obtained from an empirical density based
on a long trajectory of (X}), relying on Monte Carlo simulations and the ergodicity of the
recurrent, bounded process (X;). For additional interpretability, we also plot the invariant
distributions ¢} conditional on p; = .

4.2 Type ll—Transitory

In another type of equilibrium, the consumer switches only in one regime, with the other being
absorbing. For this reason, we name it transitory. To fix ideas, suppose that the consumer only
switches from expansion regime to contraction regime. In that case, the producer effectively
acts like a profit maximizing monopoly in the contraction regime with two-sided impulses;
in the expansion regime, she will apply a one-sided impulse as in the equilibrium type I.

To solve for such equilibrium, we first compute the producer strategy in the contrac-
tion regime which is a decoupled VI as in (39) leading to the 6 equations in (43) but
only for v=, x,7, x,*, r € {£, h}. This solution induces the corresponding no-switch solu-
tion w, of the consumer as in (20), (21). Both v™, @, are then fixed and act as source
terms to solve for the equilibrium in the expansion regime. For the latter, we need to com-
pute v™(-) and the associated thresholds xz’, xZ* (only one threshold), as well as o™ (x)
and the switching threshold yj; (note that there is no y;). The boundary conditions are

v () = v (), @t (vn) = @™ () — ho.
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This reasoning leads to the following algorithm. If x[ and xzr‘* are fixed, we compute
the best response of the consumer by solving the variational problem for the consumer value
function w™ such that:

wy (x) — ho, yh < X,
—~ + +

wr@) ={atw) + A?'egl *+ A;e% X, xZ‘ <X < yp,
w+(x2"*), x < x;.

This is exactly the best response in the single-switch case with the solution given by the
system (24) and which provides the consumer’s threshold y;,. Now, if we consider that yy
is fixed, we can compute the best response of the producer by solving a VI for the value
function v that satisfies

v (x), yh <X,
+ +
vh(x) = TH(x) + v e F e, x <x <y
v+(x2'*) — Ko — K1 (xz_’* —x), x < xZ'.

The boundary conditions giving the four unknowns (xzr, xzr’*, v1+, v; ) are:

v Oom) = 0 ) + vl M 4o (€ at yp)
ﬁ(xZ') + ujfe"frﬁ + v;e";ﬁr = ﬁ(x?'*) + vreefr)‘fﬂ + u;gﬁzﬂzr*f Ko — K1 (xzr’* - xZ'), (Y at xZ')
TJ}*’(XZ') + 1)?'09?'(,>01+X5+ + v;_g;_eg;rxzr :ﬁ;’(x;'*) + v?’@f’eofrxzr* + u;@;egzrxzr* + K1, (C1 at xZ’)
F,’f(xz'*) + uréreerxzr* + v;@;eg;xzr* =K. ! at XZ'*)
(64)

Now, we can perform the iterations yg — (x;’(o), xzr,*(O)) — y}l — (x

We find the following fixed point of the best-response functions of the producer and the
consumer:

+.(1 +,x(1
SOy

Cll,* —

1.9, 3.6, —, 400
P

2.4, 45,45 61]’ Cl* =[—o00,4.3], (65)

The system starts in the expansion regime, and once the price reaches level X; = 4.3,
the consumer switches to contraction and the systems remains in that state forever. After
that, she relies on the producer to impulse (X}) up/down when prices get too low/too high
but never reverts to the expansion regime. Thus, in the long run (X;) is simply a Brownian
motion with negative drift ;. that has two impulse boundaries x, = 2.4, x,” = 6.1.

Compared to the double-switch equilibrium of the previous section, the above market
equilibrium in (65) has two important differences. First, as t — oo we have that u} — u—
so that in the long run the market will be in the contraction regime and the consumer becomes
inactive. Second, because the producer eventually “takes over,” she will intervene much more
frequently (see center panel of Fig. 5), benefiting himself and reducing consumer value.

4.3 Type lll—Preemptive

The producer may have an interest to preempt the switch, say, from the expansion regime to the
contraction regime to avoid decline in the consumption of the commodity he produces. In this
case, the equilibrium is a fixed point of the best-response function of the producer described
in Sect. 3.2.3 and the best-response function of the consumer described in Sect. 3.1.2. We
look for an equilibrium where the consumer would like to switch at yy, in the expansion
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Fig.7 Producer and consumer value functions in the different equilibria

regime, but where the producer makes yj,, his own intervention threshold to impulse the price
down.

Using the same protocol as in type I and type I equilibrium research, we find the following
threshold strategy for the producer and the consumer:

el [1.7, 3;1, 3;1, 4;3] oclMe— - 43, (66)

) ’ )

In the preemptive equilibrium, the price fluctuates in a narrower range than the other two
equilibria. Here, (X}) oscillates between xZ' = 1.7 and x: =y, =4.3.

4.4 Equilibrium Non-Uniqueness

There are at least three potential equilibria. A natural question is thus whether one of them is
preferable to the others. Figure 7 shows the value functions of the producer and of the con-
sumer in the two market regimes (expansion and contraction) and for the different equilibria
from type I to type III. We observe that the producer would prefer in both regimes to live in
a type I equilibrium. The function vft dominates all the other ones (note that there is no v;°
because in equilibrium type III contraction never happens). However, the consumer would
rather be in the preemptive equilibrium type III: her value function w;r dominates the other
two. Intuitively, we may think that the switching costs she saves by letting the producer do
all the work of maintaining the price around its long-term average value compensate for the
inconvenience of having prices that are higher than preferred.
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Table2 Long-run mean and variance of X ™, long-run profit rates, and frequency of regime switches as market
volatility o changes (APOO in parentheses)

o Egx[X*] Var g (X*) Egx [np] Egx [JTL-] Switch (per yr)
Type 1 0.25 3.52 0.73 0.81 (80%) 2.4 (80%) 0.021

0.3 3.62 0.80 0.80 (79%) 2.2 (73%) 0.021

0.4 3.77 0.94 0.76 (75%) 1.90 (62%) 0.020
Type I 0.25 3.73 0.68 0.87 (85%) 2.3 (74%) 0.020

0.3 3.76 0.74 0.85 (84%) 2.2 (71%) 0.020

0.4 3.81 0.85 0.81 (80%) 1.95 (64%) 0.020
Type III 0.25 3.41 0.45 0.86 (85%) 2.7 (90%) 0.0

0.3 3.35 0.51 0.83 (82%) 2.7 (90%) 0.0

0.4 3.28 0.61 0.78 (77%) 2.7 (88%) 0.0

4.5 Impact of Market Volatility

As one example of comparative statistics that are possible in our model, we investigate the
impact of volatility parameter o of X on the equilibrium profits and behavior of X*. In
Table 2, we list statistics of ¢* for a range of market volatilities o. We also quantify the
profitability of the two players through their average percentage of optimality (APOO)

Jp 7 (x)¢* (dx)

APOO = =
(X))

which is the ratio between average profit rate 7, (X;°) in equilibrium and the maximum profit
that could be hypothetically obtained at the first-best level 7, (X)), r € {c, p).

In all types of equilibria, both players are worse off in terms of expected profit rate as o
increase. This occurs even though in type I and in type II equilibria the average price E[ X *]
increases. However, that gain is dominated by the losses due to higher Var(X*) which implies
that prices tend to be further from their preferred levels X, decreasing Ey+ [77,].

4.6 Effect of Consumer’s Switching Cost

A key parameter that controls which equilibrium type we face is the consumer’s switching
cost hg. Starting from the double-switch situation, as h¢ increases (> 0.6), the consumer
is less incentivized to switch from u* to u~ and we enter the single-switch scenario of
Sect. 3.1.2. Consequently, she receives the no-switch payoff wa' (x) when p; = p™ and
solving for her best-response boils down to solve for y;, only. Once hq gets very large, her
best response is simply the no-switch response aﬁ Conversely, as /g | 0 her actions become
free. In that situation, we can reduce the producer problem to a single, piecewise VI with a
free boundary X,

Sup{ —Bu(x) + u—vy + %szxx + 7Tp(x) B Sl;p {U(x +&) —vx) - Kp(g)}} =0 x > X,
(67)

Sup{ — Bu(x) + pivx + %Uzvxx + YTP()C) B Slglp {U(-x +8) —v(x) — Kp(é)}} =0 x < Xe,
(68)
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Fig.8 Equilibrium thresholds as a function of consumer switching cost /¢ given parameter values in Table 1.
=+ — . .
We show the consumer thresholds yg, yp, the producer thresholds x,", x; and respective impulse target levels

k=
Yoo

with the C° regularity at X hmfo(c v(x) = limxl;& v(x).

Figure 8 shows that for low A, x,’f* < y¢ and x,’f is greater but close to yj,. Thus, when
consumption switches from expansion to contraction, it is very likely that the price touches
)ch+ soon thereafter and is impulsed back to x;[* and thus, the regime rapidly switches back

to expansion again. When the switching cost increases, this solution disappears.

Remark 3 Ttis possible for the impulse amounts to be so large as to lead to a double simultane-
ous control: producer’s impulse instantaneously followed by the consumer switching. In this
setting, the producer effectively forces the consumer to switch the regime by impulsing X*
hard enough. This situation corresponds to x, * < y;, so that the impulse in the contraction
regime moves X* into the respective switching region (—oo, y¢), and as a result the con-
sumer immediately switches to the expansion regime. This situation occurs if, for instance,
the drifts are £~ = 0.01, u™ = 0.1, so that the consumer is not able to ever efficiently lower
prices. Consequently, the producer is forced to fully control price reduction. We observe in
the above situation the equilibrium thresholds of x, ™ = 3.04 < y; = 3.69. O

5 Case Study: Diversification Effect of Vertical Integration

In this section, we accordingly study whether or not downstream or upstream firms have an
interest in being vertically integrated. To this end, we consider a small firm that has no market
power regarding the commodity price X and focus on the case of the market equilibrium type I
(generic case). We then investigate whether the firm can benefit from a diversification effect
by having activity both in the downstream consumer side and the upstream conversion side.

To make the case study concrete, we consider a simplified version of the crude oil and
gasoline markets, the latter a shorthand for refined products, calibrated to the ballpark of the
2019 state of the world. Currently, world oil consumption is about 100 Mb/d (millions of
barrels per day), normalized to 1 “barrel” per day. We take as a nominal initial price Xo =
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Fig.9 The curve A — (o (7)), E[JT)L]) as a function of the pass-through parameter p

50 USD/b and anominal volatility of crude o = 10 USD/b. To calibrate our model, we consider
that crude oil producers have a preferred range of prices that goes from x[l7 = 30 USD/b to
xl% = 100 USD/b and that the average cost of oil extraction is ¢, = 30 USD/b. This leads to
a demand function D (x) = 1 — 0.01x, which captures the low sensitivity of the demand of
crude to prices. The crude is transformed into gasoline with a small amount of losses 5%, so
that the conversion factor is o = 0.95.

We set the transfer function of crude oil price to average price of gasoline to P(x) =
10+ 1.1x, where P(x) is also expressed in USD/b. There is evidence that the (pre-tax) price
of gasoline is a linear function of the crude. For instance, using monthly data of the Energy
Information Agency of the US Department of Energy on refined products prices from January
1983 to November 2019, we regressed the US Total gasoline Retail sales by refineries Pto
the monthly crude oil price X and found a linear relation

Pp=12X, + 14+ ep

with a regression R?> = 95%. Considering that the basket of refined products includes not
just gasoline (even if it accounts for the largest share), we simplified the relation. Note that
the condition p; > « for having a downstream convex profit function holds. Furthermore,
refinery costs c. are highly variable between 4 to 10 USD/b. We take the higher value of
c. = 10. Finally, we consider that the demand function for refined products, D.(P) =
dj, — d P is such that d) = 5 b/d of crude equivalent refined products and d; = 0.05. With
these parameters, the preferred range of crude prices for the consumer is between x! = 11
and xc2 = 82 USD/b. We consider fixed action costs both for the production firm and the
downstream firm. We consider that the producer and the downstream firm lose two years of
profit at optimal price to change state making ko = 27,(X,) and ho = 27.(X,). Finally,
we take u+ = =£0.15 per year, which implies that it takes 10 years for the crude price to
increase by 1.5 USD.

The resulting equilibrium type I producer impulse strategy Ci,’* and consumer’s switching

strategy Ci’* associated with the calibration summarized in Table 3 are given by

ol [ 26, 62, —, +00

L+
B Cor - 69, 104}, cyt =225, 87]. (69)

Thus, in equilibrium, the crude price X* fluctuates between 22.5 and 87 USD/b, with potential
excursions up to 104 or down to 26 USD/b at which point producers intervene.

2 Data available at http://www.eia.gov/dnav/pet/pet_pri_refoth_dcu_nus_m.htm.
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Table 3 Nominal values for model parameters for the crude oil case study

Value Interpretation Units
B 0.1 Discount rate %lyear
Xo 50 Initial oil price USD/b
do 1 Demand function for oil: intercept Mb/d
dp 0.01 Demand function for oil: slope Mb/d/(USD/b)
d(’) 5 Demand function for gasoline: intercept Mb/d
d i 0.05 Demand function for gasoline: slope Mb/d/(USD/b)
o 0.95 Transformation rate dimensionless
Po 10 Crude—gasoline price function: intercept USD/b
P1 1.1 Crude—gasoline transfer price function: slope USD/b/(USD/b)
cp 30 Oil production cost USD/b
Ce 5 Refining cost USD/b
U+ +0.15 Annualized crude drift parameters USD/b
o 10 Annualized crude volatility USD/b
ho 2me(Xe) =29 Consumption switching cost USD
) 2mp ()_(p) =245 Production switching cost: fixed USD
K1 0 Production switching cost: proportional USD/b

200 120

100

11 1.15 12 1.25 11 115 1.2 1.25
x 2 2

Fig. 10 Left: profit rate function of the consumer 7z, (x) (red) as the pass-through parameter pj is varied, as
well as the fixed producer profit rate 77, (x) (blue). Middle: respective equilibrium strategy thresholds yg, yj,

(red) and xZL, x;, (blue) as a function of p;. We also plot X, and By« [X*], shading the typical commodity
price range [Eg+[X 1+ g (X *)]. Right: risk-minimizing integration level A* as a function of p;

Now let us consider a small firm engaging in a fraction A € (0, 1) of activity in the
downstream sector and 1 — X in the upstream sector. Her profit rate is thus m, = Am, +
(1 — A)n p- The firm is vertically integrated when 0 < A < 1. Denote by o (i7;,) the standard
deviation of her profit rate 7, (-) integrated against the stationary distribution ¢* of X*, and
by E[n;h] = [ 7 (x)¢*(dx) the respective expected profit rate. To fix ideas and because
the analysis is symmetric, we are interested in situations where a pure downstream firm
(A = 0) would be better off having part of her activity in the upstream sector. This will take
place when the upstream activity provides a higher expected profit rate and/or a lower risk
as measured by o (7, ). Figure 9 presents the risk—return curves A — (o (), E[]T)L]) as the
pass-through parameter p; increases from the nominal value of 1.1 to 1.18. We observe that
for low values of p; diversification gains are limited: expected profit rate goes up, but risk
also increases. For moderate p1, a pure downstream firm unambiguously benefits from some
upstream activity: she can achieve the same level of risk with a higher expected profit. For
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high p1, the upstream sector dominates completely with lower risk and higher average profit.
Figure 10 (right) shows the critical integration level A* that minimizes the risk o (7;) and
captures the “variance-minimal” business model.

We observe that for high enough pass-through values, being a producer (A = 1) dominates
any other combination of activity. This phenomenon happens even though the maximum profit
rate of the downstream firm 77.(X.) increases and gets higher than the producer’s maximum
profit rate function 7, (X p) as shown in the left panel of Fig. 10. As shown by the evolution
of equilibrium price range in Fig. 10 (Middle), as p; increases, the equilibrium is getting
more and more detrimental to the downstream firm. The shaded salmon area represents the
interval [Eg«[X*] — og+ (X*), Eg+[X*] 4+ 04+ (X™*)] where commodity prices tend to reside.
The average commodity price remains stable around 65 USD/b, and its standard deviation
is not affected much by p; either, while X_ is steadily decreasing. Thus, since the expected
profit rate of the integrated firm is a function of the expected price and its standard deviation,
it does not change much. But its variance grows as a function of p; and thus increases
significantly. To conclude, in our model we do observe a diversification effect obtained by
mixing upstream and downstream activities; however, the integration gains depend closely
on the pass-through parameter p; which serves as a transmission channel of the volatility of
the commodity price to the retail price.

6 Conclusion

We showed how a simple model of competition between upstream and downstream repre-
sentative firms having different pace of intervention can lead to a rich variety of equilibria,
potentially non-unique. The fact that the upstream firm can impact the price more rapidly
than the downstream firm gives the producer a significant advantage, enabling him to lock
the consumer in the producer’s preferred range of prices. Further, in the case of the crude
oil market and its refinery products, we stressed how the pass-through parameter p; plays a
key role for the diversification effect induced by vertical integration. Vertical integration is
beneficial for low values of pp, while for higher values, production dominates downstream
activity both in terms of expected profit rate and profit standard deviation.

7 Proofs
7.1 Proof of Proposition 1

Proof The proof is standard; nonetheless, we give some details for the reader’s convenience.
To ease the notation, let us consider only the case = 4, the other case being identical.
Let w;)“ (x) = @ (x) + ut(x), where the parameters (Afo, )‘3_,0) € R solve the system (20),
(21). By construction, the function wg is of class C? everywhere. Hence we can apply Itd’s
formula to e % wa‘ (Xy) on the time interval [0, t A ¢,), yielding

A
e—ﬂ(m;,.)wg(xmzn) — w0+(x) _,_/(; o hs [wg/(xsi)(u+ds + odW; —dNs) — /Sw()*(Xxf)ds]
+

2 [N
+ %/ e Pud” (Xs_)ds + § e P [Awg (Xy) +wi' (X,-)AN,]
0+

0<s<tAey
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Fig. 11 No-switch payoffs oo(:)E (x) of the consumer given the producer’s strategy Cp

where (¢,),>1 18 a localizing sequence of stopping times along which the local martingale
part above is in fact a true martingale. We use the notation ’ and ” for, respectively, the first
and second derivative in x. Taking expectations on both sides, using the fact that war solves
the ordinary differential Eq. (17) and letting n — oo, we obtain

t
E[e P wi(X)] = wi (x) —E / e Pr(X)ds + Y Awg (X)
0+

O<s<rt

Now, notice that on the jumps of X we have Awg (X;) = wg (x,;7*) — wg (x;7), which is
zero by the boundary conditions (19), hence the jump part in the equation above vanishes.
Moreover, being X; € [x;, x;r] for all + > 0, we have by dominated convergence that
E [e‘ﬁ’wJ(X,)] — 0 ast — oo. Therefore, letting + — oo we can conclude that wg(x) =
JE(e; Nyph) forall x e [x)f, x;f 1. o

Figure 11a illustrates the fact that a threshold switching strategy might not be optimal
in all potential situations by considering the shape of wg (x). In the right panel, we have
comonotonicity between w™ and w~: the consumer is incentivized to switch to ™ when X;
is low and to ;«~ when X, is high. In that situation, we expect that a threshold-type strategy
is a best response. In contrast, on the left panel two other cases are illustrated. First, we see
that it is possible that w™(-) <« w™(-); in other words, the consumer has a strong preference
to one regime over the other. In that case, the expansion regime could be absorbing, i.e., it
is optimal to never switch to p_. In the plot, this would happen if 4 is low (dashed line),
whereby w™(x) > w™(x) — hg and it is optimal to switch to p_ at any x (therefore 1
would never be observed in the resulting game evolution). At the same time, we see that if
hg is moderate (the solid line), then the region where w; (x) > war (x) — hg is disconnected,
so it is likely that a two-threshold switching strategy is an optimal response.
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7.2 Proof of Proposition 2

Proof of Proposition 2 By construction, the functions w™ (x) in (29) solve the system of VIs
in (27), (28) and satisfy wt € C2((x/, %) \ {yeh N C'((x), x;) NCOR) and w™ €
C2((x[, )\ {yhH N c! ((x, s x, )N CO(R). Let N denote the pure jump component in X’s
dynamics associated with the producer’s strategy with thresholds (xli, x,éi*; xff, xhi*). The

proof is structured in two steps.

Step 1: optimality The following verification argument proves that such functions coincide
with the best-response payoffs of the consumer and that the switching times 6; as in the
statement are optimal provided they are admissible. First, by an approximation procedure as
in the first part of the proof in [1, Theorem 3.3], we can assume without loss of generality that
wt e Cz((xj, x;[ ) NCOR). Let o— = 4. Consider two consecutive switching times of
any consumer admissible strategy, say o7; and o041, for i > 0 with the convention o9 = 0,
and recall that over [07;, 02;+1) the state process X has drift . Applying Itd’s formula to
e‘ﬂtw+(X,) over the interval [02; A T, 02i+1 A T), for some finite 7 > 0, we obtain

e—ﬂ(02[+1AT)w+ (X02i+1/\T) — efﬁ(JZi/\T)w+(X02i/\T)

02i 41 AT
+ f e Ps {w;r(Xs)dXs +
(o

2i AT

o? n
wax(XS)ds — BX,ds

+ > e P awt (Xy) + wi (X)) AN
02i AT <u<02j 1 AT
Using the dynamics dX; = puyds + odW; — dN; between the two switching times above,

localizing the martingale part through a suitable sequence of stopping times ¢, and taking
expectation on both sides, we obtain

2i+1 i
E [e_’s["vT+ w+(X{.2i+l):| =K [e_ﬂ['iT w+(X{2i )]
n, T 1

n, T

L o2
+ E /{21 e Ps {ch'(Xs)MJr + 7w;;(XS) - ﬂXs}ds
n,T

+E > e Pawtxy) |,

2i 2i+1
Clz,lTSs<§n,T

where we set ;r’l‘ 7 =0k A&y A T. Notice first that the third summand above vanishes since
between o7; and 07; 41, the state process X can jump only due to the impulses of the producer;
hence, at any of such jumps the C’-pasting condition at )ch+ yields

AwT(Xy) = W (Xy) — wT (XD lax, 20 = W (x) — wh(x;))1ax, 20 = 0.

Regarding the second summand, we use the variational inequality (27) so that we can write
2i+1 o
i+ 2i n, ¢
E [e*ﬂ%r wh (X 2is1 )] <E [e*ﬁ‘n,rwﬂx 2 )] —E e B (X,)ds | .
[t Sur 2

Now, letting n — 0o we obtain by dominated convergence that

E [e_ﬁ(72i+lATw+(X02[+l/\T):| < E [E_ﬁUﬁATwJ’_(XUZ[AT):I
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02i+1 )
-E [/ e_’%rrc(XmT)ds] , i>0.
o)

2i
Analogously, we can get the same inequality between the switching times o2, and oy; for
i > 1 with w™ replacing w™, so summing them all up we have

(sup; 0;)AT

~E [ f m(xs)ds} = Y E[e PN wt (X ) = PN 0 Xy a1 |

0 :
i>0

+ Y E[e PN w™ Koy ) — e P 0 Xy a1 |-

i>1

Note that by admissibility Ziz] e P% e L?(P), which implies sup;> 0; = ~+oo almost
surely. Then, using the CO-pasting conditions in (30) and letting T — o0, we finally obtain

+o0
E U m.(Xs)ds] + Y E[e#7ho] < wh (),
0

i>1

for any admissible consumer strategy (o; ). Applying the same arguments to the sequence (6;)
we would get equalities instead of inequalities everywhere. The proof for the case po— = pu—
is analogous and therefore is omitted.

Step 2: admissibility To conclude we show that the switching times 6; are admissible, i.e., they
belong to the set A.. To do so, notice first that (6;) is a sequence of [0, co)-valued stopping
times. Hence, it remains to show that a.s. 6; < 6;4 foralli > 0,and ) ;. e PO e L2(P).
The former follows from y, < yj. For the latter, we can proceed as in the proof of [1, Prop.
4.7], whose main idea is to write each o; as a sum of independent exit times for some (scaled)
Brownian motion with possibly different drifts and initial conditions. First, let us denote
(t)k=1 the increasing sequence of stopping times exhausting the intervention times of both
players. Therefore, we have

2 2 —
El|> et <E Ze—ﬂfk’ < lim 2E| e BT
m—00

i>1 k>1 | 1<k<r=m

< lim 2E Z e 2% | = 2R Zefzmk’

m— 00

l<k<m k>1

hence it suffices to prove that Zk>l e 2% ¢ ] (IP). Now, notice that 1:,2, k > 1, can be

represented as Zle ¢r, where ¢, is a sequence of independent random variables distributed
as the exit time, say ¢>*, of one of the processes z + ut + o W; with

(. 1) € 2% = {(yn. ) (ew ), (7, ), (e o)}
from the respective intervals
(=00, y)s (e, +00), (=00, x,), (x;, +00).

Due to the independence of the sequence ¢, we have

k

e[| - S [Teb £ T (e mmeonsr )

k=1 k>1r=1 k>1
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which is a convergent geometric series, due to § > 0 and the fact that {># > 0 almost
surely for all (z, ) € Z*. This shows that sequence of switching times &; is an admissible
consumer’s strategy and concludes the proof. O

7.3 Proofs of Propositions 3 and 4

Proof of Proposition 3 Let v : {;—, uy+} x R — R be the function defined as v(u+, x) =
vE(x), with vt as in (47). By construction, the functions (v, v™) solve the system of VIs
in (45) and moreover v¥ € C2((x,j, X))\ {ye, ynh) N CO(R), hence not necessarily ¢l at
the points yg, ys. Recall that i, = pq D72 Yoy <r<omiir} + = Doioq Yoy <t<on}» T =0,
where without loss of generality we can assume o; is the i-th switching instance taken by
the consumer in the case po— = p4+ (remember the convention oy = 0). The other case
o— = M— can be treated in a similar way, it is therefore omitted. We split the rest of the
proof in two steps.

Step 1: optimality The following verification argument proves that such functions coincide
with the best-response payoffs of the producer and that the impulse strategy as in the statement
is optimal provided it is admissible. First, by an approximation procedure as in the first
part of the proof in [1, Theorem 3.3], we can assume without loss of generality that v*
c? ((xZ, x;,)) NCY(R). Consider any producer admissible strategy (t;, &;);>1 asin the first part
of Definition 1. Applying [t&’s formula to e P! v(us, Xy)overtheinterval [o2; AT, 02i 41 AT),
for some finite 7 > 0, we obtain

e B02i41AT) */3(021'+1/\T)v+(x

U(Maz,+|/\Ta X02;+]/\T) =e az,-HAT)

= e POV (Xoya1)
02 IANT o2

+ / e {vx*(XS)dXs + 7U;(X.\.)ds - ,Bv*(XX)ds}

o2 AT
+ > e P {AvT (X)) + v (X AN,
02 AT <5 <02 | AT

where the first equality comes from the fact that over [02; A T, 0241 A T), the drift equals
M4 (remember that o— = w4 ). Using the dynamics dd; = p4ds + odW; — dNg, with
Ny =)o &l{z; <), between the two switching times above, localizing the martingale part
through a suitable sequence of stopping times ¢, and taking expectation on both sides, we
obtain

2i+1 2i
E I:eiﬁg’” U+(X{2i+1):| =K [67ﬁ§”v7U+(X§2i )]
n,T n,T

Gt o2
+E /2' e P {vj(Xs)/ur + 7v;gc(xs) - ,Bv+(XS)} ds
é‘n,’T

+E > e avtxy |,

2i 2i+1
é-II,TSS<{n,T

where we set g“y]l‘ 7 = 0k A ¢y A T. For the third summand above, notice that between o7;
and 0911, due to the non-local term in the variational inequality (45), the state process X
can jump only due to the impulses of the producer and at any of such jumps we have

AvT(Xy) < —Kp(&), i>0,
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implying

E Z efﬂsAer(Xs) <E Z eiﬂ‘YKp(Sj)
gl <s<git ity sti<gif!

Regarding the second summand, we use the variational inequality (45) so that we can write

2i+1

2i+1 i St
E [e—ﬁénf U+(X§2i+1)] <E [e_ﬂ{'%-T U+(XC2,'T)] —E |:/2 e_ﬁ‘ynp(Xs)ds:|
" St

n,T

+E DA #1(3)
st <ty
Now, dueto X; € [xzr, x;, Jforallz > 0, lettingn — oo we obtain by dominated convergence
that
E[e P2 Tt Xy a0 | < B[P0t (Xoynr) | - B [ /
o

02i+1
e*f“n,,(xw)ds]

2i

+E Yoo e PK,Ep|. iz

Ji02i <Tj<02i41

Analogously, we can get the same inequality between the switching times 02; 1 and o; for
i > 1 with v~ replacing v, so summing them all up we have

(sup; 0;)AT
5| [ mp(X)ds | = 3 E[e PR Tt (X, ) — e PPN 0 (X, )]
0

i=0

+ Y E[e PN o Ky nr) — P 0 (X a7
i>1

(70)

Note that by admissibility Y., e™#% € L*(P), which implies sup;.0; = +oc almost
surely. Then, using the C*-pasting conditions in (48) and letting T — oo, we finally obtain

+0o0
E [ / np(Xs)ds] Y B[R, @] < vt o,
0

i>1

for any admissible producer’s strategy (7;, &;);>1. Applying the same arguments to the
impulse strategy (z;*, £");>1 as in the statement we would get equalities instead of inequali-
ties everywhere. Notice that the second-order conditions (52) guarantee the optimality of the
impulses &*.
Step 2: admissibility To conclude the proof, we need to show that the impulse strategy
(t7, &")i>11is admissible as in the first part of Definition 1. Property 1 is granted by the dynam-
ics of the state variable X and the fact that producer’s thresholds satisfy xzr < x?*, X, <x,.
Property 2 is obviously satisfied by definition of the optimal impulses &* as in the statement.
Hence, we are left with showing property 3, i.e., Y ;- e’ﬁfi*éi* € L%(P). We can proceed
once more as in the proof of [1, Prop. 4.7] and in the second part of Proposition 2’s proof.
We provide all details for reader’s convenience. First, let us denote (T,é)kz 1 the increasing
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sequence of stopping times exhausting the intervention times of both players. Since the
optimal impulses (§7);>1 are uniformly bounded by some positive constant, say «, we have

2 2
E||> gre <k?B| [ e fu < lim 2E| Y e PO

m— 00
i>1 k>1 1<k<r<m

< lim 2«’E Z e 28U | = 22E Ze%ﬂr;

m—00
1<k<m k>1

hence it suffices to prove that ) , ., e 2% ¢ L(P). Now, notice that ‘L’,é, k > 1, can be

represented as Zle ¢, where ¢, is a sequence of independent random variables distributed
as the exit time, say ¢, of one of the processes z + ut + o W, with

(z. ) € 2% := {(n, mg). e, o), (% o), (o™, g}

from the respective intervals
(=00, yn)s (e, +00), (—00,x;), (x;,+00).

Due to the independence of the sequence ¢ we have

E Z e~ 2T | — Z ﬁ E [e—2ﬂ{r] < Z (E [672/3 min; )z {zyu])k ,

k>1 k>1r=1 k>1

which is a convergent geometric series, due to 8 > 0 and the fact that ¢*# > 0 almost surely
forall (z, ) € Z*. This shows that (z, &")i>1 is an admissible producer’s impulse strategy
and concludes the proof. O

Proof of Proposition 4 Here, notice that x;r = yp, so that, given producer’s priority in case of
simultaneous interventions (cf. Remark 2), the drift is always equal to w4 (recall that we are
in the case no— = w4 ). Hence, this proof can be performed as the one of Proposition 3, by
ignoring the intervals where the drift is ;_ so that the second half in the RHS of inequality
(70) is zero. The admissibility is proved in the same way. The details are therefore omitted.

O

7.4 Equilibrium Dynamics Computation

Let (a, b) be an arbitrary interval and x € (a, b) be an interior starting location. We define
34+ (x; a, b) to be the first passage time associated with the interval (a, b) of a Brownian
Motion with drift p starting from x and Py (x; a, b) to be the probability that this BM
hits a before b (similarly for §_(x; a, b) and P_(x; a, b) associated with drift ;_). These
quantities admit explicit expressions, see [6].

The expected time 7_ := inf{t : u; = pu_} for u; to switch from py to pu_ within a
double-switch and one—sided impulse equilibrium is then

Py (x0; X, i)

E[r_] = E[8+(xo; ;. y)] + P
5

E[8G/ ™ x) )], (71)

where P is the transition matrix of M. Above, the first term denotes the time to either reach
x? (producer impulses up) or y;, (switch to contraction); the second term counts the additional
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time if xZ’ is reached first multiplied by the respective probability P (xg; x[, yn). Let Z be
the resulting vector of expected sojourn times. Then, the long-run proportion of time that X*
carries a positive drift (1) is

s, sy + T &y + T
M-t

pi = : (72)

and similarly the long-run proportion associated with a negative drift (u_)is p— =1 — p4.
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