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Abstract: (1) Background: Data accuracy plays a key role in determining the model performances and
the field of metabolism prediction suffers from the lack of truly reliable data. To enhance the accuracy
of metabolic data, we recently proposed a manually curated database collected by a meta-analysis of
the specialized literature (MetaQSAR). Here we aim to further increase data accuracy by focusing on
publications reporting exhaustive metabolic trees. This selection should indeed reduce the number
of false negative data. (2) Methods: A new metabolic database (MetaTREE) was thus collected and
utilized to extract a dataset for metabolic data concerning glutathione conjugation (MT-dataset). After
proper pre-processing, this dataset, along with the corresponding dataset extracted from MetaQSAR
(MQ-dataset), was utilized to develop binary classification models using a random forest algorithm.
(3) Results: The comparison of the models generated by the two collected datasets reveals the
better performances reached by the MT-dataset (MCC raised from 0.63 to 0.67, sensitivity from 0.56
to 0.58). The analysis of the applicability domain also confirms that the model based on the MT-
dataset shows a more robust predictive power with a larger applicability domain. (4) Conclusions:
These results confirm that focusing on metabolic trees represents a convenient approach to increase
data accuracy by reducing the false negative cases. The encouraging performances shown by the
models developed by the MT-dataset invites to use of MetaTREE for predictive studies in the field of
xenobiotic metabolism.

Keywords: drug metabolism; glutathione conjugation; data accuracy; metabolic tree; MetaQSAR;
classification algorithms; random forest

1. Introduction

The conjugation with glutathione (GSH) is a well-known reaction to detoxify elec-
trophilic compounds [1]. Its relevance in toxicity mechanisms is owed to the fact that
electrophilic molecules are responsible for drug-induced liver injury [2], which is a very
frequent cause of the withdrawal of marketed drugs, as well as of the termination of
clinical studies. Indeed, if not detoxified by GSH, electrophilic compounds can react with
nucleophilic moieties within proteins and nucleic acids generating damaging covalent
adducts that may cause several adverse effects such as eliciting immune responses [3].

The ability to predict in silico the metabolism of new chemical entities has attracted
great interest in the last years since very common causes of drug failures (such as low
efficacy, unsatisfactory pharmacokinetic profile, and toxicity) are often ascribable to an
unfavorable impact on drug metabolism [4,5]. Most of the reported predictive studies focus
on the redox reactions typically catalyzed by the CYP-450 enzymes [6], while only a few
predictive tools for conjugation reactions were reported in the literature [7,8]. This lack
of computational studies appears to be especially relevant for both glucuronidations [8,9]
and, in particular, reactions with GSH [10] because these metabolic processes are very

Molecules 2021, 26, 2098. https:/ /doi.org/10.3390/molecules26072098

https:/ /www.mdpi.com/journal/molecules


https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1352-1094
https://orcid.org/0000-0001-5916-2029
https://orcid.org/0000-0002-3939-5172
https://doi.org/10.3390/molecules26072098
https://doi.org/10.3390/molecules26072098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26072098
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/7/2098?type=check_update&version=1

Molecules 2021, 26, 2098

20f13

frequent in drug metabolism and, more importantly, play a key role in the detoxification
processes [11].

The reactivity with glutathione is usually predicted by considering the presence of
structural alerts, which allow potentially reactive molecules to be recognized [12]. Even
though routinely applied, structural alerts can give incorrect predictions as they focus
attention on the electrophilic moieties without evaluating the reactivity profile of the entire
molecule [13]. Quantitative Structure-Activity Relationship (QSAR) analyses, mostly based
on quantum mechanical descriptors, have been also proposed. However, they involve
quite limited learning sets and have restricted applicability domains, so they are amenable
only to predicting the reactivity of close congeners [14].

There are several reasons to explain the lack of general models to predict the reactivity
to glutathione. First, the chemical variability of functional groups that can undergo conju-
gation with GSH is very broad and includes electrophilic moieties ranging from epoxides
to o, B—unsaturated carbonyls, as well as thiols, disulfides, and peroxides [1]. Second, the
reaction with GSH can be catalyzed by glutathione transferases (GST), but can also occur
spontaneously, depending on the reactivity of the substrates and/or their capacity to fit
the enzymatic pocket [15]. The last cause, common to all metabolic reactions, is the lack
of truly accurate metabolic datasets. Most available databases are collected by automatic
querying of online resources and, as such, they include a significant amount of inaccurate
data and often combine xenobiotics with endogenous metabolic reactions [16].

Recently, we compiled and manually curated a metabolic database (MetaQSAR) by a
meta-analysis of the specialized literature in the 2005-2015 years [17]. This project led to
the generation of a database containing about 5000 metabolic reactions, whose reliability
has been confirmed by several predictive studies [4,7,8,18]. Notwithstanding this, when
used in classification predictive studies, even very accurate metabolic databases show a
quite common problem concerning the definition of negative non-substrate molecules.
Indeed, the positive class simply comprises all molecules for which the considered reaction
(here the conjugation with GSH) is reported in the literature. In contrast, the definition of
the negative class is more ambiguous, since it includes those molecules for which a given
reaction is not described, but “the absence of evidence is not evidence of absence” [19].
Therefore, such a criterion for collecting the negative class is very questionable since the
reaction can be unreported simply because the analyzed studies had different objectives
and did not monitor the corresponding metabolites. This problem can lead to a significant
number of false negatives that affect the reliability of the derived predictive studies.

Even though this problem cannot be completely resolved, we think that the number of
false negatives can be significantly reduced if the data collection involves only publications
reporting exhaustive metabolic trees. Indeed, one may suppose that studies comprising
extensive metabolic trees are designed to detect the highest possible number of metabolites.
Therefore, the unreported metabolites should be considered true negative non-substrates,
apart from some minor metabolites that can be still undetected for technical limits of the
analytical instruments [20].

On these grounds, we present MetaTREE, a new database on metabolic reactions
including data extracted only from publications reporting exhaustive metabolic trees.
Besides this, we report the first application of MetaTREE, by which we aimed to move
forward towards the elucidation of the metabolic reactivity to glutathione as well as to
investigate the benefits offered by this new kind of data curation procedure. The advantages
of MetaTREE were assessed by working in parallel with two sets of data: (1) the MQ-dataset,
extracted from MetaQSAR, and (2) the MT-dataset, extracted from MetaTREE. The accuracy
of our predictions reaches encouraging standards in the field of metabolic models, with a
Matthews correlation coefficient (MCC) of 0.67 and an area under the receiver operating
characteristic curve of 0.94. Moreover, the best model performances are obtained thanks to
the MT-dataset, proving that a higher level of data curation can improve the prediction
accuracy. These results open further perspectives of application for MetaTREE in the field
of metabolism prediction.
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2. Results
2.1. Data Analysis

The data for this study were extracted from two databases internally developed:
MetaQSAR and MetaTREE. The former is a database of metabolic reactions manually
compiled from the specialized literature and critically annotated (described in detail in [17]).
The latter is a new database of metabolic trees that results from a further data selection
of the MetaQQSAR database, to reduce the false negative rate within the database. From
these databases, two binary classification datasets were extracted for the model generation,
namely, MQ-dataset and MT-dataset (see Section 3.2). The MT-dataset is about half the size
of the MQ-dataset and has the advantage to be well-balanced between the two classes.

Both datasets underwent principal component analyses (PCA) to characterize the
chemical space covered by the training sets. These studies aim to extract new features
that can reveal the presence of patterns inside the learning data and verify whether these
patterns can have a predictive role for the reactivity toward glutathione. The percentage
of variance expressed by the first three computed principal components are reported in
Table 1 and the scores of the resulting principal components are depicted on scatter plots in
Figure 1. Similar observations can be drawn for both the datasets, proving that they are,
for the most part, a subset of each other and explore the same chemical space.

Table 1. Results from the two PCA studies as applied to the MQ-dataset and the MT-dataset.

uy O e B ey ot

PC1 64.80 64.80

MQ-dataset PC2 14.04 78.84

First study 20 PC3 7.25 86.09
PC1 64.86 64.86

MT-dataset PC2 14.57 79.43

PC3 7.34 86.77

PC1 54.45 54.45

MQ-dataset PC2 7.92 62.37

Second study 197 PC3 6.65 69.02
PC1 49.98 49.98

MT-dataset PC2 10.56 60.54

PC3 5.67 66.21

The first PCA involves 20 selected 3D-physicochemical and stereo-electronic properties
and the first three generated principal components express a cumulative percentage of
variance equal to 86.09% for the MQ-dataset and 86.77% for the MT-dataset. The first
principal component results from the combination of relevant structural features, such as
mass, volume, and surface, variously measured. As the consequence, molecules are spread
out in the 2D-scatter plots according to their size, with smaller molecules at lower values of
PC1 and larger molecules at higher values (Figure 1a,b). The second principal component
mostly includes the electronic properties, consisting of the ionization potential and the
HOMO and LUMO energies. This uncorrelated variable accounts for the ionization state of
molecules and we observe a stratification along this component with three main clusters:
positively charged molecules for negative values of PC2, negatively charged molecules
for positive values of PC2, and neutral molecules around the 0 value. Accordingly, the
small set of non-enzymatic substrates within both the datasets (in yellow), which are
neutral, small, and soft electrophiles, are placed in the central cluster, at a low value for
PC1. Despite this clusterization, no evident pattern can be observed that corresponds to the



Molecules 2021, 26, 2098

40f13

binary classification of molecules in “GSH substrates” and “GSH non-substrates” (in red
and blue, respectively), therefore this unsupervised analysis does not assume a predictive
capability.
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Figure 1. Scatter plots from PCA studies for MQ-dataset (a,c) for the first study and second study,
respectively) and for the MT-dataset (b,d) for the first study and second study, respectively). “GSH
substrates” and “GSH non-substrates” are displayed in red and blue, respectively. Yellow points
correspond to the subset of known non-enzymatic GSH substrates.

The second PCA involves 127 1D-2D-3D descriptors, and despite the high number
of correlated original variables, the first three generated principal components express
a cumulative percentage of variance equal to 69.02% for the MQ-dataset and 66.21% for
the MT-dataset. For this study, the interpretation of the main principal components is
complicated by the high number of original variables. In both cases, molecules form a
single big group in the scatter plots with a few outliers (Figure 1c,d). Only for the MT-
dataset (Figure 1d), a slight separation of the two classes is observable along with the first
principal component. There is a significant proportion of “GSH substrates,” in red, with
a value of PC1 between —15 and —5, while “GSH non-substrates” are mostly placed at
values of PC1 higher than —5. This finding can be interpreted as the first evidence that
the criterion used to select molecules for MT-dataset is successful in catching the different
chemical spaces covered by molecules able or not to react with glutathione. It is therefore
expected that models based on MT-dataset will benefit from the additional step of data
curation for accuracy and domain of applicability.

2.2. Model Building

The input matrices of the binary classification models include a large number of
molecular descriptors (see under Methods for details) to provide to the models a wide
variety of features among which to select the most informative ones. The pre-processing
consists of two progressive steps that optimize the shape of the starting data and improve
the performance of the models. The first step removes features based on the variance
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and excludes those for which none or a handful of observations differ from a constant
value. This filter leads to a greater dimensionality reduction since it impacts mainly the
1024 ECFP descriptors. The second step refines the final size of the matrix by examining
pairs of features and excluding the correlated ones.

Based on these refined data, models were generated by applying the random forest
algorithm for binary classification. As detailed under Methods, a cross-validated grid
search was conducted to optimize the algorithm hyperparameters. The internal validation
was implemented on the preprocessed matrices by two methods. In the first, models were
built on 70% of the dataset randomly selected and tested on the 30%, repeating this cycle
100 times and averaging results (MCCV). In the second method, the whole dataset was
used for both training and testing, according to the LOO procedure. Since the MQ-dataset
is slightly unbalanced, and this affects the predictive accuracy of the positive class for
the corresponding models, a random undersampling procedure was also applied as a
screening method to reduce the size of the negative class. In this procedure, 1270 molecules
belonging to the non-substrate class were randomly selected and removed to obtain a
starting dataset perfectly balanced between the two classes. A total of six models were then
built, two for the MT-dataset and four for the MQ-dataset.

2.3. Model Evaluation

To evaluate the models from different perspectives, their performance was assessed by
four metrics. The Matthews correlation coefficient (MCC) and the area under the receiver
operating characteristic curve (AUC) were computed for an overall estimation, while
precision and recall were utilized for a measure on the two classes separately. The MCC is
a balanced metrics measuring the ability of the model to correctly classify all classes in the
confusion matrix, while the AUC reveals the proportion between true positive and false
positive at different threshold values. For the prediction of the single class, recall evaluates
the number of instances that are correctly classified for each class, while precision accounts
for the rate of correct predictions for each predicted class. Since the random forest models
tend to favor the majority class of unbalanced datasets, the recall values of the minority
class are often unsatisfactory, revealing a weakness of the model hidden by other metrics.

Table 2 shows the performances of the six generated models: four obtained by the
MCCYV and the LOO validation runs on both the datasets, two obtained by the MCCYV,
and the LOO validation runs on the MQ-dataset after random under sampling (US). The
MCCYV results are averaged over 100 evaluations and therefore are independent of the
random split in training and test set before each evaluation. As a consequence of this, we
can observe a high similarity between the MCCV performances and those obtained by the
LOO models on the same dataset. Similarly, the US-MCCV model involves a procedure
of data discarding that is repeated randomly before each of the 100 MCCV cycles so that
the results are independent of the random deletion of learning data. On the contrary, the
US-LOO performances depend on the set of negatives randomly selected to be discarded,
leading to results that can be significantly different each time the model is run.

Table 2. Performances of the six developed predictive models for the two considered datasets. Both the entire MT- and
MQ-datasets were used to obtain models by the MCCV, and the LOO validation runs. Due to its unbalanced nature, the
MQ-dataset was also utilized to generate models by the MCCV and the LOO validation runs after random undersampling
(US). For MCCV models and for MCC and AUC metrics, standard deviations are also reported.

NS? S NS S NS S NS S NS S NS S
Precision  0.83 0.84 0.81 0.84 0.90 0.87 0.89 0.88 0.81 0.82 0.76 0.78
Recall 0.88 0.78 0.88 0.78 0.97 0.56 0.97 0.56 0.83 0.78 0.78 0.75
MCC 0.67 + 0.04 0.66 0.63 + 0.04 0.63 0.62 + 0.07 0.61
AUC 0.94 4+ 0.02 0.94 0.91 +0.02 0.89 0.89 4+ 0.02

(a) the molecules are classified as “GSH substrates” (S) and “GSH non-substrates” (NS).
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The best model, according to all the evaluation metrics, is the MCCV model built on
the MT-dataset, with MCC equal to 0.67, AUC equal to 0.94, and sensitivity equal to 0.78.
Even though, the reported models show limited differences in their overall metrics, the
better performances of the MCCV model based on the MT-dataset can be better appreciated
by focusing on the class specific metrics. Indeed, the MCCV model generated on the bigger
and unbalanced MQ-dataset reaches very high precision and recall values for the NS class
but, for what concerns the S class, the recall value does not improve the random prediction
(specificity = 0.97, sensitivity = 0.55). Stated differently, the MCCV model based on the MT-
dataset proves successful in recognizing the glutathione substrates while the corresponding
model based on MQ-dataset affords unsatisfactory performances which reduce the overall
metrics (MCC = 0.63, AUC = 0.91). The US-MCCV model on the MQ-dataset proves
successful in increasing the sensitivity to 0.78 but, as the effect of the performance flattening
to a similar value, the global predictive ability of the model does not even reproduce that
of the corresponding total models (MCC (total) = 0.63, AUC (total) = 0.91, MCC (US) = 0.62,
AUC (US) = 0.89). Moreover, the US LOO model shows even lower performances, being
the worse among the generated models (MCC = 0.61, AUC = 0.85).

Figure 2 shows the box plots of the 3 MCCV models and the corresponding ROC
curves. A considerable range of variability is observed within the 100 evaluations for
nearly all of the performance measures. This is a sign of a wide structural variety inside
the data, which confirms that our datasets explore a relevant proportion of the chemical
space. Interestingly, this range is little only for the single class prediction of NS class for the
MCCV model on MQ-dataset, as the consequence of the unbalanced dataset. Precision and
recall metric values remain all near to 0.90 and 0.97, respectively, as the consequence of the
higher precision offered by the random forest algorithm in respect to the majority class of
an unbalanced dataset. The same behavior is indeed not retained when the random US
procedure is applied (Figure 2c).

The last analysis involves the feature importance for the best performing models based
on the MT-dataset. Table S1 (Supplementary Materials) lists the top 25 features for the LOO
validated model and reveals the key relevance of the stereo-electronic descriptors. There are
indeed four stereo-electronic parameters within the top 15 features. Their key role is further
emphasized when considering that the input matrix included only 10 stereo-electronic
descriptors. Notably, in all MT-dataset-based models generated both for hyperparameters’
optimization and by combining various sets of descriptors (results not shown), the core-
core repulsion energy is always the most important feature. Overall, the stereo-electronic
descriptors encode for the electrophilic nature of the collected molecules thus accounting for
their propensity to reacting with the nucleophilic thiol function of GSH. Similar information
can be encoded by the second feature WNSA-1 and related descriptors (WNSA-3, PNSA-1,
PNSA-3, RNCS, and RPCS) which correspond to charge projections on the molecular
surface [21]. Similarly, ATScl and ATSc3 represent autocorrelation descriptors based on
atomic charges [22]. The top 25 features also include five physicochemical descriptors
which mostly encode for the substrate lipophilicity and molecular size. They may describe
the propensity of a given molecule to be metabolized as well as its capacity to fit the GST
enzymatic cavities. Lastly, the top 25 features comprise five topological indices and three
ECFP fingerprints which may encode for molecular shape and/or the presence of specific
reactive moieties.
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Figure 2. Box plots of the three MCCV models (a): MT-dataset, (b): MQ-dataset and (c): MQ-dataset
after the random US, P: Precision, R: Recall, F;: F; score, MCC: Matthew Correlation Coefficient) and
the corresponding ROC curves (al): MT-dataset, (b1): MQ-dataset and (c1): MQ-dataset after the
random US, AUC: Area Under the Curve).

2.4. Applicability Domain Study

Models yield reliable predictions when their assumptions are valid and unreliable
predictions when they are violated [23]. The Applicability Domain (AD) study defines
the space where those assumptions are verified. One of the possible approaches for AD
estimation is based on similarity analyses for the training set. Test compounds have a
reliable prediction if they are similar enough to those used by the algorithm in the learning
phase [24]. The similarity can be calculated according to many criteria. The performance of
the model is plotted against the whole range of similarity in the dataset.

As detailed under Methods, the AD was here assessed based on the predictions given
by the LOO validation and the similarities computed by using the ESshape3D descriptors
and by computing the value of the first nearest neighbor distance (NND). Based on the
NND values the compounds were clustered, and for each cluster, the model predictive
performance in terms of accuracy (rate of correctly predicted instances) on both datasets
was plotted against the cluster distances (Figure 3).
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Figure 3. Graphical evaluation of the applicability domain by the plots of the accuracy (rate of
correctly predicted instances) against the cluster distances for MT-dataset (a) and MQ-dataset (b).

A clear trend is shown in both the plots with predictive performances decreasing
when the NND increases. This is consistent with what was expected: the predictive power
of the model is directly correlated with the similarity between the test molecule and those
in the training set. Some differences between the AD studies for the two utilized datasets
are also observable. In detail, the accuracy values retrieved by the MT-dataset (Figure 3a), in
comparison with those retrieved by the MQ-dataset (Figure 3b), are less scattered around
the linear fit line and decrease less steeply with the decreasing of similarity (slope of 0.00441
against the slope of 0.00297). Both these behaviors are ascribable to a higher quality of the
model generated from MT-dataset, which maintains the predictive accuracy more constant
and linear and displays a larger applicability domain.

3. Materials and Methods
3.1. MetaTREE

MetaTREE is a database of metabolic trees that is currently being drawn up in our re-
search group. MetaTREE includes molecules and reactions reported in exhaustive metabolic
studies that explore all the possible metabolites formed in the human body starting from
a given substrate. The criterion to consider a metabolic tree as “exhaustive” and to be
included in MetaTREE is that it should include at least second-generation metabolites.
Hence, for the compilation of MetaTREE, we re-analyzed the same bibliographic sources of
MetaQSAR [17] and discarded specific studies which did not meet the defined criterion
since they are focused on a single metabolic reaction or a restricted group of biotransforma-
tions, as well as they investigate specific enzymes. In detail, we extracted 257 metabolic
trees from 1461 papers, and we collected more than 1200 molecules with more than 1000 an-
notated metabolic reactions.

This database has the same structure as MetaQSAR and its annotations undergo the
same classification system, which subdivides the metabolic reactions into 101 subclasses.
The goal under the compilation of this new database is to easily provide datasets with a
reduced false negative rate in the training data, with an improvement of performances for
the resulting predictive models. A difference between the two databases is that MetaQSAR
currently includes metabolites (and metabolic reactions) mostly belonging to the first and
second generations, while MetaTREE, exploring exhaustive metabolic trees, also comprises
metabolic data of higher generations. This difference can explain why the MT-dataset
includes a higher number of GSH substrates compared to the MQ-dataset (see Section 3.2).

3.2. Dataset Collection

For the model generation, we searched MetaQSAR and MetaTREE databases and we
collected two binary datasets, MQ-dataset and MT-dataset, respectively. The collected
data were curated by excluding molecules with less than 8 atoms or bigger than 1000 Da,
molecules with counter-ions, and molecules with rare elements. For what concerns the
dataset extracted from MetaTREE, the second step of manual and expert curation was
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carried out to further reduce the rate of false negatives. Molecules, which are involved
in high generation metabolic reactions and are reported as GSH non-substrates, while
comprising electrophilic functional groups that can react with GSH, were discarded. This
step is meant to exclude from the negative class those molecules which can structurally be
plausible substrates for the GSH conjugation, but the corresponding conjugate might be
undetected by the experiments for technical limits of the analytical instruments.

In the extracted datasets, molecules are classified as “GSH Substrates” (S) and “GSH
Non-Substrates” (NS). According to the metabolic reaction classification of both databases,
the former are molecules giving metabolic reactions coded as 24.01 or 24.02, the latter are
molecules giving metabolic reactions other than coded as 24.01/.02/.03/04.

The first dataset (MQ-dataset), collected by searching MetaQSAR, includes 2106
molecules, of which 418 GSH substrates and 1688 GSH non-substrates, while the second
one (MT dataset), extracted from MetaTREE, includes 980 molecules, of which 444 are GSH
substrates and 536 are GSH non-substrates. Given the different criteria by which MetaTREE
and MetaQSAR are collected, a key difference between the two resulting datasets is that
MQ-dataset mostly includes metabolites of the first and second generations, while MT-
dataset also comprises metabolic data of higher generation. Moreover, the curation step
aimed to reduce the false negative rate in the training data mostly influences the class
of the non-substrates. Indeed, the two datasets share only 325 non-substrates and the
MT-dataset includes 211 non-substrates that are not included in the MQ-dataset and which
mostly belong to high generation metabolic reactions. In contrast, the two datasets share
425 common GSH substrates with only 19 substrates comprised only in the MT-dataset.
Table 3 shows an overview of the dataset composition.

Table 3. Datasets composition.

Class MQ-Dataset MT-Dataset Shared Molecules
S 1688 536 325
NS 418 444 425
Total 2106 980 750

3.3. Descriptors

Before descriptor calculation, the 3D structure of the collected molecules was opti-
mized by applying a protocol of standardization, as follows: (i) the protonation state was
simulated as compatible with the physiological condition (pH = 7.4) and tautomers were
standardized by using the specific tool in the Maestro package, version 9.8.016 (Schrodinger
Release 2016-4: Maestro, Schrodinger, LLC, New York, NY, 2016, USA); (ii) the conforma-
tional behavior was explored by a clustered procedure based on the Monte Carlo algorithms
as implemented in the VEGA ZZ software [25], which generates 1000 conformers by ran-
domly rotating the rotors and selects the lowest energy conformer; (iii) the 3D structures
were refined by the semi-empirical method MOPAC 2016, [26] using the Hamiltonian
operator PM7 [27] and preserving the existing chirality.

Various sets of molecular descriptors were investigated in this study and Table 4
provides a summary of those involved in our models.

The core set of descriptors comprised 20 descriptors, of which 10 are molecular
physicochemical properties calculated by VEGA ZZ, and 10 are stereo-electronic molecular
properties calculated by the semi-empirical simulations. In addition, a set of 127 more
detailed 1D-, 2D-, and 3D-descriptors were investigated, including topological, consti-
tutional, and geometrical descriptors, which were calculated by the software BlueDesc
(http:/ /www.ra.cs.uni-tuebingen.de/software /bluedesc/welcome_e.html, Eberhard Karls
University of Tiibingen, Germany). The missing values in the original matrix were replaced
by the mean of each feature. The full list of these descriptors is reported in Supplementary
Materials Tables S2 and S3.
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Table 4. Sets of descriptors used in the study with their dimensionality, the number of computed
descriptors, the type of data, and the utilized software. The ESshaped3D fingerprints were used only
for the applicability domain analyses.

Dimensionality Number of

Descriptor Level Descriptors Type of Data Software
Physicochemical 3D 10 continuous VEGA ZZ
Semi-empirical electronic 3D 10 continuous MOPAC
Geometricgl, tgpological, 1D/2D/3D 127 continuous Bluedesc
constitutional
ECFP 2D-topological 1024 boolean ChemAxon
ESshaped3D 3D 122 fingerprints MOE

Furthermore, Extended-Connectivity Fingerprints [28] (ECFP) were generated by
the software GenerateMD version 15.3.2.0 (and the application for molecular descriptors
were supplied by ChemAxon (http:/ /www.chemaxon.com, Budapest, Hungary). These
descriptors were extracted from the SDF files, setting the bond depth to 5 and computing
the 1024-bit string form.

3.4. Principal Component Analysis

A Principal Component Analysis (PCA) was performed by the software Origin Pro
(ORIGIN PRO version 2017, OriginLab Corporation, Northampton, MA, USA) and comput-
ing the eigenvalue decomposition of the data correlation matrix. Results were visualized
by plotting the first three principal components (see Figure 1).

Two sets of descriptors were separately investigated (see Descriptors). The first study
involved a set of 20 selected descriptors including 3D-physicochemical and stereo-electronic
properties only; the second study focused on a set of 127 1D-, 2D-, and 3D-descriptors
calculated by BlueDesc software. The missing values in the original matrix were replaced
by the mean of each feature.

3.5. Pre-Processing and Parameter Optimization

To reduce model complexity, before each model was built, the input matrix was
pre-processed to select the most informative descriptors. In the first step, the “near zero
variance” descriptors were removed by exploiting the VarianceThreshold function from the
Scikit-learn sub-library called feature_selection (http:/ /scikit-learn.org/0.21/documentation.
html). The best performing thresholds of minimum variance resulting from preliminary
tests were equal to 0.0475 for the ECFP descriptors, which corresponds to a binary feature
95% composed of the same value and equal to 0.8 for all the other features. In the second
step, all the non-binary descriptors undergo a normalization process by applying the
preprocessing.scale function of Scikit-learn. Each feature value was standardized to have
a mean value of 0 and a standard deviation of 1. Finally, in the third step, the remaining
descriptors were checked for the presence of highly correlated features by computing the
Pearson correlation coefficient between each pair of features and setting a threshold of 0.95.

To optimize three of the most important random forest hyperparameters (max_features,
n_estimators, and class_weight) and to enhance the quality of predictions, a nested k-fold
cross-validation was implemented to be run after the preprocessing on each input matrix,
with k equal to 5 and the predictive performance measured by the F1 score metrics. The
grid used for this hyperparameter optimization is shown in Table S4 (Supplementary
Materials).

3.6. Model Building

Predictive models were built on the MQ-dataset (MQ-models) and the MT-dataset
(MT-models). All models were generated by using the random forest [29] implementation
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from the machine learning package scikit-learn for Python 3.0 (http://www.python.org)
running the code by JetBrains PyCharm Community Edition version 2016.2.3 (https:
/ /www.jetbrains.com/pycharm/ Prague, Czech Republic). In more detail, the specific
function RandomForestClassifier imported from the Scikit-learn sub-library called ensemble
was used. The hyperparameters were kept at their default values except for three parame-
ters, i.e., max_features, n_estimators, and class_weight, the values of which were optimized by
a five-fold cross-validated grid search (see above).

Model performances were validated by two internal validation methods: Monte Carlo
Cross Validation (MCCV) and Leave One Out (LOO) validation. The MCCV consisted
of a set of 100 repeated cycles of training and testing, each time randomly splitting the
dataset in 70% and 30%, respectively. Given our matrices of n sample, the LOO validation
method trained the model on n-1 samples and predicted the label of the 1 sample previously
excluded. The prediction reliability was evaluated based on five measures: precision, recall
and F1 Score for the individual class, as well as Matthews Correlation Coefficient (MCC)
and AUC (area under the ROC curve) for the overall performance.

3.7. Applicability Domain Study

Applicability domain (AD) analysis based on LOO validation results was carried out to
compare MQ-models and MT-models. The AD estimation was based on similarity analysis
measured on ESshape3D descriptors, as implemented by the MOE software (Molecular
Operating Environment; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite
#910, Montreal, QC, Canada, H3A 2R7). This choice is justified considering that the
ESshape3D fingerprints precisely account for the 3D structure of molecules and thus
they can distinguish even between different stereoisomers. The ESshaped3D fingerprints
comprise 122 integer value string descriptors that account for the 3D structure of molecules
and can distinguish among different stereoisomers of the same compound.

The similarity between a given compound and the whole set of training compounds
was evaluated by the value of the nearest neighbor distance (NND). The similarity matrix
of the Euclidian distances (positive integer numbers) between each pair of compounds was
computed and compounds were grouped in clusters according to their NND values.

4. Conclusions

This study continues our ongoing effort to enhance the accuracy of the metabolic data
and improve the performances of the resulting predictive models. In the last decade, we
embarked upon the compilation of a manually curated database (MetaQSAR), collected
by a meta-analysis of the specialized literature in the years 2005-2015. This analysis was
performed under the invaluable supervision of Prof. Bernard Testa, who critically reviewed
all the screened publications. Such meticulous work led to a superior accuracy of the
collected data as emphasized by the predictive studies based on MetaQSAR. Such an
ongoing project has two possible extensions. On one hand, we are involved in a constant
and critical updating of the databases by manually adding recently published papers in
the metabolic field. On the other hand, we aim at further increasing its overall accuracy by
revising and filtering the collected data, as here proposed.

Here, we try to further enhance the data accuracy by tackling the problem of false
negative cases. Indeed, the selection of negative instances is an issue that very often
affects the overall reliability of the collected learning sets. The negative instances are
frequently based on absent data without probability parameters which can explain if the
event can occur, but it is not yet reported, or it cannot occur. Drug metabolism is a typical
field that experiences such a challenging situation. Indeed, predictive studies based on
published metabolic data should consider that all metabolic reactions which are unreported
are negative instances, but this is an obvious and coarse approximation because a lot
of metabolic reactions can occur while being not yet published for a variety of reasons,
starting from the simple motivation that they are not yet searched at all.
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Hence, we propose to reduce the number of false negative data by focusing attention
on the papers which report exhaustive metabolic trees. Such a criterion is easily under-
standable since this kind of metabolic study has the objective to characterize as many
metabolites as possible. The so-developed new metabolic database (MetaTREE) showed
a better data accuracy, as demonstrated by the enhanced predictive performances of the
models obtained by using the MT-dataset compared to those of MQ-dataset. Indeed, the
better performance reached by the MT-dataset for what concerns the sensitivity measure
is due to a decrease in the false negative rate retrieved by the models. This result can be
ascribed to the better selection of negative examples in the learning dataset, which should
include a low number of molecules wrongly classified as “non substrates.”

Finally, the study emphasizes how accurate learning sets allow the development of
satisfactory predictive models even for challenging metabolic reactions such as the conju-
gation with glutathione. Notably, the generated models are not based on the concept of
structural alters but include various 1D/2D/3D molecular descriptors. They can account
for the overall property profile of a given substrate, thus allowing a more detailed de-
scription of the factors governing the reactivity to glutathione. Even though the proposed
models cannot be used to predict the site of metabolism or the generated metabolites, we
can figure out two relevant applications. First, they can be used to rapidly screen large
molecular databases to discard potentially reactive compounds in the early phases of drug
discovery projects. Second, they can be used as a preliminary filter to identify the molecules
that deserve further investigations to better characterize their reactivity with glutathione.

Supplementary Materials: The following are available online, Table S1: List of the top 25 features
for the LOO validated model based on the MT-dataset, Tables S2 and S3: Full lists of the involved
descriptors, Table S4: Grid used for this hyperparameters optimization.
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