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On the p-converse of the Kolyvagin-Gross-Zagier theorem
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Abstract. Let A/Q be an elliptic curve having split multiplicative reduction at an odd prime p. Under some
mild technical assumptions, we prove the statement:

rankZA(Q) = 1 and #
(
X(A/Q)p∞

)
< ∞ =⇒ ords=1L(A/Q, s) = 1,

thus providing a ‘p-converse’ to a celebrated theorem of Kolyvagin-Gross-Zagier.
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Introduction

Let A be an elliptic curve defined over Q, let L(A/Q, s) be its Hasse-Weil L-function, and let X(A/Q) be its
Tate-Shafarevich group. The (weak form of the) conjecture of Birch and Swinnerton-Dyer predicts that X(A/Q)
is finite, and that the order of vanishing ords=1L(A/Q, s) of L(A/Q, s) at s = 1 equals the rank of the Mordell-
Weil group A(Q). The main result to date in support of this conjecture comes combining the fundamental work
of Kolyvagin [Kol90] and Gross-Zagier [GZ86] (KGZ theorem for short):

ran := ords=1L(A/Q, s) ≤ 1 =⇒ rankZA(Q) = ran and #
(
X(A/Q)

)
<∞.

Let p be a rational prime, let ralg ∈ {0, 1}, and let X(A/Q)p∞ be the p-primary part of X(A/Q). By the
p-converse of the KGZ theorem in rank ralg we mean the conjectural statement

rankZA(Q) = ralg and #
(
X(A/Q)p∞

)
<∞ ?

=⇒ ords=1L(A/Q, s) = ralg.

Thanks to the fundamental work of Bertolini-Darmon, Skinner-Urban and their schools, we have now (at least
conceptually) all the necessary tools to attack the p-converse of the KGZ theorem. Notably, assume that p is a
prime of good ordinary reduction for A/Q. In this case the p-converse of the KGZ theorem in rank 0 follows by
[SU14]. In the preprint [Ski14], Skinner combines Wan’s Ph.D. Thesis [Wan14] −which proves, following the
ideas and the strategy used in [SU14], one divisibility in the Iwasawa main conjecture for Rankin-Selberg p-adic
L-functions− with the main results of [BDP13] and Brooks’s Ph.D. Thesis [Bro13] −extending the results of
[BDP13]− to prove many cases of the p-converse of the KGZ theorem in rank 1. In the preprint [Zha14], W.
Zhang also proves (among other things) many cases of the p-converse of the KGZ theorem in rank 1 for good
ordinary primes, combining the results of [SU14] with the results and ideas presented in Bertolini-Darmon’s
proof of (one divisibility in) the anticyclotomic main conjecture [BD05]. The same strategy also appears in
Berti’s forthcoming Ph.D. Thesis [Ber14] (see also [BBV15]).
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2 RODOLFO VENERUCCI

The aim of this note is to prove the p-converse of the KGZ theorem in rank 1 for a prime p of split multiplicative
reduction for A/Q. Our strategy is different from both the one of [Ski14] and the one of [Zha14], and is based
on the (two-variable) Iwasawa theory for the Hida deformation of the p-adic Tate module of A/Q. Together with
the results of the author’s Ph.D. Thesis [Ven13], and then Nekovář’s theory of Selmer Complexes [Nek06] (on
which the results of [Ven13] rely), the key ingredients in our approach are represented by the main results of
[BD07] and [SU14] (see the outline of the proof given below for more details). 1

The main result. Let A/Q be an elliptic curve having split multiplicative reduction at an odd rational
prime p. Let NA be the conductor of A/Q, let jA ∈ Q be its j-invariant, and let ρA,p : GQ → GL2(Fp) be (the

isomorphism class of) the representation of GQ on the p-torsion submodule A[p] of A(Q).

Theorem A. Let A/Q and p 6= 2 be as above. Assume in addition that the following properties hold:

1. ρA,p is irreducible;
2. there exists a prime q‖NA, q 6= p such that p ∤ ordq(jA);
3. rankZA(Q) = 1 and X(A/Q)p∞ is finite.

Then the Hasse-Weil L-function L(A/Q, s) of A/Q has a simple zero at s = 1.

Combined with the KGZ theorem recalled above, this implies:

Theorem B. Let A/Q be an elliptic curve having split multiplicative reduction at an odd rational prime p.
Assume that ρA,p is irreducible, and that there exists a prime q‖NA, q 6= p such that p ∤ ordq(jA). Then

ords=1L(A/Q, s) = 1 ⇐⇒ rankZA(Q) = 1 and #
(
X(A/Q)p∞

)
<∞.

If this is the case, the whole Tate-Shafarevich group X(A/Q) is finite.

Outline of the proof. Let A/Q be an elliptic curve having split multiplicative reduction at a prime p 6= 2,
and let f =

∑∞
n=1 anq

n ∈ S2(Γ0(NA),Z)
new be the weight-two newform attached to A by the modularity theorem

of Wiles, Taylor-Wiles et. al. Then NA = Np, with p ∤ N and ap = ap(A) = +1. Assume that ρA,p is irreducible.

Let f =
∑∞
n=1 anq

n ∈ IJqK be the Hida family passing through f . Here I is a normal local domain, finite
and flat over Hida’s weight algebra Λ := OLJΓK with OL-coefficients, where Γ := 1 + pZp and OL is the ring of
integers of a (sufficiently large) finite extension L/Qp (cf. Section 1.1). There is a natural injective morphism
(Mellin transform) M : I →֒ A (U), where U ⊂ Zp is a suitable p-adic neighbourhood of 2, and A (U) ⊂ LJk − 2K
denotes the sub-ring of formal power series in k − 2 which converge in U (see Section 3.1). Write

f∞ :=

∞∑

n=1

an(k) · qn ∈ A (U)JqK,

with an(k) ∈ A (U) defined as the image of an ∈ I under M. For every classical point κ ∈ U cl := U ∩ Z≥2, the
weight-κ-specialization fκ :=

∑∞
n=1 an(κ)q

n is the q-expansion of a normalised Hecke eigenform of weight κ and
level Γ1(Np); moreover f2 = f . For every quadratic character χ of conductor coprime with Np, a construction of
Mazur-Kitagawa and Greenberg-Stevens [BD07, Section 1] attaches to f∞ and χ a two-variable p-adic analytic
L-function Lp(f∞, χ, k, s) on U × Zp, interpolating the special complex L-values L(fκ, χ, j), where κ ∈ U cl,
1 ≤ j ≤ κ− 1 and L(fκ, χ, s) is the Hecke L-function of fκ twisted by χ. (Here s is the cyclotomic variable, and
k is the weight-variable.) Define the central critical p-adic L-function of (f∞, χ):

Lcc
p (f∞, χ, k) := Lp(f∞, χ, k, k/2) ∈ A (U)

as the restriction of the Mazur-Kitagawa p-adic L-function to the central critical line s = k/2 in the (k, s)-plane.
On the algebraic side, Hida theory attaches to f a central critical deformation Tf of the p-adic Tate module of

A/Q. Tf is a free rank-two I-module, equipped with a continuous, I-linear action of GQ, satisfying the following
interpolation property. For every classical point κ ∈ U cl (s.t. κ ≡ 2 mod 2(p− 1)) the base change Tf ⊗I,evκ L is
isomorphic to the central critical twist Vfκ(1−κ/2) of the contragredient of the p-adic Deligne representation Vfκ
of fκ, where evκ : I →֒ A (U) → L denotes the morphism induced by evaluation at κ on A (U). Moreover, Tf is
nearly-ordinary at p. More precisely, let v be a prime of Q dividing p, associated with an embedding iv : Q →֒ Qp,
and denote by i∗v : GQp

∼= Gv ⊂ GQ the corresponding decomposition group at v. Then there is a short exact
sequence of I[Gv]-modules

0→ T+
f ,v → Tf → T−

f ,v → 0,

1After this note was written, C. Skinner communicated to the author that, together with W. Zhang, he extended the methods
of [Zha14] to obtain (among other results) the p-converse of the KGZ theorem in cases where p is a prime of multiplicative reduction
[SZ14]. While there is an overlap between the main result of this note and the result of Skinner-Zhang, neither subsumes the other
(cf. the end of this section). Moreover, as remarked above, the methods of proof are substantially different.
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with T±
f ,v free of rank one over I. For every number field F/Q, define the (strict) Greenberg Selmer group

SelccGr(f/F ) := ker


H1(GF,S ,Tf ⊗I I

∗) −→
∏

v|p
H1(Fv,T

−
f ,v ⊗I I

∗)


 .

Here S is a finite set of primes of F containing every prime divisor of NAdisc(F ), GF,S is the Galois group of the
maximal algebraic extension of F which is unramified outside S∪{∞}, I∗ := Homcont(I,Qp/Zp) is the Pontrjagin
dual of I, and the product runs over all the primes v of F which divide p 2. Write

Xcc
Gr(f/F ) := HomZp

(
SelccGr(f/F ),Qp/Zp

)

for the Pontrjagin dual of SelccGr(f/F ). It is a finitely generated I-module. We now explain the main steps entering
in the proof of Theorem A.

Step I: Skinner-Urban’s divisibility. Let K/Q be an imaginary quadratic field in which p splits. Assume that
the discriminant of K/Q is coprime to NA, and write NA = N+N−, where N+ (resp., N−) is divided precisely by
the prime divisors of NA which are split (resp., inert) in K. Assume the following generalised Heegner hypothesis
and ramification hypothesis:

• N− is a square-free product of an odd number of primes.

• ρA,p is ramified at all prime divisors of N−.

Under some additional technical hypotheses on the data (A,K, p, . . . ) (cf. Hypotheses 1, 2 and 3 below), the main
result of [SU14], together with some auxiliary computations, allows us to deduce the following inequality:

(1) ordk=2L
cc
p (f∞/K, k) ≤ lengthpf

(
Xcc

Gr(f/K)
)
+ 2.

Here Lcc
p (f∞/K, k) := Lcc

p (f∞, χtriv, k) ·Lcc
p (f∞, ǫK , k), where χtriv is the trivial character and ǫK is the quadratic

character attached to K. pf := ker
(
ev2 : I →֒ A (U) → L

)
is the kernel of the morphism induced by evaluation

at k = 2 on A (U); it is a height-one prime ideal of I, so that the localisation Ipf is a discrete valuation ring.
Finally, lengthpf (M) denotes the length over Ipf of the localisation Mpf , for every finite I-module M .

Remark. The main result of Skinner and Urban [SU14] mentioned above, which proves one divisibility in
a three variable main conjecture for GL2, is a result over K, for K/Q as above, and not over Q. This is why we
need to consider a base-change to such a K/Q in our approach to Theorem A.

Remark. By assumption, A/Q has split multiplicative reduction at p, and as well-known this implies
that Lp(f∞, χtriv, k, s) has a trivial zero at (k, s) = (2, 1) in the sense of [MTT86]. Moreover, the hypothesis
ǫK(p) = +1 (i.e. p splits in K) implies that Lp(f∞, ǫK , k, s) also has such an exceptional zero at (k, s) = (2, 1)
(see, e.g. [BD07, Section 1]). This is the reason behind the appearance of the addend 2 on the R.H.S. of (1).

Remark. The generalised Heegner hypothesis gives ǫK(−NA) = −ǫK(N−) = +1. This implies that the
Hecke L-series L(f, s) = L(A/Q, s) and L(f, ǫK , s) = L(AK/Q, s) (where AK/Q is the quadratic twist of A by
K) have the same sign in their functional equations at s = 1. The Birch and Swinnerton-Dyer conjecture then
predicts that the ranks of A(Q) and AK(Q) ∼= A(K)− have the same parity. In particular rankZA(K), and then
ordk=2L

cc
p (f∞/K, k) should be even.

Step II: Bertolini-Darmon’s exceptional-zero formula. Let K/Q be as in Step I. Assume moreover

• sign(A/Q) = −1
where sign(A/Q) ∈ {±1} denotes the sign in the functional equation satisfied by the Hasse-Weil L-function
L(A/Q, s). As remarked above, this implies that sign(AK/Q) = −1 too. The analysis carried out in [GS93] and
[BD07] tells us that, for both χ = χtriv and χ = ǫK :

(2) ordk=2L
cc
p (f∞, χ, k) ≥ 2;

this is once again a manifestation of the presence of an exceptional zero at (k, s) = (2, 1) for the Mazur-Kitagawa
p-adic L-function Lp(f∞, χ, k, s). Much more deeper, Bertolini and Darmon proved in [BD07] the formula

d2

dk2
Lcc
p (f∞, χ, k)k=2

·
= log2A(Pχ),

2Selcc
Gr

(f/F ) depends on the choice of the set S, even if this dependence is irrelevant for the purposes of this introduction.
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where
·
= denotes equality up to a non-zero factor, logA : A(Qp) → Qp is the formal group logarithm, and

Pχ ∈ A(K)χ is a Heegner point. This formula implies that

(3) ordk=2L
cc
p (f∞, χ, k) = 2 ⇐⇒ ords=1L(A

χ/Q, s) = 1,

i.e. if and only if the Hasse-Weil L-function of the χ-twist Aχ/Q has a simple zero at s = 1. (Here of course
Aχ = A is χ = χtriv and Aχ = AK if χ = ǫK . Recall that by assumption L(Aχ/Q, s) vanishes at s = 1.)

Step III: bounding the characteristic ideal. Let χ denote either the trivial character or a quadratic character of
conductor coprime with Np, and writeKχ := Q orKχ/Q for the quadratic field attached to χ accordingly. Making
use of Nekovář’s theory of Selmer Complexes (especially of Nekovář’s generalised Cassels-Tate pairings) [Nek06],
we are able to relate the structure of the Ipf -module Xcc

Gr(f/Kχ)
χ
pf

:= Xcc
Gr(f/Kχ)

χ ⊗I Ipf to the properties of a
suitable Nekovář’s half-twisted weight pairing (see Section 5.2)

〈−,−〉Nek,χ
Vf ,π

: A†(Kχ)
χ ×A†(Kχ)

χ −→ Qp,

playing here the rôle of the canonical cyclotomic p-adic height pairing of Schneider, Mazur-Tate et. al. in
cyclotomic Iwasawa theory. Here, for every Z[Gal(Kχ/Q)]-module M , we write Mχ for the submodule of M on
which Gal(Kχ/Q) acts via χ, and A†(Kχ) is the extended Mordell-Weil group of A/Kχ introduced in [MTT86].

〈−,−〉Nek,χ
Vf ,π

is a bilinear and skew-symmetric form on A†(Kχ)
χ (see Section 5). Assume that the following

conditions are satisfied:

• χ(p) = 1, i.e. p splits in Kχ;

• rankZA(Kχ)
χ = 1 and X(A/Kχ)

χ
p∞ is finite.

Then A†(Kχ)
χ ⊗ Qp = Qp · qχ ⊕ Qp · Pχ is a 2-dimensional Qp-vector space generated by a non-zero point

Pχ ∈ A(Kχ)
χ ⊗Q and a certain Tate’s period qχ ∈ A†(Kχ)

χ (which does not come from a Kχ-rational point of
A). In the author’s Ph.D. Thesis [Ven13] we proved that

(4) 〈qχ, Pχ〉Nek,χ
Vf ,π

·
= logA(Pχ)

(where
·
= denotes again equality up to a non-zero multiplicative factor), which implies that 〈−,−〉Nek,χ

Vf ,π
is non-

degenerate on A†(Kχ)
χ. Together with the results of Nekovář mentioned above, this allows us to deduce that

(5) Xcc
Gr(f/Kχ)

χ
pf
∼= Ipf /pfIpf .

Remark. Let Vf := Tap(A) ⊗Zp Qp be the p-adic Tate module of A/Q, and let H1
f (Kχ, Vf ) be the Bloch-

Kato Selmer group of Vf over Kχ. The pairing 〈−,−〉Nek,χ
Vf ,π

is naturally defined on Nekovář’s extended Selmer

group H̃1
f (Kχ, Vf )

χ, which is an extension of H1
f (Kχ, Vf )

χ by the Qp-module generated by qχ. Indeed it is

the non-degeneracy of 〈−,−〉Nek,χ
Vf ,π

on H̃1
f (Kχ, Vf )

χ to be directly related to the structure of the Ipf -module

Xcc
Gr(f/Kχ)

χ
pf

. On the other hand, H̃1
f (Kχ, Vf )

χ contains A†(Kχ)
χ ⊗Qp, and equals it precisely if the p-primary

part of X(A/Kχ)
χ is finite. This explains why we need the finiteness of X(A/Kχ)

χ
p∞ in order to deduce (5).

Remark. The length of Xcc
Gr(f/Kχ)

χ
pf

over Ipf can be interpreted as the order of vanishing at k = 2 of an
algebraic p-adic L-function Lcc

p (f∞, χ, k) ∈ A (U), defined as the Mellin transform of the characteristic ideal of
Xcc

Gr(f/Kχ)
χ (at least assuming that I is regular). The results of Nekovář briefly mentioned above can be used to

prove an analogue in our setting of the algebraic p-adic Birch and Swinnerton-Dyer formulae of Schneider [Sch83]
and Perrin-Riou [PR92], which relates the leading coefficient of Lcc

p (f∞, χ, k) at k = 2 to the determinant of

〈−,−〉Nek,χ
Vf ,π

, computed on A†(Kχ)
χ/torsion.

Remark. Formula (4) is crucial here. Indeed, as remarked above, it allows us to deduce the non-degeneracy of

the weight-pairing 〈−,−〉Nek,χ
Vf ,π

. The analogue of this result in cyclotomic Iwasawa theory (i.e. Schneider conjecture

in rank-one) seems out of reach at present.

Remark. The preceding results, and (4) in particular, should be considered as an algebraic counterpart of
Bertolini-Darmon’s exceptional zero formula (cf. Step II). This point of view is developed in [Ven14] (see also
Part I of the author’s Ph.D. thesis [Ven13]), and leads to the formulation of two-variable analogues of the Birch
and Swinnerton-Dyer conjecture for the Mazur-Kitagawa p-adic L-function Lp(f∞, χ, k, s). Formula (4) −to be
considered part of Nekovář’s theory− and Bertolini-Darmon’s exceptional zero formula, also represent crucial
ingredients in the proof, given in [Ven15], of the Mazur-Tate-Teitelbaum exceptional zero conjecture in rank one.
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Step IV: conclusion of the proof. Assume that the hypotheses of Theorem A are satisfied. Thanks to Nekovář’s
proof of the parity conjecture [Nek06], sign(A/Q) = −1. By the main result of [BFH90] and hypothesis 2 in
Theorem A, we are then able to find a quadratic imaginary field K/Q which satisfies the hypotheses needed in
Steps I and II, with N− = q, and such that L(AK/Q, s) has a simple zero at s = 1, i.e.

(6) ords=1L(A
K/Q, s) = 1.

An application of the KGZ theorem gives

rankZA
K(Q) = 1; #

(
X(AK/Q)p∞

)
<∞.

Together with hypothesis 3 in Theorem A, this implies that the hypotheses needed in Step III are satisfied by
both the trivial character χ = χtriv and χ = ǫK . Then

4
(2)
≤ ordk=2L

cc
p (f∞/K, k)

(1)
≤ lengthpf

(
Xcc

Gr(f/K)
)
+ 2

(5)
= 4,

i.e. ordk=2L
cc
p (f∞/K, k) = 4. Applying now Bertolini-Darmon’s result (3) yields

ords=1L(A/K, s) = 2,

where L(A/K, s) = L(A/Q, s) ·L(AK/Q, s) is the Hasse-Weil L-function of A/K. Together with (6), this implies
that L(A/Q, s) has a simple zero at s = 1, as was to be shown.

Recent related results. In the recent preprint [SZ14], Skinner and Zhang prove (among other results) a
theorem similar to our Theorem A. More precisely, Theorem 1.1 of loc. cit. proves instances of the p-converse
of the KGZ theorem in rank one, for an elliptic curve with multiplicative reduction at a prime p ≥ 5. On the
one hand, their result does not require the p-primary part of the Tate-Shafarevich group to be finite, but only
that the p-primary Selmer group of the elliptic curve has Zp-corank one. On the other hand, together with the
assumptions 1 and 2 of Theorem A, the authors assume extra hypotheses in their statement. For example, they
assume that the mod-p Galois representation ρA,p is not finite at p, that the Mazur-Tate-Teitelbaum L-invariant

Lp(A/Q) :=
logp(qA)

ordp(qA) has p-adic valuation 1 (where qA ∈ pZp is the Tate period of A/Qp), and require additional

‘p-indivisibility conditions’ for the Tamagawa factors of A/Q. (We refer to loc. cit. for a precise list of the
assumptions.) Finally, it is worth noting that our approach here (cf. preceding Section) is essentially different
from that of [SZ14], where the authors extend the results and methods of [Zha14] to the multiplicative setting.

Acknowledgements. We sincerely thank Massimo Bertolini for many inspiring and interesting conversations, and
for his encouragement during the preparation of this note. We thank Henri Darmon for his interest in this work.

1. Hida Theory

Fix for the rest of this note an elliptic curve A/Q having split multiplicative reduction at an odd rational
prime p. Let NA be the conductor of A/Q, so that NA = Np, with p ∤ N , and let

f =

∞∑

n=1

anq
n ∈ S2(Γ0(Np),Z)

new

be the weight-two newform attached to A/Q by modularity. Fix a finite extension L/Qp, with ring of integers

OL and maximal ideal mL, and an embedding ip : Q →֒ Qp, under which we identify Q with a subfield of Qp.

This also fixes a decomposition group i∗p : GQp
→֒ GQ at p (where GF := Gal(F/F ) for every field F ).

1.1. The Hida family I. Let Γ := 1 + pZp, let Z×
N,p := Γ× (Z/pNZ)

×
, and let

OLJZ×
N,pK[Tn : n ∈ N] ։ ho(N,OL)

be Hida’s universal p-ordinary Hecke algebra with OL-coefficients. Writing Λ := OLJΓK, ho(N,OL) is a finite,
flat Λ-algebra [Hid86]. Letting L := Frac(Λ), there is a decomposition ho(N,OL) ⊗Λ L =

∏
j Kj as a finite

product of finite field extensions Kj/L . Let K = Kjo be the primitive component of ho(N,OL)⊗Λ L to which
the p-ordinary newform f belongs [Hid86, Section 1], and let I be the integral closure of Λ in the finite extension
K /L . For every n ∈ N, write an ∈ I for the image in I of the nth Hecke operator Tn. By [Hid86, Corollary
1.5], there exists a unique morphism of OL-algebras

φf : I −→ OL,
such that φf (an) = an for every n ∈ N; moreover, φf maps the image of Z×

N,p in I to 1 (as f has weight two

and trivial neben type). I is a normal local domain, finite and flat over Hida’s weight algebra Λ. The domain I is
called the (branch of the) Hida family passing through f . This terminology is justified as follows.
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An arithmetic point on I is a continuous morphism of OL-algebras ψ : I → Qp, whose restriction to Γ (with

respect to the structural morphism Λ → I) is of the form ψ|Γ(γ) = γkψ−2 · χψ(γ), for an integer kψ ≥ 2 and
a finite order character χψ on Γ. We call kψ and χψ the weight and (wild) character of ψ respectively. Write
X arith(I) for the set of arithmetic points on I. Note that φf ∈ X arith(I) is an arithmetic point of weight 2 and
trivial character. Let

f =
∞∑

n=1

an · qn ∈ IJqK.

Then for every ψ ∈ X arith(I), the specialisation of f at ψ:

fψ :=

∞∑

n=1

ψ(an) · qn ∈ Skψ (Γ0(Np
cψ+1), ξψ)

is a p-stabilised ordinary newform of tame level N , weight kψ and character ξψ := χψ · ω2−kψ . Here cψ ≥ 0 is the

smallest positive integer such that Γp
cψ ⊂ ker(χψ), and ω : Z/(p− 1)Z ∼= F×

p → Z×
p is the Teichmüller character.

Moreover, we recover f as the φf -specialisation of f , i.e.

fφf :=

∞∑

n=1

φf (an)q
n = f.

Let ψ ∈ X arith(I) be an arithmetic point. Denote by Kψ := Frac(ψ(I)) ⊂ Qp the fraction field of ψ(I), by mψ
its maximal ideal, and by Fψ = ψ(I)/mψ its residue field. Let ρψ : GQ → GL2(Kψ) be the contragredient of
the Deligne representation associated with fψ, and denote by ρψ : GQ → Gal(Fψ) the semi-simplification of the
reduction of ρψ modulo mψ. Then ρψ is unramified at every prime ℓ ∤ Np, and Trace(ρψ(Frobℓ)) = ψ(aℓ) (mod mψ)
for every prime ℓ ∤ Np, where Frobℓ ∈ GQ is an arithmetic Frobenius at ℓ. Enlarging L if necessary, one can
assume Fψ = F := OL/mL. Then the representation ρψ does not depend, up to isomorphism, on the arithmetic
point ψ. Denote by ρf this isomorphism class, and assume throughout this note the following

Hypothesis 1 (irr). ρf is (absolutely) irreducible.

Under this assumption, it is known that Hf :=
(
ho(N,OL) ⊗Λ I

)
∩
(
K × 0) is a free I-module of rank one

(where we use the decomposition ho(N,OL)⊗Λ L = K × ∏j 6=jo Kj mentioned above).

Remark 1.1. Taking ψ = φf in the discussion above, we deduce that ρf is isomorphic to the F-base change

of the mod-p Galois representation ρA,p attached to the p-torsion submodule A[p] of A(Q). (Indeed, Hypothesis 1
is equivalent to require that ρA,p is absolutely irreducible.) Since A has split multiplicative reduction at p, Tate’s
theory gives us an isomorphism (see [Tat95] or Chapter V of [Sil94])

ρf |GQp

∼=
(
ωcy ∗
0 1

)
,

where ρf |GQp
is the restriction of ρf to GQp

and ωcy : GQp
։ Gal(Qp(µp)/Qp) ∼= F×

p is the mod-p cyclotomic

character. As p 6= 2, this implies that ρf is p-distinguished, i.e. that condition (dist)f in [SU14] is satisfied.

1.2. Hida’s representations Tf and Tf . Let Tf = (Tf , T
+
f ) be Hida’s p-ordinary I-adic representation

attached to f (see, e.g. [Hid86], [SU14]). Thanks to our Hypothesis 1, Tf is a free I-module of rank two,
equipped with a continuous action of GQ which is unramified at every prime ℓ ∤ Np, and such that

(7) det (1− Frobℓ ·X |Tf ) = 1− aℓ ·X + ℓ[ℓ] ·X2

for every ℓ ∤ Np. Here Frobℓ = frob−1
ℓ is an arithmetic Frobenius at ℓ and [·] : Z×

N,p ⊂ OLJZ×
N,pK → I is the

structural morphism. Write χcy,N : GQ ։ Gal(Q(µNp∞)/Q) ∼= Z×
N,p = Γ × (Z/NpZ)

×
, χcy : GQ ։ Z×

p

for the p-adic cyclotomic character (i.e. the composition of χcy,N with projection to Z×
p = Γ × (Z/pZ)×) and

κcy : GQp
→ Γ for the composition of χcy with projection to principal units. Then [χcy] = [κcy] = [χcy,N ] as

I×-valued characters on GQ (since f has trivial neben type). In particular the determinant representation of Tf
is given by

(8) det
I

Tf ∼= I
(
χcy · [κcy]

)
.

T+
f is an I-direct summand of Tf of rank one, which is invariant under the action of the decomposition group

GQp
→֒ GQ determined by ip. Moreover, T−

f := Tf/T
+
f is an unramified GQp

-module, and the Frobenius
Frobp ∈ GQp

/IQp
acts on it via multiplication by the p-th Fourier coefficient ap ∈ I× of f . In other words

(9) T+
f
∼= I
(
a∗−1
p · χcy · [κcy]

)
; T−

f
∼= I
(
a∗p
)
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as I[GQp
]-modules, where a∗p : GQp

։ GQp
/IQp

→ I× is the unramified character sending Frobp to ap, and we

write again κcy : GQp
։ Gal(Qp(µp∞)/Qp) ∼= Z×

p ։ Γ for the p-adic cyclotomic character on GQp
.

Given an arithmetic point ψ ∈ X arith(I), let Vψ be the contragredient of the p-adic Deligne representation
attached to the eigenform fψ: it is a two-dimensional vector space over Kψ = Frac(I/ker(ψ)), equipped with a
continuous Kψ-linear action of GQ which is unramified at every prime ℓ ∤ Np, and such that the trace of Frobℓ
acting on Vψ equals the ℓth Fourier coefficient ψ(aℓ) = aℓ(fψ) of fψ, for every ℓ ∤ Np. As proved by Ribet,
Vψ is an absolutely irreducible GQ-representation, so that the Chebotarev density theorem, together with the
Eichler-Shimura relations (7) tell us that there exists an isomorphism of Kψ[GQ]-modules

(10) Tf ⊗I,ψ Kψ
∼= Vψ.

In other words, Tf interpolates the contragredients of the Deligne representations of the classical specialisations of
the Hida family f . (Note: Tf is the contragredient of the representation denoted by the same symbol in [SU14].)

Together with the representations Tf , we are particularly interested in a certain self-dual twist Tf of it, defined
as follows. Define the critical character

[χcy]
1/2 = [κcy]

1/2 : GQ ։ Gal(Q(µp∞)/Q) ∼= Z×
p ։ Γ

√·−→ Γ
[·]−→ I×,

where the isomorphism is given by the p-adic cyclotomic character χcy. (As p 6= 2 by assumption, Γ = 1 + pZp is
uniquely 2-divisible, e.g. by Hensel’s Lemma, so that

√· : Γ ∼= Γ is defined.) Let

Tf := Tf ⊗I [χcy]
−1/2 ∈ I[GQ]Mod; T±

f := T±
f ⊗I [χcy]

−1/2 ∈ I[GQp ]
Mod,

where we write for simplicity [χcy]
−1/2 for the inverse of [χcy]

1/2. By (8), Tf satisfies the crucial property:

det
I

Tf
∼= I(1),

i.e. the determinant representation of Tf is given by the p-adic cyclotomic character. As explained in [NP00],
this implies that there exists a skew-symmetric morphism of I[GQ]-modules

π : Tf ⊗I Tf −→ I(1),

inducing by adjunction isomorphisms of I[GQ]- and I[GQp
]-modules respectively:

adj(π) : Tf
∼= HomI(Tf , I(1)); adj(π) : T±

f
∼= HomI(T

∓
f , I(1)).

Let X arith(I)′ be the set of arithmetic points ψ with trivial character and weight kψ ≡ 2 (mod 2(p − 1)). Given

ψ ∈ X arith(I)′, we have ψ ◦ [χcy]
−1/2(Frobℓ) = ℓ1−kψ/2 for every ℓ ∤ Np. Equation (10) then gives: for every

arithmetic point ψ ∈ X arith(I)′, there exists an isomorphism of Kψ[GQ]-modules

Tf ⊗I,ψ Kψ
∼= Vψ(1− kψ/2).

In particular, Tf interpolates the family of self-dual, critical twists Vψ(1 − kψ/2), for ψ ∈ X arith(I)′.
Let v be a prime of Q dividing p, associated with an embedding iv : Q →֒ Qp. Write i∗v : GQp

→֒ GQ for the
embedding determined by iv, and Gv := i∗v(GQp

) for the corresponding decomposition group at v. Let Mf denote

either Tf or Tf . Set M±
f ,v := M±

f ∈ I[GQp ]
Mod, which we consider as I[Gv]-modules via i∗v. Then there is a short

exact sequence of I[Gv]-modules

(11) 0→M+
f ,v

i+v→Mf

p−v→M−
f ,v → 0,

where i+v and p−v are defined as follows. Fix αv ∈ GQp
and βv ∈ GQ such that iv = αv ◦ ip ◦ βv. Then one sets

i+v := β−1
v ◦ i+ ◦ α−1

v and p−v := αv ◦ p− ◦ βv, where i+ : M+
f ⊂Mf and p− : Mf ։ M−

f denote the inclusion and
projection respectively.

2. The theorem of Skinner-Urban

The aim of this section is to state the main result of [SU14] in our setting. In order to do that, we recall
Skinner-Urban’s construction of a three-variable p-adic L-function attached to f and a suitable quadratic imaginary
field, and we introduce the Greenberg-style Selmer groups attached to the Hida family f .
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2.1. Cyclotomic p-adic L-functions. For every ψ ∈ X arith(I), write Oψ := ψ(I). Let Q∞/Q be the
Zp-extension of Q, let G∞ := Gal(Q∞/Q), and write Λcy

ψ := OψJG∞K for the cyclotomic Iwasawa algebra over

Oψ. Let ψ ∈ X arith(I), let ǫ be a quadratic Dirichlet character of conductor Cǫ coprime with Np, and let S be
a finite set of rational primes. We say that an Iwasawa function LSǫ (fψ) ∈ Λcy

ψ is an S-primitive (cyclotomic)
p-adic L-function of fψ ⊗ ǫ if it satisfies the following interpolation property. For every finite order character

χ ∈ G∞ → Q
∗
p of conductor pcχ and every integer 1 ≤ j ≤ kψ − 1:

χj−1
cy χ

(
LSǫ (fψ)

)
= ψ(ap)

−cχ ·
(
1− ω1−jǫχ(p) · pj−1

ψ(ap)

)
×(12)

×(pcχCǫ)
j
(j − 1)! · LS\{p}(fψ, ωj−1χ−1ǫ, j)

(−2πi)j−1G (ωj−1χ−1ǫ) · Ωsgn(ǫ)·(−1)j−1

fψ

∈ Oψ,

where the notations are as follows. L(fψ, µ, s) = L∅(fψ, µ, s) denotes the analytic continuation of the complex

Hecke L-series L(fψ, µ, s) :=
∑∞

n=1 µ(n)
ψ(an)
ns =

∏
ℓEℓ(fψ ⊗ µ, ℓ−s)−1 of fψ twisted by µ; for every finite set Σ of

rational primes, LΣ(fψ, µ, s) :=
∏
ℓ∈ΣEℓ(fψ ⊗ µ, ℓ−s) · L(fψ, µ, s). G(µ) denotes the Gauss sum of the character

µ. Finally, Ω±
fψ

are canonical periods of fψ, as defined, e.g. in [SU14]. We recall that Ω±
fψ

is an element of C×,

defined only up to multiplication by a p-adic unit in Oψ, and such that the quotient appearing in the second line of
the equation above lies in the number field Q (ψ(an) : n ∈ N) generated by the Fourier coefficients of fψ. Together
with the Weierstraß preparation theorem, this implies that LSǫ (fψ), if it exists, is unique up to multiplication a

unit in O×
ψ . For a proof of the existence, see [MTT86, Chapter I].

2.2. Skinner-Urban three variable p-adic L-functions. Let K/Q be a quadratic imaginary field of
(absolute) discriminant DK , let qK ∤ 6p be a rational prime which splits in K, and let S be a finite set of finite
primes of K. We assume that the following hypothesis is satisfied.

Hypothesis 2. The data (K, p, L, qK , S) satisfy the following assumptions:

• DK is coprime with 6Np.
• p splits in K.

• L/Qp contains the finite extension Qp

(
D

1/2
K , (−1)1/2, 11/Np

)
/Qp.

• S consists of all the primes of K which divide qKDKNp.

Let K/K be the Z2
p-extension of K. Then K = K∞ ·K−

∞, where K∞ (resp., K−
∞) is the cyclotomic (resp.,

anticyclotomic) Zp-extension of K. Denote by G∞ := Gal(K∞/K) ∼= Gal(Q∞/Q) and D∞ := Gal(K−
∞/K) the

Galois groups of K∞/K and K−
∞/K respectively, so that Gal(K/K) ∼= G∞ ×D∞, and let I∞ := IJG∞K. Section

12 of [SU14] constructs an element

LSK(f) ∈ IJG∞ ×D∞K = I∞JD∞K,

satisfying the following property: given ψ ∈ X arith(I), write ψcy : IJG∞ × D∞K → Λcy
ψ = ψ(I)JG∞K for the

morphism of OLJG∞K-algebras whose restriction to I is ψ, and s.t. ψcy(D∞) = 1. Moreover, fix canonical periods
Ω±
ψ := Ω±

fψ
for fψ. Then, for every ψ ∈ X arith(I), there exists λψ ∈ O×

ψ such that

(13) ψcy
(
LSK(f)

)
= λψ · LS(fψ) · LSǫK (fψ),

where LS(fψ) := LS1 (fψ) (resp., LSǫK (fψ)) is an S-primitive cyclotomic p-adic L-function of fψ (resp., of fψ⊗ ǫK),

computed with respect to the periods Ω±
ψ . Here ǫK : (Z/DKZ)

× → Q
∗
p is the primitive quadratic character

attached to K/Q, and we write for simplicity LS∗ (fψ) := LSo∗ (fψ), where So := {ℓ prime : ℓ|qKDKNp} is the set
of rational primes lying below the primes in S. More precisely, such a p-adic L-function LSK(f) = LSK(f ; 1f ) is
attached to every generator 1f of the free rank-one I-module Hf (mentioned at the end of Section 1.1), and it is a
well defined element of I∞JD∞K only up to multiplication by a unit in I. We refer to [SU14, Theorems 12.6 and
12.7 and Proposition 12.8] for the proofs of these facts, and for the interpolation property characterizing LSK(f).

Remark 2.1. Recall that Hypothesis 1 (denoted (irred)f in [SU14]) is in order, i.e. that the residual
representation ρf is assumed to be (absolutely) irreducible. As explained in Remark 1.1, we also know that ρf is
p-distinguished, i.e. that condition (dist)f in [SU14] is satisfied. These two hypotheses are used by Skinner and
Urban in their construction of LSK(f) (cf. Section 3.4.5 and Theorems 12.6 and 12.7 of [SU14]).
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2.3. Greenberg Selmer groups. Let F/Q be a number field, and let F/F be a Zp-power extension of F ,
i.e. Gal(F/F ) ∼= Zrp for some r ≥ 0. Write IF := IJGal(F/K)K and

Tf (F) := Tf ⊗I IF (ε
−1
F ) ∈ IF [GF ]Mod,

where εF : GF ։ Gal(F/F ) ⊂ I×F is the tautological representation. Let v of be a prime of F dividing p,

associated with an embedding iv : Q →֒ Qp, and let i∗v : GFv →֒ GF denote the corresponding decomposition
group at v. Define

Tf (F)±v := T±
f ,v ⊗I IF (ε

−1
F ,v) ∈ IF [GFv ]

Mod,

where εF ,v := εF ◦i∗v : GFv → I×F . The exact sequence (11) then induces a short exact sequence of IF [GFv ]-modules

(14) 0→ Tf (F)+v
i+v→ Tf (F)

p−v→ Tf (F)−v → 0.

Let S be a finite set of primes of F , containing all the prime divisors of NpDF (where DF := disc(F/Q) is
the discriminant of F/Q), and let GF,S := Gal(FS/F ) be the Galois group of the maximal algebraic extension
FS/F which is unramified at every finite prime v /∈ S of F . As F/F (being a Zp-power extension) is unramified
outside p, Tf (F) is unramified at every finite prime v /∈ S of F , i.e. Tf (F) is a IF [GF,S ]-module. Let a ∈ Spec(IF ),
and write I∗F := Homcont(IF ,Qp/Zp) for the Pontrjagin dual of IF , so that I∗F [a] is the Pontrjagin dual of IF/a.
Define the (discrete) non-strict Greenberg Selmer group:

(15) SelSF(f , a) := ker


H1

(
GF,S , Tf (F)⊗IF

I∗F [a]
)
−→

∏

v|p
H1
(
Iv, Tf (F)−v ⊗IF

I∗F [a]
)



where Iv = IFv ⊂ GFv is the inertia subgroup and the arrow is defined by
∏
v|p p

−
v∗ ◦ resv, p−v∗ being the morphism

induced in cohomology by p−v : Tf (F) ։ Tf (F)−v . It is a cofinitely generated IF/a-module, i.e. its Pontrjagin dual

XS
F (f , a) := HomIF

(
SelSF (f , a), I

∗
F [a]

)
∼= HomZp

(
SelSF (f , a),Qp/Zp

)

is a finitely-generated IF/a-module. If a = 0, write more simply

SelSF (f) := SelSF (f , 0); XS
F (f) := XS

F (f , 0).

By construction there are natural morphisms of IF/a-modules

(16) SelSF(f , a)→ SelSF(f)[a]; XS
F(f) ⊗IF

IF/a→ XS
F(f , a).

Since I is a normal domain, so is IF ∼= IJX1, . . . , XrK (with Gal(F/F ) ∼= Zrp). Write ChSF (f) ⊂ IF for the

characteristic ideal of the IF -module XS
F(f) (cf. Section 3 of [SU14]):

ChSF (f) :=
{
x ∈ IF : orda(x) ≥ lengtha

(
XS

F(f)
)
, for every a ∈ Spec(IF ) s.t. height(a) = 1

}
.

Here orda : Frac(IF ) → Q ∪ {∞} is the (normalised) discrete valuation attached to the height-one prime a, and
lengtha : (IFMod)ft → Z ∪ {∞} is defined by sending a finite IF -module M to the length over (IF )a of the
localization Ma of M at a.

Remark 2.2. Assume that F/F contains the cyclotomic Zp-extension F∞ ⊂ F (µp∞) of F . Thanks to the

work of Kato [Kat04], we know that XS
F(f) is a torsion IF -module (see also Section 3 of [SU14]), so that ChSF(f)

is a non-zero divisorial ideal (which is principal if I is a unique factorization domain).

2.4. The main result of [SU14]. Let (K, p, L, qK , S) be as in Section 2.2, and assume (as in loc. cit.)
that this data satisfies Hypothesis 2. In particular, K/Q is an imaginary quadratic field in which p splits. Let
K = K∞ ·K−

∞ be the Z2
p-extension of K, and let LSK(f) ∈ IK = IJGal(K/K)K be Skinner-Urban’s three variable

p-adic L-function. Together with Hypotheses 1 and 2, we have to consider:

Hypothesis 3 (ram). Decompose N = N+N−, where N+ = N+
K (resp., N− = N−

K) is divided precisely by
the prime divisors of N = NA/p which are split (resp., inert) in K. Then:

• N− is square-free, and has an odd number of prime divisors.
• The residual representation ρf is ramified at every prime ℓ‖N−.

The following fundamental and deep result is Theorem 3.26 of [SU14].

Theorem 2.3 (Skinner-Urban [SU14]). Assume that Hypotheses 1, 2 and 3 hold. Then

ChSK(f) ⊆
(
LSK(f)

)
.
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3. Restricting to the central critical line

The aim of this section is to specialise Skinner-Urban’s result to the (cyclotomic) central critical line in the
weight-cyclotomic space. More precisely, we use Theorem 2.3 to compare the order of vanishing of a certain
central-critical p-adic L-function of the weight variable with the structure of a certain central-critical Selmer
group attached to Hida’s half-twisted representation Tf .

In this section, the notations and hypotheses of Section 2.4 are in order. In particular, we assume that
Hypotheses 1, 2 and 3 are satisfied.

3.1. The (localised) Hida family. Let φf ∈ X arith(I) be the arithmetic point of weight 2 and trivial
character introduced in Section 1.1, with associated p-stabilised weight-two newform f ∈ S2(Γ0(Np),Z)

new. Write
pf := ker (φf ) ∈ Spec(I). By [Hid86, Corollary 1.4], the localisation Ipf is a discrete valuation ring, unramified

over the localisation of Λ = OLJΓK at the prime p̃ = pf ∩ Λ. Fix a topological generator γwt ∈ Γ = 1 + pZp, and
write ̟wt := γwt − 1. Then ̟wt is a generator of the prime p̃, so that

(17) pf · Ipf = ̟wt · Ipf ,
i.e. ̟wt ∈ Λ is a uniformiser of the discrete valuation ring Ipf .

Let W ⊂ Zp be a non-empty open neighbourhood of 2. Denote by A (W ) ⊂ QpJk − 2K the subring of formal
power series in k − 2 which converge for every k ∈ W . As explained in [GS93] (see also [NP00]), there exist an
open neighbourhood U = Uf ⊂ Zp of 2, and a natural morphism (the Mellin transform centred at φf )

M : I −→ A (U),

characterised by the following properties: for every x ∈ I write Mx(k) := M(x)(k) ∈ A (U). Then: (i) for every
x ∈ I, Mx(2) = φf (x) and (ii) for every γ ∈ Γ ⊂ I×, M[γ](k) = γk−2 := expp

(
(k − 2) · logp(γ)

)
∈ A (Zp) ([·] : Λ→ I

being the structural morphism). For every positive integer n, write an(k) := M(an) ∈ A (U) for the image of the
n-th Hecke operator an ∈ I under M, and consider the formal q-expansion with coefficients in A (U):

f∞ :=

∞∑

n=1

an(k)q
n ∈ A (U)JqK.

This is the ‘portion’ of the Hida family f we are mostly interested in. More precisely, let

U cl :=
{
k ∈ U ∩ Z : k ≥ 2; k ≡ 2

(
mod 2(p− 1)

)}

be the subset of classical points, which is a dense subset of U . For every classical point κ ∈ U cl, the composition

φκ : I
M−→ A (U)

evκ−→ Qp (where evκ is evaluation at κ) is an arithmetic point of weight κ and trivial character,

and the weight-κ specialisation fκ := fφκ =
∑∞
n=1 an(κ)q

n ∈ Sκ(Γ0(Np)) is a p-ordinary normalised eigenform of

weight κ and level Γ0(Np). By construction: f = f2. Moreover, N divides the conductor of fκ for every κ ∈ U cl

(and fκ is old at p for κ > 2, i.e. fκ is the p-stabilisation of a newform of level Γ0(N) when κ > 2 [Hid86]).

3.2. The central critical p-adic L-function. Let A (U×Zp×Zp) ⊂ QpJk−2, s−1, r−1K be the subring of
formal power series converging for every (k, s, r) ∈ U ×Zp×Zp. Let χcy : G∞ ∼= 1+ pZp be the p-adic cyclotomic
character, and fix an isomorphism χacy : D∞ ∼= 1 + pZp. We can uniquely extend the Mellin transform M to a
morphism of rings

M̃ : IJG∞ ×D∞K −→ A (U × Zp × Zp),

by mapping every σ ∈ D∞ (resp., σ ∈ G∞) to the analytic function on Zp represented by the power series

M̃(σ) := χacy(σ)
r−1 = expp

(
(r − 1) · logp

(
χacy(σ)

))
(resp., M̃(σ) := χcy(σ)

s−1). We then define the S-primitive
analytic three-variable p-adic L-function of f∞/K:

LSp (f∞/K, k, s, r) := M̃

(
LSK(f)

)
∈ A (U × Zp × Zp) .

In the rest of this note, the (cyclotomic) central critical line ℓcc := {(k, s, r) ∈ U ×Zp ×Zp : r = 1; s = k/2} will
play a key role. Let l be a prime of K contained in S, which does not divide p. Let ℓ 6= p be the rational prime
lying below it: l ∩ Z = ℓZ. Define the central critical ℓ-Euler factor of f∞/K as

Eℓ(f∞/K, k) :=

(
1− aℓ(k)

〈ℓ〉k/2 ω(ℓ)
+

1N (ℓ)

ℓ

)
·
(
1− ǫK(ℓ)aℓ(k)

〈ℓ〉k/2 ω(ℓ)
+

1NDK (ℓ)

ℓ

)
∈ A (Zp),

where 〈ℓ〉 := ω(ℓ)−1ℓ ∈ 1 + pZp is the projection of ℓ to principal units and 1M denotes the trivial Dirichlet
character modulo M , for every M ∈ N. Then

Eℓ(f∞/K, κ) = Eℓ(fκ, ℓ
−κ/2) · Eℓ(fκ ⊗ ǫK , ℓ−κ/2)
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for every classical point κ ∈ U cl, where Eℓ(∗, X) is the ℓ-th Euler factor of the eigenform ∗, so that the Hecke
L-series of ∗ is given by the product L(∗, s) = ∏q primeEq(∗, q−s)−1 (cf. Section 2.1). Define the central critical

S-Euler factors of f∞/K by

ES(f∞/K, k) :=
∏

ℓ|qKNDK
Eℓ(f∞/K, k),

where the product runs over the rational primes lying below a prime l ∤ p of S (cf. Hypothesis 2). One has
Eℓ(f∞/K, 2) 6= 0 for every ℓ|NDKqK , so that, up to shrinking the p-adic disc U if necessary, one can assume that
ES(f∞/K, k) ∈ A (U)×. Define finally the central critical p-adic L-function of f∞/K:

(18) Lcc
p (f∞/K, k) := ES(f∞/K, k)

−1 · LSp (f∞/K, k, k/2, 1) ∈ A (U).

Note that, while the definition of LSp (f∞/K, k, s, r) depends on the choice of the isomorphism χacy : D∞ ∼= 1+pZp,
the analytic function Lcc

p (f∞/K, k) is independent of this choice.

3.3. The central critical Selmer group: a Control Theorem. Fix topological generators γ+ ∈ G∞,
γ− ∈ D∞ and γwt ∈ Γ, and write ̟? := γ? − 1. We can (and will) assume that χcy(γ+) = γwt, where we write
again χcy : G∞ ∼= 1 + pZp = Γ ⊂ I× for the isomorphism induced by the p-adic cyclotomic character. Let

Θ+
K : Gal(K/K) = G∞ ×D∞ ։ G∞

χcy∼= Γ
√·−→ Γ

[·]−→ I×

be the cyclotomic central critical Greenberg character. We can extend uniquely Θ+
K to a morphism of I-algebras,

denoted again by the same symbol, Θ+
K : IK → I. As easily seen, its kernel Pcc is given by

Pcc := ker
(
Θ+
K : IK ։ I

)
= (̟cc, ̟−) · IK; ̟cc := [γwt]− γ2+ ∈ IK,

i.e. Pcc is generated by ̟− and ̟cc. In analogy with the definitions above, we define the (cyclotomic) S-primitive
central critical (non-strict) Greenberg Selmer group of f/K by

SelS,ccQ∞
(f/K) := ker


H1(GK,S ,Tf ⊗I I

∗) −→
∏

v|p
H1(Iv ,T

−
f ,v ⊗I I

∗)


 .

Here Tf = (Tf ,T
+
f ) is Hida’s half-twisted representation defined in Section (1.2) and S is as in Section 2.2.

Moreover, the arrow refers again to
∏
v|p p

−
v∗ ◦ resv, where p−v : Tf ։ T−

f ,v is the projection introduced in equation

(11) 3. Denote by XS,cc
Q∞

(f/K) the Pontrjagin dual of SelS,ccQ∞
(f/K):

XS,cc
Q∞

(f/K) := HomZp

(
SelS,ccQ∞

(f/K),Qp/Zp

)
.

With these notations, and the ones introduced in Section 2.3, we have the following perfect control theorem.

Proposition 3.1. There exists a canonical isomorphism of I-modules

XS
K(f)⊗IK

IK
/
Pcc ∼= XS,cc

Q∞
(f/K).

Proof. Let a1 = (̟−) ∈ Spec(IK) and a2 := (̟cc) ∈ Spec(IK∞
). (We remind that K = K∞ · K−

∞ is the
Z2
p-extension of K and K∞/K is the cyclotomic Zp-extension). As IK/a1 ∼= IK∞

and Tf (K)/a1 ∼= Tf (K∞):

Tf (K) ⊗IK
I∗K[a1] ∼= Tf (K)/a1 ⊗IK/a1

I∗K∞

∼= Tf (K∞)⊗IK∞
I∗K∞

,

and similarly Tf (K)−v ⊗IK
I∗K[a1]

∼= Tf (K∞)−v ⊗IK∞
I∗K∞

for every v|p. In particular SelSK(f , a1) is canonically

isomorphic to SelSK∞
(f). Moreover, by [SU14, Proposition 3.9], the maps (16) induce isomorphisms

(19) SelSK∞
(f) ∼= SelSK(f)[a1]; XS

K(f)⊗IK
IK/a1 ∼= XS

K∞
(f).

Similarly, Θ+
K induces an isomorphism: IK∞

/a2 ∼= I, an isomorphism of I[GK,S ]-modules: Tf (K∞)/a2 ∼= Tf and

isomorphisms of I[GKv ]-modules: Tf (K∞)±v /a2 ∼= T±
f ,v for every v|p. (Indeed, write ΘK : I∞ = IK∞

։ I for the

‘restriction’ of Θ+
K to I∞. Then ΘK ◦ ε−1

K∞
= [χcy]

−1/2 on GK,S , so that

Tf (K∞)/a2 ∼= Tf (K∞)⊗I∞,ΘK I = Tf ⊗I I∞
(
ε−1
K∞

)
⊗I∞,ΘK I ∼= Tf ⊗I [χcy]

−1/2 = Tf .

The same argument justify the statement for the ±-parts at a prime v|p.) As above (i.e. retracing the definitions),
this gives a canonical isomorphism of Selmer groups

(20) SelS,ccQ∞
(f/K) ∼= SelSK∞

(f , a2).

3We should keep in mind that the cyclotomic variable plays a non trivial role in the definition of Hida’s half-twisted representation

Tf . This explains the appearance of the subscript Q∞ in the notation SelS,cc
Q∞

(f/K).
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Let us consider the following commutative diagram with (tautological) exact rows:

0 // SelSK∞
(f , a2) //

α

��

H1(GK,S, Tf (K∞)⊗IK∞
I∗K∞

[a2])

β

��

//
∏

v|p H
1(Iv, Tf (K∞)−v ⊗IK∞

I∗K∞
[a2])

γ

��

0 //
(

SelSK∞
(f)

)

[a2] //
(

H1
(

GK,S, Tf (K∞)⊗IK∞
I∗K∞

)

)

[a2] //
(

∏

v|p H
1
(

Iv, Tf (K∞)−v ⊗IK∞
I∗K∞

)

)

[a2],

where the vertical maps are the natural ones induced by the inclusion I∗K∞
[a2] ⊂ I∗K∞

(cf. (16)). We claim that
α is an isomorphism of I-modules:

(21) α : SelSK∞
(f , a2) ∼= SelSK∞

(f)[a2].

The map β sits into a short exact sequence (arising form 0→ I∗K∞
[a2]→ I∗K∞

̟cc→ I∗K∞
→ 0):

0→ H0(GK,S , Tf (K∞)⊗IK∞
I∗K∞

)
/
̟cc →H1(GK,S , Tf (K∞)⊗IK∞

I∗K∞
[a2])

β−→ H1(GK,S , Tf (K∞)⊗IK∞
I∗K∞

)[a2]→ 0.

Hypotheses 1 and 2 imply that the restriction of ρf to GK is irreducible. Then the first H0 vanishes, and β is an
isomorphism. By the Snake Lemma, the morphism α is injective, and its cockerel is a sub-module of ker(γ). To
prove the claim (21) it is then sufficient to show that

(22) ker(γ) = 0.

Looking again at the exact Iv-cohomology sequence arising from 0→ I∗K∞
[a2]→ I∗K∞

̟cc→ I∗K∞
→ 0, we have

(23) ker(γ) ∼=
∏

v|p
H0(Iv , Tf (K∞)−v ⊗IK∞

I∗K∞
)⊗IK∞

IK∞
/̟cc.

Note that Tf (K∞)−v ⊗IK∞
I∗K∞

∼= I∗K∞

(
a∗p · ε−1

K∞

)
(cf. Sec. 1.2). Since IK∞

/(γ+ − 1)IK∞
∼= I, one finds

H0(Iv , Tf (K∞)−v ⊗IK∞
I∗K∞

) = I∗K∞
(a∗p)[γ+ − 1] = I∗(a∗p)

(recall that a∗p is the unramified character on GQp
sending an arithmetic Frobenius to ap). Finally, note that

̟cc := [γwt]− γ2+ acts as ̟wt = [γwt]− 1 on I∗ = I∗K∞
[γ+ − 1], so that I∗ is ̟cc-divisible, and hence

H0(Iv, Tf (K∞)−v ⊗IK∞
I∗K∞

)⊗IK∞
IK∞

/̟cc = 0

for every prime v|p of K. Together with (23), this implies that (22) holds true, and then proves the claim (21).
When combined with the isomorphism (20), this gives canonical isomorphisms of I-modules

SelS,ccQ∞
(f/K) ∼= SelSK∞

(f)[a2]; XS,cc
Q∞

(f/K) ∼= XS
K∞

(f)/a2.

Since Pcc = (a1, a2) · IK, combined with the second isomorphism in (19), this concludes the proof. �

3.4. Specialising Skinner-Urban to the central critical line. We can finally state the following corollary
of the theorem of Skinner-Urban. For every f(k) ∈ A (U), write ordk=2f(k) ∈ N to denote the order of vanishing
of f(k) at k = 2. Given a finite I-module M , write as usual lengthpf (M) for the length of the localisation Mpf

over the discrete valuation ring Ipf .

Corollary 3.2. Assume that Hypotheses 1, 2 and 3 are satisfied. Then

ordk=2L
cc
p (f∞/K, k) ≤ lengthpf

(
XS,cc

Q∞
(f/K)

)
.

Proof. Combining Skinner-Urban’s Theorem 2.3 with Proposition 3.1, we easily deduce that the character-

istic ideal of XS,cc
Q∞

(f/K) is contained in the principal ideal generated by the projection LSK(f) mod Pcc (cf. the

proof of [SU14, Corollary 3.8]). In other words
{
Characteristic ideal of XS,cc

Q∞
(f/K)

}
⊂
(
LSK(f) mod Pcc

)
.

In particular, writing ordpf : Frac(I)→ Z ∪ {∞} for the valuation attached to pf ,

ordpf
(
LSK(f) mod Pcc

)
≤ lengthpf

(
XS,cc

Q∞
(f/K)

)
.

Write for simplicity LS,ccQ∞
(f/K) := LSK(f) mod Pcc. To conclude the proof it remains to verify that

(24) ordpfLS,ccQ∞
(f/K) = ordk=2L

S
p (f∞/K, k, k/2, 1).

Note that, by the definition of the Mellin transform M̃ (and the normalisation χcy(γ+) = γwt) we have

(25) M̃(̟cc)(k, s, r) = γk−2
wt − γ2(s−1)

wt = γ
2(s−1)
wt

(
γ
2(k/2−s)
wt − 1

)
≡ 0 mod (s− k/2) ·A (U × Zp × Zp),
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and then M̃(̟cc)(k, k/2, 1) = 0. Similarly, writing ℓwt := logp(γwt) and ℓ− := logp(χacy(γ−)), we have

(26) M(̟wt)(k) ≡ ℓwt · (k − 2) mod (k − 2)2; M̃(̟−)(k, s, r) ≡ ℓ− · (r − 1) mod (r − 1)2.

Assume now that LS,ccQ∞
(f/K) ∈ pmf Ipf − pm+1

f Ipf , for some integer m ≥ 0, so that ordpfLS,ccQ∞
(f/K) = m. Since

pf Ipf is a principal ideal generated by ̟wt (17), equation (26) gives

ordk=2M

(
LS,ccQ∞

(f/K)
)
(k) = ordpfLS,ccQ∞

(f/K).

On the other hand, we have by construction LSK(f) ≡ LS,ccQ∞
(f) mod Pcc, so that equations (25) and (26) give

LSp (f∞/K, k, k/2, 1) := M̃

(
LSK(f)

)
(k, k/2, 1) = M

(
LS,ccQ∞

(f/K)
)
(k).

Combining the preceding two equations, we deduce that (24) holds in this case. Assume finally that LSK(f) ∈ Pcc,

i.e. LS,ccQ∞
(f/K) = 0. (This is the case ‘m = ∞’.) Then LSp (f∞/K, k, k/2, 1) ≡ 0 by (25) and (26), so that (24)

holds also in this case (giving ∞ =∞). �

4. Bertolini-Darmon’s exceptional zero formula

Throughout this section, the notations and assumptions are as in Section 3. In particular, we assume that
Hypotheses 1–3 are satisfied.

Let κ ∈ U cl be a classical point in U , let φk ∈ X arith(I) be the associated arithmetic point (of weight κ and
trivial character), and let fκ ∈ Sκ(Γ0(Np)) be the corresponding p-stabilised newform (cf. Section 3.1). Write

φ†κ = φκ × χκ/2−1
cy × 1 : IJG∞ ×D∞K→ Qp for the morphism of OL-algebras such that φ†κ(σ × h) = χcy(σ)

κ/2−1

for every σ × h ∈ G∞ ×D∞, and such that φ†κ(x) = φκ(x) for every x ∈ I. Since κ ≡ 2 mod 2(p− 1), p 6= 2, and
p splits in K (i.e. ǫK(p) = 1), equations (12) and (13) yield

φ†κ
(
LSK(f)

)
= λκD

κ−2
2

K

(
1− p

κ
2
−1

ap(κ)

)2
(κ/2− 1)! · LS\{p}(fκ, κ/2)

(−2πi)κ/2−1Ω+
φκ

· G(ǫK)(κ/2− 1)! · LS\{p}(fκ, ǫK , κ/2)
(−2πi)κ/2−1Ω−

φκ

By the very definition of the central critical p-adic L-function Lcc
p (f∞/K, k) we then deduce: for every κ ∈ U cl

Lcc
p (f∞/K, κ) = λκD

κ−2
2

K

(
1− p

κ
2
−1

ap(κ)

)2

· (κ/2− 1)!L(fκ, κ/2)

(−2πi)κ/2−1Ω+
φκ

· G(ǫK)(κ/2− 1)!L(fκ, ǫK , κ/2)

(−2πi)κ/2−1Ω−
φκ

.

Since U cl is a dense subset of U , if we compare this formula with [BD07, Theorem 1.12], we obtain a factorisation

(27) Lcc
p (f∞/K, k) = D

k−2
2

K Lp(f∞, k, k/2)Lp(f∞, ǫK , k, k/2).

Here, for every quadratic Dirichlet character χ of conductor coprime with Np, Lp(f∞, χ, k, s) ∈ A (U × Zp) is a
Mazur-Kitagawa two-variable p-adic L-function attached to f∞ and χ in [BD07, Section 1], and we write simply
Lp(f∞, k, s) := Lp(f∞, χtriv, k, s) when χ = χtriv is the trivial character. Like Lcc

p (f∞/K, s) (once the periods

Ω±
φκ

are fixed for κ ∈ U cl), Lp(f∞, χ, k, s) is characterised by its interpolation property (namely [BD07, Theorem

1.12]) up to multiplication by a nowhere-vanishing analytic function on U , so the preceding equality has to be
interpreted up to multiplication by such a unit in A (U).

The following exceptional-zero formula is the main result (Theorem 5.4) of [BD07], where it is proved under
a technical assumption (namely the existence of a prime q‖N) subsequently removed by Mok in [Mok11]. Write
sign(A/Q) ∈ {±1} for the sign in the functional equation satisfied by the Hecke L-series L(A/Q, s) = L(f, s).

Theorem 4.1 (Bertolini-Darmon [BD07]). Let χ be a quadratic Dirichlet character of conductor coprime
with NA = Np, such that

χ(−N) = −sign(A/Q); χ(p) = ap(A) = +1.

If χ is non-trivial (resp., χ = 1), let Kχ/Q be the quadratic extension attached to χ (resp., let Kχ := Q). Then
1. Lp(f∞, χ, k, k/2) vanishes to order at least 2 at k = 2.
2. There exists a global point Pχ ∈ A(Kχ)

χ 4 such that

d2

dk2
Lp(f∞, χ, k, k/2)k=2

·
= log2A(Pχ),

where logA : A(Qp) → Qp is the formal group logarithm 5, and
·
= denotes equality up to multiplication by a

non-zero (explicit) factor in Q×
p .

4By A(Kχ)χ we mean the subgroup of A(Kχ) on which Gal(Kχ/Q) acts via χ.
5Writing ΦTate : Q

×
p /qZA

∼= A(Qp) for the Tate p-adic uniformization of A/Qp (see Section 5.3 below), one can define logA :=

logqA ◦Φ−1

Tate
: A(Qp) → Qp, where logqA is the branch of the p-adic logarithm vanishing at the Tate period qA ∈ pZp of A/Qp.
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3. Pχ has infinite order if and only if the Hecke L-series L(f, χ, s) has a simple zero at s = 1.

In the preceding result, χ is allowed to be a generic Dirichelt character of conductor coprime with Np.
Applying the theorem to both χ = χtriv and χ = ǫK , we obtain the following corollary.

Corollary 4.2. Assume that sign(A/Q) = −1, and that Hypotheses 1, 2 and 3 are satisfied. Denote by
L(A/K, s) := L(f, s) · L(f, ǫK , s) the complex Hasse-Weil L-function of A/K. Then Lcc

p (f∞/K, k) vanishes to
order at least 4 at k = 2, and

ordk=2L
cc
p (f∞/K, k) = 4 ⇐⇒ ords=1L(A/K, s) = 2.

Proof. Since sign(A/Q) = −1, the hypotheses of the preceding theorem are satisfied by χ = χtriv. Moreover,
since p splits in K by Hypothesis 2, ǫK(p) = +1, and ǫK(−N) = −ǫ(N−) = +1 by Hypothesis 3. Then χ = ǫK
also satisfies the hypotheses of the theorem. The corollary then follows by applying the theorem to both χ = χtriv

and χ = ǫK , and using the factorisation (27). �

5. Bounding the characteristic ideal via Nekovář’s duality

Recall the arithmetic prime φf ∈ X arith(I) defined in Section 3.1, and write as above pf := ker(φf ), which
is a height-one prime ideal of I. Let χ be a quadratic Dirichlet character of conductor coprime with Np. If χ is
non-trivial (resp., χ = 1), let Kχ/Q be the corresponding quadratic extension (resp., let Kχ := Q), and let Dχ

be the discriminant of Kχ. Fix a finite set S of primes of Kχ containing all the prime divisors of NpDχ, and

decomposition groups GKχ,w := Gal(Qℓ/Kχ,w) →֒ GKχ at w, for every w ∈ S dividing the rational prime ℓ (where
Kχ,w denotes the completion of Kχ at w). Define the strict Greenberg Selmer group of Tf/Kχ (cf. Section 1.2):

SelccGr(f/Kχ) := ker


H1(GKχ,S,Tf ⊗I I

∗) −→
∏

v|p
H1(Kχ,v,T

−
f ,v ⊗I I

∗)


 ,

where GKχ,S denotes as usual the Galois group of the maximal algebraic extension of Kχ which is unramified
outside S ∪ {∞}. Let

Xcc
Gr(f/Kχ) := HomZp

(
SelccGr(f/Kχ),Qp/Zp

)
6.

For every Z[Gal(Kχ/Q)]-module M , write Mχ for the submodule of M on which Gal(Kχ/Q) acts via χ (so that
Mχ := M is χ is trivial, and Mχ is the submodule of M on which the nontrivial automorphism of Gal(Kχ/Q)
acts as −1 if χ is nontrivial). The aim of this section is to prove the following theorem.

Theorem 5.1. Let χ be a quadratic Dirichlet character of conductor coprime with Np. Assume that:
(i) χ(p) = 1, i.e. p splits in Kχ;
(ii) rankZA(Kχ)

χ = 1;
(iii) the p-primary subgroup X(A/Kχ)

χ
p∞ of X(A/Kχ)

χ is finite.
Then the localisation at pf of Xcc

Gr(f/Kχ)
χ is isomorphic to the residue field of the discrete valuation ring Ipf :

Xcc
Gr(f/Kχ)

χ ⊗I Ipf
∼= Ipf /pfIpf .

5.1. Nekovář’s theory. In this section we recall the needed results from Nekovář’s theory of Selmer com-
plexes [Nek06]. Unless explicitly specified, all notations and conventions are as in loc. cit.

5.1.1. Nekovář’s Selmer complexes. Given a ring R, write D(R) := D(RMod) for the derived category of
complexes of R-modules, and Dbft(R) ⊂ D(R) (resp., Dbcf(R) ⊂ D(R)) for the subcategory of cohomologically
bounded complexes, with cohomology of finite (resp., cofinite) type over R.

Recall the self-dual, ordinary I-adic representation Tf = (Tf ,T
±
f ), defined in Section 1.2. Denote by

Af := Homcont(Tf , µp∞); A±
f := Homcont(T

∓
f , µp∞)

the Kummer dual p-ordinary representation. Set Tf := Tf/pfTf and T±
f := T±

f /pfT
±
f . Then one has

Af := Homcont(Tf , µp∞) ∼= Af [pf ]; A±
f := Homcont(T

∓
f , µp∞) ∼= A±

f [pf ].

Given a multiplicative subset S of a ring R, and an R-module M , write as usual S −1M for the localisation of
M at S . Fix a multiplicative subset S of I or OL, let

X ∈ {S −1Tf ,S
−1Tf ,Af , Af}

6 The Selmer groups already defined depend in general on the choice of the set S. On the other hand, we are interested here
only in the structure of the localisation of Xcc

Gr
(f/Kχ) at pf , and such a localisation does not depend, up to canonical isomorphism,

on the choice of S.
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and let RX ∈ {S −1I,S −1OL, I,OL} be the corresponding ‘coefficient ring’. For every prime v|p of Kχ, set

X+
v := S −1T+

f (resp., S −1T+
f , A+

f , A+
f ) if X = S −1Tf (resp., S −1Tf , Af , Af ), and X−

v := X/X+
v . The exact

sequence (11) then induces short exact sequences of RX [GKχ,v]-modules

0→ X+
v

i+v→ X
p−v→ X−

v → 0.

(Recall that T+
f ,w := T+

f for every prime w|p of Q, cf. equation (11).)

As in [Nek06, Section 6], define local conditions ∆S(X) = {∆v(X)}v∈S for X/Kχ as follows 7. For a prime
v ∈ S dividing p, let ∆v(X) be the morphism

i+v (X) : U+
v (X) := C•

cont(Kχ,v, X
+
v ) −→ C•

cont(Kχ,v, X),

i.e. ∆v(X) is the Greenberg local condition attached to the RX [GKχ,v ]-submodule i+v : X+
v ⊂ X . For every

S ∋ w ∤ p, we define ∆w(X) to be the full local condition: i+w(X) : U+
w (X) := 0 → C•

cont(Kχ,w, X) (resp., the
empty local condition: i+w(X) = id : U+

w (X) := C•
cont(Kχ,w, X)→ C•

cont(Kχ,w, X)) in case X ∈ {S −1Tf ,S
−1Tf}

(resp., X ∈ {Af , Af}). The associated Nekovář’s Selmer complex [Nek06] is defined as the complex of RX -
modules

C̃•
f (Kχ, X) = C̃•

f (GKχ,S , X ; ∆S(X)) := Cone

(
C•

cont(GKχ,S , X)⊕
⊕

v∈S
U+
v (X)

resS−i+S−→
⊕

v∈S
C•

cont(Kχ,v, X)

)
[−1],

where resS = ⊕v∈Sresv and i+S = ⊕v∈Si+v (X). It follows by standard results on continuous Galois cohomology

groups [Nek06, Section 4] (essentially due to Tate [Tat76]) that C̃•
f (Kχ, X) is cohomologically bounded, with

cohomology of finite (resp., cofinite) type over RX if X is of finite (resp., cofinite) type over RX . Let

R̃Γf (Kχ, X) ∈ Dbft,(resp., cf)(RX); H̃∗
f (Kχ, X) := H∗

(
R̃Γf (Kχ, X)

)
∈ (RXMod)ft,(resp., cf)

be the image of C̃•
f (Kχ, X) in the derived category and its cohomology respectively. If X ∈ {Tf , Tf} and RX ∈

{I,OL} is the corresponding coefficient ring, then

R̃Γf (Kχ, X) ∼= R̃Γf (Kχ,X )⊗RX
RX ; H̃∗

f (Kχ, X) ∼= H̃∗
f (Kχ,X )⊗RX

RX ,

which we consider as equalities in what follows.
Let X ∈ {S −1Tf ,S

−1Tf} (resp., X ∈ {Af , Af}), and let S ∋ w ∤ p. Define the RX [GKχ,w]-module X−
w := X

(resp., X−
w := 0). By the definition of Nekovář’s Selmer complexes, there is a long exact cohomology sequence of

RX -modules [Nek06, Section 6]:

· · · →
⊕

w∈S
Hq−1(Kχ,w, X

−
w )→ H̃q

f (Kχ, X)→ Hq(GKχ,S , X)→
⊕

w∈S
Hq(Kχ,w, X

−
w )→ · · · .

In particular this gives an exact sequence of RX -modules

(28) XGKχ,S →
⊕

w∈S
H0(Kχ,w, X

−
w )→ H̃1

f (Kχ, X)→ S(Kχ, X)→ 0.

Here S(Kχ, X) = S(Kχ,S , X) is the (S-primitive, strict) Greenberg Selmer group of X/Kχ, defined by

S(Kχ, X) := ker

(
H1(GKχ,S , X) −→

∏

w∈S
H1(Kχ,w, X

−
w )

)
.

5.1.2. A control theorem. We know that Ipf is a discrete valuation ring, and that its maximal ideal pfIpf
is generated by ̟wt := γwt − 1 ∈ Λ (see (17)). Write Vf := Tf ⊗OL L and Tf ,pf := Tf ⊗I Ipf . By [Nek06,

Propositions 3.4.2 and 3.5.10], the arithmetic point φf ∈ X arith(I) induces an exact triangle in Dbft(Ipf ):

R̃Γf (Kχ,Tf ,pf )
̟wt−→ R̃Γf (Kχ,Tf ,pf )

φf∗−→ R̃Γf (K,Vf ),

and then an isomorphism in Dbft(L):

(29) cf : Lφ∗f

(
R̃Γf (Kχ,Tf ,pf )

)
∼= R̃Γf (Kχ, Vf ),

7Let R be a local complete Noetherian ring with finite residue field of characteristic p, and let T be an R-module of finite
or cofinite type, equipped with a continuous, linear action of GKχ,S . For every w ∈ S, fix a decomposition group Gw at w, i.e.
Gw := GKχ,w →֒ GKχ ։ GKχ,S . According to Nekovář’s theory of Selmer complexes, a local condition at w ∈ S for T is the choice

∆w(T ) of a complex of R-modules U+
w (T ), together with a morphism of complexes i+w(T ) : U+

w (T ) → C•
cont(Kχ,w, T ). For G = GKχ,S

or Gw (w ∈ S), C•
cont(G, T ) (also denoted C•

cont(Kχ,w, T ) when G = Gw) is the complex of continuous (non-homogeneous) T -valued
cochains on G. If R is a localisation of R, and T := T ⊗R R, set C•

cont(∗,T ) := C•
cont(∗, T )⊗R R. Then a local condition for T at

w ∈ S is a morphism i+w(T )⊗R : U+
w (T )⊗R R → C•

cont(Kχ,w ,T ), obtained as the base change of a local condition i+w(T ) for T at w.
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where Lφ∗f : D−(Ipf ) → D(L) is the left derived functor of the base-change functor φ∗f (·) := · ⊗I,φf L. (Note

that, since f = f2 has integral Fourier coefficients, the residue field Ipf /pfIpf of Ipf equals L.) This induces in
cohomology short exact sequences of L-modules

(30) 0→ H̃q
f (Kχ,Tf ,pf )/̟wt → H̃q

f (Kχ, Vf )
iwt→ H̃q+1

f (Kχ,Tf ,pf )[̟wt]→ 0.

5.1.3. Nekovář’s duality I: global cup-products. Let X ∈ {Tf , Tf}, and let R ∈ {I,OL} be the corresponding
coefficient ring. For S ∈ {I−pf ,OL−mL} (where mL is the maximal ideal ofOL), writeX := S −1X ∈ {Tf ,pf , Vf}
and RX := S −1R ∈ {Ipf , L}. Let

πX : X ⊗RX X → RX(1)

be the localization at S of the perfect duality π : Tf ⊗I Tf → I(1) if X = Tf , or the localisation at S of its
φf -base change πf := φ∗f (π) : Tf ⊗OL Tf → OL(1) if X = Tf (see Section 1.2). As a manifestation of Nekovář’s

wide generalization of Poitou-Tate duality, Section 6 of [Nek06] attaches to πX a morphism in Dbft(RX):

∪
Nek
πX

: R̃Γf (Kχ, X)⊗L
RX R̃Γf (Kχ, X) −→ τ≥3RΓc,cont(Kχ, RX(1)) ∼= RX [−3],

where RΓc,cont(Kχ,−) denotes the complex of cochains with compact support [Nek06, Section 5], and the iso-
morphism comes (essentially) by the sum of the invariant maps of local class field theory for v ∈ S. The

pairings ∪
Nek
π

on R̃Γf (Kχ,Tf ,pf ) and ∪
Nek
πf

on R̃Γf (Kχ, Vf ) are compatible with respect to the isomorphism

cf : Lφ∗f
(
R̃Γf (Kχ,Tf ,pf )

) ∼= R̃Γf (Kχ, Vf ) in D(L) described in (29).

The global cup-product pairing ∪
Nek
πX

gives in cohomology pairings

(31) q∪Nek
πX : H̃q

f (Kχ, X)⊗RX H̃3−q
f (Kχ, X) −→ RX

(for every q ∈ Z). Writing RX := Frac(RX), they induce by adjunction isomorphisms

(32) adj
(
q∪Nek

πX

)
: H̃q

f (Kχ, X)⊗RX RX
∼= HomRX

(
H̃3−q
f (Kχ, X)⊗RX RX ,RX

)
,

as follows from [Nek06, Proposition 6.6.7], since RΓcont(Kχ,w, X) ∼= 0 is acyclic for every prime w ∤ p of Kχ.
(See also [Nek06, Propositions 12.7.13.3 and 12.7.13.4].)

5.1.4. Nekovář’s duality II: generalised Pontrjagin duality. Let X denote either Tf or Tf , let RX be either I
or OL (accordingly), and let AX := Homcont(X,µp∞) be the (discrete) Kummer dual of X . Appealing again to
Nekovář’s generalised Poitou-Tate duality, we have Pontrjagin dualities

(33) H̃3−q
f (Kχ,AX) ∼= Homcont

(
H̃q
f (Kχ, X),Qp/Zp

)
=: H̃q

f (Kχ, X)∗.

We refer the reader to [Nek06, Section 6] for the details.
5.1.5. Nekovář’s duality III: generalised Cassels-Tate pairings. Section 10 of [Nek06] –which provides a gen-

eralisation of a construction of Flach [Fla90]– attaches to π : Tf ⊗I Tf → I(1) a skew-symmetric pairing

∪
CT
π

: H̃2
f (Kχ,Tf )tors ⊗I H̃

2
f (Kχ,Tf )tors −→ Frac(I)/I,

where Mtors = ker
(
M

i→M ⊗I Frac(I)
)

denotes the I-torsion submodule of M . Denote by

(34) ∪CT
π : H̃2

f (Kχ,Tf ,pf )tors ⊗Ipf
H̃2
f (Kχ,Tf ,pf )tors −→ Frac(Ipf )/Ipf

its localization at pf , Ntors := N [̟∞
wt] denoting now the Ipf -torsion submodule of N (see (17)). As proved in

[Nek06, Proposition 12.7.13.3], ∪CT
π is a perfect pairing, i.e. its adjoint

(35) adj
(
∪CT
π

)
: H̃2

f (Kχ,Tf ,pf )tors
∼= HomIpf

(
H̃2
f (Kχ,Tf ,pf )tors,Frac(Ipf )/Ipf

)

is an isomorphism. We call ∪CT
π Nekovář (localized) Cassels-Tate pairing on Tf ,pf . This is the pairing denoted

∪π(pf ),0,2,2 in loc. cit. We refer to Sections 2.10.14, 10.2 and 10.4 of [Nek06] for the definition of ∪CT
π

.

5.1.6. Comparison with Bloch-Kato Selmer groups. Recall that Vf := Tf ⊗OL L, and V ±
f,v := T±

f,v ⊗OL L for

v|p. Then Vf ∼= Tf ,pf ⊗Ipf
,φf L is isomorphic to the φf -base change of the localisation Tf ,pf , and similarly V ±

f,v is

isomorphic to the φf -base change of the localisation of T±
f ,v at pf . By (7), combined with the Chebotarev density

theorem and [Sil86, Chapters V and VII], there is an isomorphism of L[GKχ,S ]-modules (cf. Section 1.2)

(36) Vf ∼= Vp(A)⊗Qp
L,

where Vp(A) := Tap(A)⊗Zp Qp is the p-adic Tate module of A/Q with Qp-coefficients. We fix from now on such
an isomorphism, and we will use it to identify Vf with Vp(A)⊗Qp

L.
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Consider the classical (or Bloch-Kato [BK90]) Selmer group attached to Vp(A)/Kχ via Kummer theory:

Selp(A/Kχ) := ker


H1(Kχ,S , Vp(A)) −→

∏

v|p

H1(Kχ,v, Vp(A))

A(Kχ,v)⊗̂Qp




(it is easily verified using Tate local duality and [Sil86, Chapter VII] that H1(Kχ,w, Vp(A)) = 0 for w ∤ p), sitting
in a short exact sequence

(37) 0→ A(Kχ)⊗̂Qp → Selp(A/Kχ)→ Vp (X(A/Kχ))→ 0,

where X(A/Kχ) is the Tate-Shafarevich group of A/Kχ and Vp(·) := lim←− n≥1(·)pn ⊗Zp Qp is the p-adic Tate

module of the abelian group (·) with Qp-coefficients. R. Greenberg [Gre97] has proved that

Selp(A/Kχ)⊗Qp
L = S(Kχ, Vf ).

Since ap = ap(A) = +1 (as A/Qp has split multiplicative reduction), the GQp
-representation Vf = Vp(A) ⊗Qp

L

is a Kummer extension of the trivial representation L, i.e. V +
f,v
∼= L(1) and V −

f,v
∼= L for every v|p (where L is the

trivial representation ofGKχ,v and L(1) := L⊗Qp
Qp(1) is its Tate twist). AsH0(GKχ,S , Vf ) ⊂ H0(GKχ,w, Vf ) = 0

for every w ∤ p (by [Sil86, Chapter VII] and local Tate duality), (28) gives rise to an exact sequence

(38) 0→
⊕

v|p
L→ H̃1

f (Kχ, Vf )→ Selp(A/Kχ)⊗Qp
L→ 0.

(See Section 5.3 below for more details.)
5.1.7. Galois conjugation. Let X be as in Section 5.1.1. Section 8 of [Nek06] defines a natural action of

Gal(Kχ/Q) on H̃q
f (Kχ, X), making it a RX [Gal(Kχ/Q)]-module. If τ is a nontrivial automorphism on Kχ, we

will write τ(x) or xτ for its action on x ∈ H̃q
f (Kχ, X). To be short, all the relevant constructions we discussed

above commute with the action of Gal(Kχ/Q). In particular, we mention the following properties.
Nekovář’s global cup products q∪Nek

πX (defined in (31)) are Gal(Kχ/Q)-equivariant [Nek06, Section 8].
Nekovář’s Pontrjagin duality isomorphisms (33) are Gal(Kχ/Q)-equivariant [Nek06, Prop. 8.8.9].
The abstract Cassels-Tate pairing ∪CT

π is Gal(Kχ/Q)-equivariant [Nek06, Section 10.3.2].
The exact sequences (28), (30) and (38) are Gal(Kχ/Q)-equivariant. (In case Kχ/Q is quadratic and p splits

in Kχ, the action of the non-trivial element τ ∈ Gal(Kχ/K) on the first term
⊕

v|p L = L⊕L in (38) is given by

permutation of the factors: (q, q′)τ = (q′, q) for every q, q′ ∈ L.)

5.2. The half-twisted weight pairing. Define Nekovář’s half-twisted weight pairing by the composition

〈−,−〉Nek
Vf ,π

: H̃1
f (Kχ, Vf )⊗L H̃1

f (Kχ, Vf )
iwt⊗iwt−→ H̃2

f (Kχ,Tf ,pf )[̟wt]⊗Ipf
H̃2
f (Kχ,Tf ,pf )[̟wt]

∪CT
π−→
(
Frac(Ipf )/Ipf

)
[̟wt]

θwt∼= Ipf /pf Ipf
φf∼= L

×ℓwt∼= L,

where the notations are as follows. The morphism iwt : H̃
1
f (Kχ, Vf ) → H̃2

f (Kχ,Tf ,pf )[̟wt] is the one appearing

in the exact sequence (30) (taking q = 1). ∪CT
π is Nekovář’s Cassels-Tate pairing attached to π : Tf ⊗I Tf → I(1),

and defined in Section 5.1.5. θwt :
(
Frac(Ipf )/Ipf

)
[̟wt] ∼= Ipf /pf Ipf is defined by θwt

(
a
̟wt

mod Ipf
)
:= a mod pf ,

for every a ∈ Ipf . (We remind that ̟wt ∈ Λ is a uniformiser of Ipf by (17)). Finally, ℓwt := logp(γwt) (where
̟wt := γwt − 1). Note that both the morphisms iwt and θwt depend on the choice of the uniformiser ̟wt.
Multiplication by ℓwt serves the purposes of removing the dependence on this choice.

Since ∪CT
π is a skew-symmetric, Gal(Kχ/Q)-equivariant pairing, and since iwt is a Gal(Kχ/Q)-equivariant

morphism (cf. Section 5.1.7), 〈−,−〉Nek
Vf ,π

is a skew-symmetric, Gal(Kχ/Q)-equivariant pairing. (Of course, here

we consider on L the trivial Gal(Kχ/Q)-action.)
The aim of this section is to prove the following key proposition, whose proof uses all the power of Nekovář’s

results mentioned above. Let χ be (as above) a quadratic Dirichlet character of conductor coprime with Np.

Write 〈−,−〉Nek,χ
Vf ,π

for the restriction of 〈−,−〉Nek
Vf ,π

to H̃1
f (Kχ, Vf )

χ ⊗L H̃1
f (Kχ, Vf )

χ. (Of course, if χ is the trivial

character, i.e. if Kχ = Q, we are defining nothing new.) Given an I-module M , we say that M is semi-simple at
pf if Mpf is a semi-simple Ipf -module, and we write lengthpf (M) to denote the length of Mpf over Ipf .

Proposition 5.2. Let χ be a quadratic Dirichlet character of conductor coprime with Np, and assume that
p splits in Kχ. Then the following conditions are equivalent:

1. 〈−,−〉Nek,χ
Vf ,π

is a non-degenerate L-bilinear form on H̃1
f (Kχ, Vf )

χ.
2.

lengthpf

(
H̃2
f (Kχ,Tf )

χ
)
= dimL

(
H̃1
f (Kχ, Vf )

χ
)
.
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3. H̃2
f (Kχ,Tf )

χ is a torsion I-module, which is semi-simple at pf .

If these properties are satisfied, then Xcc
Gr(f/Kχ)

χ is a torsion I-module, which is semi-simple at pf , and

lengthpf

(
Xcc

Gr(f/Kχ)
χ
)
= dimQp

(
Selp(A/Kχ)

χ
)
.

The proposition will be an immediate consequence of the following three lemmas (in which we will prove
separately the equivalences 1 ⇐⇒ 3, 3 ⇐⇒ 2 and the last statement respectively).

Lemma 5.3. 〈−,−〉Nek,χ
Vf ,π

is non-degenerate if and only if H̃2
f (Kχ,Tf ,pf )

χ is a torsion, semi-simple Ipf -module.

Proof. Taking the χ-component of the exact sequence (30), we see that the restrictions

iχwt = iq,χwt : H̃q
f (Kχ, Vf )

χ −→ H̃q+1
f (Kχ,Tf ,pf )

χ[̟wt]

of the morphisms iwt = iqwt defined in (30) are surjective. Since H̃0
f (Kχ, Vf ) ⊂ H0(GKχ,S , Vf ) = 0, this implies in

particular that H̃1
f (Kχ,Tf ,pf )

χ is torsion free, and i1,χwt is injective if and only if H̃1
f (Kχ,Tf ,pf )

χ = 0. Moreover,

since χ is quadratic and q∪Nek
π is Gal(Kχ/Q)-equivariant, the duality isomorphism (32) shows that the latter

condition is equivalent to the fact that H̃2
f (Kχ,Tf ,pf )

χ is a torsion Ipf -module.

Write for simplicity N := H̃2
f (Kχ,Tf ,pf )tors for the Ipf -torsion submodule of H̃2

f (Kχ,Tf ,pf ). Since ∪CT
π is

Gal(Kχ/Q)-equivariant, p 6= 2 and χ is quadratic, the isomorphism (35) restricts to an isomorphism

adj
(
∪CT
π

)
: Nχ ∼= HomIpf

(Nχ,Frac(Ipf )/Ipf ).

Let ∪CT,χ
π,̟wt

: Nχ[̟wt]⊗Nχ[̟wt]→
(
Frac(Ipf )/Ipf

)
[̟wt] denote the restriction of ∪CT

π to the ̟wt-torsion of Nχ.

It follows by the preceding isomorphism that the right (or left) radical of ∪CT,χ
π,̟wt

equals Nχ := ̟wtN
χ∩Nχ[̟wt].

In other words, ∪CT,χ
π,̟wt

is non-degenerate if and only if Nχ = 0. On the other hand, as ̟wt is a uniformiser for
Ipf , the structure theorem for finite modules over discrete valuation rings gives an isomorphism of Ipf -modules

Nχ ∼=
⊕∞

j=0

(
Ipf /(̟wt)

j
)ej

, for positive integers ej such that ej = 0 for j ≫ 0. Then Nχ = 0 if and only if
ej = 0 for every j > 1, i.e. if and only if Nχ is semi-simple.

Since iχwt = i1,χwt is surjective, it follows by the definitions that 〈−,−〉Nek,χ
Vf ,π

is non-degenerate (i.e. has trivial

right=left radical) if and only if iχwt is injective and ∪CT,χ
π,̟wt

has trivial radical. Together with the preceding
discussion, this concludes the proof of the lemma. �

Lemma 5.4. lengthpf

(
H̃2
f (Kχ,Tf )

χ
)
≥ dimL

(
H̃1
f (Kχ, Vf )

χ
)
, and equality holds if and only if H̃2

f (Kχ,Tf ,pf )
χ

is a torsion, semi-simple Ipf -module.

Proof. Write for simplicity ̟ := ̟wt, M∗ := H̃∗
f (Kχ,Tf ,pf )

χ, and M∗ := H̃∗
f (Kχ, Vf )

χ, so that there are

short exact sequences of L-modules (30): 0→Mq/̟ →Mq →Mq+1[̟]→ 0. We can assume that M2 is a torsion
Ipf -module, hence M1 = 0 by the duality isomorphism (32) (cf. the preceding proof). Then M1

∼=M2[̟] and

(39) dimL M1 = dimLM2[̟].

The structure theorem for finite, torsion modules over principal ideal domains yields an isomorphism

M2 =

∞⊕

j=1

(
Ipf /̟

j
)m(j)

,

where m : N→ N is a function such that m(j) = 0 for j ≫ 0. Since
(
Ipf /̟

j
)
[̟] ∼= Ipf /̟ for j ≥ 1:

lengthpfM2 =

∞∑

j=0

m(j) · j =
∞∑

j=1

m(j) +

∞∑

j=2

m(j) · (j − 1) = dimLM2[̟] +

∞∑

j=2

m(j) · (j − 1).

Together with (39), this gives lengthpfM2 ≥ dimLM1, with equality if and only if m(j) = 0 for every j ≥ 2, i.e.
if and only if M2 is a semi-simple Ipf -module. �

Lemma 5.5. Assume that H̃2
f (Kχ,Tf ,pf )

χ is a torsion, semi-simple Ipf -module. Then Xcc
Gr(f/Kχ)

χ ⊗I Ipf is
a torsion, semi-simple Ipf -module, and

lengthpf

(
Xcc

Gr(f/Kχ)
χ
)
= dimQp

(
Selp(A/Kχ)

χ
)
.
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Proof. Since adj(π) : Tf
∼= HomI(Tf , I(1)) and Tf is a free I-module, there is a canonical isomorphism of

I[GKχ,S]-modules

Tf ⊗I I
∗ ∼= HomI(Tf , I(1))⊗I Homcont(I,Qp/Zp) ∼= Homcont(Tf , µp∞) =: Af ,

the second isomorphism being defined by composition: ψ ⊗ µ 7→ µ ◦ ψ. Similarly, the isomorphism of I[GQp
]-

modules adj(π) : T−
f
∼= HomI(T

+
f , I(1)) gives an isomorphism of I[GQp

]-modules T−
f ⊗I I

∗ ∼= A−
f . (Recall here that

Af and A−
f are the Kummer duals of Tf and T+

f respectively.) This implies that SelccGr(f/Kχ) = S (Kχ,Af ). (Note

that A−
f ,w := 0 for every S ∋ w ∤ p, so that we impose no condition at w ∤ p in both the definitions of SelccGr(f/Kχ)

and S(Kχ,Af ).) By (28) one then obtains an exact sequence

(40) H0(GKχ,S ,Af )→
⊕

v|p
H0(Kχ,v,A

−
f ,v)→ H̃1

f (Kχ,Af )→ SelccGr(f/Kχ)→ 0.

We claim that the localisation at pf of the Pontrjagin dual of H0(GKχ,S ,Af ) vanishes, i.e.

(41) H0(GKχ,S ,Af )
∗
pf

:= HomZp

(
H0(GKχ,S ,Af ),Qp/Zp

)
⊗I Ipf = 0.

Indeed, let w be a prime of Kχ. By Tate local duality, H0(Kχ,w,Af ) is the Pontrjagin dual of H2(Kχ,w,Tf ),
so that the inclusion H0(GKχ,S,Af ) ⊂ H0(Kχ,w,Af ) induces a surjection H2(Kχ,w,Tf ,pf ) ։ H0(GKχ,S ,Af )

∗
pf

on (localised) Pontrjagin duals. As RΓcont(Kχ,w,Tf ,pf )
∼= 0 ∈ D(Ipf ) is acyclic for every prime w ∤ p (as easily

proved, cf. [Nek06, Proposition 12.7.13.3(i)]), the claim (41) follows. Since H̃1
f (Kχ,Af ) is the Pontrjagin dual of

H̃2
f (Kχ,Tf ) by Nekovář’s duality isomorphism (33), applying first HomZp(−,Qp/Zp) and then − ⊗I Ipf to (40),

and using (41), yield a short exact sequence of Ipf -modules

(42) 0→ Xcc
Gr(f/Kχ)⊗I Ipf → H̃2

f (Kχ,Tf ,pf )→
⊕

v|p
H2(Kχ,v,T

+
f ,v ⊗I Ipf )→ 0,

where we used once again local Tate duality to rewrite the Pontrjagin dual of H0(Kχ,v,A
−
f ,v) as H2(Kχ,v,T

+
f ,v).

Lemma 5.6 below gives an isomorphism of Ipf -modules

H2(Kχ,v,T
+
f ,v ⊗I Ipf )

∼= H2(Qp,T
+
f ⊗I Ipf )

∼= Ipf /pfIpf ,

for every v|p. Since p splits in (the at most quadratic field) Kχ, taking the χ-component of (42) gives a short
exact sequence of Ipf -modules

0→ Xcc
Gr(f/Kχ)

χ ⊗I Ipf → H̃2
f (Kχ,Tf ,pf )

χ → Ipf /pfIpf → 0.

(Note that, if χ is nontrivial, the nontrivial automorphism of Gal(Kχ/Q) acts by permuting the factors in the
sum H2(Kχ,v1 ,T

+
f ,v1
⊗I Ipf ) ⊕H2(Kχ,v2 ,T

+
f ,v2
⊗I Ipf ) =: V ⊕ V , where {v|p} = {v1, v2}. Then the ǫ-component

of V ⊕ V is equal to either the subspace {(v, v) : v ∈ V } ∼= V if ǫ = 1 or to {(v,−v) : v ∈ V } ∼= V if ǫ = χ.)

In particular, Xcc
Gr(f/Kχ)

χ is a torsion module, which is semi-simple at pf if H̃2
f (Kχ,Tf ,pf )

χ is. Moreover, if

H̃2
f (Kχ,Tf ,pf )

χ is indeed semi-simple, the preceding equation and Lemma 5.4 give

lengthpf

(
Xcc

Gr(f/Kχ)
χ
)
= lengthpf

(
H̃2
f (Kχ,Tf )

χ
)
− 1 = dimL

(
H̃1
f (Kχ, Vf )

χ
)
− 1.

Since dimL H̃
1
f (Kχ, Vf )

χ = dimQp
Selp(A/Kχ)

χ + 1 by (38), this concludes the proof of the lemma. �

Lemma 5.6. H2(Qp,T
+
f ⊗I Ipf )

∼= Ipf /pfIpf .

Proof. Write ̟ := ̟wt. Since T+
f
⊗I Ipf /̟

∼= V +
f
∼= L(1) as GQp

-modules (see Section 5.1.6), there are
short exact sequences of L-modules

(43) 0→ Hj(Qp,T
+
f ⊗I Ipf )/̟ → Hj(Qp,Qp(1))⊗Qp

L→ Hj+1(Qp,T
+
f ⊗I Ipf )[̟]→ 0.

Taking j = 0 one finds H1(Qp,T
+
f ⊗I Ipf )[̟] = 0, i.e. H1(Qp,T

+
f ⊗I Ipf ) is a free Ipf -module. It is imme-

diately seen by the explicit description of T±
f given in (9) that H0(Qp,T

+
f ) = 0 and H0(Qp,T

−
f ) = 0. Since

T−
f
∼= HomI(T

+
f , I(1)) (under the duality π from Section 1.2), Tate local duality tells us that H2(Qp,T

+
f )

is a torsion I-module. Since T+
f is free of rank one over I, Tate’s formula for the local Euler characteristic

now gives
∑2

k=0(−1)krankIHj(Qp,T
+
f ) = −1. Together with what already proved, this allows us to conclude

H1(Qp,T
+
f ⊗I Ipf )

∼= Ipf . Taking now j = 1 and j = 2 in (43) we find exact sequences

0→ Ipf /̟ → H1(Qp,Qp(1))⊗Qp
L→ H2(Qp,T

+
f ⊗I Ipf )[̟]→ 0;

H2(Qp,T
+
f ⊗I Ipf )/̟

∼= H2(Qp,Qp(1))⊗Qp
L.
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Since dimQp
H1(Qp,Qp(1)) = 2 and dimQp

H2(Qp,Qp(1)) = 1, and since Ipf /̟
∼= L, it follows that both the

̟-torsion H2(Qp,T
+
f ⊗I Ipf )[̟] and the ̟-cotorsionH2(Qp,T

+
f ⊗I Ipf )/̟ have dimension 1 over L = Ipf /̟. The

structure theorem for finite torsion modules over principal ideal domains then gives H2(Qp,T
+
f ⊗I Ipf )

∼= Ipf /̟
n

for some n ≥ 1. To conclude the proof, it remains to show that n = 1, i.e. that H2(Qp,T
+
f ⊗I Ipf ) is semi-simple,

or equivalently that the composition

H : H1(Qp, L(1)) ։ H2(Qp,T
+
f ⊗I Ipf )[̟] →֒ H2(Qp,T

+
f ⊗I Ipf ) ։ H2(Qp,T

+
f ⊗I Ipf )/̟

∼= H2(Qp, L(1))
invp∼= L

is non-zero. To do this, identify H1(Qp, L(1)) ∼= Q×
p ⊗̂L via Kummer theory, and let q ∈ Q×

p . We want to compute

the image H(q) = H(q⊗̂1) ∈ L. Identify T+
f with I(a∗−1

p χcy[χcy]
1/2) (cf. Section 1.2), and write cq : GQp

→ L(1)

for a 1-cocycle representing q⊗̂1. Since Ipf is a L-algebra and φf : Ipf ։ L is a morphism of L-algebras, one can

consider cq : GQp
→ T+

f ⊗I Ipf as 1-cochain which lifts cq under φf . The differential (in C•
cont(Qp,T

+
f ⊗I Ipf )) of

cq is then given by

dcq(g, h) = a∗p(g)
−1 · χcy(g) · [χcy(g)]

1/2 · cq(h)− cq(gh) + cq(g)

= χcy(g) ·
(
a∗p(g)

−1 · [χcy(g)]
1/2 − 1

)
· cq(h),

where we used the cocyle relation (in C•
cont(Qp, L(1))) for the second equality. Retracing the definitions given

above, the class H(q) is then the image under invp of the class represented by the 2-cocycle

(44) ϑ(g, h) := χcy(g) · cq(h) · φf
(
a∗p(g)

−1 · [χcy]
1/2(g)− 1

̟

)
∈ L(1).

Consider the Tate local cup-product pairing 〈−,−〉TateQp
: H1(Qp, L)×H1(Qp, L(1))→ L. Noting that

Φf := φf

(
a∗−1
p · [χcy]

1/2 − 1

̟

)
∈ Homcont(G

ab
Qp
, L) = H1(Qp, L),

the equality (44) can be rewritten as

(45) H(q) = invp
(
class of ϑ

)
= 〈Φf , q〉TateQp

∈ L.

Let g0 ∈ IQp
be such that χcy(g0)

1/2 = γwt (where ̟ = [γwt] − 1), and let g ∈ IQp
. Then κcy(g)

1/2 = γzwt for

some z ∈ Zp, satisfying 1
2 logp (χcy(g)) = z · logp(γwt). (Recall that κcy : GQp

։ 1 + pZp is the composition of

the p-adic cyclotomic character χcy : GQp
։ Z×

p with projection to principal units.) Since a∗p(g) = 1 this implies

(46) Φf (g) = φf

(
a∗p(g)

−1 · [χcy]
1/2(g)− 1

̟

)
= φf

(
[γzwt]− 1

̟

)
= z =

1

2

logp
(
χcy(g)

)

logp(γwt)
.

Let now Frobp ∈ Gal(Qun
p /Qp) =: Gun

Qp
be an arithmetic Frobenius, where Qun

p /Qp is the maximal unramified

extension of Qp, and Gun
Qp

is viewed as a subgroup of the abelianisation Gab
Qp

of GQp
under the canonical de-

composition Gab
Qp

∼= Gal(Qp(µp∞)/Qp) × Gun
Qp

. Using the Mellin transform introduced in Section 3.1, and the

well-known formula of Greenberg-Stevens [GS93]: d
dkap(k)k=2 = − 1

2Lp(A), where Lp(A) :=
logp(qA)

ordp(qA) for the Tate

period qA ∈ pZp of A/Qp (see the following section), one easily computes

(47) Φf (Frob
n
p ) = φf

(
a∗p(Frob

n
p )

−1 − 1

̟

)
=

1

2
Lp(A) ·

n

logp(γwt)
.

Let recp : Q
×
p → Gab

Qp
be the reciprocity map of local class field theory [Ser67]. By combining the explicit formula

for recp given by Lubin-Tate theory with formulae (46) and (47) above yields

Φf

(
recp(q)

)
= φf

(
a∗p(recp(q))

−1 · [χcy]
1/2(recp(q))− 1

̟

)
= −1

2

1

logp(γwt)
· logqA(q)

for every q ∈ Q×
p , where logqA : Q×

p → Qp is the branch of the p-adic logarithm vanishing at the Tate period qA.
Equation (45) and another application of local class field theory then give (cf. [Ser67])

H(q) = 〈Φf , q〉TateQp
= Φf

(
recp(q)

) ·
= logqA(q),

where
·
= denotes equality up to a non-zero factor. This clearly proves that H is non-zero, hence (as explained

above) that H2(Qp,T
+
f ⊗I Ipf ) is a semi-simple Ipf -module. This concludes the proof of the lemma. �
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5.3. Algebraic exceptional zero formulae. Since A/Qp has split multiplicative reduction, it is a Tate
curve [Tat95], [Sil94, Chapter V], i.e. isomorphic (as a rigid analytic variety) to a Tate curve Gm/q

Z
A over Qp,

where qA ∈ pZp is the so called Tate period of A/Qp. In particular, there exists a GQp
-equivariant isomorphism

(48) ΦTate : Q
×
p /q

Z
A
∼= A(Qp).

Write Kχ,p := Kχ ⊗Q Qp
∼=
∏
v|pKχ,v, and write ιv : Kχ →֒ Kχ,v ⊂ Qp for the resulting embedding of Kχ in its

completion at v. Following [MTT86] and [BD96], define the extended Mordell-Weil group of A/Kχ:

A†(Kχ) :=
{(
P, (yv)v|p

)
∈ A(Kχ)×K×

χ,p : ΦTate(yv) = ιv(P ), for every v|p
}
.

In concrete terms, an element of A†(Kχ) is a Kχ-rational point os A, together with a distinguished lift under ΦTate

for every prime v|p. Then A†(Kχ) is an extension of the usual Mordell-Weil group A(Kχ) by a free Z-module of
rank #{v|p}. In other words there is a short exact sequence

(49) 0→
⊕

v|p
Z→ A†(Kχ)→ A(Kχ)→ 0,

where the first map sends the canonical v-generator to

(50) qv :=
(
0, qvA

)
∈ A†(Kχ),

qvA ∈ K×
χ,p being the element having qA as v-component and 1 elsewhere. When Kχ/Q is quadratic, A†(Kχ)

has a natural Gal(Kχ/Q)-action, coming from the diagonal action on A(Kχ)×K×
χ,p (with Gal(Kχ/Q) acting on

Kχ,p := Kχ ⊗Q Qp via its action on the first component). Recall the Kummer map A(Kχ)⊗̂Qp →֒ Selp(A/Kχ)
[Sil86, Chapter X]. The following lemma is proved in [Ven13, Section 4] (see in particular Lemma 4.1 and Lemma
4.3). For every abelian group A, write for simplicity A⊗ L :=

(
A⊗̂Zp

)
⊗Zp L.

Lemma 5.7. There exists a unique injective and Gal(Kχ/Q)-equivariant morphism of L-modules

i†A : A†(Kχ)⊗ L −→ H̃1
f (Kχ, Vf ),

satisfying the following properties:

(i) i†A gives rise to an injective morphism of short exact sequences of L[Gal(Kχ/Q)]-modules:

0 //
⊕

v|p L
// A†(Kχ)⊗ L //

� _

i†A
��

A(Kχ)⊗ L� _

Kummer

��

// 0

0 //
⊕

v|p L
// H̃1

f (Kχ, Vf ) // Selp(A/Kχ)⊗Qp
L // 0,

the bottom row being (38).

(ii) Let P = (P, (yv)v|p) ∈ A†(Kχ) be such that yv ∈ O×
Kχ,v

for every v|p. Then the image of i†A(P) under the

natural map H̃1
f (Kχ, Vf )→

⊕
v|pH

1(Kχ,v, V
+
f,v) lies in the finite subspace

⊕
v|pH

1
f (Kχ,v, V

+
f,v)

8.

In particular, i†A : A†(Kχ)⊗ L ∼= H̃1
f (Kχ, Vf ) is an isomorphism provided that X(A/Kχ)p∞ is finite.

We will consider from now on A†(Kχ) (or precisely A†(Kχ)/torsion) as a submodule of H̃1
f (Kχ, Vf ) via the

injection i†A. In particular 〈P,Q〉Nek
Vf ,π

:=
〈
i†A(P ), i

†
A(Q)

〉Nek

Vf ,π
for every P,Q ∈ A†(Kχ).

For every α ∈ Zp, let α = (α1/p, α1/p2 , . . . ) be a (fixed) compatible system of pn-th roots of α in Qp. Using the
Tate parametrisation (and recalling that qA ∈ pZp has positive p-adic valuation), we can identify Vp(A) with the
Qp-module generated by 1 ∈ Zp(1) and qA. Thanks to our fixed isomorphism (36), the duality πf := π ⊗Ipf

,φf L

induces a duality πf : Vp(A)⊗Qp
Vp(A)→ Qp(1). Denote by πf,1 : Vp(A)⊗Qp

Vp(A)→ Qp the composition of πf
with the isomorphism Qp(1) ∼= Qp; 1 7→ 1. We can then state the main result of this section.

Theorem 5.8. Let
(
P, P̃

)
∈ A†(Kχ), with P̃ =

(
P̃v
)
v|p ∈ K×

χ,p. Then

〈
qv,
(
P, P̃ )

〉Nek

Vf ,π
= c(π) · logqA

(
NKχ,v/Qp

(
P̃v
))
,

8More precisely, by the definition of Nekovář’s Selmer complexes, we have a natural surjective morphism of complexes p+
f

:

R̃Γf (Kχ, Vf ) ։
⊕

v|p RΓcont(Kχ,v , V
+

f,v). The map referred to in the lemma is the morphism induced in cohomology by p+f .

Moreover, we recall that the finite (of Bloch-Kato) subspace H1
f (Kχ,v ,−) is defined to be the subspace of H1(Kχ,v,−) made of

crystalline classes, i.e. classes with trivial image in H1(Kχ,v,−⊗ Bcris) [BK90].
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where logqA : Q
×
p → Qp is the branch of the p-adic logarithm vanishing at qA, NKχ,v/Qp

: K×
χ,v → Q×

p is the norm,

and the non-zero constant c(π) ∈ Q×
p (depending on π, but not on (P, P̃ )) is given by c(π) = 1

2πf,1 (1⊗ qA).

Proof. This is Corollary 4.6 of [Ven13]. (In loc. cit. π : Tf ⊗I Tf → I(1) is normalised in such a way that
πf,1 takes the value 1 on 1⊗ qA, so that the constant c(π) becomes 1/2.) For a more general statement, see also
[Ven14]. �

5.4. Proof of Theorem 5.1. Assume that χ(p) = 1, i.e. that p splits in Kχ. Moreover, assume that

(51) rankZA(Kχ)
χ = 1; #

(
X(A/Kχ)

χ
p∞

)
<∞,

and let Pχ ∈ A(Kχ)
χ be a generator of A(Kχ)

χ modulo torsion. Fix a lift P †
χ =

(
Pχ, (P̃χ,v)v|p

)
∈ A†(Kχ)

χ of Pχ
under (49), and define a χ-period

qχ ∈ A†(Kχ)
χ

as follows. If χ is the trivial character, i.e. Kχ = Q, then let qχ := (0, qA) ∈ A†(Q) ⊂ A(Q) ×Q×
p . Similarly, if

Kχ/Q is quadratic, let qχ :=
(
0, (qA, q

−1
A )
)
∈ A†(Kχ)

χ ⊂ A(Kχ)×K×
χ,p×K×

χ,p, where pOKχ = p · p. By the exact

sequence of Z[Gal(Kχ/Q)]-modules (49), our assumptions, and Lemma 5.7 one has

(52) H̃1
f (Kχ, Vf )

χ
i†
A∼= (A(Kχ)⊗ L)χ = L · qχ ⊕ L · P †

χ.

Since 〈−,−〉Nek
Vf ,π

is a skew-symmetric bilinear form, 〈qχ, qχ〉Nek
Vf ,π

= 0 and
〈
P †
χ, P

†
χ

〉Nek

Vf ,π
= 0. Moreover, in case

Kχ = Q, Theorem 5.8 gives
〈
qχ, P

†
χ

〉Nek

Vf ,π

·
= logqA(P̃χ,p) = logA(Pχ),

where logA := logqA ◦Φ−1
Tate : A(Qp) ∼= Qp is the formal group logarithm on A/Qp, and

·
= denotes equality up

to multiplication by a non-zero element of L×. In case Kχ/Q is quadratic, write as above (p) = p · p, and
ιp : Kχ ⊂ Kχ,p

∼= Qp and ιp : Kχ ⊂ Kχ,p
∼= Qp for the completions of K at p and p respectively. Then ιp = ιp ◦ τ ,

where τ is the non-trivial element of Gal(Kχ/Q). Since P †
χ ∈ A†(Kχ)

χ, we have P τχ = −Pχ and P̃χ,p = P̃−1
χ,p

. As

qχ := qp − qp̄ (by the definitions), another application of Theorem 5.8 allows us to compute

〈
qχ, P

†
χ

〉Nek

Vf ,π
=
〈
qp, P

†
χ

〉Nek

Vf ,π
−
〈
qp, P

†
χ

〉Nek

Vf ,π

·
= logqA

(
P̃χ,p

)
− logqA

(
P̃χ,p

)

= logA(ιp(Pχ))− logA(ιp(Pχ)) = logA
(
ιp
(
Pχ − P τχ

) )
= 2 · logA (Pχ) ,

where we write again (with a slight abuse of notation) logA : A(Kχ)
ιp−→ A(Qp)

logA−→ Qp.
The preceding discussion can be summarised by the following formulae (valid for χ trivial or quadratic):

det 〈−,−〉Nek,χ
Vf ,π

:= det




〈
qχ, qχ

〉Nek

Vf ,π

〈
qχ, P

†
χ

〉Nek

Vf ,π

〈
P †
χ, qχ

〉Nek

Vf ,π

〈
P †
χ, P

†
χ

〉Nek

Vf ,π


 ·

= det




0 logA(Pχ)

− logA(Pχ) 0


 ·

= log2A(Pχ)

(where we used again the fact that 〈−,−〉Nek
Vf ,π

is skew-symmetric to compute
〈
P †
χ, qχ

〉Nek

Vf ,π
= −

〈
qχ, P

†
χ

〉Nek

Vf ,π
, and

we wrote as above
·
= to denote equality up to multiplication by a non-zero element in L×). Since Pχ ∈ A(Kχ) is

a point of infinite order, and logA gives an isomorphism between A(Qp)⊗Qp and Qp, logA(Pχ) 6= 0, so that

det 〈−,−〉Nek,χ
Vf ,π

6= 0.

Recalling that qχ and P †
χ generate H̃1

f (Kχ, Vf )
χ as an L-vector space by (52), this implies that 〈−,−〉Nek,χ

Vf ,π
is

non-degenerate, and the last statement of Proposition 5.2 finally gives

lengthpf

(
Xcc

Gr(f/Kχ)
χ
)
= dimQp

(
Selp(A/Kχ)

χ
)

(37) and (51)
= 1.

This means that Xcc
Gr(f/Kχ)

χ ⊗I Ipf
∼= Ipf /pfIpf as Ipf -modules, as was to be shown.

6. Proof of the main result

This section is entirely devoted to the proof of Theorem A stated in the introduction.
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6.1. An auxiliary imaginary quadratic field. We will need the following crucial lemma, which follows
combining the main result of [BFH90], Nekovář’s proof of the parity conjecture [Nek06], and the KGZ Theorem.

Lemma 6.1. Let NA = Np be the conductor of A/Q (with p ∤ N). Assume that the following properties hold:

(a) there exists a prime q 6= p such that q‖NA;
(b) rankZA(Q) = 1 and X(A/Q)p∞ is finite.

Then there exists an imaginary quadratic field F/Q, of discriminant DF , satisfying the following properties:

1. DF is coprime to 6NA;
2. q (resp., every prime divisor of NA/q) is inert (resp., splits) in F ;
3. ords=1L(A

F /Q, s) = 1;
4. rankZA(F ) = 2 and X(A/F )p∞ is finite.

(In 3: AF /Q is the ǫF -twist of A/Q, ǫF being the quadratic character of F .)

Proof. By condition (b) and Nekovář’s proof of the parity conjecture [Nek06, Section 12]

sign(A/Q) = −1
(where sign(A/Q) denotes the sign in the functional equation satisfied by the Hasse-Weil L-series L(A/Q, s)).
Let χ be a quadratic Dirichlet character of conductor cχ coprime with 6NA such that:

(αχ) χ(q) = −1 and χ(ℓ) = +1 for every prime divisor ℓ of NA/q;
(βχ) χ(−1) = +1,

and let Aχ/Q be the χ-twist of A/Q. As q‖NA, we deduce by [Shi71, Theorem 3.66] and the preceding properties

sign(Aχ/Q) = χ(−NA) · sign(A/Q) = −χ(NA) = +1.

The main result of [BFH90] then guarantees the existence of a quadratic Dirichlet character ψ, of conductor
coprime with 6cχNA, such that

(αψ) ψ(ℓ) = +1 for every prime divisor ℓ of 6cχNA;
(βψ) ψ(−1) = −1;
(γψ) ords=1L(A

χψ/Q, s) = 1.

Define F = Fχψ as the quadratic field attached to χψ, so χψ = ǫF and L(Aχψ/Q, s) = L(AF /Q, s) is the Hasse-
Weil L-series of the F -twist of A/Q. In particular, property 3 in the statement is satisfied. By the KGZ theorem,
it follows by (γψ) that A(F )ǫF has rank one and X(A/F )ǫF is finite. Together with (b), this gives

rankZA(F ) = 2; #
(
X(A/F )p∞

)
<∞,

i.e. property 4 in the statement. Property 1 is clear by construction. Moreover, by (αχ) and (αψ) we deduce
ǫF (−1) = −1, ǫF (q) = −1 and ǫF (ℓ) = +1 for every prime divisor of NA/q. This means precisely that F/Q is an
imaginary quadratic field satisfying property 2 in the statement, thus concluding the proof. �

6.2. Proof of Theorem A. Assume that A/Q and p > 2 satisfy the hypotheses listed in Theorem A, i.e.

(α) ρA,p is an irreducible GQ-representation;
(β) there exists a prime q 6= p at which A has multiplicative reduction (i.e. q‖NA);
(γ) p ∤ ordq(jA);
(δ) rankZA(Q) = 1 and X(A/Q)p∞ is finite.

Let K/Q be a quadratic imaginary field such that

(ǫ) DK is coprime with 6NA;
(ζ) q is inert in K;
(η) every prime divisor of NA/q splits in K;
(θ) rankZA(K) = 2 and X(A/K)p∞ is finite;
(ι) ords=1L(A

K/Q, s) = 1.

The existence of such a K/Q has been proved in Lemma 6.1 above. Finally, let L/Qp be a finite extension

containing Qp

(
D

1/2
K , (−1)1/2, 11/Np

)
/Qp, let qK ∤ 6p be a rational prime which splits in K, and let S be the set

of primes of K consisting of all the prime divisors of qKNADK . Then:

Lemma 6.2. The data (f ,K, p, L, qK , S) satisfy Hypotheses 1, 2 and 3.

Proof. By construction and properties (ǫ) and (η), Hypothesis 2 is satisfied. Since ρf is isomorphic (by
definition) to the semi-simplification of ρA,p, assumption (α) is nothing but a reformulation of Hypothesis 1. To

prove that Hypothesis 3 holds true, note that (with the notations of loc. cit.) N+ = NA/pq and N− = q by (ζ)
and (η) above. Then N− is a square-free product of an odd number of primes. It thus remains to prove that
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ρA,p
∼= ρf is ramified at q. By Tate’s theory, we know that A/Qq is isomorphic to the Tate curve Gm/t

Z
q over the

quadratic unramified extension of Qp, where tq ∈ qZq is the Tate period of A/Qq, satisfying ordq (tq) = −ordq(jA)
[Tat95], [Sil94, Chapter V]. Then

A[p] := A(Q)[p] ∼=
{
t
i
p
q · ζjp : 0 ≤ i, j < p

}

as IQq
-modules, where t

1/p
q ∈ Qq and ζp ∈ Qq are fixed primitive pth roots of tq and 1 respectively. As Qq(ζp)/Qq

is unramified, ρA,p is ramified at q precisely if Qq(t
1/p
q )/Qq is ramified. Recalling that tq ∈ qZq and ordq(tq) =

−ordq(jA), this is the case if and only if p ∤ ordq(jA). Then Hypothesis 3 follows from (γ). �

In order to prove Theorem A, we need one more simple lemma. Omitting S from the notations, recall the

dual Selmer groups Xcc
Q∞

(f/K) := XS,cc
Q∞

(f/K) and Xcc
Gr(f/K) introduced in Sections 3.3 and 5 respectively.

Lemma 6.3. lengthpf

(
Xcc

Q∞
(f/K)

)
≤ lengthpf

(
Xcc

Gr(f/K)
)
+ 2.

Proof. As remarked in the proof of Lemma 5.5, the perfect, skew-symmetric duality π : Tf ⊗I Tf → I(1)
induces a natural isomorphism of I[GQp

]-modules: T−
f ⊗I I

∗ ∼= Homcont(T
+
f , µp∞) =: A−

f . By construction and the
inflation-restriction sequence, there is then an exact sequence

0→ SelccGr(f/K)→ SelccQ∞
(f/K)→

⊕

v|p
H1
(
Frobv,

(
A−

f

)Iv)
,

where Iv := IKv is the inertia subgroup of GKv , Frobv ∈ GKv/IKv is the arithmetic Frobenius at v, and we
write for simplicity H∗(Frobv,−) := H∗(GKv/IKv ,−). (Here the reference to the fixed set S is again omitted, so

that SelccQ∞
(f/K) := SelS,ccQ∞

(f/K).) Taking Pontrjagin duals and then localising at pf gives an exact sequence of
Ipf -modules:

⊕

v|p
H1
(
Frobv,

(
A−

f

)Iv)∗
pf

→ Xcc
Q∞

(f/K)pf → Xcc
Gr(f/K)pf → 0,

where (−)∗
pf

is an abbreviation for ((−)∗)
pf

= (−)∗ ⊗I Ipf . As p splits in K, one deduces

(53) lengthpf

(
Xcc

Q∞
(f/K)

)
≤ lengthpf

(
Xcc

Gr(f/K)
)
+ 2 · lengthpf

(
H1
(
Frobp,

(
A−

f

)Ip)∗ )
,

where Ip := IQp
⊂ GQp

is the inertia subgroup and Frobp ∈ GQp
/IQp

is the arithmetic Frobenius at p.

By equation (9), T+
f
∼= I

((
a∗p
)−1 · χcy · [χcy]

1/2
)

as GQp
-modules. Then its Kummer dual A−

f is isomorphic

to I∗
(
a∗p · [χcy]

−1/2
)
. Let γ ∈ 1 + pZp be a topological generator, let [γ] ∈ I be its image under the structural

morphism [·] : Λ→ I, and let ̟ = [γ]− 1 ∈ Λ. Since a∗p is an unramified character and [ρ] ≡ 1 mod ̟ for every
ρ ∈ 1 + pZp, one has isomorphisms of Frobp-modules

(54) H0(Ip,A
−
f ) = A−

f [̟] ∼= (I/̟I)
∗
(a∗p).

Applying H1(Frobp,−) to (54) then yields H1
(
Frobp,

(
A−

f

)Ip)
=
(

I

̟·I
)∗
/ (ap − 1)

(
I

̟·I
)∗

. Taking the Pontrjagin

duals and then localising at pf one deduces

(55) H1
(
Frobp,

(
A−

f

)Ip)∗
pf

∼=
((

I

̟ · I

)∗∗
[ap − 1]

)

pf

∼=
(

Ipf
̟ · Ipf

)
[φf (ap)− 1] = Ipf /pfIpf .

Indeed, as remarked in (17), ̟ is a uniformiser of Ipf . Moreover, pf := ker(φf ) and φf (ap) = ap(2) = +1 (as
A/Qp is split multiplicative), so that ap− 1 acts trivially on Ipf /pf Ipf and (55) follows. In particular, (55) yields

lengthpf

(
H1
(
Frobp,

(
A−

f

)Ip)∗ )
= 1.

Together with equation (53), this concludes the proof of the lemma. �

We can finally conclude the proof of Theorem A. To be short, we have

(56) 4
Cor. 4.2
≤ ordk=2L

cc
p (f∞/K, k)

Cor. 3.2
≤ lengthpf

(
Xcc

Q∞
(f/K)

) Lemma 6.3
≤ lengthpf

(
Xcc

Gr(f/K)
)
+ 2

Th. 5.1
= 4.

Indeed, hypothesis (δ) gives dimQp
Selp(A/Q) = 1, and then (as in the proof of Lemma 6.1) Nekovář’s proof of the

parity conjecture guarantees that sign(A/Q) = −1. Together with Lemma 6.2, this implies that the hypotheses
of Corollary 4.2 are satisfied, and then that the first inequality in (56) holds true. Lemma 6.2 also allows us to
apply Skinner-Urban’s Corollary 3.2, which gives the second inequality in (56). The third inequality in (56) is the
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content of the preceding lemma. Finally, let χ denote either the trivial character or the quadratic character ǫK of
K, and let Kχ := Q or Kχ := K accordingly. Then (δ) and (θ) imply that (with the notations of Section 5)

rankZA(Kχ)
χ = 1; #

(
X(A/Kχ)

χ
p∞

)
<∞.

Moreover, we know that p splits in Kχ (i.e. in K, by hypothesis (η)). Then the hypotheses (i), (ii) and (iii) of
Theorem 5.1 are satisfied by both our χ’s, and by applying the theorem twice yields

Xcc
Gr(f/K)pf

∼= Xcc
Gr(f/Q)pf ⊕Xcc

Gr(f/K)ǫKpf
∼= Ipf /pfIpf ⊕ Ipf /pfIpf

9, justifying the last equality in (56).
Equation (56) proves that ordk=2L

cc
p (f∞/K, k) = 4. It then follows by Bertolini-Darmon’s Corollary 4.2 that

the Hasse-Weil L-function of A/K has a double zero at s = 1:

ords=1L(A/K, s) = 2.

Since L(A/K, s) = L(A/Q, s) · L(AK/Q, s) is the product of the Hasse-Weil L-functions of A/Q and its K-twist
AK/Q, and since L(AK/Q, s) has a simple zero at s = 1 by (ι) above, we finally deduce

ords=1L(A/Q, s) = 1.
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