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Abstract. Let

Pn(y1, . . . , yn) :=
∏

1≤i<j≤n

(
1− yi

yj

)
and

Pn := sup
(y1,...,yn)

Pn(y1, . . . , yn)

where the supremum is taken over the n-ples (y1, . . . , yn) of real numbers satisfying 0 < |y1| <
|y2| < · · · < |yn|. We prove that Pn ≤ 2bn/2c for every n, i.e., we extend to all n the bound
that Pohst proved for n ≤ 11. As a consequence, the bound for the absolute discriminant of a
totally real field in terms of its regulator is now proved for every degree of the field.
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1. Introduction

Let y1, . . . , yn be n ≥ 2 non zero real numbers satisfying the condition

(1) |y1| < |y2| < · · · < |yn|.
Define then the positive real number

Pn(y1, . . . , yn) :=
∏

1≤i<j≤n

(
1− yi

yj

)
and consider

Pn := sup
(y1,...,yn)

Pn(y1, . . . , yn),

where the supremum is taken over the n-ples of real numbers (y1, . . . , yn) which satisfy the
condition (1).

The goal of this paper is to provide an estimation for Pn for every n ≥ 2. This is motivated
by number theoretic reasons: in fact, let K be a number field of degree n ≥ 2 and let ε be a
unit of its ring of integers such that K = Q(ε). The discriminant dK of the field K divides the
discriminant of the minimum polynomial of ε, inducing the inequality

|dK | ≤
∏

1≤i<j≤n
|εi − εj |2 ≤

n∏
k=2

|εk|2(k−1) ·
∏

1≤i<j≤n

(
1− εi

εj

)2

≤
n∏

k=2

|εk|2(k−1) · P 2
n .

Furthermore, when K is totally real and primitive (i.e. has no proper subfields) it is possible to
estimate the remaining product in terms of the regulator RK of K with classical methods from
geometry of numbers (for example see [1]), and one obtains that

log |dK | ≤
√
γn−1 ·

n3 − n
3

· (
√
nRK)1/(n−1) + 2 logPn,

where γn−1 denotes the Hermite constant of dimension n− 1 (for the definition of this constant
see [4, Ch. 3, Sec. 3]). Thus, any estimation for Pn provides an estimation for the discriminant

dK . More precisely, Remak [5] first showed that Pn ≤ nn/2 for every n; Pohst [3] improved the

bound to Pn ≤ 2bn/2c for every n ≤ 11, and Bertin [2] produced a new proof of Remak’s estimate.
In the same paper Bertin also gave an argument trying to prove that Pohst’s estimation holds
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for every n, but her procedure is not completely convincing. In this paper we prove that Pohst’s
estimation holds indeed for every n.

In order to achieve this result, following aforementioned works, we choose a slightly different
function to estimate: given Pn(y1, . . . , yn), we define the change of variables

(2) xi :=
yi
yi+1

, i = 1, . . . , n− 1

which transforms Pn(y1, . . . , yn) into the quantity

Qn−1(x1, . . . , xn−1) :=

n−1∏
i=1

n−1∏
j=i

(
1−

j∏
k=i

xk

)
.

Since |xi| ≤ 1 for every i, the polynomials Qn are non negative over the cube Dn := [−1, 1]n,
and we look for

Mn := max
(x1,...,xn)∈Dn

Qn(x1, . . . , xn).

The change of variables (2) shows that Pn = Mn−1 for every n ≥ 2. Starting from this, in the
next sections we will prove the following theorem.

Theorem 1. The maximum Mn of Qn in Dn is 2b
n+1
2 c for every n, so that Pn = Mn−1 = 2bn/2c

for every n ≥ 2.

It is easy to verify that Qn attains its maximum at (−1, 0,−1, 0, . . .) when n is odd, while for

an even n this happens at each point ([−1, 0]k, [0,−1]n/2−k) for any choice of k = 0, 1, . . . , n/2

(here [−1, 0]k means that the string [−1, 0] has to be repeated k times, the same for [0,−1]n/2−k).
Our argument proving Theorem 1 can be adapted to prove also that these are the unique points
where Qn attains its maximum, but we leave to the interested reader a formal proof of this fact.

Corollary 1. Let K be a totally real and primitive field of degree n ≥ 2 having discriminant
dK and regulator RK . Then

log |dK | ≤
√
γn−1 ·

n3 − n
3

· (
√
nRK)1/(n−1) +

⌊n
2

⌋
log 4.

2. Basic inequalities

An elementary computation shows that the maximums for the first two polynomials Q1(x1) =
(1− x1) and Q2(x1, x2) = (1− x1)(1− x1x2)(1− x2) are

(3) M1 = 2, M2 = 2,

respectively. These numbers agree with the claim of the theorem. It is clear that the deter-
mination of Mn via local, i.e. analytic, methods involving partial derivatives becomes quickly
infeasible as n increases: we take a different and global, so to say, approach, where the polynomial
is split in suitable blocks and the maximum for the polynomial is deduced from the maximums
of those blocks. These maximums will be deduced from the following basic inequalities.

Lemma 1. Let x, y, z be real numbers in [0, 1]. Then the following inequalities hold:

(4) (1− x)(1 + xy) ≤ 1,

(5) (1− x)(1 + xy) ≤ (1 + x)(1− xy),

(6) (1− y)(1 + xy)(1 + yz)(1− xyz) ≤ (1 + y)(1− xy)(1− yz)(1 + xyz),

(7) (1− y)(1 + xy)(1 + yz)(1− xyz) ≤ 1.

Proof. (4) is obvious, since 1+xy ≤ 1+x. (5) is reduced via direct computations to −x+xy ≤ 0,
which is clearly true. For (6): the right hand side minus the left hand side factorizes as

2y(1− x)(1− z)(1 + xy2z),

which is nonnegative under our hypotheses.
Finally, (7) already appears in [3]; for sake of completeness we recall here a quicker proof.
Compute all the products, remove the common terms, factor out y and move the terms to left
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hand side or right hand side according to the sign of the coefficient. In this way the inequality
is proved to be equivalent to

(y3z2 + y2z)x2 + (y2z2 + yz + 1)x+ xyz + z ≤ (y2z2 + yz)x2 + (y2z + yz2 + y + z)x+ yz + 1.

This inequality is true since it can be obtained adding the three inequalities

x2y3z2 + x2y2z + xy2z2 ≤ x2y2z2 + x2yz + xy2z,

x+ y + z + xyz ≤ xy + xz + yz + 1,

xyz − y ≤ xyz2

which are true (the first one because each term appearing to the left contains and extra power
with respect to the corresponding term to the right, the second one because it can be written as
(1− x)(1− y)(1− z) ≥ 0, and the last one because y(1− xz + xz2) ≥ 0 in the given range). �

3. Graphical schemes

We call graphical scheme of dimension n any triangular n × n array C with symbols “+”
or “−” in each entry Ci,j with 1 ≤ i ≤ j ≤ n. The following are some examples of graphical
schemes in dimension n = 3 and n = 5, respectively:

+ + −
− +

+

,
− − + + −

+ − − +

+ + −
− −
−

.

We associate with C the function FC : [0, 1]n → R defined as

FC(z1, . . . , zn) :=
n∏

i=1

n∏
j=i

(
1− Ci,j

j∏
k=i

zk

)
,

and we denote its (i, j) factor as

FCi,j
:= 1− Ci,j

j∏
k=i

zk.

Given two graphical schemes C and C ′ of dimension n, we say that C ≤ C ′ if FC(z1, . . . , zn) ≤
FC′(z1, . . . , zn) for every choice of (z1, . . . , zn) ∈ [0, 1]n. The following lemma describes four
basic moves that when performed on a given scheme produce a larger (in the previous sense)
scheme.

Lemma 2. Let C be a graphical scheme of dimension n.

P) (Point) Assume Ci,j = +. Let C ′ be the graphical scheme defined by

C ′r,s =

{
− (r, s) = (i, j)

Cr,s otherwise.

Then C ≤ C ′. Moreover, FCi,j ≤ 1.
H) (Horizontal segment) Assume Ci,j = + and Ci,j+k = −, with k ≤ n − j. Let C ′ be the

graphical scheme defined by

C ′r,s =


− (r, s) = (i, j)

+ (r, s) = (i, j + k)

Cl,k otherwise.

Then C ≤ C ′. Moreover, FCi,j · FCi,j+k
≤ 1.
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V) (Vertical segment) Assume Ci,j = − and Ci+k,j = + with k ≤ j − i. Let C ′ be the
graphical scheme defined by

C ′r,s =


+ (r, s) = (i, j)

− (r, s) = (i+ k, j)

Cl,k otherwise.

Then C ≤ C ′. Moreover, FCi,j · FCi+k,j
≤ 1.

S) (Square) Assume Ci,j = −, Ci,j+k = +, Ci+l,j = + and Ci+l,j+k = −. Let C ′ be the
graphical scheme defined by

C ′r,s =



+ (r, s) = (i, j)

− (r, s) = (i, j + k)

− (r, s) = (i+ l, j)

+ (r, s) = (i+ l, j + k)

Cl,k otherwise.

Then C ≤ C ′. Moreover, FCi,jFCi+l,j
FCi,j+k

FCi+l,j+k
≤ 1.

We introduce a notation for these moves:

P) Point: P(i; j) denotes the change of
j

i + into
j

i − ,

H) Horizontal: H(i; j, j′) denotes the change of
j j′

i + − into
j j′

i − + ,

V) Vertical: V(i, i′; j) denotes the change of

j
i −
i′ + into

j
i +
i′ − ,

S) Square: S(i, i′; j, j′) denotes the change of

j j′
i − +
i′ + − into

j j′
i + −
i′ − + .

Proof.

P) We have

FCi,j = 1−
j∏

k=i

zk ≤ 1 +

j∏
k=i

zk

and since every other factor of FC remains unchanged, we get FC ≤ FC′ . The statement
FCi,j ≤ 1 is immediate.

H) FCi,j · FCi,j+k
≤ 1 is a direct consequence of (4), while (5) implies

FCi,j · FCi,j+k
=

(
1−

j∏
l=i

zl

)1 +

j∏
l=i

zl

j+k∏
l=j+1

zl


≤

(
1 +

j∏
l=i

zl

)1−
j∏

l=i

zl

j+k∏
l=j+1

zl

 = FC′i,j
· FC′i,j+k

and this proves FC ≤ FC′ since every other factor is unchanged.
V) is proved in a similar way to case H).
S) FCi,jFCi+l,j

FCi,j+k
FCi+l,j+k

≤ 1 is a direct application of (7), while (6) implies

FCi+l,j
· FCi,j · FCi+l,j+k

· FCi,j+k

=

(
1−

j∏
v=i+l

zv

)(
1+

i+l−1∏
v=i

zv

j∏
v=i+l

zv

)1+

j∏
v=i+l

zv

j+k∏
v=j+1

zv

1−
i+l−1∏
v=i

zv

j∏
v=i+l

zv

j+k∏
v=j+1

zv


≤

(
1+

j∏
v=i+l

zv

)(
1−

i+l−1∏
v=i

zv

j∏
v=i+l

zv

)1−
j∏

v=i+l

zv

j+k∏
v=j+1

zv

1+

i+l−1∏
v=i

zv

j∏
v=i+l

zv

j+k∏
v=j+1

zv


= FC′i+l,j

· FC′i,j
· FC′i+l,j+k

· FC′i,j+k

and this proves FC ≤ FC′ since every other factor is unchanged.
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�

4. Properties of the schemes generated by sign vectors

Identifying numbers ±1 with symbols ±, we can generate a graphical scheme C(ε) from each

signs vector ε := (ε1, . . . , εn), εk ∈ {±1}, by setting C(ε)i,j :=
∏j

k=i εk for every (i, j). For
example, the vector ε := (1, 1,−1, 1,−1) generates the scheme

C(ε) =

+ + − − +

+ − − +

− − +

+ −
−

.

The interest for this construction comes from the following remark. We can split Dn = [−1, 1]n

into 2n different chambers Dn,ε, each one associated with a different signs vector ε = (ε1, . . . , εn),
where

Dn,ε := {(x1, . . . , xn) ∈ [−1, 1]n : xiεi ≥ 0, ∀i}.
Once we have chosen Dn,ε, the change of variables zi := εixi transforms Dn,ε into [0, 1]n, and
Qn(x1, . . . , xn) into

Qn(ε1z1, . . . , εnzn) =
n∏

i=1

n∏
j=i

(
1−

j∏
k=i

εk

j∏
k=i

zk

)
,

which is exactly the polynomial FC(ε) associated with the scheme C(ε) generated by the signs
vector ε. This gives us a strategy to prove Theorem 1: we will prove that for each scheme C(ε)
there is a list of moves P , V , H and S which transform C(ε) into C−, the n-dimensional scheme
generated by the signs ε− := (−1, · · · ,−1) (see next Theorem 2): by Lemma 2 these moves
increase the value of the associated polynomial, hence the maximum of each FC(ε) is lower than
the one of FC− . In other words, this means that the maximum of Qn in every chamber Dn,ε is
the one of FC− , at most. Thus, the conclusion easily follows from the next lemma giving the
maximum for FC− .

Lemma 3. Let C− be the n-dimensional scheme generated by the signs ε− := (−1, · · · ,−1).
Then

FC−(z1, . . . , zn) ≤ 2b
n+1
2 c ∀(z1, . . . , zn) ∈ [0, 1]n.

Proof. The graphical scheme C− has the form

− + − + · · ·
− + − · · ·
− + · · ·
− · · ·
· · ·

where every row starts with a sign − and continues with alternating signs. We know that the
claim for n = 1 and n = 2 is true thanks to (3). Let n ≥ 3. If n is odd, the scheme C− has the
form

− + − + · · · − + −
− + − · · · + − +

C−,n−2

while for n even has the form
− + − + · · · − +

− + − · · · + −
C−,n−2
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where in both cases C−,n−2 is the n − 2-dimensional scheme defined by the n − 2-long vector

with all minus signs. By inductive hypothesis, we have FC−,n−2 ≤ 2b(n−1)/2c.
Let us look at the first two rows of C−: here, the first two columns form a triangular array
in dimension 2: hence FC1,1FC1,2FC2,2 ≤ 2 by Equation (3). Moreover, there are b(n− 2)/2c
consecutive squares

− +
+ − , plus, in case n is odd, an extra vertical segment

−
+

. Entries V) and

S) of Lemma 2 prove that the contribution of each such square and of the vertical segment are
bounded by 1. Hence, in every case the contribution of the first two rows is estimated by 2, and

FC− ≤ 2 · FC−,n−2 ≤ 2 · 2b
n−1
2 c = 2b

n+1
2 c.

�

To succeed in this task we need to further investigate some properties of the schemes generated
by sign vectors; they are contained in next three lemmas.

Lemma 4. Let C(ε) be a scheme generated by the sign vector ε of dimension n ≥ 3. Let i < i′,
j < j′ with i′ < j. The product of the four signs C(ε)i,j, C(ε)i′,j, C(ε)i,j′ and C(ε)i′,j′ is 1. In

other words, the number of minus signs in every square

j j′
i
i′ is even.

Proof. In fact, we have

C(ε)i,jC(ε)i′,jC(ε)i,j′C(ε)i′,j′ =

j∏
k=i

εk

j∏
k=i′

εk

j′∏
k=i

εk

j′∏
k=i′

εk =

j′∏
k=j+1

εk

j′∏
k=j+1

εk = 1.

�

Let C be a graphical scheme. We say that the sign Ci,j is correct if Ci,j = (−1)i−j+1, otherwise
we say that Ci,j is wrong. It is clear that the only graphical scheme having only correct signs is
C−, i.e., the one generated by the signs vector ε− := (−1, . . . ,−1).

Lemma 5. Let C(ε) be a scheme generated by the sign vector ε of dimension n and for i ≤ j ≤ n
let H(i, j) :=

∑j−1
u=i C(ε)i,u (the sum of entries in C(ε) appearing to the left of C(ε)i,j), and

V (i, j) :=
∑j

v=i+1C(ε)v,j (the sum of entries in C(ε) appearing below C(ε)i,j). Suppose that
C(ε)i,j = −, then H(i, j) = −V (i, j).

Proof. In fact, C(ε)i,u =
∏u

k=i εk and by hypothesis C(ε)i,j =
∏j

k=i εk = −1. Thus, for i ≤ u ≤
j − 1 we get

C(ε)i,u =
u∏

k=i

εk = −C(ε)i,j

u∏
k=i

εk = −
j∏

k=i

εk

u∏
k=i

εk = −
j∏

k=u+1

εk = −C(ε)u+1,j .

Hence, each term appearing below C(ε)i,j is opposite to a convenient term appearing to the left
of C(ε)i,j , and vice versa. �

We introduce the following quantities, again under the hypothesis that i ≤ j.

Hw
±(i, j) := #{k : i ≤ k ≤ j − 1, Ci,k = ±, Ci,k is wrong},

V w
± (i, j) := #{k : i+ 1 ≤ k ≤ j, Ck,j = ±, Ck,j is wrong},

Hw(i, j) := Hw
+(i, j)−Hw

−(i, j), V w(i, j) := V w
+ (i, j)− V w

− (i, j).

Lemma 6. Let C(ε) be a scheme generated by the sign vector ε and assume that C(ε)i,j = −
and that i+ j is odd. Then V (i, j) = 2V w(i, j)− 1 and H(i, j) = 2Hw(i, j)− 1. We know that
V (i, j) and H(i, j) are opposite in sign by Lemma 5, therefore Hw(i, j) + V w(i, j) = 1 and in
particular, at least one between Hw(i, j) and V w(i, j) is positive.

Proof. Since i+ j is odd, there exist j − i signs C(ε)l,j below C(ε)i,j , and the quantity j − l+ 1
is odd for (j − i + 1)/2 of them, and is even for the remaining (j − i − 1)/2 cases. Wrong +’s
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below C(ε)i,j appear at positions (l, j) where j − l + 1 is odd, and every other sign here which
is not a wrong + is necessarily a − (actually a correct −, but this in not important now), thus

j∑
l=i+1

j−l+1odd

C(ε)l,j = V w
+ (i, j)−

(1

2
(j − i+ 1)− V w

+ (i, j)
)

= 2V w
+ (i, j)− 1

2
(j − i+ 1).

Similarly, wrong −’s below C(ε)i,j appear at positions (l, j) where j − l + 1 is even, and every
other sign here which is not a wrong − is necessarily a +, so that

j∑
l=i+1

j−l+1 even

C(ε)l,j = −V w
− (i, j) +

(1

2
(j − i− 1)− V w

− (i, j)
)

= −2V w
− (i, j) +

1

2
(j − i− 1)

Thus

V (i, j) =

j∑
l=i+1

C(ε)l,j = 2(V w
+ (i, j)− V w

− (i, j))− 1

2
(j − i+ 1) +

1

2
(j − i− 1) = 2V w(i, j)− 1.

The proof for H(i, j) is similar. �

5. The procedure

We are now ready to prove the following theorem. As recalled in the previous section, it yields
Theorem 1 as immediate corollary thanks to Lemma 2 and Lemma 3.

Theorem 2. Let C = C(ε) be the scheme generated by any signs vector ε and let C− be the
scheme generated by the sign vector ε with all negative signs. There is a list L of transformations
of type P, H, V and S which changes C into C−.

Proof. Let ε = (ε1, . . . , εn) be the signs vector producing C. We prove the theorem by making
induction on the dimension n.
If n = 1, we only have two possibilities: either C = − and we have finished, or C = + and the
claim follows by applying P(1; 1).
Now, assume that n > 1 and that the claim is true for every scheme generated by any signs
pattern of dimension less than n. Let C ′ be the scheme obtained by removing the n-th column
from C: this is the scheme generated by the signs vector omitting εn in ε. By inductive
hypothesis, there exists a list L′ of moves which applied to C ′ gives C ′−, the array of dimension
n−1 defined by all negative signs. Our goal is to modify some elements in L′ by replacing them
with other moves which correct all wrong symbol in the n-th column and that coincide with
the old move on the common part in C ′: in this way we will obtain a new list L of moves that
applied to C give C−.
Moreover, in order to prove that the algorithm can be correctly performed, we need to keep note
of each move we introduce, and of its effect on the n-th column. For this purpose we introduce
the symbols D(1), D(2) and so on, to denote the several new versions of the n-th column we get
after each new move is performed. At the beginning we have D(1), which coincides with the
n-th column in C.
We start running the column D(k) from the bottom to the top, looking for wrong signs −. In case
such signs do not appear, we skip this step and we go directly to the last one. On the contrary,
suppose that we have found a wrong − in i-th line. We will see that in each new version of
the column only some wrong positions are changed with respect to its previous version. As a
consequence, the wrong − in line i-th we have detected now was already there at the beginning,
i.e., Ci,n = − and i + n is odd. We compute both V w(i, n) and V w

new(i, n), which are the sum
of wrong signs appearing below the (i, n) position respectively in C, the original scheme, and
in the column D(k): at the beginning evidently numbers V w(i, n) and V w

new(i, n) coincide, but
as the algorithm progresses the second may change its value. However, we will check that after
each move we will introduce is executed, the value of the index[

number of wrong + below l in n-th column
]
−
[
number of wrong − below l in n-th column

]
for each l < i does not decrease. This proves that the number V w

new(i, n) we compute in any
time is for sure ≥ V w(i, n).
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We note that the number V (i, n) is odd, by Lemma 6. In particular, it cannot be 0.
Suppose that V (i, n) > 0. Then V w(i, n) > 0 by Lemma 6, and V w

new(i, n) is positive as well
by the previous remark. This means that in some position below (i, n) there is a wrong + in
column n. Let i′ be the first (i.e., smallest) index i′ > i such that in the (i′, n) position there is
a wrong +. We add to L′ the move V(i, i′;n): this move is independent of the other moves, and
converts the wrong − and + in those positions into two correct symbols. This move does not
change the value of[

number of wrong + below l in n-th column
]
−
[
number of wrong − below l in n-th column

]
for each l < i, because the move simply exchanges a + with a − both in positions below the
l-th position.

Suppose that V (i, n) < 0. Then V w(i, n) < 0 and Hw(i, n) is positive, both by Lemma 6.
Thus, in the i-th horizontal line to the left of Ci,n, and hence in C ′, there is an excess of wrong
+’s with respect to wrong −’s. By induction there are moves in L′ changing all these wrong
entries. Moves of type H or S cannot be the unique moves in L′ affecting these positions, since
they exchange both a wrong + and a wrong − and therefore cannot remove the excess. Also a

move of type V(i, i′; j)

j
i −
i′ + is not sufficient to remove the excess, since it removes only a wrong

− from that line, a fact which actually increases the excess. Thus, at least a move P(i; j)
j

i +

or a move V(i′, i; j)

j
i′ −
i + is in L′. Let us take j to be the greatest index < n such that this

happens. In the first case we substitute P(i; j) with H(i; j, n)
j n

i + − which has the same effect
on the C ′ part of the configuration. In the second case we note that the signs at (i′, j), (i, j) and

(i, n) positions are

j n
i′ −
i + − . By Lemma 4 the fourth corner Ci′,n of the square in C is a wrong +.

We will show in a moment that this is a + also in D(k), i.e. it appears also at this stage of the
algorithm. Letting this fact for granted for the moment, we proceed substituting V(i′, i; j) in

L′ with S(i′, i; j, n)

j n
i′ − +
i + − which again has the same effect on the C ′ part of the configuration.

Both moves change[
number of wrong + below l in n-th column

]
−
[
number of wrong − below l in n-th column

]
in positions l < i. However, the first one actually simply removes a wrong −, so that it increases
the index for all l < i, while the second one increases it when i′ ≤ l < i (because it removes the
wrong −), and keeps unchanged its value for l < i′ (because then also the cancellation of the
wrong + at Ci′,n matters).
We execute the move we have selected, getting the new column which is D(k+1), by definition.
We repeat this cycle again and again, removing all wrong −’s from the n-column in C. Finally,
we add P moves to L′ to remove any remaining wrong +’s in last column, if any exists.

The description of the algorithm ends here, but we have to resume the point we have skipped
before, i.e., the proof of the fact that the wrong + appearing at the fourth corner (i′, n) of the
square in C also appears in D(k), i.e. it appears also at that stage of the algorithm. Suppose
the contrary, i.e., that the wrong + is no more there, since it has been corrected at some earlier
step of the algorithm. Then, there had been some index i′′ > i with Ci′′,n = − whose correction
needed the substitution of some move V(i′, i′′; j′) in L′ with S(i′, i′′; j′, n) for some j′ 6= j, because
this is the only possible way the algorithm can correct the + at (i′, n) at some previous step
(the case j′ = j is for sure impossible, otherwise the wrong − at (i′, j′) would be corrected in
that previous step and would not be available at k-th step). This means that we have one of
the following signs patterns in C:

j j′ n
i′ − − +
i + −
i′′ + −

if j′ > j, or

j′ j n
i′ − − +
i + −
i′′ + −

if j′ < j.
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In both cases, at (i, j′) position we have a wrong + (by Lemma (4), when the square in positions
(i′, j), (i′, j′), (i, j), (i, j′) is considered), and the patterns in columns j′ and n is

j′ n
i′ − +
i + −
i′′ + −

in both cases. Moreover, L′ contains V(i′, i′′; j′). However, this is impossible, since the pattern
shows that at (i, j′) we have a wrong + which is closer to the wrong − at (i′, j′) than the wrong
+ at (i′′, j′): this means that when the algorithm has been applied at an early stage to produce
the moves in L′ dealing with the j′-th column, we should have contradicted the prescription
according to which every vertical move contains the + which appears at the closest position to
the − in that move. �

An example can be useful to understand the algorithm. Let C(ε) be the configuration in
dimension 7 which is generated by signs ε = (+,−,+,+,−,+,+). Thus,

C(ε) =

+ − − − + + +
− − − + + +

+ + − − −
+ − − −
− − −

+ +
+

.

Then, applying the algorithm iteratively, we get:

+ =⇒ L(1) = {P(1; 1)}
+ −
− =⇒ L(2) = {H(1; 1, 2)}

+ −
−
−
−
+

=⇒ L(3) = {H(1; 1, 2),V(2, 3; 3)}

+ − −
− −

+

−
−
+
+

=⇒ L(4) = {H(1; 1, 2),V(2, 3; 3),V(1, 4; 4)}

+ − − −
− − −

+ +
+

+
+
−
−
−

=⇒ L(5) = {H(1; 1, 2),V(2, 3; 3),S(1, 4; 4, 5)}

+ − − − +
− − − +

+ + −
+ −
−

+
+
−
−
−
+

=⇒ L(6) = {H(1; 1, 2),S(2, 3; 3, 6), S(1, 4; 4, 5),V(5, 6; 6)}

+ − − − + +
− − − + +

+ + − −
+ − −
− −

+

+
+
−
−
−
+
+

=⇒ L(7) =
{

H(1; 1, 2),S(2, 3; 3, 6), S(1, 4; 4, 5),
V(5, 6; 6),V(4, 7; 7),P(1; 7)

}
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