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We present next-to-next-to leading order (NNLO) quantum electrodynamics (QED) corrections to the
production of the Higgs boson in bottom quark annihilation at the Large Hadron Collider (LHC) in the five
flavor scheme. We have systematically included the NNLO corrections resulting from the interference of
quantum chromodynamics (QCD) and QED interactions. We have investigated the infrared (IR) structure
of the bottom quark form factor up to two-loop level in QED and in QCD x QED using K + G equation.
We find that the IR poles in the form factor are controlled by the universal cusp, collinear and soft
anomalous dimensions. In addition, we derive the QED as well as QCD x QED contributions to soft
distribution function as well as to the ultraviolet renormalization constant of the bottom Yukawa coupling
up to second order in strong coupling and fine structure constant. Finally, we report our findings on the
numerical impact of the NNLO results from QED and QCD x QED at the LHC energies taking into

account the dominant NNLO QCD corrections.
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I. INTRODUCTION

The discovery of the Standard Model (SM) Higgs boson
by ATLAS [1] and CMS [2] collaborations at the Large
Hadron Collider (LHC) has not only put the SM in a strong
footing but also opened up a plethora of physics programs
that can probe physics beyond the SM (BSM). Since the
Higgs boson couples dominantly to heavy fermions and
massive vector bosons, the corresponding observables are
expected to be sensitive to new physics. In order to make
definitive claims in the context of BSMs, it is henceforth
extremely important to understand the Higgs sector of the
SM. This is possible thanks to dedicated efforts from the
LHC collaborations to measure the properties of the SM
Higgs boson to unprecedented accuracy. Both ATLAS and
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CMS collaborations have already measured very precisely
the partial width of the Higgs bosons both in the SM as well
as in several BSM scenarios. This is the beginning of an era
of precision physics at the LHC. These studies will be
incomplete without the precise theoretical predictions in the
SM as well as BSM.

At hadron colliders, where underlying scattering events
are dominated by strong interaction, quantum effects are
unavoidable. Quantum chromodynamics (QCD), the theory
of strong interaction, plays an important role at the LHC.
Often, one finds that the leading order predictions from
perturbative QCD are unreliable due to unphysical scales
such as renormalization and factorization scales and also
due to missing higher order radiative corrections. Radiative
corrections from QCD are also large. Inclusion of such
corrections improves the reliability of the predictions not
only by making them more precise, but also by reducing the
dependency on the unphysical scales.

At the LHC, the dominant production channel for the
Higgs boson is gluon fusion through top quark loops [3].
Owing to the complexities involved with the two-loop
massive Feynman integrals, an effective theory where top
quark is integrated out, was proposed to obtain the first
result at next-to-leading order (NLO) [4] for the Higgs
boson production. Later on, in [5,6], the NLO corrections,
taking into account the mass of the top quark, were shown
to be very close to the prediction from the effective theory
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approach [4]. Thanks to the continued efforts beyond the
NLO [7-13], the most precise prediction to date, namely
next-to-next-to-next-to leading order (N’LO) prediction
[14,15] for the inclusive production of the Higgs boson
in the gluon fusion process, is now available (see [16—18]
for rapidity distributions). In addition, at NNLO accuracy,
the tiny effects due to finite top quark mass have already
been computed in [19,20]. Electroweak (EW) corrections
[21,22] and mixed QCD-EW corrections [23] are shown to
improve the predictions.

The predictions from the perturbative QCD for the
dominant production channel have reached the level of
precision which now requires inclusion of the contributions
from the subdominant channels. For example, one includes
production channels such as vector boson fusion, associ-
ated production with a vector boson, bottom quark anni-
hilation etc. In addition, the precise predictions [24] taking
into account radiative corrections from QCD and EW are
known for many of these processes.

Among these subdominant processes, production of the
Higgs boson in bottom quark annihilation has been a topic
of interest both in the SM as well as BSM contexts. In the
SM, Yukawa couplings of the Higgs boson to the quarks
and leptons are free parameters and precise determination
of the couplings is possible at the LHC. These couplings
are highly sensitive to scales of new physics as the mass
(my,) of the Higgs boson is close to the EW scale. Hence,
both ATLAS [25] and CMS [26] collaborations have made
dedicated efforts to measure them precisely. Among them,
bottom Yukawa is one of the most sought and it is a
challenging task for experimentalists. Associated produc-
tion of the Higgs boson with vector bosons or with top
quarks and its subsequent decay to bottom quarks have
been studied to achieve this. In addition, some interesting
proposals can be found in [27].

In the SM, bottom Yukawa coupling is less significant
with respect to top Yukawa coupling while in the minimal
supersymmetric SM (MSSM) [28] the coupling is propor-
tional to 1/ cosf# which can increase the cross section in
some parametric region. The angle f is related to the ratio,
denoted by tan f, of the vacuum expectation values of two
Higgs doublets. The production of Higgs boson(s) in
perturbative QCD is studied in four flavor and five flavor
schemes [29-31], called 4FS and 5FS, respectively. In the
former, one assumes that proton sea does not contain
bottom quarks, and they are radiatively generated from
gluons in the proton. These bottom quarks can annihilate to
produce the Higgs boson. Their contributions are enhanced
by logarithms of bottom quark mass spoiling the perturba-
tion theory. Hence they need to be resummed to obtain
reliable predictions. In the SFS, one can avoid these
logarithms by introducing nonzero bottom quark distribu-
tions in the proton. They are present due to pair production
of bottom quarks from the gluons in the proton sea. Since
the leading order contribution in SFS is two to one, while in

4FS it is two to three, computations beyond the leading
order are relatively easier in SFS. In 4FS, only NLO QCD
effects [32—-34] are known. On the other hand, in SFS, NLO
[35,36], NNLO [37] and the threshold effects at N3LO
[13,38] (see [16,39] for rapidity distributions) are known
for some time. Also, the SFS cross section providing the
dominant cross section in a matched prediction [40,41] is
very well known. In [42], resummation of timelike loga-
rithms in the Soft Collinear Effective Theory framework
has been performed. Recently, for the bottom quark
annihilation, complete N>LO corrections [43—45] have
become available. In addition, the resummation of thresh-
old contributions [46] at N°LO + N°LL accuracy have also
been included.

Unlike the dominant channel, gluon fusion to the Higgs
boson, bottom quark annihilation has not received much
attention in the context of EW corrections, presumably
because it is already subdominant at the LHC. In this paper,
we make the first attempt to include the QED corrections to
the inclusive production to this channel. We expect that
these corrections could be comparable to the fixed [45] and
resummed [46] results solely from third order in perturba-
tive QCD.

In [47], pure QED and mixed QCD x QED contributions
have been obtained for the Drell-Yan (DY) process through
Abelianization [48,49] at orders O(a?) and O(aa; ), respec-
tively. In [47], a suitable algorithm is obtained by studying
the group theory structure of QCD and QED amplitudes that
contribute to the partonic subprocesses of DY production.
The algorithm contains a set of transformations on the color
factors/Casimirs of SU(N) that transforms QCD results for
the partonic subprocesses to the corresponding QED results.
This way both pure QED as well as QCD x QED contri-
butions to inclusive production cross section for the Z boson
in the DY process have been obtained in [47] at NNLO level.
Following this approach, we can in principle proceed to
obtain pure QED and mixed QCD x QED contributions to
the bottom quark annihilation process from the QCD results.
Although the QCD results [37,50] to NNLO are presented
for N = 3 of SU(N) and hence Abelianization cannot be
used, however, in [51], resonant production of sleptons in a
R-parity violating supersymmetric model was studied where
radiative corrections from SU(N) gauge fields with n,
fermions were included to NNLO level. Since sleptons
couple only to fermions in this model through Yukawa
coupling, these NNLO corrections coincide with the results
of [37,50] for N = 3. Hence, we could use the results given
in [51] and method of Abelianization to obtain pure QED as
well as QCD x QED results for bottom quark annihilation to
the Higgs boson. However, in order to scrutinize the very
approach of Abelianization, we explicitly compute pure
QED and QCD x QED corrections to inclusive production
of the Higgs boson in bottom quark annihilation up to
NNLO level in U(1) and SU(N) x U(1). In addition, we
reproduce the same for the production of Z boson in the DY
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process. The computation beyond the leading order involves
evaluation of virtual and real emission processes. The
contributions from them are sensitive to ultraviolet (UV)
and infrared (IR) divergences. We compute them in dimen-
sional regularization, hence divergences appear as poles in
dimensional parameter € = d — 4, d being the space-time
dimension. The UV divergences are removed in MS scheme.
The IR divergences result from soft gluons and massless
collinear partons. The former is called the soft divergence
and later collinear divergence. While soft divergences cancel
between virtual and real emission processes in the inclusive
cross section, the collinear divergences are removed by mass
factorization. We determine both UV as well as mass
factorization counterterms using the factorization property
of the inclusive cross section and obtain collinear finite
contributions to the Higgs boson production in bottom quark
annihilation and Z boson production in DY. We determine IR
anomalous dimensions up to two-loop level in both QED
and QCD x QED. We find that they are process indepen-
dent. Using the universal IR anomalous dimension and
following [52], we compute the renormalization constant for
the Yukawa coupling in QED as well as in QCD x QED
from the form factors (FF) of the Higgs bottom antibottom
operator and vector current of DY process.

The paper is organized as follows. In Sec. II, after
discussing the theoretical framework, we briefly describe in
Sec. [T A how we compute higher order QCD and QED
radiative corrections to various partonic and photonic
channels that contribute to the inclusive cross section. In
Sec. II B, we discuss the UV and IR structure of the form
factors and cross sections using the K 4+ G equation and
obtain the mass factorized cross sections. In the following
subsection, we discuss the Abelianization procedure. The
phenomenological impact of our theoretical predictions are
presented in Sec. III. Finally we summarize in Sec. IV. The
universal constants that appear in the soft distribution
function, FFs of vector current and bottom quarks and
the mass factorized partonic and photonic cross sections are
presented in the Appendices A, B and C, respectively.

II. THEORETICAL FRAMEWORK

The Lagrangian that describes the interaction of the
Higgs boson with the bottom quarks is described by the
Yukawa interaction and is given by

Ly, = =2pp(x)ry (x)yr(x), (1)

where 4, is the Yukawa coupling which, after the EW
symmetry breaking, is found to be my/v. w;(x) and my,
denote the bottom quark field and mass, respectively. v is
the vacuum expectation value (VEV) of the Higgs field
¢(x). In the SM, the Higgs boson production through
bottom quark annihilation is subdominant compared to
gluon fusion through the top quark loop. One finds that the
bottom Yukawa coupling is 35 times smaller than top

quark Yukawa coupling and in addition, the bottom
quark flux in the proton-proton collision is much smaller
than the gluon flux. However, in the MSSM [53], tan /3, the
ratio of the VEVs of Higgs doublets can increase the
contributions resulting from the bottom quark annihilation
channel. At LO,

ﬂ.lt\/[SSM 1

2
ill;/lSSM f{/()()m tanﬂ (2)
with
—coty for ¢ = h,
folr)={ tang  for ¢ = H. 3)
cot 3 for ¢p = A,

where £ is the SM-like light Higgs boson, H and A are the
heavy and the pseudoscalar Higgs bosons, respectively.
The parameter y is the mixing angle between weak and
mass eigenstates of the neutral Higgs bosons & and H. We
set m;, = 0 except in the Yukawa coupling [54-56] as it is
much smaller than the other energy scales in the process.
The number of active flavors is taken to be ny = 5 and we
work in the Feynman gauge.

The inclusive production of a colorless state in hadronic
collisions is given by

(S, q%) oz Z/dxldx2fc (15 HE) Fa(x20 HF)

X Acd(s,q v/"F?ﬂR)’ (4)

where o, is the Born cross section and f,(x;,u%) are
parton distribution functions (PDFs) for a = ¢, g, g and
photon distribution function (PHDF) if @ = y. The scaling
variables x; are their momentum fractions. A, are the
partonic subprocess contributions normalized by the Born
cross section. The scales yy and py are renormalization and
factorization scales. S and s = x;x,S are hadronic and
partonic center of mass energy, respectively. g> is the
invariant mass of the final colorless state. A.; can be
expanded in powers of the QCD coupling constant a, =
g2(u%)/16x% and QED coupling constant a, = e*(u%)/
1622, g, and e being the strong and electromagnetic
coupling constants, respectively. That is, after suppressing
ur and pp dependence,

chq

Z alal Al (2. 7)., (5)

with A% — 5(1 = z) and z = ¢?/s. In the following, we
describe the methodology to compute AE’; ) up to second
order in the couplings.
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FIG. 1. Double virtual contribution.

A. Methodology
In this section, we briefly describe how higher order

perturbative corrections AE@’ ) [Eq. (5)] are computed. The
details of computational procedure can be found in [57,58].
Beyond the leading order (LO), the partonic channels
consists of one- and two-loop virtual subprocesses, real-
virtual and single and double-real emissions, some of
which are presented in Figs. 1-3. The black line with an
arrow indicates the bottom quark, the wavy line the photon,
the curly line the gluon and the Higgs boson is indicated by
the dashed line.

Subprocesses involving virtual diagrams are sensitive to
UV singularities. Due to the presence of massless gluons
and photons, we encounter soft singularities in both virtual
and real emission subprocesses. In addition, we encounter
collinear singularities, as we treat all the quarks including
the bottom quark massless. We use dimensional regulari-
zation to regulate all these singularities. We have used the
program QGRAF [59] to generate virtual as well as real
emission Feynman diagrams that contribute to the relevant
subprocesses. An in-house FORM [60] code is used to
perform all the symbolic manipulations, e.g. performing
Dirac, SU(N) color and Lorentz algebra. A large number
of loop integrals show up in the virtual diagrams.
The integration-by-parts identities are used through a
Mathematica based package, LITERED [61] to reduce them
to a minimum set of master integrals (MI). For the virtual
processes, at two-loop level, the form factors in QCD, QED
and mixed QCD x QED require four MIs. For those
processes that involve pure real emissions with or without
virtual diagrams, we use the method of reverse unitarity [8]
that allows one to use integration-by-parts identities to
reduce the resulting phase-space integrals to a set of few
MIs, the later can be found in [62]. For the real-virtual type
of processes at NNLO level we need nine MIs for QCD,

Lo % - - Lo % - -

FIG. 2. Real virtual contribution.

FA

Double real contribution.

FIG. 3.

eight MIs for both QED and mixed QCD x QED. For the
pure real emissions at NNLO level, we need 24 Mls for
each of QCD, QED and mixed QCD x QED processes.
Finally we obtain contributions to each subprocess, con-
taining UV and IR singularities as poles in € = d — 4.

In the next section, we study the UV and IR structure of
FF and the soft distribution function that contribute to
NNLO level in QCD, QED and QCD x QED. In order to
explore the IR structure, we study the production of a Z
boson in hadron colliders, namely the DY process to the
same accuracy in QCD, QED and QCD x QED. In
particular, we focus our attention to the FF and the soft
distribution function that contribute to the inclusive DY
production cross section. Following [13,52,63], we dem-
onstrate the factorization of IR singularities in both the FFs
and show how to extract the process independent cusp (A),
collinear (B) and soft (f) anomalous dimensions from
them. Using the FF of the bottom quark and the process
independent soft distribution function we can extract the
UV anomalous dimension of the Yukawa coupling 4, up to
two-loop level in QCD, QED and QCD x QED. Finally, we
demonstrate the factorization of collinear singularities and
the mass factorization leading to IR finite partonic con-
tributions to inclusive hadronic cross sections for both the
Higgs boson and DY productions up to NNLO level in
QCD, QED and QCD x QED.

B. UV and IR structures in QED and QCD x QED

Having computed all the partonic channels that contrib-
ute to the hadronic cross sections in QED and
QCD x QED, we use them to study the UV and IR structure
of the FFs and soft gluon/photon emissions in the Higgs
boson and DY productions. For the former, we have used
the Sudakov K + G equation and for the later, following
[12,13] we exploited the universal structure of the soft
distribution function resulting from the soft gluon/photon
emissions.

In order to remove the UV divergences that result from
virtual subprocesses, we use the renormalization constants
Z, , c=s, e for the QCD and QED coupling constants,
respectively and Z, for the Yukawa coupling. The Yukawa
coupling Z; receives contributions from both QCD and
QED. Z, and Z, relate the bare couplings a, = §7/167*
of QCD and a, = ¢%/16x* of QED to the renormalized
ones a,(u%) and a,(u%), respectively, at the renormaliza-
tion scale uy in the following way:

ac %? 2 2
5= (/fg) ) 7. (as(d)a () e). (6)

where a. = {ay.a,}. Here, S, = exp[(yy — Indn)4] is the
phase-space factor in d-dimensions, y; = 0.5772... is the
Euler-Mascheroni constant and p is an arbitrary mass

A

scale introduced to make d; and 4, dimensionless in

ol
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d-dimensions. The renormalization constant Z, up to two
loops is given by

2 452
Z, =1+a (ﬂoo> + aga, <ﬁm> +a%<ﬂ2()0+'61()>
' 3 € € e
20 / 432 /
Z, =1 +ae< ﬁo") +aea‘y(@) +a5< ﬁ§°+&>,
€ € £ €

(7)

where f;; and ﬁ:-j are QCD and QED beta functions,

respectively. In the present case, only one loop f, i.e.
Poo and f, [64], appear. They are given by

4

Poo = ?CA - gnfTF,

By = _‘3_‘ <qu:e§ + ZI:E?) (8)

Here, C4 = N is the adjoint Casimir of SU(N). We also
denote the fundamental Casimir Crp = (N> —1)/2N for
later use. ny, n; is the number of active quark and lepton
flavors and e, e, refers to electric charge for quark ¢ and
lepton [, respectively. The renormalization constant
Zfl’(as, a,) satisfies the renormalization group equation:

d & ij
Wz =2 (0 (d) a i) (9)
HR

whose solution in terms of the anomalous dimensions yé”] )

up to two loops is found to be

"} +ads e

1
72 280070 + Erl(,z’o) }

0, 1 (02
; 1))4‘;72 )}

1
Zi(arae) =1 +a{ L))

(10)

Note that while the UV singularities factorize through Z; ,
singularities from QCD and QED mix from two loops

onward. For QCD, yé"o) is known to four loops [65]. In this
paper, using the universal IR structure of the amplitudes
and cross sections in QED, we determine y;”] ) up to two
loops in QED i.e. for (i, j) = (0,1),(0,2) and in QCD x
QED i.e. for (i,j) = (1,1).

We begin with the bare form factors £,(a,, a,, 0%, u?),
I = g, b, where g denotes the DY process and b denotes the

Higgs boson production in bottom quark annihilation. Note
that these FFs are computed in the perturbative framework
where both QCD as well as QED interactions are taken into
account simultaneously and hence they depend on both
QCD and QED coupling constants. In addition, we find that
the UV renormalized FFs demonstrate the factorization of
IR singularities. Using gauge and renormalization group
invariance, we propose the Sudakov integro-differential
equation for these FFs, analogous to the QCD one. In
dimensional regularization, they take the following form:

1 2
0 i F = Z[KI({ac}, 2,)

2
+G,({ac},%,”—’§78)] (1)
ur

R

where {a.} = {a,,a,} and Q*> = —¢? is the invariant mass
of the final state particle (dilepton pair in the case of DY and
single Higgs boson for the case of Higgs production).
Explicit computation of the form factors shows that IR
singularities, resulting from QCD and QED interactions,
not only factorize but also mix beyond the one-loop level.
In other words, if we factorize IR singularities from the
FFs, the resulting IR singular function cannot be written as
a product of pure QCD and pure QED functions. More
specifically, there will be terms proportional to a’a’, where
i,j > 0, which will not allow factorization of QCD and
QED ones. Hence, K; will have IR poles in ¢ from pure
QED and pure QCD in every order in perturbation theory
and in addition, from QCD x QED starting from O(a,a,).
On the other hand, overall factorization of IR singularities
implies that the constants K; contain the IR singularities
from QCD, QED and QCD x QED, while the G,s will have
IR finite contributions. Since the IR singularities of FFs
have dipole structure, K; will be independent of ¢ while
G;s will be finite in € — 0 and the later contain only
logarithms in ¢2. Note that ¥, are renormalization group
(RG) invariant so does the sum K; + G;. Thus, the RG
invariance of F; implies

o o ({000 ) = a2

26, (100 % o)~ a(atid. (13)

where A; are the cusp anomalous dimensions. The sol-
utions to the above RG equations for K; can be obtained by
expanding the cusp anomalous dimensions (A;) in powers
of renormalized coupling constants a,(u%) and a,(u%) as

A{a W)} = D_ailud)ai(ui)ar”  (14)
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and K; as

Gl G s i ij
K;(u%. e Z ’<> SUHI D ey, (15)

where A% and A% result from pure QCD and pure QED
interactions and A/ i, j > 0 from QCD x QED. Using
RG equations for the couplings a, and a,, the perturbative
solutions to Eq. (12) are found to be

10) 1 1.
KM = g( —24")

on 1 0.1
K" = (24",
K20 = L p0al0) 1 L a0

i Si(ﬁoo 0+ g(—z )-

02 1 1 02
K" = 5 (2phAl) + - (-A).

1y 1 11
K = (4. (16)

Unlike K;, G; do not contain any IR singularities but
depend only on Q? and hence we expand them as

Gi(ta },Qf,”’; ) = Gilfa(@). 1.

1 d/12
+ [ G adteat@n. 17)
e
where the first term is the boundary condition on each G; at

u% = Q% Expanding A; in powers of a, and a, and using
RG equations for QCD and QED couplings, we obtain

a2 R\ s
[, S atta iy - Yaial (I)
2

ij
"R

x K<w'>(s). (18)
Expanding the finite function G;(a,(Q?),a,(Q?),1,¢)
Gil{a Q). 1.0) = Sl @)l @16 @) (19

substituting the solutions of K; and G; in Eq. (11) and
performing the integration over Q% we get

. o ANK(ES )
nF = &za@(%) UL ), (20)
— u
L]

where

B3 = 2™+ 3 (<3477 - G )
1 ~020)
+5-(G(6)
1 1 1
B = 5 oAl + 5 (34 - G0
1 02
+5-(G2(e)
2o 2 L) L Lt (21)
£ 2\ 271 2 ! )

Following [10], we expand Ggi‘j ) (&) around £ = 0 in terms
of collinear (BY’j ) ), soft (f;i’j )) and UV (yf,"‘j >) anomalous

dimensions as

G (e) =2(B)" =1/ + 11"+ ek (22)
k=0
with
9(1),10 =0, 9?,01 =0, 9(1),11 =0,
9(1),20 = _2ﬁ009}.109 9(1),02 = _2ﬂ609},01- (23)

The form factors £, that we computed in this paper in
QCD, QED and QCD x QED up to two-loop level can be

used to extract the cusp anomalous dimensions (Agi’j )) by
comparing them against Eq. (21). The explicit expressions
for the unrenormalized Fs are presented in Appendix B.

We find Agi‘j ) up to two loops as

AN — 4cp.
A§0’1> = 4e?.

67 10
A§2,0> — 8CA CF <E - Cz) + 8CF'I’lfTF' (— ?) .

i u 10
AP = g2 (NZ er + Z e%) (— —)
k=1 =1 9
Al = o (24)

Unlike A} the other anomalous dimensions B\, f{"/
and y,” (y ) is zero) cannot be dlsentangled either from

F, or F; alone. In order to disentangle B\ and £\
study the partonic cross sections resultlng from soft gluon

and soft photon emissions as they are only sensitive to f 5’”’ ),
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To obtain the process independent part of soft gluon/
photon contributions in the real emission subprocesses, we
follow the method described in [12,13], where the soft
distribution function for the inclusive cross section for
producing a colorless state was obtained from the form
factors and partonic subprocess cross sections involving
real emissions of gluons. The soft distribution functions
denoted by ®; are governed by cusp (A;) and soft
anomalous dimensions f;, where J = ¢, b, g. It is also
known that the identity ®, = ®, = Cr/C,®, holds up to
the three-loop level [12,13,63]. We can use the partonic
subprocesses of either DY process or the Higgs boson
production in bottom quark annihilation namely 6,; or 6,5

normalized by the square of the bare form factor F q Or F 5 to
obtain @;. In general ®,;, which is a function of the scaling
variable z = ¢°/s, is defined as

61(2)
Zi|Fyf?

Cexp(2®,(z)) = I=gq,b (25)

with Z, = 1 and Z;, = Z,, being the overall renormaliza-
tion constant The symbol C refers to “ordered exponential”
which has the following expansion:

Ct) = 51 =) + 1) 3y T @ 1)@+ (26)

Here ® is the Mellin convolution and f(z) is a distribution
of the kind §(1 — z) and D;. The plus distribution D; is

defined as
~ (In'(1-72)
P= (Tiy) 27

We can compute the UV finite 6,7 every order in renor-
malized perturbation theory. Since, we have not determined
Z,,, we can only compute the unrenormalized partonic
cross section &;; = 6,7/Z2. From the explicit results for &7
and the form factors £, using Eq. (25) we obtain ®; up to
second order in ay, a, and aza,. We find @, = @, up to
second order in the couplings demonstrating the univer-
sality. In [12,13], it was shown that the soft distribution
function @, satisfies the Sukakov K + G equation analo-
gous to the form factor F; due to similar IR structures that
both of them have, order by order in perturbation theory.
That is, ®; satisfies

d 1. L
qzd—q2®1 = B |:K1 ({ac}’_§’8’ Z)
> Ui
+G1({ et z,ﬂ’;,s Z)] (28)

where the IR singularities are contained in K and the finite
part in G. RG invariance of ®; implies

u%%%fq — Al (2)})3(1 - 2.

K
duy

I

Gy = —A({ac(uz) (1 = 2). (29)
Note that the same anomalous dimensions govern the
evolution of both K; and G;. This ensures that the soft
distribution function contains right soft singularities to
cancel those from the form factor leaving the bare partonic
cross section to contain only initial state collinear singu-
larities. The later will be removed by mass factorization by
appropriate Altarelli-Parisi kernels. Expanding K;({a.})
and G;({a.(¢*)},1,¢,z) in powers of {a.} as has been
done for K;({a.}) and G;({a.}) [see Egs. (15) and (19)],

with the replacements of Kﬁi‘j ) by I_(Ei’j ) and

Gi({ac(g?)}.1,e,2) = Za )G (e,2), (30)

the solution to Eq. (28) is found to be
(1- (i+7)5
ng( )
i+j [+ J i,
s (U 3. )

1-z2

@;({a.}.q* p*. .z)

where

(e = L R+ G (32)

(i+))e

G\ (¢) is related to finite function G,({a.(¢*)}.1.e.2)
defined in Eq. (30) through the distributions §(1 — z) and
D;. Thus expanding G*/) (¢) in terms of the a,(¢*(1 — z)?)
and a,(q*(1 — z)?) we write

PN\ GEDS
Saial(%) 50
u

ij
)G (e), (33)

= ai(¢?)al
i.j

where ¢? = ¢*(1 — z)?. Following [12,13], the IR finite
G\") (&) can be expanded as

(i ij =(k
Gi"(e) = =117+ > G (34)
k=0
where, for up to two loops,

=(0 ~(0
=0, 95,31 =0, Qﬁ 1)1 =0,
2[30091 01> (35)

(=)

~(0)
1.1
=(0 (1 =(0
5,2)0 = =20 5.1)07 g(;
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where the constants ngl)j for k> 1 are presented in

Appendix A. Comparing the soft distribution functions
®,, I = g, b, obtained from the explicit computation up to
second order in coupling constants against the formal

solution given in Eq. (31), we can obtain Agi‘j ) and ff,i’j )
for (i, j) ( 0),(0,1), ( 1),(2,0),(0,2). Finally, we
obtarnf, = (01 —f, =0 and

808

27

22
10 = CACF(——@ 28¢5 +

224
+ CF”fTF< & - >
224) (36)

799 = 2 (zvzeq Zel> (
(i.J)

Now that we have f Ii'j itis straightforward to obtain By
(i.j (i) _

in Eq. (22) from the explicit results on G, ) as vq” = 0for
DY. This way we obtain
B =3¢y, BYY =3e2,

1
B = 3 {C%(3 — 248, +48¢3)

17
+ CuCr 3 + Cz — 2443
4 32

+ CanTF< 3 —§2> }

1
By =2 {e‘;(S — 240, + 4883)

4 32
+ e (NZeél + Ze?) <—— - —Z_,’2> }
q l

B = Cred (3 —24¢, +48L5). (37)

Assuming ng’j ) = Bg'j ), we determine the UV anomalous
dimension, ygf'j ) from Gg'j ) [Eq. (22)] which is known to

second order. They are found to be

r " =3Cr.

V(b =3¢},

yi =3Cpel,

0 3 97 10
57 ):EC%—FFCACF_?CFHJFTF’
02 3 10
= 3d-Fa(vea Zez) &
€0

Alternatively, assuming Bﬁf’j) = Bgi’j) and f y j>a

we can determine yf’j ) by comparing the difference

ng’j) - G(’ ) obtained using DY and Higgs boson form

factors F 4 and F, at € =0 against the formal decom-
position of Gg"] ) given in Eq. (22). Substituting the above
UV anomalous dimensions in Eq. (10), we obtain Z; to
second order in the couplings.

Using the renormalization constants Z, , Z, and Z; for
the coupling constants a,, a, and the Yukawa coupling 4,,
we obtain UV finite partonic cross sections. The soft and
collinear singularities arising from gluons/photons/fer-
mions in the virtual subprocesses cancel against those
from the real subprocesses when all the degenerate states
are summed up, thanks to the Kinoshita-Lee-Nauenberg
theorem [66,67]. What remains at the end is the initial
state collinear singularity, which can be removed by mass
factorization. Collinear factorization allows us to deter-
mine the mass factorization kernels I'y, and ', up to the
two-loop level for the U(1) and SU(N) x U(1) cases.
Since I'y, and I, are governed by the splitting functions
P,, and P, , we extract them to second order in couplings.
In [48], these splitting functions up to NNLO level, both in
QED and QCD x QED, were obtained using the
Abelianization procedure. The splitting functions that
we have obtained by demanding finiteness of the mass
factorized cross section, agree with those in [48]. The
mass factorized partonic cross section for each partonic
subprocess up to NNLO in QED and in QCD x QED are
presented in Appendix C along with the known NNLO
QCD results [37]. In the next section, we use them to
study their numerical impact at the LHC energies.

C. Abelianization procedure

In [47], QCD x QED corrections to the DY process
were obtained by studying the SU(N) color factors in
Feynman diagrams that contribute to QCD corrections.
This led to an algorithm namely Abelianization pro-
cedure which provides a set of rules that transform QCD
results into pure QED and mixed QCD x QED results.
Unlike in [47], without resorting to Abelianization rules,
we have performed explicit calculation to obtain the
contributions resulting from all the partonic and pho-
tonic channels taking into account both UV and mass
factorization counterterms. Using these results at NNLO
in QCD, QCD x QED and in QED, we find a set of
rules that can relate QCD and QED results. Note that if
there is a gluon in the initial state, averaging over its
color factor gives a factor Nz ;- This is absent for the
processes where a photon is present instead of a gluon
in the initial state. Also, for pure QCD or QED, the
gluons or photons are degenerate and hence one needs
to account for a factor of 2. Keeping these in mind, we
arrive at a set of relations among QCD and QED results.
We have listed them in the following tables for various
scattering channels. They are found to be consistent
with the procedure used in [47].
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Rule I: quark-quark initiated cases.

QCD QCD x QED QED
Cc% 2Cres e}
CrCy 0 0
CanTF 0 ei(NZq eélee%)
CpTr 0 Ne%e?;
*ef[ = e% when both initial quarks are bottom quarks.

Rule 2: quark-gluon initiated cases: (after multiplying
2C4Cr. for the initial state gluon).

QCD QCD x QED QED
C,Cx C,Cre? Cpef
CiCr 0 0

Rule 3: gluon-gluon initiated cases: (after multiplying
2C,Cp for each initial state gluon).

QCD QCD x QED QED
cc C2Cré et
C3Cr 0 0

III. RESULTS AND PHENOMENOLOGY

In this section, we study the numerical impact of pure
QED and mixed QCD x QED corrections over the dom-
inant QCD corrections up to NNLO level to the production
of the Higgs boson in bottom quark annihilation at the
LHC, mainly for the center of mass (c.m.) energy of
V/§ = 13 TeV. Since we include QED effects, we need
PHDF inside the proton in addition to the standard PDFs.
For this purpose, we use NNPDF 3.1 LUXqed set [68],
MRST [69], CT14 [70] and PDF4LHC17. The PDFs,
PHDFs and the strong coupling constant a; can be
obtained, using the LHAPDF-6 [71] interface. We have
used the following input parameters for the masses and the
couplings:

my = 80.4260 GeV  my(m,) = 4.70 GeV

m, =91.1876 GeV o (m;) = 0.113
my, = 125.09 GeV  a, = 1/128.0

Both a,(ug) and my,(ug) are evolved using appropriate
QCD p-function coefficients and quark mass anomalous
dimensions respectively. However, we have considered
fixed @, = 4za, throughout the computation.

The Higgs boson production cross section from bottom
quark annihilation at the present energy of LHC is not
substantial. For example, at 13 TeV, the third order QCD
corrections contribute almost 1% to the NNLO, while the
mixed QCD x QED corrections contribute around 0.1% on
top of the NNLO contributions. However, for the high
luminosity LHC, measuring them at higher center of mass

1.6 T T T T

HR = My ; Mg = my/4

Total cross section (pb)

6 8 10 12 14 16 18 20 22
Center of mass energy (TeV)

FIG. 4. The total cross section at various perturbative orders at
energy scales varying from 6 to 22 TeV at LHC.

energy (c.m.) would give larger contributions and it will
improve the precision. Hence, we have first studied how the
cross section varies with the c.m. of LHC. In Fig. 4, we plot
the inclusive production cross sections at various orders in
perturbative QCD and QED for the range of c.m. energies
between /S = 6 to 22 TeV. In the inset, the index “5”
indicates that QCD at ith order and QED at jth order in
perturbative theory are included (e.g. “NNLO 11" indicates
NNLO mixed QCD x QED). In Fig. 4, we have used
NNPDF31 lo as 0118, NNPDF31 nlo as 0118
luxged and NNPDF31 nnlo as 0118 luxged for
LO, NLO and NNLO, respectively. The renormalization
(ugr) and factorization (ur) scales are kept fixed at m;, and
my,/4, respectively. We note that in Fig. 4, the pure QED
contributions are large. This is due to the fact that we
consider leading order QCD running of Yukawa coupling
which gives a larger Born contribution compared to pure
QCD. However, if we consider the same running of
Yukawa coupling, the NLO QCD effects are 50-500 times
larger than NLO QED effects, depending on the scale
choice. In order to understand this in more detail, we study
the impact of different contributions to the cross sections
resulting from QCD, QED and mixed QCD x QED at
various orders in perturbation theory which we have

TABLE 1. Individual contributions in (pb) to various perturba-
tive orders at /S = 14 TeV.

AO,O AI,O AO.I AZ‘O Al,l AO.Z Total
Ay 1.0181 1.0181
Ay 1.1362 —0.1810 0.9552
Ay 1.2219 0.0030 1.2249
Asy 1.1433 —0.1683 —0.1935 0.7816
App 1.1542 -0.1699 0.0029 —0.0005 0.9867
Ay 12422 0.0031 -3 x 1075 1.2453
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TABLE II. Individual contributions in (pb) to various pertur-
bative orders at v/S = 13 TeV.

AO‘O AI.O AO,I AZ,O Al‘l A0’2 Total
Ay 0.3911 0.3911
Ay 0.4588 0.1557 0.6145
Ao 0.4935 0.0003 0.4938
Ay 0.4726 0.1614 0.0220 0.6561
Ay 04771 0.1630 0.0003 1.5x 1074 0.6406
Ap 0.5135 0.0003 6 x 1076 0.5139

tabulated in Table I, for v/S = 14 TeV and for the scale
choice pig = up = my,. The A’/ indicates sole ith order
QCD and jth order QED corrections to the total contribu-
tion. For example, A;; means A0 + A0 + A0T 4 ALT

T T T
sqrt(S) = 13 TeV ; g = my/4

o)
2
C
S
s}
Q
(9]
& \
8 \
S 045\ E
B
2 o0a4f .
0.35 D~ —
0.3 B ——
0.25 1 1 1 1 1 1
200 400 600 800 1000 1200
Renormalization scale (GeV)
FIG. 5. The renormalization scale variation of the total cross

section at various perturbative orders in QCD.

1.8

T
[ sqrt(S) =13 TeV; yg = m ]

1.6
1.4
1.2

1

0.8

Total cross section (pb)

0.6 /] ‘ B e S B .

0.4

0.2}F .

0 L L L L L L
200 400 600 800 1000 1200

Factorization scale (GeV)

FIG. 6. The factorization scale variation of the total cross
section at various perturbative orders in QCD.

TABLE IIl. Seven-point scale variation at VS =13 TeV.
e Qh @h ah ah ah &h Gl

NNLO,, (pb) 0.707 0.643 0.690 0.656 0.562 0.661 0.606
NNLOy; (pb) 0.759 0.602 0.780 0.641 0.445 0.682 0.498
NNLOg, (pb) 0.728 0.465 0.804 0.514 0.250 0.574 0.279

The A;; indicates the total contribution, in other figures,
which is denoted by either LO, NLO or NNLO; e.g. Ay,
means NNLOy;.

In Table II, a similar study has been performed for /S =
13 TeV and the scales up = my, pp = my,/4.

Fixed order predictions depend on the renormalization
(up) and factorization (¢ ) scales. The uncertainty resulting
from the choice of the scales quantifies the missing higher
order contributions. Hence, we have studied their depend-
ence by varying them independently around a central scale.
Figure 5 shows the dependence of the cross section on the
renormalization scale (ugp) for the fixed choice of the
factorization scale up = m,/4. It clearly demonstrates
the importance of higher order corrections as the pup
variation is much more stable at NNLO,, compared to
the lower orders. In Fig. 6, we present the dependence on
the factorization scale (ur) keeping the renormalization
scale (up) fixed at m,. Similar to the pup variation, uj
variation improves after adding higher order corrections. To
illustrate their dependence when both of the scales are
changed simultaneously, we present the cross section by
performing seven-point scale variation and the results are
listed in Table III. We have used NNPDF31 nnlo as
0118 luxged for this study.

The perturbative predictions also depend on the choice
of PDFs and PHDFs. There are several groups which
fit them and are widely used in the literature for the
phenomenological studies. In order to estimate the
uncertainty resulting from the choice of PDFs and
PHDFs, in Table 1V, we present the NNLO results from
various PDF sets, for /S = 14 TeV and pg = pup = my,.

TABLE IV. Result using different PDFs at VS =14 TeV.

MRST  NNPDF CT14 PDF4LHC
NNLO,, (pb) 0.7805 0.7816 0.7574 0.8546
NNLOy; (pb) 0.9691 0.9867 0.9644 1.0625
NNLO, (pb) 1.2020 1.2453 1.2288 1.3123

TABLE V. Result using different PDFs at VS =13 TeV.

MRST  NNPDF CT14 PDF4LHC
NNLO,, (pb) 0.6610 0.6561 0.6398 0.7178
NNLOy; (pb) 0.6451 0.6406 0.6259 0.6996
NNLO, (pb) 0.5252 0.5139 0.5030 0.5605
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1.6 T T T

YR = My 5 ke = my/4

NNPDF31

1.4F

=
N

=

o
o

Total cross section (pb)
o
[e2]

I
i

0.2
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6 8 10 12 14 16 18 20 22

Center of mass energy (TeV)

FIG. 7. PDF uncertainties.

In Table V, we repeat the study for /S = 13 TeV and
ur =my, and up =m,/4. We have also studied the
uncertainties resulting from the choice of PDF set
[71]. Using NNPDF31, in Fig 7, we plot the variation
of the cross section with respect to different choices of
PDF and PHDF replica. The central value and PDF
uncertainties are given by the average and standard
deviation over the replica sample, and are denoted in
Fig. 7 by the thick line and shaded region, respectively.

IV. DISCUSSION AND CONCLUSION

Precision studies is one of the prime areas at the LHC.
Measuring the parameters of the SM to unprecedented
accuracy can help us to improve our understanding of the
dynamics that governs the particle interactions at high
energies. This is possible only if the accuracy of
theoretical predictions is comparable to that of the
measurements. Thanks to the on-going efforts from
experimentalists and theorists, there are stringent con-
straints on various physics scenarios in the pursuit of
searching for the physics beyond the SM. The efforts to
compute the observables that are related to top quarks
and Higgs bosons have been going on for a while as
these observables are sensitive to high scale physics.
Since the dominant contributions to these processes are
known to unprecedented accuracy, inclusion of subdomi-
nant contributions along with radiative corrections is
essential for any consistent study. In this context, the
present article explores the possibility of including EW
corrections to Higgs boson production in bottom quark
annihilation which is subdominant. Note that this is
known to third order in QCD [45]. While this is a
subdominant process at the LHC, in certain BSM con-
texts, the rates are significantly appreciable leading to
interesting phenomenological studies. Since, the compu-
tation of full EW corrections is more involved, as a first

step towards this, we compute all the QED corrections, in
particular, to the inclusive Higgs boson production in
bottom quark annihilation up to second order in QED
coupling constant a,, taking into account the nonfactor-
izable or mixed QCD x QED effects through aya,
corrections. The computation involves dealing with
QED soft and collinear singularities resulting from
photons and the massless partons along with the corre-
sponding QCD ones. Understanding the structure of these
QED IR singularities in the presence of QCD ones is a
challenging task. We have systematically investigated
both QCD and QED IR singularities up to second order
in their couplings taking into account the interference
effects. We use the Sudakov K + G equation to under-
stand the IR structure in terms of cusp, collinear and soft
anomalous dimensions. We demonstrate that the IR
singularities from QCD, QED and QCD x QED inter-
actions factorize both at the FF as well as at the cross
section level. While the IR singularities factorize as a
whole, the IR singularities from QCD do not factorize
from that of QED leading to mixed/nonfactorizable
QCD x QED IR singularities. In addition, by computing
the real emission processes in the limit when the photons/
gluons become soft, we have studied the structure of soft
distribution function. While the later demonstrates the
universal structure analogous to the QCD one, we find
that it contains soft terms from mixed QCD x QED that
do not factorize either as a product of those from QCD
and QED separately. Using the universal IR structure of
the observable, we have determined the mass anomalous
dimension of the bottom quark and hence the renorm-
alization constant for the bottom Yukawa. We also
discussed the relation between the results from pure
QED and pure QCD as well as between QCD x QED
and QCD through Abelianization. We have determined a
set of rules that relate them and they are found to be
consistent with those observed in the context of DY [47].
Having obtained the complete NNLO results from QED
and QCD x QED, we have systematically included them
in the NNLO QCD study to understand their impact at
the LHC energy. We find that the corrections are mild as
expected. However, we show that the higher order
corrections from QED and QCD x QED improve the
reliability of the predictions.
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APPENDIX A: G*) s OF THE SOFT DISTRIBUTION FUNCTION

The constants ngl)j in the soft distribution function are given by

Gy = Cr(=38),

— 7
gfl)() =Cp <§C3 ,

_3 3
gg,l)() =Cp <_EC%>’
~(1)

gg.lm = ei(—362),

~(1

Gilly = 0.

A1 656 140 64 2428 469 176
ggﬁO*F"f“(‘sﬁg@*s?Q +CACF< 81 "o % +4¢%—3¢3>,

51 _ 2 ) ,\ [ 656 140

g,.oz—e,,<N§q;eq+§l;e,)(_8_l Mo, L8, Al

APPENDIX B: FORM FACTORS

We present the analytic expressions of the form factors and the finite partonic cross sections for all the partonic channels.
The labeling is the same as Fig. 4.

The unrenormalized form factor (F;) can be written as follows in the perturbative expansion of unrenormalized strong
coupling constant (d,) and unrenormalized fine structure constant (d,):

Q2 1 Q2 1 A2 QZ 212 1
F1—1+a 'u S[CFf] /,{ S[ f] Iu 8[CFf2O+CACFf2]+CanTFf22]

+asae(fz>882[2CFe%}" ol + AZ(g) 82{ Fio+e <NZeq +Ze,>]—' } (B1)

I = g, b denotes the Drell-Yan pair production and the Higgs boson production in bottom quark annihilation, respectively.
The coefficients F{, F3,, F3, and F3, are

f?=—§+§—8+@+e(8—§cz—zcg)+ez<—8+cz+ﬂc%+£cg> o8- 3558 -3¢
+ gt =gk )+ (B G AT A B4 Tl - Ll - B gls ) (B2)

Fio= 342 - ]2(82 80y) + ]<—%+%@>+%+]7Cz—1352 5SC3+€<—%—QQ

maz Bo-Fon+2a) re (Tl + 20200+ Ba-S20 T,
+Sa-3a). (B3)
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1 /44 1 332 4129 11 89173 119 44 467
f§.1—£—3<—>+;< +4Cz> —<—+—§2—2643)————c S8+

3 9 54 '3 648 9
1775893 6505, 1891 , 3293 89 51 L[ 33912061 146197 , 2639 ,

( 7776 T 216 %2 T 120 2T 27 BT gt CS) <_ 03312 2502 2T ©

809 , 159949 397 569 ,, , 3491

28052 TC —ngCz— G+ Cs) (B4)

1/ 16\ 1 /112\ 1/ 706 4 7541 28 52 150125 353 41 , 364
e == _ = _ = _ _ 2 -
Faz g3< 3>+£2<9>+8( Cz) 6 "9 9§3+8< o e TR Ty C3>

2(%"’% 2—2;%.74%_%53—1—4253—1—215>- (B5)
The coefficients 77, F5,, F5, and F%, are
Fr=-S-rrgre(2-ln) v (2 ar ga) o (-0 - G+ 50t - 356
+e ( +- Cz+%§2+f$90§2 —53—m53> (B6)
7, :i—42+8l2(16— 82,) +é <—16— 124, +@§3> 4224126, — 138 — 3085 +e<—32— 182, +45—8c§
+Ra-Toar o) re(w e -Tar Pa-Furaa+ 58-50). @)
=g () ra (- rae) 41 (G Fa-s) - e - e g
Le (621533_’_24’-75 2_%(:%_292363_’_ oty — 1§5> L2 (_419485885_4:-57;43 2+1,17§(1)9C%—%C%
+ T - -3+ 25, (B8)
() (8) (k) S e T8 )
e (o + Rt = gt - g = ). (B9)

APPENDIX C: A"Y FOR BOTTOM QUARK ANNIHILATION
FROM QCD, QED AND QCD x QED UP TO NNLO

In the following, we present finite partonic cross sections Aiid'j ) as defined in Eq. (5), up to NNLO level in the strong and
electromagnetic coupling constants. In QCD, AZS for bottom quark annihilation is already known [37,51]. In the following,
Aé’g, i=1,2isin SU(N) gauge theory, while A(C);{, Jj=1,21isin U(1) gauge theory:

00) _
AV = 5(1 - z). (C1)

ASB’O) = CF{é(l —2)(—4+8) + 16D, +4(1 —z) = 8(1 + z) log(1 — 2) —%log(z)}. (C2)
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(20)
AbB

1
A = 5 (=14 2)(=3 4 72) + 2(1 = 22+ 22%) log(1 — 2) + (=1 + 2z — 22?) log(2). (C3)

8
c,%{a(l —2) (16 +28- 6OC3> + 256D 5 + Dy (—64 — 128(,) + 128D5 — 4(=26 + 11z + 1322)

8 2
+——(=7 =10z + 11z%) log(1 — z) log(z) (23 +39z%)log?(1 — z) log(z) + -2 (7 + 30z — 3472

-z 11—z

16 2 8
+122%)log*(2) + = (2 +52) log(1 — 2)log’(2) —m(l 1522 +42%)log(2) + 7 (-16 + 132
. 8 ) 16 .
— 622 +62°)Liy(1 —z) — 12 (=7 +9z%)log(1 — z)Liy(1 — z) — 12 (3 + 22 +27°) log(z)Liy(1 — z)
—l——l — Z(—l +2z*)Liz(1 — 2) - Z(9 + 92" 4+ 82°)S1,(1 —z) = 8(-11 4 10z)¢, — 1 —Z(_2 -7z

+ 23) log(z)¢s — 128(1 + 2)¢3 + 12(=4 + 9z) log(1 — z) + 64(1 + z)¢, log(1 — z) — 32(1 — z)log*(1 — z)
—64(1 + z)log*(1 — z) + li—z (16 — z + z%) log(z) — 48z%¢, log(1 + z) + 16(—1 + 2z) log(z) log(1 + z)

+ 40z%1og?(z) log(1 + z) — 48z% log(z)log?(1 + z) + 16(=1 + 2z)Li,(—z) + 48z% log(z)Liy(~z)

. . 166 232 12
- 9622 IOg(l + Z)LIz(-Z) - 16Z2Ll3(—Z) - 9622S1’2<—Z)} + CACF{(S(I - Z) (7 + ng - ?C% - 8C3>

1616 176 1072 176 2
+D, <__ + & + 56¢3> +D, (T - 32¢2> — —D, + — (—595 + 944z + 3512%)

27 3 3 27
4

————— (61 =31z +40z%)1
3(1_Z)( z +40z%) log(z) +

(7 +472%)log(1 — z) log(z) (61 + 487 — 1372

32 1
3(1-2) 3(1-2)

+362%)log?(z) + (i f 5 (1 + z2)log(1 — z)log*(z) + m (=3 = 7z% + 22%)log?(2)
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The corresponding results from the QED and QCD x QED are found to be
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The distributions D; are defined in Eq. (27). The constants {; = > 3% | 17, k € N denote the Riemann’s {-functions, e.g.,
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are defined by
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and the Nielson function S;,(x) is given by
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