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Abstract. In this paper we prove the persistence of space periodic multi-solitons of arbitrary size under
any quasi-linear Hamiltonian perturbation, which is smooth and sufficiently small. This answers positively
a longstanding question whether KAM techniques can be further developed to prove the existence of quasi-
periodic solutions of arbitrary size of strongly nonlinear perturbations of integrable PDEs.
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1 Introduction

The Korteweg-de Vries (KdV) equation

∂tu = −∂3
xu+ 6u∂xu (1.1)

is one of the most important model equations for dispersive phenomena with numerous applications in
physics. The seminal discovery in the late sixties that (1.1) admits infinitely many conservation laws ([27],
[29]), and the development of the inverse scattering transform method ([17]), led to the modern theory of
infinite dimensional integrable systems (e.g. [12], [15] and references therein).

One of the most distinguished features of (1.1) is the existence of sharply localized travelling waves of
arbitrarily large amplitudes and particle like properties. Kruskal and Zabusky, who discovered them in
numerical experiments in the early sixties, both on the real line and in the periodic setup (cf. [23]), coined
the name solitons for them. More generally, they found solutions, which are localized near finitely many
points in space. In the periodic setup, these solutions are referred to as periodic multi-solitons or finite
gap solutions. Due to their importance in applications, various stability aspects, in particular long time
asymptotics, have been extensively studied. A major question concerns the persistence of the multi-solitons
under perturbations. In the last thirty years, KAM methods pioneered by Kolmogorov, Arnold, and Moser
to treat perturbations of integrable systems of finite dimension, were developed for PDEs. Most of the work
focused on small amplitude solutions or semilinear perturbations. It has been a longstanding question from
experts in PDEs and in infinite dimensional dynamical systems whether KAM results hold also for solutions
of arbitrary size under quasi-linear perturbations, called strongly nonlinear in [25], of integrable PDEs.

The aim of this paper is to prove the first persistence result of periodic multi-solitons of KdV with
arbitrary size under strongly nonlinear perturbations – see Theorem 1.1 below. Note that in this case, it was
not even known if there exist solutions of the perturbed equation which are global in time.

To describe the class of perturbations of the KdV equation considered, we recall that (1.1), with space
periodic variable x in T1 := T/Z, can be written in Hamiltonian form,

∂tu = ∂x∇Hkdv(u) , Hkdv(u) :=

∫

T1

1

2
(∂xu)

2(x) + u3(x) dx , (1.2)

where ∇Hkdv denotes the L2−gradient of Hkdv and ∂x is the Poisson structure, corresponding to the Poisson
bracket, defined for functionals F,G by

{F,G} :=

∫

T1

∇F∂x∇Gdx .

We consider quasi-linear perturbations of (1.1) of the form

∂tu = −∂3
xu+ 6u∂xu+ εa(x, u(x), ∂xu(x))∂

3
xu+ · · · , (1.3)

where ε ∈ (0, 1) is a small parameter and · · · stands for terms containing x−derivatives of u up to order two.
We assume that the perturbation is Hamiltonian, namely a∂3

xu+ · · · = ∂x∇P , where ∇P is the L2-gradient
of a functional of the form

P (u) :=

∫

T1

f(x, u(x), ux(x)) dx , ux := ∂xu . (1.4)

Note that the nonlinear term

∂x∇P (u) = (∂2
ux
f)(x, u(x), ux(x))∂

3
xu+ · · · (1.5)

has the same order of the linear vector field ∂3
xu in (1.1). When written as a Hamiltonian PDE, (1.3) takes

the form
∂tu = ∂x∇Hε(u) (1.6)

with Hamiltonian
Hε(u) := Hkdv(u) + εP (u) . (1.7)
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To state our main result, we first need to introduce some more notation. Note that the mean u 7→
∫
T1

u(x) dx

is a prime integral for (1.6). We restrict our attention to functions with zero average (cf. Remark (R2) below)
and choose as phase spaces for (1.6) the scale of Sobolev spaces Hs

0(T1), s ≥ 0,

Hs
0(T1) :=

{
u ∈ Hs(T1) :

∫

T1

u(x) dx = 0
}
, L2

0(T1) ≡ H0
0 (T1) ,

where

Hs(T1) :=
{
u(x) =

∑

n∈Z

une
i2πnx : ‖u‖Hs

x
:=

(∑

n∈Z

〈n〉2s|un|
2
) 1

2 < ∞ , u−n = un ∀n ∈ Z

}

and 〈n〉 := max{1, |n|} for any n ∈ Z. We also write L2(T1) for H
0(T1). The symplectic form on L2

0(T1) is
given by

WL2
0
(u, v) :=

∫

T1

(∂−1
x u)v dx , ∂−1

x u =
∑

n6=0

1

in
une

i2πnx , ∀u, v ∈ L2
0(T1) . (1.8)

Note that the Hamiltonian vector fieldXH(u) = ∂x∇H(u), associated with the HamiltonianH , is determined
by dH(u)[·] = WL2

0
(XH , ·).

S+−gap potentials. According to [20], the KdV equation (1.1) on the torus is an integrable PDE in the
strongest possible sense, meaning that it admits globally defined canonical coordinates on H0

0 (T1), so that
(1.1) can be solved by quadrature, see Theorem 3.1 for a precise statement. These coordinates, referred
to as Birkhoff coordinates, are particularly suited to describe the finite gap solutions of KdV. Each of
these solutions is contained in a finite dimensional integrable subsystem MS+ , of dimension 2|S+|, with S+

being a finite subset of N+ := {1, 2, . . .}. Each MS+ can be described in terms of action angle coordinates
θ := (θn)n∈S+ , I := (In)n∈S+ : there exists a real analytic canonical diffeomorphism

ΨS+ : TS+ × R
S+

>0 → MS+ , (θ, I) 7→ q(θ, ·; I) , (1.9)

so that the pull-back of the KdV Hamiltonian, Hkdv ◦ΨS+ , is a real analytic function of the actions I alone.
Elements in MS+ are referred to as S+−gap potentials. The function q(ϕ, x) ≡ q(ϕ, x; I) is real analytic. In
action angle coordinates, any solution of (1.1) on MS+ is given by

θ(t) = θ(0) − ωkdv(ν)t , I(t) = ν ,

where θ(0) denote the initial angles, ν ∈ R
S+

>0 the initial actions, and ωkdv(ν) the frequency vector

ωkdv(ν) := ∂I(H
kdv ◦ΨS+)(ν) ∈ R

S+ . (1.10)

The corresponding solution on MS+ is then given by

q
(
θ(0) − ωkdv(ν)t, x; ν

)

and hence is quasi-periodic in time. The map R
S+

>0 → RS+ , ν 7→ ωkdv(ν), is a local diffeomorphism (see

Remark 3.10). In the whole paper Ξ ⊂ R
S+

>0 is the closure of a bounded open nonempty set such that ωkdv

defined in (1.10) is a diffeomorphism onto its image. Moreover we require that, for some δ > 0,

Ξ + BS+(δ) ⊆ R
S+

>0 , (1.11)

where BS+(δ) denotes the ball of radius δ in RS+ centered at the origin. Furthermore we introduce the
Sobolev spaces of periodic, real valued functions

Hs :=
{
f =

∑

(ℓ,j)∈Z
S+×Z

fℓ,j e
i(ℓ·ϕ+2πjx) : ‖f‖2s :=

∑

(ℓ,j)∈Z
S+×Z

|fℓ,j|
2〈ℓ, j〉2s < ∞, fℓ,j = f−(ℓ,j)

}
(1.12)

where 〈ℓ, j〉 := max{1, |ℓ|, |j|} and we recall the Sobolev embedding Hs ⊂ C0(TS+ ×T1) for s > (|S+|+1)/2.

The main result of this paper, Theorem 1.1 below, proves that for ε small enough and for ν in a subset
of Ξ of asymptotically full Lebesgue measure, there is a quasi-periodic solution of equation (1.6) close to the
finite gap solution q(θ(0) − ωkdv(ν)t, x; ν) of (1.1). More precisely, the following holds:
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Theorem 1.1. Let f be a function in C∞(T1 × R × R,R) and S+ a finite subset of N+. Then there exist
s̄ > (|S+| + 1)/2 and ε0 ∈ (0, 1) so that for any ε ∈ (0, ε0), there exists a measurable subset Ξε ⊆ Ξ with
asymptotically full measure, i.e.

lim
ε→0

|Ξ \ Ξε| = 0 ,

and, for any ν ∈ Ξε, there exists a quasi-periodic solution uε(ωε(ν)t, x; ν) of the perturbed KdV equation
(1.6) with uε(·, · ; ν) in H s̄(TS+ × T1) and frequency vector ωε(ν) ∈ RS+ satisfying

lim
ε→0

‖uε(·, · ; ν)− q(·, · ; ν)‖s̄ = 0 , lim
ε→0

ωε(ν) = −ωkdv(ν) ,

where q(ϕ, x; ν), defined in (1.9), is the S+−gap potential in MS+ with frequency vector ωkdv(ν), defined in
(1.10). The quasi-periodic solution uε(ωε(ν)t, x; ν) is linearly stable.

We make the following remarks:

(R1) The result of Theorem 1.1 holds for any density f of class Cs∗ with s∗ large enough and for any family
of S+−gap solutions of KdV with average c (cf. [20, page 112]). We assume in this paper that f is C∞

and c = 0 merely to simplify the exposition.

(R2) The methods developed to prove Theorem 1.1 are quite general. We expect that analogous results
can also be proved for equations in the KdV hierarchy as well as for the defocusing NLS and equations
in the NLS hierarchy such as the defocusing mKdV equation.

Let us now comment on the novelty of our result.

1. The first KAM results for (1.1) were proved by Kuksin [24] (cf. also [25]) and Kappeler-Pöschel [20]
for finite gap solutions of arbitrary size, subject to semilinear perturbation. It means that the density
f of (1.4) does not depend on ux, and hence

∂x∇P (u) = ∂2
uf(x, u(x))ux + · · ·

depends only on u and ux (note that in addition the dependence on ux is linear). Subsequently,
Liu-Yuan [28] proved KAM results for semilinear perturbations of small amplitude solutions of the
derivative NLS and the Benjamin-Ono equations whereas Zhang-Gao-Yuan [30] proved analogous re-
sults for the reversible derivative NLS. More recently, Berti-Biasco-Procesi [6]-[7] proved existence of
small quasi-periodic solutions of derivative Klein-Gordon equations. For the NLS and the beam equa-
tions in higher space dimension, KAM results were obtained by Eliasson-Kuksin [14] and, repsectively,
Eliasson-Grébert-Kuksin [13]. In all these works, the perturbations are required to be semilinear.

On the other hand, the results in Baldi-Berti-Montalto [3], [4], for quasi-linear perturbations of the
KdV and mKdV equations concern only small amplitude solutions. The proof of these results makes
use of pseudo-differential calculus and relies in a decisive manner on the differential nature of KdV. The
latter property cannot be read off in the action-angle coordinates outside a neighborhood of the origin.
We also mention that the results in Giuliani [18] for KdV, Feola-Procesi [16] for NLS, Berti-Montalto
[10] and Baldi-Berti-Haus-Montalto [1] for water waves concern small amplitude solutions.

Thus the challenging problem of the persistence of the finite gap solutions of (1.1) of arbitrary size
under strongly nonlinear perturbations (1.5) remained completely open.

2. In [9], we used the “1-smoothing property” of the Birkhoff coordinates of the defocusing NLS equation
on T1, established in [22], to prove a KAM result for semilinear perturbations. This property is used
to deal with the difficulties related to the double “asymptotic multiplicity” of the frequencies. For the
KdV equation, a “1-smoothing property” has been proved first near the equilibrium in [26] and then
in general in [21]. However it is not sufficient for dealing with the quasi-linear perturbations (1.5).

3. The proof of Theorem 1.1 uses the canonical coordinates constructed in [19] near any given compact
family of S+−gap potentials in MS+ . These coordinates admit an expansion in terms of pseudo-
differential operators up to a remainder of arbitrary negative order. Due to its length, this part of
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the proof of Theorem 1.1 has been published in a separate paper [19]. The important fact that the
linearized Hamiltonian vector field of Hε, expressed in these coordinates, admits an expansion in terms
of pseudo-differential operators is proved in Section 3.2.

Ideas of the proof. Theorem 1.1 is proved by means of a Nash-Moser iterative scheme to construct quasi-
periodic solutions near a given family of S+−gap solutions. One of the main issues concerns the invertibility
of the linearized Hamiltonian operator

ω · ∂ϕ − ∂xd∇Hε(u(ϕ, x))

where u(ωt, x) is an approximate quasi-periodic solution of (1.6), close to the finite gap solutions (1.9). In
[19] a coordinate chart

Ψ : (θ, y, w) 7→ Ψ(θ, y, w) ∈ L2
0(T1)

is constructed in a neighborhood of T
S+

1 ×{ν}×{0} in T
S+

1 ×R
S+

>0×L2
⊥(T1), which admits a pseudo-differential

expansion, up to regularizing operators satisfying tame estimates. Here

L2
⊥(T1) :=

{
w =

∑

n∈S⊥

wne
i2πnx ∈ L2

0(T1)
}
, S

⊥ := Z \
(
S+ ∪ (−S+) ∪ {0}

)
. (1.13)

Important properties of the map Ψ are that the set of S+−gap solutions of (1.1) in the range of Ψ is
characterized by the equation w = 0, and that the linearized equation along the manifold {w = 0, y = 0}
is in diagonal form with coefficients only depending on ν, see Theorem 3.2-(AE3). This allows us to prove
(cf. Section 3.2) that when expressed in these coordinates,

• the linearized Hamiltonian vector field, acting in the subspace normal to the tangent space of MS+ at
a given S+−gap potential, admits an expansion in terms of classical pseudo-differential operators, up
to smoothing remainders which satisfy tame estimates in Hs(T1) – see Lemma 3.5 and 3.7.

We then evaluate the linearized Hamiltonian vector field at an approximately invariant torus embedding
ϕ 7→ (θ(ϕ), y(ϕ), w(ϕ)), obtaining in this way a quasi-periodic operator, acting on the normal subspace
L2
⊥(T1), of the form (cf. Lemma 6.3)

L(0)
ω = ω · ∂ϕ −Π⊥

(
a
(0)
3 ∂3

x + 2(a
(0)
3 )x∂

2
x + a

(0)
1 ∂x +

M∑

k=0

a
(0)
−k∂

−k
x +Qkdv

−1 (D;ω)
)
+R

(0)
M (1.14)

where a
(0)
−k(ϕ, x), k = −3, . . . ,M are real valued functions, a

(0)
3 ∼ −1, and R

(0)
M is a ϕ-dependent operator

which satisfies tame estimates in the Sobolev spaces Hs(T
S+
ϕ × T1). The order M of regularization will

be fixed in Section 7. The term Qkdv
−1 (D;ω) is not small in ε. It is the Fourier multiplier with symbol

ωkdv
n − (2πn)3 which takes into account the difference between the KdV-frequencies and their approximation

by the frequencies of the Airy equation. We remark that the pseudo-differential operator
∑M

k=0 a
(0)
−k∂

−k
x is

not present in [3]. In order to show that the operator R
(0)
M is tame (see Lemma 2.24) we prove in Section 3.1

novel results of independent interest concerning the extensions of the differential of the canonical coordinates
of [19] to Sobolev spaces of negative order (cf. Corollaries 3.3 and 3.4).

The form (1.14) suggests to introduce preliminary transformations which diagonalize L
(0)
ω up to a pseudo-

differential operator of order zero plus a regularizing remainder (see Section 6). These transformations,
inspired by [3], are Fourier integral operators generated as symplectic flows of linear Hamiltonian transport

PDEs and pseudo-differential maps. In order to conjugate the pseudo-differential terms a
(0)
−k∂

−k
x we need

a quantitative version of the Egorov theorem that we prove in Section 2.5. We remark that in contrast to
[3] we implement in Section 6.2 the time-quasi-periodic reparametrization before the conjugation with the
transport flow to avoid a technical difficulty in the conjugation of the remainders obtained in the Egorov
theorem. Furthermore, we mention that related transformations have been developed in [5] for proving upper
bounds for the growth of the Sobolev norms for various classes of PDEs.

At this point, using properties of the KdV frequencies that we collect in Section 3.3, we are able to

perform a KAM reducibility scheme to complete the diagonalization of L
(0)
ω for most values of ν. In view of

5



the remainder R
(0)
M in (1.14) (and others generated by the Egorov theorem) we implement in Section 7 an

iterative scheme along the lines in Berti-Montalto [10]. The proofs are by and large self-contained.

Notation. We denote by N := {0, 1, 2, . . .} the natural numbers and set N+ := {1, 2, . . .}. Given a Banach
space X with norm ‖ · ‖X , we denote by by Hs

ϕX = Hs(TS+ , X), s ∈ N, the Sobolev space of functions

f : TS+ → X equipped with the norm

‖f‖Hs
ϕX := ‖f‖L2

ϕX
+ max

|β|=s
‖∂β

ϕf‖L2
ϕX

.

We also denote H0
ϕX = L2

ϕX . We recall that the continuous Sobolev embedding theorem is stronger in the
case X is a Hilbert space H , namely

Hs(TS+ , X) →֒ C0(TS+ , X) , ∀s > |S+| , Hs(TS+ , H) →֒ C0(TS+ , H) , ∀s > |S+|/2 . (1.15)

Let Hs
x := Hs(T1), s ≥ 0, and denote by

(
f, g

)
L2

x

the L2−inner product on L2
x ≡ H0

x,

(
f, g

)
L2

x

:=

∫

T1

f(x)g(x) dx . (1.16)

For any s ≥ 0, let hs
0 :=

{
z = (zn)n∈Z ∈ hs : z0 = 0

}
where hs is the sequence space

hs :=
{
z = (zn)n∈Z , zn ∈ C : ‖z‖2s :=

∑

n∈Z

〈n〉2s|zn|
2 < ∞ , zn = z−n , ∀n ∈ Z

}
.

By F we denote the Fourier transform, F : L2(T1) → h0, u 7→ (un)n∈Z, where un :=
∫
T1

u(x)e−i2πnx dx for

any n ∈ Z and by F−1 : h0 → L2(T1) its inverse.
Furthermore, we denote by Π⊥ the L2−orthogonal projector onto the subspace L2

⊥(T1), defined in (1.13),
and by Π⊥

0 the one onto the subspace of functions with zero average. We set

Hs
⊥(T1) := Hs(T1) ∩ L2

⊥(T1) (1.17)

and Hs
⊥ ≡ Hs

⊥(T
S+ × T1) :=

{
u ∈ Hs(TS+ × T1) : u(ϕ, ·) ∈ L2

⊥(T1)
}
, which is an algebra for s ≥ s0 :=

[ |S+|+1
2 ] + 1. The space H0

⊥ is also denoted by L2
⊥. Let

Es := T
S+ × R

S+ ×Hs
⊥(T1) , E ≡ E0 , Es := R

S+ × R
S+ ×Hs

⊥(T1) , E ≡ E0 , (1.18)

where Hs
⊥(T1) is defined in (1.17). Elements of E are denoted by x = (θ, y, w) and the ones of its tangent

space E by x̂ = (θ̂, ŷ, ŵ). For s < 0, we consider the Sobolev space Hs
⊥(T1) of distributions, and the spaces

Es and Es are defined in a similar way as in (1.18). Note that H−s
⊥ (T1) is the dual space of Hs

⊥(T1). On E,
we denote by 〈·, ·〉 the inner product, defined by

〈
(θ̂1, ŷ1, ŵ1), (θ̂2, ŷ2, ŵ2)

〉
:= θ̂1 · θ̂2 + ŷ1 · ŷ2 +

(
ŵ1, ŵ2

)
L2

x

. (1.19)

By a slight abuse of notation, Π⊥ also denotes the projector of Es onto its third component,

Π⊥ : Es → Hs
⊥(T1) , (θ̂, ŷ, ŵ) 7→ ŵ .

For any 0 < δ < 1, we denote by BS+(δ) the open ball in RS+ of radius δ centered at 0 and by Bs
⊥(δ), s ≥ 0,

the corresponding one in Hs
⊥(T1) where we also write B⊥(δ) for B

0
⊥(δ). These balls are used to define the

following open neighborhoods in Es, s ∈ N,

Vs(δ) := T
S+

1 ×BS+(δ)×Bs
⊥(δ) , V(δ) ≡ V0(δ) , 0 < δ < 1 . (1.20)

The space of bounded linear operators between Banach spaces X1, X2 is denoted by B(X1, X2) and endowed
with the operator norm. For two linear operators A,B we denote by [A,B] their commutator, [A,B] :=
AB −BA and by A⊤ the transpose of A with respect to the scalar product (1.16).
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Throughout the paper, Ω ⊆ RS+ denotes a parameter set of frequency vectors. Given any function f : Ω → X ,
we denote by ∆ωf the difference function

∆ωf : Ω× Ω → X , (ω1, ω2) 7→ f(ω1)− f(ω2) .
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2 Preliminaries

2.1 Function spaces and linear operators

In the paper we consider real or complex functions u(ϕ, x;ω), (ϕ, x) ∈ TS+ × T1, depending on a parameter
ω ∈ Ω in a Lipschitz way, where Ω is a subset of RS+ . Given 0 < γ < 1 and s ≥ 0, we define the norm

‖u‖
Lip(γ)
s,Ω := ‖u‖Lip(γ)s := ‖u‖sups + γ‖u‖lips

‖u‖sup := sup
ω∈Ω

‖u(ω)‖s, ‖u‖lips := sup
ω1,ω2∈Ω ,ω1 6=ω2

‖u(ω1)− u(ω2)‖s
|ω1 − ω2|

(2.1)

where ‖ ‖s is the norm of the Sobolev space Hs defined in (1.12). For a function u : Ω → C, the sup
norm and the Lipschitz semi-norm are denoted by |u|sup and, respectively |u|lip. Correpondingly, we write
|u|Lip(γ) := |u|sup + γ|u|lip.

By ΠN , N ∈ N+, we denote the smoothing operators on Hs,

(ΠNu)(ϕ, x) :=
∑

〈ℓ,j〉≤N

uℓ,je
i(ℓ·ϕ+2πjx) , Π⊥

N := Id−ΠN . (2.2)

They satisfy, for any α ≥ 0, s ∈ R, the estimates

‖ΠNu‖Lip(γ)s ≤ Nα‖u‖
Lip(γ)
s−α , ‖Π⊥

Nu‖Lip(γ)s ≤ N−α‖u‖
Lip(γ)
s+α . (2.3)

Furthermore the following interpolation inequalities hold: for any 0 ≤ s1 < s2 and 0 < θ < 1,

‖u‖
Lip(γ)
θs1+(1−θ)s2

≤ 2(‖u‖Lip(γ)s1 )θ(‖u‖Lip(γ)s2 )1−θ . (2.4)

Multiplication and composition with Sobolev functions satisfy the following tame estimates.

Lemma 2.1. (Product and composition) (i) For any s ≥ s0 = [(|S+|+ 1)/2] + 1

‖uv‖Lip(γ)s ≤ C(s)‖u‖Lip(γ)s ‖v‖Lip(γ)s0 + C(s0)‖u‖
Lip(γ)
s0 ‖v‖Lip(γ)s . (2.5)

(ii) Let β(·, ·;ω) : TS+ × T1 → R with ‖β‖
Lip(γ)
2s0+2 ≤ δ(s0) small enough. Then the composition operator

B : u 7→ Bu, (Bu)(ϕ, x) := u(ϕ, x+ β(ϕ, x)) satisfies, for any s ≥ s0 + 1,

‖Bu‖Lip(γ)s .s ‖u‖
Lip(γ)
s+1 + ‖β‖Lip(γ)s ‖u‖

Lip(γ)
s0+2 . (2.6)

The function β̆, obtained by solving y = x+ β(ϕ, x) for x, x = y + β̆(ϕ, y), satisfies

‖β̆‖Lip(γ)s .s ‖β‖
Lip(γ)
s+1 , ∀s ≥ s0 . (2.7)

(iii) Let α(·;ω) : TS+ → R with ‖α‖
Lip(γ)
2s0+2 ≤ δ(s0) small enough. Then the composition operator A : u 7→

Au, (Au)(ϕ, x) := u(ϕ+ α(ϕ)ω, x) satisfies, for any s ≥ s0 + 1,

‖Au‖Lip(γ)s .s ‖u‖
Lip(γ)
s+1 + ‖α‖Lip(γ)s ‖u‖

Lip(γ)
s0+2 . (2.8)

The function ᾰ, obtained by solving ϑ = ϕ+ α(ϕ)ω for ϕ, ϕ = ϑ+ ᾰ(ϑ)ω, satisfies

‖ᾰ‖Lip(γ)s .s ‖α‖
Lip(γ)
s+1 , ∀s ≥ s0 . (2.9)
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Proof. Item (i) follows from (2.72) in [10] and (ii)-(iii) follow from [10, Lemma 2.30].

If ω is diophantine, namely

|ω · ℓ| ≥
γ

|ℓ|τ
, ∀ℓ ∈ Z

S+ \ {0} ,

the equation ω · ∂ϕv = u, where u(ϕ, x) has zero average with respect to ϕ, has the periodic solution

(ω · ∂ϕ)
−1u =

∑

j∈Z,ℓ∈Z
S+\{0}

uℓ,j

iω · ℓ
ei(ℓ·ϕ+2πjx) ,

and it satisfies the estimate (cf. e.g. [9, Lemma 2.2])

‖(ω · ∂ϕ)
−1u‖Lip(γ)s ≤ Cγ−1‖u‖

Lip(γ)
s+2τ+1 . (2.10)

We also record Moser’s tame estimate for the nonlinear composition operator

u(ϕ, x) 7→ f(u)(ϕ, x) := f(ϕ, x, u(ϕ, x)) .

Since the variables ϕ and x play the same role, we state it for the Sobolev space Hs(Td), (cf. e.g. [10,
Lemma 2.31]).

Lemma 2.2. (Composition operator) Let f ∈ C∞(Td × Rn,C). If v(·;ω) ∈ Hs(Td,Rn), ω ∈ Ω, is a

family of Sobolev functions satisfying ‖v‖
Lip(γ)
s0(d)

≤ 1 where s0(d) > d/2, then, for any s ≥ s0(d),

‖f(v)‖Lip(γ)s ≤ C(s, f)(1 + ‖v‖Lip(γ)s ) . (2.11)

Moreover, if f(ϕ, x, 0) = 0, then ‖f(v)‖
Lip(γ)
s ≤ C(s, f)‖v‖

Lip(γ)
s .

Linear operators. Throughout the paper we consider ϕ-dependent families of linear operators A : TS+ →
L(L2(T1,C)), ϕ 7→ A(ϕ), acting on complex valued functions u(x) of the space variable x. We also regard
A as an operator (which for simplicity we denote by A as well) that acts on functions u(ϕ, x) of space-time,
i.e. as an element in L(L2(TS+ × T1,C)) defined by

A[u](ϕ, x) ≡ (Au)(ϕ, x) := (A(ϕ)u(ϕ, ·))(x) . (2.12)

We say that the operator A is real if it maps real valued functions into real valued functions.
When u in (2.12) is expanded in its Fourier series,

u(ϕ, x) =
∑

j∈Z

uj(ϕ)e
2πijx =

∑

j∈Z,ℓ∈Z
S+

uℓ,je
i(ℓ·ϕ+2πjx) , (2.13)

one obtains

(Au)(ϕ, x) =
∑

j,j′∈Z

Aj′

j (ϕ)uj′ (ϕ)e
i2πjx =

∑

j∈Z,ℓ∈Z
S+

∑

j′∈Z,ℓ′∈Z
S+

Aj′

j (ℓ − ℓ′)uℓ′,j′e
i(ℓ·ϕ+2πjx) . (2.14)

We shall identify an operator A with the matrix
(
Aj′

j (ℓ − ℓ′)
)
j,j′∈Z,ℓ,ℓ′∈Z

S+ .

Definition 2.3. Given a linear operator A as in (2.14) we define the following operators:

1. |A| (majorant operator) whose matrix elements are |Aj′

j (ℓ − ℓ′)|.

2. ΠNA, N ∈ N+ (smoothed operator) whose matrix elements are

(ΠNA)j
′

j (ℓ − ℓ′) :=

{
Aj′

j (ℓ − ℓ′) if 〈ℓ − ℓ′〉 ≤ N

0 otherwise .
(2.15)
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3. 〈∂ϕ〉bA, b ∈ R, whose matrix elements are 〈ℓ− ℓ′〉bAj′

j (ℓ− ℓ′).

4. ∂ϕm
A(ϕ) = [∂ϕm

, A] (differentiated operator) whose matrix elements are i(ℓm − ℓ′m)Aj′

j (ℓ− ℓ′).

Definition 2.4. (Hamiltonian and symplectic operators) (i) A ϕ-dependent family of linear operators
X(ϕ), ϕ ∈ TS+ , densily defined in L2

0(T1), is Hamiltonian if X(ϕ) = ∂xG(ϕ) for some real linear operator
G(ϕ) which is self-adjoint with respect to the L2−inner product. We also say that ω · ∂ϕ − ∂xG(ϕ) is
Hamiltonian.
(ii) A ϕ-dependent family of linear operators A(ϕ) : L2

0(T1) → L2
0(T1), ∀ϕ ∈ TS+ , is symplectic if

WL2
0
(A(ϕ)u,A(ϕ)v) = WL2

0
(u, v) , ∀u, v ∈ L2

0(T1) ,

where the symplectic 2-form WL2
0
is defined in (1.8).

Under a ϕ-dependent family of symplectic transformations Φ(ϕ), ϕ ∈ TS+ , the linear Hamiltonian oper-
ator ω · ∂ϕ − ∂xG(ϕ) transforms into another Hamiltonian one.

Lemma 2.5. A family of operators R(ϕ), ϕ ∈ TS+ , expanded as R(ϕ) =
∑

ℓ∈Z
S+ R(ℓ)eiℓ·ϕ, is

(i) self-adjoint if and only if Rj′

j (ℓ) = Rj
j′ (−ℓ);

(ii) real if and only if Rj
j′(ℓ) = R−j

−j′ (−ℓ) ;

(iii) Real and self-adjoint if and only if Rj′

j (ℓ) = R−j
−j′(ℓ).

Lemma 2.6. Let X : Hs+3
0 (T1) → Hs

0(T1) be a linear Hamiltonian vector field of the form

X =
2∑

k=0

a3−k(x)∂
3−k
x + bounded operator (2.16)

where a3−k ∈ C∞(T1). Then a2 = 2(a3)x.

Proof. Since X is a linear Hamiltonian vector field it has the form X = ∂xA where A is a densely defined
operator on L2

0(T1) satisfying A = A⊤. Therefore, using (2.16),

A = ∂−1
x X = a3(x)∂xx +

(
− (a3)x + a2

)
∂x + . . .

A⊤ = −X⊤∂−1
x = a3(x)∂xx +

(
3(a3)x − a2

)
∂x + . . . .

The identity A = A⊤ implies that a2 = 2(a3)x.

2.2 Pseudo-differential operators

In this section we recall properties of pseudo-differential operators on the torus used in this paper, following
[10]. Note however that x ∈ T1 and not in R/(2πZ).

Definition 2.7. We say that a : T1 × R → C is a symbol of order m ∈ R if, for any α, β ∈ N,

∣∣∂α
x ∂

β
ξ a(x, ξ)

∣∣ ≤ Cα,β〈ξ〉
m−β , ∀(x, ξ) ∈ T1 × R . (2.17)

The set of such symbols is denoted by Sm. Given a ∈ Sm, we denote by A the operator, which maps a one
periodic function u(x) =

∑
j∈Z

uje
ijx to

A[u](x) ≡ (Au)(x) :=
∑

j∈Z
a(x, j)uje

ijx.

The operator A is referred to as the pseudo-differential operator (ΨDO) of order m, associated to
the symbol a, and is also denoted by Op(a) or a(x,D) where D = 1

i ∂x. Furthermore we denote by OPSm

the set of pseudo-differential operators a(x,D) with a(x, ξ) ∈ Sm and set OPS−∞ := ∩m∈ROPSm.
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When the symbol a is independent of ξ, the operator A = Op(a) is the multiplication operator by the
function a(x), i.e., A : u(x) 7→ a(x)u(x) and we also write a for A. More generally, we consider symbols
a(ϕ, x, ξ;ω), depending in addition on the variable ϕ ∈ TS+ and the parameter ω, where a is C∞ in ϕ and
Lipschitz continuous with respect to ω. By a slight abuse of notation, we denote the class of such symbols
of order m also by Sm. Alternatively, we denote A by A(ϕ) or Op(a(ϕ, ·)).

Given an even cut off function χ0 ∈ C∞(R,R), satisfying

0 ≤ χ0 ≤ 1 , χ0(ξ) = 0 , ∀|ξ| <
1

2
, χ0(ξ) = 1 , ∀|ξ| ≥

2

3
, (2.18)

we define, for any m ∈ Z, ∂m
x = Op(χ0(ξ)(i2πξ)

m), so that

∂m
x [ei2πjx] = (i2πj)mei2πjx , j ∈ Z \ {0} , ∂m

x [1] = 0 . (2.19)

Note that ∂0
x[u](x) = u(x)− u0, hence ∂0

x is not the identity operator.
Now we recall the norm of a symbol a(ϕ, x, ξ;ω) in Sm, introduced in [10, Definition 2.11], which controls

the regularity in (ϕ, x) and the decay in ξ of a and its derivatives ∂β
ξ a ∈ Sm−β, 0 ≤ β ≤ α, in the Sobolev

norm ‖ ‖s. By a slight abuse of terminology, we refer to it as the norm of the corresponding pseudo-differential
operator. Unlike [10] we consider the difference quotient instead of the derivative with respect to ω, and

write | |1,γm,s,α instead of | |
Lip(γ)
m,s,α .

Definition 2.8. Let A(ω) := a(ϕ, x,D;ω) ∈ OPSm be a family of pseudo-differential operators with symbols
a(ϕ, x, ξ;ω) ∈ Sm, m ∈ R. For γ ∈ (0, 1), α ∈ N, s ≥ 0, we define the weighted Ψdo norm of A as

|A|Lip(γ)m,s,α := sup
ω∈Ω

|A(ω)|m,s,α + γ sup
ω1,ω2∈Ω
ω1 6=ω2

|A(ω1)−A(ω2)|m,s,α

|ω1 − ω2|

where |A(ω)|m,s,α := max0≤β≤α supξ∈R ‖∂β
ξ a(·, ·, ξ;ω)‖s〈ξ〉

−m+β.

Note that for any s ≤ s′, α ≤ α′, and m ≤ m′,

| · |Lip(γ)m,s,α ≤ | · |
Lip(γ)
m,s′,α , | · |Lip(γ)m,s,α ≤ | · |

Lip(γ)
m,s,α′ , | · |

Lip(γ)
m′,s,α ≤ | · |Lip(γ)m,s,α . (2.20)

For a Fourier multiplier g(D;ω) with symbol g ∈ Sm, one has

|Op(g)|Lip(γ)m,s,α = |Op(g)|
Lip(γ)
m,0,α ≤ C(m,α, g) , ∀s ≥ 0 , (2.21)

and, for a function a(ϕ, x;ω),

|Op(a)|
Lip(γ)
0,s,α = |Op(a)|

Lip(γ)
0,s,0 . ‖a‖Lip(γ)s . (2.22)

Composition. If A = a(ϕ, x,D;ω) ∈ OPSm, B = b(ϕ, x,D;ω) ∈ OPSm′

then the composition AB := A◦B
is a pseudo-differential operator with a symbol σAB(ϕ, x, ξ;ω) in Sm+m′

which, for any N ≥ 0, admits the
asymptotic expansion

σAB(ϕ, x, ξ;ω) =
N∑

β=0

1

iββ!
∂β
ξ a(ϕ, x, ξ;ω) ∂

β
x b(ϕ, x, ξ;ω) + rN (ϕ, x, ξ;ω) (2.23)

with remainder rN ∈ Sm+m′−N−1. We record the following tame estimate for the composition of two
pseudo-differential operators, proved in [10, Lemma 2.13].

Lemma 2.9. (Composition) Let A = a(ϕ, x,D;ω), B = b(ϕ, x,D;ω) be pseudo-differential operators with
symbols a(ϕ, x, ξ;ω) ∈ Sm, b(ϕ, x, ξ;ω) ∈ Sm′

, m,m′ ∈ R. Then A(ω) ◦ B(ω) is the pseudo-differential
operator of order m+m′, associated to the symbol σAB(ϕ, x, ξ;ω) which satisfies, for any α ∈ N, s ≥ s0,

|AB|
Lip(γ)
m+m′,s,α .m,α C(s)|A|Lip(γ)m,s,α |B|

Lip(γ)
m′,s0+α+|m|,α + C(s0)|A|

Lip(γ)
m,s0,α|B|

Lip(γ)
m′,s+α+|m|,α . (2.24)
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Moreover, for any integer N ≥ 1, the remainder RN := Op(rN ) in (2.23) satisfies

|RN |
Lip(γ)
m+m′−N−1,s,α .m,N,αC(s)|A|

Lip(γ)
m,s,N+1+α|B|

Lip(γ)
m′,s0+2(N+1)+|m|+α,α

+C(s0)|A|
Lip(γ)
m,s0,N+1+α|B|

Lip(γ)
m′,s+2(N+1)+|m|+α,α.

(2.25)

By (2.23) the commutator [A,B] of two pseudo-differential operators A = a(x,D) ∈ OPSm and B =
b(x,D) ∈ OPSm′

is a pseudo-differential operator of order m + m′ − 1, and Lemma 2.9 then leads to the
following lemma, cf. [10, Lemma 2.15].

Lemma 2.10. (Commutator) If A = a(ϕ, x,D;ω) ∈ OPSm and B = b(ϕ, x,D;ω) ∈ OPSm′

, m,m′ ∈ R,
then the commutator [A,B] := AB − BA is the pseudo-differential operator of order m+m′ − 1 associated
to the symbol σAB(ϕ, x, ξ;ω)− σBA(ϕ, x, ξ;ω) ∈ Sm+m′−1 which for any α ∈ N and s ≥ s0 satisfies

|[A,B]|
Lip(γ)
m+m′−1,s,α .m,m′,α C(s)|A|

Lip(γ)
m,s+2+|m′|+α,α+1|B|

Lip(γ)
m′,s0+2+|m|+α,α+1

+ C(s0)|A|
Lip(γ)
m,s0+2+|m′|+α,α+1|B|

Lip(γ)
m′,s+2+|m|+α,α+1 .

(2.26)

In the case of operators of the special form a∂m
x , Lemma 2.9 and Lemma 2.10 simplify as follows:

Lemma 2.11. (Composition and commutator of homogeneous symbols) Let A = a∂m
x , B = b∂m′

x

where m,m′ ∈ Z and a(ϕ, x;ω), b(ϕ, x;ω) are C∞−smooth functions with respect to (ϕ, x) and Lipschitz
with respect to ω ∈ Ω. Then there exist combinatorial constants Kn,m ∈ R, 0 ≤ n ≤ N , with K0,m = 1 and
K1,m = m so that the following holds:

(i) For any N ∈ N, the composition A ◦B is in OPSm+m′

and admits the asymptotic expansion

A ◦B =

N∑

n=0

Kn,m a (∂n
x b)∂

m+m′−n
x +RN (a, b)

where the remainder RN (a, b) is in OPSm+m′−N−1. Furthermore there is a constant σN (m) > 0 so that,
for any s ≥ s0, α ∈ N,

|RN (a, b)|
Lip(γ)
m+m′−N−1,s,α .m,m′,s,N,α ‖a‖

Lip(γ)
s+σN (m)‖b‖

Lip(γ)
s0+σN (m) + ‖a‖

Lip(γ)
s0+σN (m)‖b‖

Lip(γ)
s+σN (m) .

(ii) For any N ∈ N+, the commutator [A,B] is in OPSm+m′−1 and admits the asymptotic expansion

[A,B] =

N∑

n=1

(
Kn,ma(∂n

x b)−Kn,m′(∂n
xa)b

)
∂m+m′−n
x +QN(a, b)

where the remainder QN (a, b) is in OPSm+m′−N−1. Furthermore, there is a constant σN (m,m′) > 0 so
that, for any s ≥ s0, α ∈ N,

|QN (a, b)|
Lip(γ)
m+m′−N−1,s,α .m,m′,s,N,α ‖a‖

Lip(γ)
s+σN (m,m′)‖b‖

Lip(γ)
s0+σN (m,m′) + ‖a‖

Lip(γ)
s0+σN (m,m′)‖b‖

Lip(γ)
s+σN (m,m′) .

Proof. See formula (2.23) and Lemma 2.9.

We finally give the following result on the exponential of a pseudo-differential operator of order 0.

Lemma 2.12. (Exponential map) If A := Op(a(ϕ, x, ξ;ω)) is in OPS0, then
∑

k≥0
1
k!σAk(ϕ, x, ξ;ω) is

a symbol of order 0 and hence the corresponding pseudo-differential operator, denoted by Φ = exp(A), is in
OPS0, and for any s ≥ s0, α ∈ N, there is a constant C(s, α) > 0 so that

|Φ− Id|
Lip(γ)
0,s,α ≤ |A|

Lip(γ)
0,s+α,αexp

(
C(s, α)|A|

Lip(γ)
0,s0+α,α

)
. (2.27)
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Proof. Iterating (2.24), for any s ≥ s0, α ∈ N, there is a constant C(s, α) > 0 such that

|Ak|
Lip(γ)
0,s,α ≤ C(s, α)k−1(|A|

Lip(γ)
0,s0+α,α)

k−1|A|
Lip(γ)
0,s+α,α , ∀k ≥ 1 . (2.28)

Therefore

|Φ− Id|
Lip(γ)
0,s,α ≤

∑

k≥1

1

k!
|Ak|

Lip(γ)
0,s,α

(2.28)

≤ |A|
Lip(γ)
0,s+α,α

∑

k≥1

1

k!
C(s, α)k−1(|A|

Lip(γ)
0,s0+α,α)

k−1

≤ |A|
Lip(γ)
0,s+α,αexp

(
C(s, α)|A|

Lip(γ)
0,s0+α,α

)
.

This shows that
∑

k≥0
1
k!σAk(ϕ, x, ξ;ω) is a symbol in S0 and that the estimate (2.27) holds.

2.3 Lip(γ)-tame and modulo-tame operators

In this section we recall the notion and the main properties of Lip(γ)-σ-tame and Lip(γ)-modulo-tame
operators. We refer to [10, Section 2.2] where this notion was introduced, with the only difference that here
we consider difference quotients instead of first order derivatives with respect to the parameter ω.

Definition 2.13. (Lip(γ)-σ-tame) Let σ ≥ 0. A linear operator A := A(ω) as in (2.12) is Lip(γ)-σ-tame
if there exist S > s1 ≥ s0 and a non-decreasing function [s1, S] → [0,+∞), s 7→ MA(s), so that, for any
s1 ≤ s ≤ S and u ∈ Hs+σ,

sup
ω∈Ω

‖A(ω)u‖s + γ sup
ω1,ω2∈Ω

ω1 6=ω2

∥∥∥A(ω1)−A(ω2)

|ω1 − ω2|
u
∥∥∥
s
≤ MA(s1)‖u‖s+σ +MA(s)‖u‖s1+σ . (2.29)

When σ is zero, we simply write Lip(γ)-tame instead of Lip(γ)-0-tame. We say that MA(s) is a tame
constant of the operator A. Note that MA(s) is not uniquely determined and that it may also depend on
the “loss of derivatives” σ. We will not indicate this dependence.

Representing the operator A by its matrix elements
(
Aj′

j (ℓ − ℓ′)
)
ℓ,ℓ′∈Z

S+ ,j,j′∈Z
as in (2.14), we have, for

all j′ ∈ Z, ℓ′ ∈ Z
S+ , for all ω1, ω2 ∈ Ω, ω1 6= ω2,

∑
ℓ,j
〈ℓ, j〉2s1

(∣∣Aj′

j (ℓ − ℓ′)
∣∣2 + γ2

∣∣∣
∆ωA

j′

j (ℓ− ℓ′)

|ω1 − ω2|

∣∣∣
2)

.
(
MA(s1)

)2
〈ℓ′, j′〉2(s1+σ) (2.30)

where we recall that ∆ωf = f(ω1)− f(ω2).

Lemma 2.14. (Composition) Let A,B be, respectively, Lip(γ)-σA-tame and Lip(γ)-σB-tame operators
with tame constants MA(s) and MB(s). Then the composition A ◦B is Lip(γ)-(σA + σB)-tame with a tame
constant satisfying

MAB(s) . MA(s)MB(s1 + σA) +MA(s1)MB(s+ σA) .

Proof. See [10, Lemma 2.20].

We now discuss the action of a Lip(γ)-σ-tame operator A(ω) on a family of Sobolev functions u(ω) ∈ Hs.

Lemma 2.15. (Action on Hs) Let A := A(ω) be a Lip(γ)-σ-tame operator with tame constant MA(s).
Then, for any family of Sobolev functions u := u(ω) ∈ Hs+σ, Lipschitz with respect to ω, one has

‖Au‖Lip(γ)s . MA(s1)‖u‖
Lip(γ)
s+σ +MA(s)‖u‖

Lip(γ)
s1+σ .

Proof. See [10, Lemma 2.22].

Pseudo-differential operators are tame operators. We shall use in particular the following lemma.
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Lemma 2.16. Let a(ϕ, x, ξ;ω) ∈ S0 be a family of symbols that are Lipschitz with respect to ω. If A =

a(ϕ, x,D;ω) satisfies |A|
Lip(γ)
0,s,0 < +∞, s ≥ s0, then A is Lip(γ)-tame with a tame constant satisfying

MA(s) ≤ C(s)|A|
Lip(γ)
0,s,0 . (2.31)

As a consequence

‖Au‖Lip(γ)s ≤ C(s0)|A|
Lip(γ)
0,s0,0

‖u‖Lip(γ)s + C(s)|A|
Lip(γ)
0,s,0 ‖u‖Lip(γ)s0 . (2.32)

Proof. See [10, Lemma 2.21] for the proof of (2.31). The estimate (2.32) then follows from Lemma 2.15.

In the KAM reducibility scheme of Section 7, we need to consider Lip(γ)-tame operators A which satisfy
a stronger condition, referred to Lip(γ)-modulo-tame operators.

Definition 2.17. (Lip(γ)-modulo-tame) Let S > s1 ≥ s0. A linear operator A := A(ω) as in (2.12) is

Lip(γ)-modulo-tame if there exists a non-decreasing function [s1, S] → [0,+∞), s 7→ M
♯
A(s), such that the

majorant operators |A(ω)| (see Definition 2.3) satisfy, for any s1 ≤ s ≤ S and u ∈ Hs,

sup
ω∈Ω

‖ |A(ω)|u‖s + γ sup
ω1,ω2∈Ω

ω1 6=ω2

∥∥∥ |A(ω1)−A(ω2)|

|ω1 − ω2|
u
∥∥∥
s
≤ M

♯
A(s1)‖u‖s +M

♯
A(s)‖u‖s1 . (2.33)

The constant M♯
A(s) is called a modulo-tame constant of the operator A.

If A, B are Lip(γ)-modulo-tame operators, with |Aj′

j (ℓ)| ≤ |Bj′

j (ℓ)|, then M
♯
A(s) ≤ M

♯
B(s).

Lemma 2.18. An operator A that is Lip(γ)-modulo-tame with modulo-tame constant M♯
A(s) is also Lip(γ)-

tame and M
♯
A(s) is a tame constant for A.

Proof. See [10, Lemma 2.24].

The class of operators which are Lip(γ)-modulo-tame is closed under sum and composition.

Lemma 2.19. (Sum and composition) Let A,B be Lip(γ)-modulo-tame operators with modulo-tame

constants respectively M
♯
A(s) and M

♯
B(s). Then A+B is Lip(γ)-modulo-tame with a modulo-tame constant

satisfying
M

♯
A+B(s) ≤ M

♯
A(s) +M

♯
B(s) . (2.34)

The composed operator A ◦B is Lip(γ)-modulo-tame with a modulo-tame constant satisfying

M
♯
AB(s) ≤ C

(
M

♯
A(s)M

♯
B(s1) +M

♯
A(s1)M

♯
B(s)

)
(2.35)

where C ≥ 1 is a constant. Assume in addition that 〈∂ϕ〉bA, 〈∂ϕ〉bB (see Definition 2.3) are Lip(γ)-

modulo-tame with a modulo-tame constants, respectively, M♯
〈∂ϕ〉bA(s) and M

♯
〈∂ϕ〉bB(s). Then 〈∂ϕ〉

b(AB) is

Lip(γ)-modulo-tame with a modulo-tame constant satisfying, for some C(b) ≥ 1,

M
♯
〈∂ϕ〉b(AB)(s) ≤ C(b)

(
M

♯
〈∂ϕ〉bA(s)M

♯
B(s1) +M

♯
〈∂ϕ〉bA(s1)M

♯
B(s)

+M
♯
A(s)M

♯
〈∂ϕ〉bB(s1) +M

♯
A(s1)M

♯
〈∂ϕ〉bB(s)

)
.

(2.36)

Proof. See [10, Lemma 2.25].

Iterating (2.35)-(2.36) we obtain that, for any n ≥ 2,

M
♯
An(s) ≤

(
2CM

♯
A(s1)

)n−1
M

♯
A(s) , (2.37)

and

M
♯
〈∂ϕ〉bAn(s) ≤ (4C(b)C)n−1

(
M

♯
〈∂ϕ〉bA(s)

[
M

♯
A(s1)

]n−1
+M

♯
〈∂ϕ〉bA(s1)M

♯
A(s)

[
M

♯
A(s1)

]n−2
)
. (2.38)

As an application of (2.37)-(2.38) we obtain the following
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Lemma 2.20. (Exponential map) Let A and 〈∂ϕ〉bA be Lip(γ)-modulo-tame operators and assume that

M
♯
A : [s1, S] → [0,+∞) is a modulo-tame constant satisfying

M
♯
A(s1) ≤ 1 . (2.39)

Then the operators Φ±1 := exp(±A), Φ±1−Id and 〈∂ϕ〉b(Φ±1−Id) are Lip(γ)-modulo-tame with modulo-tame
constants satisfying, for any s1 ≤ s ≤ S,

M
♯
Φ±1−Id(s) . M

♯
A(s) ,

M
♯
〈∂ϕ〉b(Φ±1−Id)(s) .b M

♯
〈∂ϕ〉bA(s) +M

♯
A(s)M

♯
〈∂ϕ〉bA(s1) .

(2.40)

Proof. In view of the identity Φ±1 − Id =
∑

n≥1
(±A)n

n! and the assumption (2.39) the claimed estimates
follow by (2.37)-(2.38).

Lemma 2.21. (Smoothing) Suppose that 〈∂ϕ〉bA, b ≥ 0, is Lip(γ)-modulo-tame. Then the operator Π⊥
NA

(see Definition 2.3) is Lip(γ)-modulo-tame with a modulo-tame constant satisfying

M
♯

Π⊥
N
A
(s) ≤ N−bM

♯
〈∂ϕ〉bA(s) , M

♯

Π⊥
N
A
(s) ≤ M

♯
A(s) . (2.41)

Proof. See [10, Lemma 2.27].

Lemma 2.22. Let a1(·;ω), a2(·;ω) be functions in C∞(TS+ ×T1,C) and ω ∈ Ω. Consider the linear operator
R defined by Rh := a1 · (a2, h)L2

x
, for any h ∈ L2

x. Then for any λ ∈ NS+ and n1, n2 ≥ 0, the operator

〈D〉n1∂λ
ϕR〈D〉n2 is Lip(γ)-tame with a tame constant satisfying, for some σ ≡ σ(n1, n2, λ) > 0,

M〈D〉n1∂λ
ϕR〈D〉n2 (s) .S,n1,n2,λ (maxi=1,2‖ai‖s+σ) · (maxi=1,2‖ai‖s0+σ) .

Proof. For any n1, n2 ≥ 0, λ ∈ NS+ , h ∈ L2
x, one has

〈D〉n1∂λ
ϕR〈D〉n2h =

∑

λ1+λ2=λ

cλ1,λ2〈D〉n1 [∂λ1
ϕ a1]

(
〈D〉n2 [∂λ2

ϕ a2] , h
)
L2

x

where we used that the operator 〈D〉 is symmetric. The lemma then follows by (2.5).

2.4 Tame estimates

In this section we record various tame estimates for compositions of functions and operators with a torus
embedding ῐ : TS+ → Es of the form (cf. (1.18))

ῐ(ϕ) = (ϕ, 0, 0) + ι(ϕ) , ι(ϕ) = (Θ(ϕ), y(ϕ), w(ϕ)) ,

with norm ‖ι‖
Lip(γ)
s := ‖Θ‖

Lip(γ)
Hs

ϕ
+ ‖y‖

Lip(γ)
Hs

ϕ
+ ‖w‖

Lip(γ)
s . We shall use that the Sobolev norm in (1.12) is

equivalent to
‖ ‖s = ‖ ‖Hs

ϕ,x
∼s ‖ ‖Hs

ϕL2
x
+ ‖ ‖L2

ϕH
s
x

(2.42)

and the interpolation estimate (which is a consequence of Young’s inequality)

‖w‖Hs
ϕHσ

x
≤ ‖w‖Hs+σ

ϕ L2
x
+ ‖w‖L2

ϕH
s+σ
x

.s,σ ‖w‖s+σ . (2.43)

Given a Banach space X with norm ‖ ‖X , we consider the space Cs(TS+ , X), s ∈ N, of Cs−smooth maps
f : TS+ → X equipped with the norm

‖f‖Cs
ϕX :=

∑

0≤|α|≤s

‖∂α
ϕf‖

sup
X , ‖∂α

ϕf‖
sup
X := sup

ϕ∈T
S+

‖∂α
ϕf(ϕ)‖X . (2.44)
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By the Sobolev embedding ‖f‖Cs
ϕX .s1 ‖f‖

H
s+s1
ϕ X

for s1 > |S+|, whereas if X is a Hilbert space, the latter

estimate is valid for s1 > |S+|/2. On the scale of Banach spaces Cs(TS+ , X) the following interpolation
inequalities hold: for any 0 ≤ k ≤ s,

‖f‖Ck
ϕX

.s ‖f‖
1−k

s

C0
ϕX

‖f‖
k
s

Cs
ϕX

. (2.45)

Recall that Es, Es are defined in (1.18) and Vs(δ) in (1.20). Let Ω be an open bounded subset of RS+ .

Lemma 2.23. Let σ > 0 and assume that, for any s ≥ 0, the map a : (Vσ(δ) ∩ Es+σ) × Ω → Hs(T1) is
C∞ with respect to x = (θ, y, w), C1 with respect to ω, and satisfies for any x ∈ Vσ(δ) ∩ Es+σ, α ∈ NS+ with
|α| ≤ 1, and l ≥ 1, the tame estimates

‖∂α
ωa(x;ω)‖Hs

x
.s 1 + ‖w‖Hs+σ

x
,

‖dl∂α
ωa(x;ω)[̂x1, . . . , x̂l]‖Hs

x
.s,l,α

l∑

j=1

(
‖̂xj‖Es+σ

∏

n6=j

‖̂xn‖Eσ

)
+ ‖w‖Hs+σ

x

l∏

j=1

‖̂xj‖Eσ
.

(2.46)

Then for any ῐ with ‖ι‖
Lip(γ)
s0+σ ≤ δ, the following tame estimates hold for any s ≥ 0:

(i)

‖a(ῐ)‖Lip(γ)s .s 1 + ‖ι‖
Lip(γ)
s+s0+σ ,

‖da(ῐ)[̂ι1]‖
Lip(γ)
s .s ‖ι̂1‖

Lip(γ)
s+s0+σ + ‖ι‖

Lip(γ)
s+s0+σ‖ι̂1‖

Lip(γ)
s0+σ ,

‖d2a(ῐ)[̂ι1, ι̂2]‖
Lip(γ)
s .s ‖ι̂1‖

Lip(γ)
s+s0+σ‖ι̂2‖s0+σ + ‖ι̂1‖

Lip(γ)
s0+σ ‖ι̂2‖

Lip(γ)
s+s0+σ

+ ‖ι‖
Lip(γ)
s+s0+σ‖ι̂1‖

Lip(γ)
s0+σ ‖ι̂2‖

Lip(γ)
s0+σ .

(2.47)

(ii) If in addition a(θ, 0, 0;ω) = 0, then ‖a(ῐ)‖
Lip(γ)
s .s ‖ι‖

Lip(γ)
s+s0+σ.

(iii) If in addition a(θ, 0, 0;ω) = 0, ∂ya(θ, 0, 0;ω) = 0, and ∂wa(θ, 0, 0;ω) = 0, then

‖a(ῐ)‖Lip(γ)s .s ‖ι‖
Lip(γ)
s+s0+σ‖ι‖

Lip(γ)
s0+σ ,

‖da(ῐ)[̂ι]‖Lip(γ)s .s ‖ι‖
Lip(γ)
s0+σ ‖ι̂‖

Lip(γ)
s+s0+σ + ‖ι‖

Lip(γ)
s+s0+σ‖ι̂‖

Lip(γ)
s0+σ .

Proof. (i) It suffices to prove the estimates in (2.47) for ‖d2a(ῐ)[̂ι1, ι̂2]‖s and ‖d2a(ῐ)[̂ι1, ι̂2]‖lips since the ones
for a(ῐ) and da(ῐ) then follow by Taylor expansions. By the hypothesis (2.46) with l = 2, α = 0, we have,
for any ϕ ∈ T

S+ , s ≥ 0,

‖d2a(ῐ(ϕ))[̂ι1(ϕ), ι̂2(ϕ)]‖Hs
x
.s ‖ι̂1(ϕ)‖Es+σ

‖ι̂2(ϕ)‖Eσ
+ ‖ι̂1(ϕ)‖Eσ

‖ι̂2(ϕ)‖Es+σ

+ ‖ι(ϕ)‖Es+σ
‖ι̂1(ϕ)‖Eσ

‖ι̂2(ϕ)‖Eσ
.

(2.48)

Squaring the expressions on the left and right hand side of (2.48) and then integrating them with respect to
ϕ, one concludes, using (2.42), (2.43), and the Sobolev embedding (1.15), that

‖d2a(ῐ)[̂ι1, ι̂2]‖L2
ϕHs

x
.s ‖ι̂1‖s+σ‖ι̂2‖s0+σ + ‖ι̂1‖s0+σ‖ι̂2‖s+σ + ‖ι‖s+σ‖ι̂1‖s0+σ‖ι̂2‖s0+σ . (2.49)

In order to estimate ‖d2a(ῐ)[̂ι1, ι̂2]‖Hs
ϕL2

x
, we estimate ‖d2a(ῐ)[̂ι1, ι̂2]‖Cs

ϕL
2
x
. We claim that

‖d2a(ῐ)[̂ι1, ι̂2]‖Cs
ϕL2

x
.s ‖ι̂1‖s0+σ‖ι̂2‖s+s0+σ + ‖ι̂1‖s+s0+σ‖ι̂2‖s0+σ + ‖ι‖s+s0+σ‖ι̂1‖s0+σ‖ι̂2‖s0+σ (2.50)

so that the estimate for ‖d2a(ῐ)[̂ι1, ι̂2]‖s stated in (2.47) follows by (2.49), (2.50), and (2.42). The bound for
‖d2a(ῐ)[̂ι1, ι̂2]‖lips is obtained in the same fashion.

Proof of (2.50). By the Leibnitz rule, for any β ∈ NS+ , 0 ≤ |β| ≤ s,

∂β
ϕ

(
d2a(ῐ(ϕ))[̂ι1(ϕ), ι̂2(ϕ)]

)
=

∑

β1+β2+β3=β

cβ1,β2,β3∂
β1
ϕ (d2a(ῐ(ϕ)))

[
∂β2
ϕ ι̂1(ϕ), ∂

β3
ϕ ι̂2(ϕ)

]
(2.51)
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where cβ1,β2,β3 are combinatorial constants. Each term in the latter sum is estimated individually. For
1 ≤ |β1| ≤ s we have

∂β1
ϕ (d2a(ῐ(ϕ)))

[
∂β2
ϕ ι̂1(ϕ), ∂

β3
ϕ ι̂2(ϕ)

]
=

∑

1≤m≤|β1|
α1+···+αm=β1

cα1,··· ,αm
dm+2a(ῐ(ϕ))

[
∂α1
ϕ ῐ(ϕ), · · · , ∂αm

ϕ ῐ(ϕ), ∂β2
ϕ ι̂1(ϕ), ∂

β3
ϕ ι̂2(ϕ)

]

for suitable combinatorial constants cα1,··· ,αm
. Then, by (2.46) with l = m+ 2, α = 0, we have the bound

‖∂β1
ϕ (d2a(ῐ))[∂β2

ϕ ι̂1, ∂
β3
ϕ ι̂2]‖C0

ϕL2
x
.β (2.52)

∑

1≤m≤|β1|
α1+···+αm=β1

(1 + ‖ι‖
C
|α1|
ϕ Eσ

) · · · (1 + ‖ι‖
C
|αm|
ϕ Eσ

)‖ι̂1‖C|β2|
ϕ Eσ

‖ι̂2‖C|β3|
ϕ Eσ

.

Arguing as in the proof of the formula (75) in [9], for any j = 1, . . . ,m, we have

(1 + ‖ι‖
C
|αj|
ϕ Eσ

) .β (1 + ‖ι‖C0
ϕEσ

)1−
|αj |

|β| (1 + ‖ι‖
C
|β|
ϕ Eσ

)
|αj |

|β| ,

and, using the interpolation estimate (2.45), we get

(1 + ‖ι‖
C
|α1|
ϕ Eσ

) · · · (1 + ‖ι‖
C
|αm|
ϕ Eσ

)‖ι̂1‖C|β2|
ϕ Eσ

‖ι̂2‖C|β3|
ϕ Eσ

(2.53)

.s ‖ι̂1‖
1−

|β2|
|β|

C0
ϕEσ

‖ι̂1‖
|β2|
|β|

C
|β|
ϕ Eσ

‖ι̂2‖
1−

|β3|
|β|

C0
ϕEσ

‖ι̂2‖
|β3|
|β|

C
|β|
ϕ Eσ

m∏

j=1

(1 + ‖ι‖C0
ϕEσ

)1−
|αj |

|β| (1 + ‖ι‖
C
|β|
ϕ Eσ

)
|αj |

|β|

.s ‖ι̂1‖
1−

|β2|
|β|

C0
ϕEσ

‖ι̂1‖
|β2|
|β|

C
|β|
ϕ Eσ

‖ι̂2‖
1−

|β3|
|β|

C0
ϕEσ

‖ι̂2‖
|β3|
|β|

C
|β|
ϕ Eσ

(1 + ‖ι‖C0
ϕEσ

)m−
∑m

j=1

|αj |

|β| (1 + ‖ι‖
C
|β|
ϕ Eσ

)
∑m

j=1

|αj |

|β| .

By (1.15), (2.43), (1 + ‖ι‖C0
ϕEσ

)m−1 . (1 + ‖ι‖s0+σ)
m−1 . (1 + δ)m−1 and

∑m
j=1 |αj |

|β| = |β1|
|β| = 1− |β2|

|β| − |β3|
|β| ,

so that

(2.53) .s ‖ι̂1‖
|β1|+|β3|

|β|

C0
ϕEσ

‖ι̂1‖
|β2|
|β|

Cs
ϕEσ

‖ι̂2‖
|β1|+|β2|

|β|

C0
ϕEσ

‖ι̂2‖
|β3|
|β|

Cs
ϕEσ

(1 + ‖ι‖C0
ϕEσ

)
|β2|+|β3|

|β| (1 + ‖ι‖Cs
ϕEσ

)
|β1|
|β|

.s

(
‖ι̂1‖C0

ϕEσ
‖ι̂2‖C0

ϕEσ
(1 + ‖ι‖Cs

ϕEσ
)
) |β1|

|β|
(
‖ι̂1‖Cs

ϕEσ
‖ι̂2‖C0

ϕEσ
(1 + ‖ι‖C0

ϕEσ
)
) |β2|

|β|

×
(
‖ι̂1‖C0

ϕEσ
‖ι̂2‖Cs

ϕEσ
(1 + ‖ι‖C0

ϕEσ
)
) |β3|

|β|

and, by the iterated Young inequality with exponents |β|/|β1|, |β|/|β2|, |β|/|β3|, we conclude that (2.53) is
bounded by

‖ι̂1‖C0
ϕEσ

‖ι̂2‖C0
ϕEσ

(1 + ‖ι‖Cs
ϕEσ

) + ‖ι̂1‖Cs
ϕEσ

‖ι̂2‖C0
ϕEσ

(1 + ‖ι‖C0
ϕEσ

) + ‖ι̂1‖C0
ϕEσ

‖ι̂2‖Cs
ϕEσ

(1 + ‖ι‖C0
ϕEσ

)

(1.15),(2.43)

.s ‖ι‖s+s0+σ‖ι̂1‖s0+σ‖ι̂2‖s0+σ ++‖ι̂1‖s+s0+σ‖ι̂2‖s0+σ + ‖ι̂1‖s0+σ‖ι̂2‖s+s0+σ .

Note that (2.52) satisfies the same type of bound as (2.53). The term in (2.51) with β1 = 0 is estimated in
the same way and thus (2.50) is proved.

Proof (ii)-(iii). Let ϕ 7→ ῐ(ϕ) = (θ(ϕ), y(ϕ), w(ϕ)) be a torus embedding. If a(θ, 0, 0) = 0, we write

a(ῐ) =

∫ 1

0

da(ῐt)[̂ι] dt , ῐt = (1− t)(θ(ϕ), 0, 0) + tῐ(ϕ) , ι̂ := (0, y(ϕ), w(ϕ)) ,

and, if a(θ, 0, 0), ∂ya(θ, 0, 0), ∂wa(θ, 0, 0) vanish, we write

a(ῐ) =

∫ 1

0

(1− t)d2a(ῐt)[̂ι, ι̂] dt .

Items (ii)-(iii) follow by item (i), noting that ‖ι̂‖
Lip(γ)
s = ‖(0, y(·), w(·))‖

Lip(γ)
s . ‖ι‖

Lip(γ)
s for any s ≥ 0.
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Given M ∈ N, we define the constant

sM := max{s0,M + 1} . (2.54)

Lemma 2.24. Assume that, for any M ≥ 0, there is σM ≥ 0 so that:

• Assumption A. For any s ≥ 0, the map

R : (VσM (δ) ∩ Es+σM
)× Ω → B(Hs(T1), H

s+M+1(T1))

is C∞ with respect to x, C1 with respect to ω and, for any x ∈ VσM (δ) ∩ Es+σM
, α ∈ NS+ with |α| ≤ 1,

‖∂α
ωR(x;ω)[ŵ]‖Hs+M+1

x
.s,M ‖ŵ‖Hs

x
+ ‖w‖

H
s+σM
x

‖ŵ‖L2
x
,

and, for any l ≥ 1, ‖dl∂α
ωR(x;ω)[ŵ][̂x1, . . . , x̂l]‖Hs+M+1

x
is bounded by

.s,M,l ‖ŵ‖Hs
x

l∏

j=1

‖̂xj‖EσM
+ ‖ŵ‖L2

x

(
‖w‖

H
s+σM
x

l∏

j=1

‖̂xj‖EσM
+

l∑

j=1

(
‖̂xj‖Es+σM

∏

n6=j

‖̂xn‖EσM

))
.

• Assumption B. For any −M − 1 ≤ s ≤ 0, the map

R : VσM (δ)× Ω → B(Hs(T1), H
s+M+1(T1))

is C∞ w.r to x, C1 with respect to ω and, for any x ∈ VσM (δ), α ∈ NS+ with |α| ≤ 1, and l ≥ 1,

‖∂α
ωR(x;ω)[ŵ]‖Hs+M+1

x
.s,M ‖ŵ‖Hs

x
,

‖dl∂α
ωR(x;ω)[ŵ][̂x1, . . . , x̂l]‖Hs+M+1

x
.s,M,l ‖ŵ‖Hs

x

l∏

j=1

‖̂xj‖EσM
.

Then for any S ≥ sM and λ ∈ NS+ , there is a constant σM (λ) > 0, so that for any ῐ(ϕ) = (ϕ, 0, 0) + ι(ϕ)

with ‖ι‖
Lip(γ)
s0+σM (λ) ≤ δ and any n1, n2 ∈ N satisfying n1 + n2 ≤ M + 1, the following holds:

(i) The operator 〈D〉n1∂λ
ϕ(R ◦ ῐ)〈D〉n2 is Lip(γ)-tame with a tame constant satisfying, for any sM ≤ s ≤ S,

M〈D〉n1∂λ
ϕ(R◦ῐ)〈D〉n2 (s) .S,M,λ 1 + ‖ι‖

Lip(γ)
s+σM (λ) .

(ii) The operator 〈D〉n1∂λ
ϕ(dR(ῐ)[̂ι])〈D〉n2 is Lip(γ)-tame with a tame constant satisfying, for any sM ≤ s ≤

S,

M〈D〉n1∂λ
ϕ(dR(ῐ)[ι̂])〈D〉n2 (s) .S,M,λ ‖ι̂‖

Lip(γ)
s+σM (λ) + ‖ι‖

Lip(γ)
s+σM (λ)‖ι̂‖

Lip(γ)
s0+σM (λ) .

(iii) If in addition R(θ, 0, 0;ω) = 0, then the operator 〈D〉n1∂λ
ϕ(R ◦ ῐ)〈D〉n2 is Lip(γ)-tame with a tame

constant satisfying, for any sM ≤ s ≤ S,

M〈D〉n1∂λ
ϕ(R◦ῐ)〈D〉n2 (s) .S,M,λ ‖ι‖

Lip(γ)
s+σM (λ) .

Proof. Since item (i) and (ii) can be proved in a similar way, we only prove (ii). For any given n1, n2 ∈ N

with n1 + n2 ≤ M + 1, set Q := 〈D〉n1R〈D〉n2 . Assumption A implies that for any s ≥ M + 1 and any
x ∈ VσM (δ) ∩ Es+σM

, the operator Q(x) is in B(Hs
x) and for any x̂1, . . . , x̂l ∈ Es+σM

with l ≥ 1, and ŵ ∈ Hs
x,

‖Q(x)[ŵ]‖Hs
x
.s,M ‖ŵ‖Hs

x
+ ‖w‖

H
s+σM
x

‖ŵ‖HM+1
x

,

‖dl
(
Q(x)[ŵ]

)
[̂x1, . . . , x̂l]‖Hs

x
.s,M,l ‖ŵ‖Hs

x

l∏

j=1

‖̂xj‖EσM

+ ‖ŵ‖HM+1
x

(
‖x‖Es+σM

l∏

j=1

‖̂xj‖EσM
+

l∑

j=1

‖̂xj‖Es+σM

∏

n6=j

‖̂xn‖EσM

)
.

(2.55)
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Furthermore Assumption B implies that, for any x ∈ VσM (δ), the operator Q(x) is in B(L2
x) and for any

x̂1, . . . , x̂l ∈ EσM
, l ≥ 1,

‖Q(x)‖B(L2
x)

.M 1 , ‖dlQ(x)[̂x1, . . . , x̂l]‖B(L2
x)

.M,l

l∏

j=1

‖̂xj‖EσM
. (2.56)

One computes by Leibniz’s rule

∂λ
ϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)]

)
=

∑

0≤k≤|λ|
λ1+...+λk+1=λ

cλ1,...,λk+1
dk+1Q(ῐ(ϕ))[∂λ1

ϕ ῐ(ϕ), . . . , ∂λk
ϕ ῐ(ϕ), ∂λk+1

ϕ ι̂(ϕ)] (2.57)

where cλ1,...,λk+1
are combinatorial constants.

Estimate of ‖∂λ
ϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)]

)
[ŵ]‖L2

ϕHs
x
. By (2.55), we have, for s ≥ M + 1,

‖dk+1Q(ῐ(ϕ))[∂λ1
ϕ ῐ(ϕ), . . . , ∂λk

ϕ ῐ(ϕ), ∂λk+1
ϕ ι̂(ϕ)][ŵ(ϕ)]‖Hs

x
(2.58)

.s,M,k ‖ŵ(ϕ)‖Hs
x
‖∂λk+1

ϕ ι̂(ϕ)‖EσM

k∏

n=1

‖∂λn
ϕ ῐ(ϕ)‖EσM

+ ‖ŵ(ϕ)‖HM+1
x

(
‖ι(ϕ)‖Es+σM

‖∂λk+1
ϕ ι̂(ϕ)‖EσM

k∏

n=1

‖∂λn
ϕ ῐ(ϕ)‖EσM

+

k∑

j=1

‖∂λj
ϕ ῐ(ϕ)‖Es+σM

( ∏

n6=j

‖∂λn
ϕ ῐ(ϕ)‖EσM

)
‖∂λk+1

ϕ ι̂(ϕ)‖EσM
+ ‖∂λk+1

ϕ ι̂(ϕ)‖Es+σM

k∏

n=1

‖∂λn
ϕ ῐ(ϕ)‖EσM

)
.

Note that by the Sobolev embedding and (2.43), for any s ≥ 0, µ ∈ N
S+ ,

‖∂µ
ϕ ῐ(ϕ)‖Es

. 1 + ‖∂µ
ϕι‖C0

ϕEs
. 1 + ‖ι‖s+s0+|µ| . (2.59)

Hence (2.57)-(2.58) and ‖ · ‖L2
ϕHs

x
. ‖ · ‖s imply that for any ῐ with ‖ι‖

Lip(γ)
s0+σM (λ) ≤ δ and any s ≥ M + 1,

‖∂λ
ϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)]

)
[ŵ(ϕ)]‖L2

ϕHs
x

.s,M,λ ‖ŵ‖s‖ι̂‖s0+σM (λ) + ‖ŵ‖M+1

(
‖ι‖s+σM (λ)‖ι̂‖s0+σM (λ) + ‖ι̂‖s+σM (λ)

) (2.60)

for some constant σM (λ) > 0.

Estimate of ‖∂λ
ϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)]

)
‖Hs

ϕB(L2
x)
. For any s ∈ N, β ∈ NS+ , |β| ≤ s, we need to estimate

‖∂β+λ
ϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)]

)
‖L2

ϕB(L2
x)
. As in (2.57) we have

∂β+λ
ϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)]

)
=

∑

0≤k≤|β|+|λ|
α1+...+αk+1=β+λ

cα1,...,αk+1
dk+1Q(ῐ(ϕ))[∂α1

ϕ ῐ(ϕ), . . . , ∂αk
ϕ ῐ(ϕ), ∂αk+1

ϕ ι̂(ϕ)]
(2.61)

where cα1,...,αk+1
are combinatorial constants. By (2.56) and (2.59) one obtains that

‖dk+1Q(ῐ(ϕ))[∂α1
ϕ ῐ(ϕ), . . . , ∂αk

ϕ ῐ(ϕ), ∂αk+1
ϕ ι̂(ϕ)]‖L2

ϕB(L2
x)

.β,λ

k∏

j=1

(1 + ‖ι‖|αj |+ηM
)‖ι̂‖|αk+1|+ηM

(2.62)

for some ηM > 0. Using the interpolation inequality (2.4), and arguing as in the proof of the formula (75)
in [9], we have, for any ῐ with ‖ι‖ηM

≤ 1 and any j = 1, . . . , k,

1 + ‖ι‖|αj|+ηM
. (1 + ‖ι‖ηM

)1−
|αj |

|β+λ| (1 + ‖ι‖|β+λ|+ηM
)

|αj|

|β+λ|

‖ι‖ηM
≤1

. (1 + ‖ι‖|β+λ|+ηM
)

|αj|

|β+λ| ,

‖ι̂‖|αk+1|+ηM
. ‖ι̂‖

1−
|αk+1|

|β+λ|
ηM ‖ι̂‖

|αk+1|

|β+λ|

|β+λ|+ηM
.
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Then by (2.62) and since
∑k

j=1 |αj |+ |αk+1| = |β + λ|, it follows that

‖dk+1Q(ῐ(ϕ))[∂α1
ϕ ῐ(ϕ), . . . , ∂αk

ϕ ῐ(ϕ), ∂αk+1
ϕ ι̂(ϕ)]‖L2

ϕB(L2
x)

.s,λ (1 + ‖ι‖|β+λ|+ηM
)

∑k
j=1 |αj |

|β+λ| ‖ι̂‖
1−

|αk+1|

|β+λ|
ηM ‖ι̂‖

|αk+1|

|β+λ|

|β+λ|+ηM

.s,λ

(
(1 + ‖ι‖|β+λ|+ηM

)‖ι̂‖ηM

)∑k
j=1 |αj |

|β|+|λ|

‖ι̂‖
|αk+1|

|β+λ|

|β+λ|+ηM

.s,λ ‖ι̂‖|β+λ|+ηM
+ ‖ι‖|β+λ|+ηM

‖ι̂‖ηM
(2.63)

where for the latter inequality we used Young’s inequality with exponents |β+λ|∑
k
j=1 |αj |

, |β+λ|
|αk+1|

. Combining (2.61)

and (2.63) we obtain

‖∂λ
ϕ(dQ(ῐ)[̂ι])‖Hs

ϕB(L2
x)

.s,M,λ ‖ι̂‖s+|λ|+ηM
+ ‖ι‖s+|λ|+ηM

‖ι̂‖ηM
. (2.64)

Estimate of ‖∂λ
ϕ(dQ(ῐ)[̂ι])[ŵ]‖Hs

ϕL2
x
. Using that

( ∑

ℓ∈Z
S+

‖Â(ℓ)‖2B(L2
x)
〈ℓ〉2s

)1/2

.s0 ‖A‖
H

s+s0
ϕ B(L2

x)

one deduces from [9, Lemma 2.12] that for any ῐ with ‖ι‖2s0+|λ|+ηM
≤ 1 and any s ≥ s0,

‖∂λ
ϕ(dQ(ῐ)[̂ι])[ŵ]‖Hs

ϕL2
x
.s ‖∂

λ
ϕ(dQ(ῐ)[̂ι])‖

H
2s0
ϕ B(L2

x)
‖ŵ‖Hs

ϕL2
x
+ ‖∂λ

ϕ(dQ(ῐ)[̂ι])‖
H

s+s0
ϕ B(L2

x)
‖ŵ‖Hs0

ϕ L2
x

(2.65)

(2.64)

.s,M ‖ŵ‖s‖ι̂‖2s0+|λ|+ηM
+ ‖ŵ‖s0

(
‖ι̂‖s+s0+|λ|+ηM

+ ‖ι‖s+s0+|λ|+ηM
‖ι̂‖2s0+|λ|+ηM

)
.

Increasing the constant σM (λ) in (2.60) if needed, one infers from the estimates (2.60), (2.65) that for any
s ≥ sM = max{s0,M + 1}, ∂λ

ϕ(dQ(ῐ)[̂ι]) satisfies

‖∂λ
ϕ(dQ(ῐ)[̂ι])[ŵ]‖s .s,M,λ ‖ŵ‖s‖ι̂‖s0+σM (λ) + ‖ŵ‖sM

(
‖ι̂‖s+σM (λ) + ‖ι‖s+σM (λ)‖ι̂‖s0+σM (λ)

)
. (2.66)

Furthermore, arguing similarly, one can show that for any ω1, ω2 ∈ Ω, ω1 6= ω2, the operator ∂
λ
ϕ∆ω(dQ(ῐ)[̂ι])

satisfies the estimate, for any s ≥ sM

γ
‖∂λ

ϕ∆ω(dQ(ῐ)[̂ι])[ŵ]‖s

|ω1 − ω2|
.s,M,λ ‖ŵ‖s‖ι̂‖

Lip(γ)
s0+σM (λ) + ‖ŵ‖sM

(
‖ι̂‖

Lip(γ)
s+σM (λ) + ‖ι‖

Lip(γ)
s+σM (λ)‖ι̂‖

Lip(γ)
s0+σM (λ)

)
. (2.67)

It then follows from (2.66) and (2.67) that there exists a tame constant M∂λ
ϕ(dQ(ῐ)[ι̂])(s) for ∂λ

ϕ(dQ(ῐ)[̂ι])

satisfying the estimate stated in item (ii).
Proof of (iii). Since R(θ, 0, 0) = 0, we can write

R(ῐ) =

∫ 1

0

dR(ῐt)[̂ι] dt , ῐt = (1 − t)(θ(ϕ), 0, 0) + tῐ(ϕ) , ι̂(ϕ) := (0, y(ϕ), w(ϕ)) .

Since ‖ι̂‖s . ‖ι‖s for any s ≥ 0, item (iii) is thus a direct consequence of (ii).

2.5 Egorov type theorems

The main purpose of this section is to investigate operators obtained by conjugating a pseudo-differential
operator of the form a(ϕ, x)∂m

x , m ∈ Z, by the flow map of a transport equation. These results are used in
Section 6.3.

Let Φ(τ0, τ, ϕ) denote the flow of the transport equation

∂τΦ(τ0, τ, ϕ) = B(τ, ϕ)Φ(τ0, τ, ϕ) , Φ(τ0, τ0, ϕ) = Id , (2.68)
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where

B(τ, ϕ) := Π⊥

(
b(τ, ϕ, x)∂x + bx(τ, ϕ, x)

)
, b ≡ b(τ, ϕ, x) :=

β(ϕ, x)

1 + τβx(ϕ, x)
, (2.69)

and the real valued function β(ϕ, x) ≡ β(ϕ, x;ω) is C∞ with respect to the variables (ϕ, x) and Lipschitz
with respect to the parameter ω ∈ Ω. For brevity we set Φ(τ, ϕ) := Φ(0, τ, ϕ) and Φ(ϕ) := Φ(0, 1, ϕ). Note
that Φ(ϕ)−1 = Φ(1, 0, ϕ) and that

Φ(τ0, τ, ϕ) = Φ(τ, ϕ) ◦ Φ(τ0, ϕ)
−1 . (2.70)

By standard hyperbolic estimates, equation (2.68) is well-posed. The flow Φ(τ0, τ, ϕ) has the following
properties.

Lemma 2.25. (Transport flow) Let λ0 ∈ N, S > s0. For any λ ∈ N with λ ≤ λ0, n1, n2 ∈ R with
n1 + n2 = −λ− 1, and s ≥ s0, there exist constants σ(λ0, n1, n2) > 0, δ ≡ δ(S, λ0, n1, n2) ∈ (0, 1) such that,
if

‖β‖
Lip(γ)
s0+σ(λ0,n1,n2)

≤ δ , (2.71)

then for any m ∈ S+, 〈D〉n1∂λ
ϕm

Φ(τ0, τ, ϕ)〈D〉n2 is a Lip(γ)-tame operator with a tame constant satisfying

M〈D〉n1∂λ
ϕm

Φ(τ0,τ,ϕ)〈D〉n2 (s) .S,λ0,n1,n2 1 + ‖β‖
Lip(γ)
s+σ(λ0,n1,n2)

, ∀s0 ≤ s ≤ S , ∀τ0, τ ∈ [0, 1] . (2.72)

In addition, if n1+n2 = −λ− 2, then 〈D〉n1∂λ
ϕm

(Φ(τ0, τ, ϕ)− Id)〈D〉n2 is Lip(γ)-tame with a tame constant
satisfying

M〈D〉n1∂λ
ϕm

(Φ(τ0,τ,ϕ)−Id)〈D〉n2 (s) .S,λ0,n1,n2 ‖β‖
Lip(γ)
s+σ(λ0,n1,n2)

, ∀s0 ≤ s ≤ S , ∀τ0, τ ∈ [0, 1] . (2.73)

Furthermore, let s0 < s1 < S, n1, n2 ∈ R, λ0 ∈ N, λ ≤ λ0 with n1 + n2 = −λ − 1, m ∈ S+. If β1 and β2

satisfy ‖βi‖s1+σ(n1,n2) ≤ δ for some σ(n1, n2) > 0, and δ ∈ (0, 1) small enough, then

‖〈D〉n1∂λ
ϕm

∆12Φ(τ0, τ, ϕ)〈D〉n2‖B(Hs1 ) .s1,λ0,n1,n2 ‖∆12β‖s1+σ(n1,n2) , τ0, τ ∈ [0, 1] , (2.74)

where ∆12β := β2 − β1 and ∆12Φ(τ0, τ, ϕ) := Φ(τ0, τ, ϕ;β2)− Φ(τ0, τ, ϕ;β1).

Proof. The proof of (2.72) is similar to the one of Propositions A.7, A.10 and A.11 in [10]. In comparison
to the latter results the main difference is that the vector field (2.69) is of order 1, whereas the vector field
considered in [10] is of order 1

2 . Using (2.72) we now prove (2.73). By (2.68), one has that

Φ(τ0, τ, ϕ)− Id =

∫ τ

τ0

B(t, ϕ)Φ(τ0, t, ϕ) dt .

Then, for any λ ∈ N with λ ≤ λ0 and any n1, n2 ∈ R with n1 + n2 = −λ− 2, one has by Leibniz’ rule

〈D〉n1∂λ
ϕm

(Φ(τ0, τ, ϕ)− Id)〈D〉n2

=
∑

λ1+λ2=λ

cλ1,λ2

∫ τ

τ0

(
〈D〉n1∂λ1

ϕm
B(t, ϕ)〈D〉n2+λ2+1

)(
〈D〉−n2−λ2−1∂λ2

ϕm
Φ(τ0, t, ϕ)〈D〉n2

)
dt

=
∑

λ1+λ2=λ

cλ1,λ2

∫ τ

τ0

(
〈D〉n1∂λ1

ϕm
B(t, ϕ)〈D〉−1−n1−λ1

)(
〈D〉−n2−λ2−1∂λ2

ϕm
Φ(τ0, t, ϕ)〈D〉n2

)
dt

where cλ1,λ2 are combinatorial constants and we used that n2 + λ2 + 1 = −1 − n1 − λ1. Recalling the
definition (2.69) of B, using Lemmata 2.9, 2.16, 2.27-(i), and (2.72), one has that for any s ≥ s0,

M
〈D〉n1∂

λ1
ϕmB〈D〉−1−n1−λ1

(s) .s |〈D〉n1B〈D〉−1−n1−λ1 |
Lip(γ)
0,s+λ1,0

.s,λ1,n1 ‖β‖
Lip(γ)
s+σ(λ1,n1)

,

M
〈D〉−1−n2−λ2∂

λ2
ϕmΦ(τ0,t,ϕ)〈D〉n2

(s) .s,λ2,n1,n2 1 + ‖β‖
Lip(γ)
s+σ(λ2,n1,n2)

.
(2.75)

Then (2.73) follows by (2.75), Lemma 2.14 and (2.71). The estimate (2.74) follows by similar arguments.
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For what follows we need to study the solutions of the characteristic ODE ∂τx = −b(τ, ϕ, x) associated
to the transport operator defined in (2.69).

Lemma 2.26. (Characteristic flow) The characteristic flow γτ0,τ (ϕ, x) defined by

∂τγ
τ0,τ (ϕ, x) = −b

(
τ, ϕ, γτ0,τ (ϕ, x)

)
, γτ0,τ0(ϕ, x) = x , (2.76)

is given by
γτ0,τ (ϕ, x) = x+ τ0β(ϕ, x) + β̆(τ, ϕ, x+ τ0β(ϕ, x)) , (2.77)

where y 7→ y + β̆(τ, ϕ, y) is the inverse diffeomorphism of x 7→ x+ τβ(ϕ, x).

Proof. A direct computation proves that γ0,τ (y) = y + β̆(τ, ϕ, y) and therefore γτ,0(x) = x + τβ(ϕ, x). By
the composition rule of the flow γτ0,τ = γ0,τ ◦ γτ0,0 we deduce (2.77).

Lemma 2.27. There are σ, δ > 0 such that, if ‖β‖
Lip(γ)
s0+σ ≤ δ, then

(i) ‖b‖
Lip(γ)
s .s ‖β‖

Lip(γ)
s+σ for any s ≥ s0.

(ii) For any τ0, τ ∈ [0, 1], s ≥ s0, we have ‖γτ0,τ (ϕ, x)− x‖
Lip(γ)
s .s ‖β‖

Lip(γ)
s+σ .

(iii) Let s1 > s0 and assume that ‖βj‖s1+σ ≤ δ, j = 1, 2. Then ∆12b := b(·;β2) − b(·;β1) and ∆12γ
τ0,τ :=

γτ0,τ (·;β2)− γτ0,τ (·;β1) can be estimated in terms of ∆12β := β2 − β1 as

‖∆12b‖s1 .s1 ‖∆12β‖s1+σ , ‖∆12γ
τ0,τ‖s1 .s1 ‖∆12β‖s1+σ .

Proof. Item (i) follows by the definition of b in (2.69) and Lemma 2.2. Item (ii) follows by (2.77) and Lemma
2.1. Item (iii) follows by similar arguments.

Now we prove the following Egorov type theorem, saying that the operator, obtained by conjugating
a(ϕ, x)∂m

x , m ∈ Z, with the time one flow Φ(ϕ) = Φ(0, 1, ϕ) of the transport equation (2.68), remains a
pseudo-differential operator with a homogenous asymptotic expansion.

Proposition 2.28. (Egorov) Let N, λ0 ∈ N, S > s0 and assume that β(·;ω), a(·;ω) are in C∞(TS+×T1) and
Lipschitz continuous with respect to ω ∈ Ω. Then there exist constants σN (λ0), σN > 0, δ(S,N, λ0) ∈ (0, 1),
and C0 > 0 such that, if

‖β‖
Lip(γ)
s0+σN (λ0)

≤ δ , ‖a‖
Lip(γ)
s0+σN (λ0)

≤ C0 , (2.78)

then the conjugated operator

P(ϕ) := Φ(ϕ)P0(ϕ)Φ(ϕ)
−1 , P0 := a(ϕ, x;ω)∂m

x , m ∈ Z ,

is a pseudo-differential operator of order m with an expansion of the form

P(ϕ) =

N∑

i=0

pm−i(ϕ, x;ω)∂
m−i
x +RN (ϕ) (2.79)

with the following properties:

1. The principal symbol pm of P is given by

pm(ϕ, x;ω) =
(
[1 + β̆y(ϕ, y;ω)]

ma(ϕ, y;ω)
)
|y=x+β(ϕ,x;ω) (2.80)

where y 7→ y + β̆(ϕ, y;ω) denotes the inverse diffeomorphism of x 7→ x+ β(ϕ, x;ω).

2. For any s ≥ s0 and i = 1, . . . , N ,

‖pm − a‖Lip(γ)s , ‖pm−i‖
Lip(γ)
s .s,N ‖β‖

Lip(γ)
s+σN

+ ‖a‖
Lip(γ)
s+σN

‖β‖
Lip(γ)
s0+σN

. (2.81)
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3. For any λ ∈ N with λ ≤ λ0, n1, n2 ∈ N with n1 +n2 +λ0 ≤ N − 1−m, k ∈ S+, the pseudo-differential
operator 〈D〉n1∂λ

ϕk
RN (ϕ)〈D〉n2 is Lip(γ)-tame with a tame constant satisfying, for any s0 ≤ s ≤ S,

M〈D〉n1∂λ
ϕk

RN (ϕ)〈D〉n2 (s) .S,N,λ0 ‖β‖
Lip(γ)
s+σN (λ0)

+ ‖a‖
Lip(γ)
s+σN (λ0)

‖β‖
Lip(γ)
s0+σN (λ0)

. (2.82)

4. Let s0 < s1 and assume that ‖βj‖s1+σN (λ0) ≤ δ, ‖aj‖s1+σN (λ0) ≤ C0, j = 1, 2. Then

‖∆12pm−i‖s1 .s1,N ‖∆12a‖s1+σN
+ ‖∆12β‖s1+σN

, i = 0, . . . , N ,

and, for any λ ≤ λ0, n1, n2 ∈ N with n1 + n2 + λ0 ≤ N − 1−m, and k ∈ S+,

‖〈D〉n1∂λ
ϕk

∆12RN (ϕ)〈D〉n2‖B(Hs1 ) .s1,N,n1,n2 ‖∆12a‖s1+σN (λ0) + ‖∆12β‖s1+σN (λ0)

where we refer to Lemma 2.25 for the meaning of ∆12.

Proof. The orthogonal projector Π⊥ is a Fourier multiplier of order 0, Π⊥ = Op(χ⊥(ξ)), where χ⊥ is a
C∞(R,R) cut-off function which is equal to 1 on a neighborhood of S⊥ and vanishes in a neighborhood of
S ∪ {0}. Then we decompose the operator B(τ, ϕ) = Π⊥(b(τ, ϕ, x)∂x + bx(τ, ϕ, x)) as

B(τ, ϕ) = B1(τ, ϕ) +B∞(τ, ϕ) ,

B1(τ, ϕ) := b(τ, ϕ, x)∂x + bx(τ, ϕ, x) , B∞(τ, ϕ) := Op(b∞(τ, ϕ, x, ξ)) ∈ OPS−∞
(2.83)

where for some σ > 0, B∞ satisfies, for any s,m ≥ 0 and α ∈ N, the estimate

|B∞|
Lip(γ)
−m,s,α .m,s,α ‖β‖

Lip(γ)
s+σ . (2.84)

The conjugated operator P(τ, ϕ) := Φ(τ, ϕ)P0(ϕ)Φ(τ, ϕ)
−1 solves the Heisenberg equation

∂τP(τ, ϕ) = [B(τ, ϕ),P(τ, ϕ)] , P(0, ϕ) = P0(ϕ) = a(ϕ, x;ω)∂m
x . (2.85)

We look for an approximate solution of (2.85) of the form

PN (τ, ϕ) :=

N∑

i=0

pm−i(τ, ϕ, x)∂
m−i
x (2.86)

for suitable functions pm−i(τ, ϕ, x) to be determined. By (2.83)

[B(τ, ϕ),PN (τ, ϕ)] = [B1(τ, ϕ),PN (τ, ϕ)] + [B∞(τ, ϕ),PN (τ, ϕ)] (2.87)

where [B∞(τ, ϕ),PN (τ, ϕ)] is in OPS−∞, and

[B1(τ, ϕ),PN (τ, ϕ)] =
N∑

i=0

[
b∂x + bx , pm−i∂

m−i
x

]
.

By Lemma 2.11, one has for any i = 0, . . . , N ,

[
b∂x + bx, pm−i∂

m−i
x

]
=

(
b(pm−i)x − (m− i)bxpm−i

)
∂m−i
x +

N−i∑

j=1

gj(b, pm−i)∂
m−i−j
x +RN (b, pm−i)

where the functions gj(b, pm−i) := gj(b, pm−i)(τ, ϕ, x), j = 0, . . . , N − i, and the remainders RN (b, pm−i)
can be estimated as follows: there exists σN := σN (m) > 0 so that for any s ≥ s0, (cf. Lemma 2.27-(i))

‖gj(b, pm−i)‖
Lip(γ)
s .m,N,s ‖β‖

Lip(γ)
s+σN

‖pm−i‖
Lip(γ)
s0+σN

+ ‖β‖
Lip(γ)
s0+σN

‖pm−i‖
Lip(γ)
s+σN

, (2.88)

and for any s ≥ s0 and α ∈ N (cf. Lemma 2.11-(ii))

|RN (b, pm−i)|
Lip(γ)
m−N−1,s,α .m,N,s,α ‖β‖

Lip(γ)
s+σN

‖pm−i‖
Lip(γ)
s0+σN

+ ‖β‖
Lip(γ)
s0+σN

‖pm−i‖
Lip(γ)
s+σN

. (2.89)
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Adding up the expansions for
[
b∂x + bx, pm−i∂

m−i
x

]
, 0 ≤ i ≤ N , yields

[
B1(τ, ϕ),PN (τ, ϕ)

]
=

N∑

i=0

(
b(pm−i)x − (m− i)bxpm−i

)
∂m−i
x +

N∑

i=0

N−i∑

j=1

gj(b, pm−i)∂
m−i−j
x +

N∑

i=0

RN (b, pm−i)

=
N∑

i=0

(
b(pm−i)x − (m− i)bxpm−i

)
∂m−i
x +

N∑

k=1

k∑

j=1

gj(b, pm−k+j)∂
m−k
x +

N∑

i=0

RN (b, pm−i)

=
(
b(pm)x −mbxpm

)
∂m
x +

N∑

i=1

(
b(pm−i)x − (m− i)bxpm−i + g̃i

)
∂m−i
x +QN (2.90)

where, for any i = 1, . . . , N , g̃i :=
∑i

j=1 gj(b, pm−i+j) and QN :=
∑N

i=0 RN (b, pm−i) ∈ OPSm−N−1. Defin-
ing for any s ≥ 0,

M<i(s) := max{‖pm−k‖
Lip(γ)
s , k = 0, . . . , i− 1} , M(s) := max{‖pm−i‖

Lip(γ)
s , i = 0, . . . , N} , (2.91)

we deduce from (2.88) and (2.89) that for any s ≥ s0, α ∈ N, i = 0, . . . , N ,

‖g̃i‖
Lip(γ)
s .s,N M<i(s+ σN )‖β‖

Lip(γ)
s0+σN

+ M<i(s0 + σN )‖β‖
Lip(γ)
s+σN

|QN |
Lip(γ)
m−N−1,s,α .s,N M(s+ σN )‖β‖

Lip(γ)
s0+σN

+ M(s0 + σN )‖β‖
Lip(γ)
s+σN

.
(2.92)

By (2.86), (2.87), and (2.90) the operator PN (τ, ϕ) solves the approximated Heisenberg equation

∂τPN(τ, ϕ) = [B(τ, ϕ),PN (τ, ϕ)] +OPSm−N−1 ,

if the functions pm−i solve the transport equations

∂τpm = b(pm)x −mbxpm ,

∂τpm−i = b(pm−i)x − (m− i)bxpm−i + g̃i , i = 1, . . . , N .
(2.93)

Note that, since g̃i only depends on pm−i+1, . . . , pm, we can solve (2.93) inductively.

Determination of pm. We solve the first equation in (2.93),

∂τpm(τ, ϕ, x) = b(τ, ϕ, x)∂xpm(τ, ϕ, x) −mbx(τ, ϕ, x)pm(τ, ϕ, x) , pm(0, ϕ, x) = a(ϕ, x) .

By the method of characteristics we deduce that

pm(τ, ϕ, γ0,τ (ϕ, x)) = exp
(
−m

∫ τ

0

bx(t, ϕ, γ
0,t(ϕ, x)) dt

)
a(ϕ, x) (2.94)

where γ0,τ (ϕ, x) is given by (2.77). Differentiating the equation (2.76) with respect to the initial datum x,
we get

∂τ (∂xγ
τ0,τ (x)) = −bx(τ, ϕ, γ

τ0,τ (x))∂xγ
τ0,τ (x) , ∂xγ

τ0,τ0(x) = 1 ,

implying that

∂xγ
τ0,τ (ϕ, x) = exp

(
−

∫ τ

τ0

bx(t, ϕ, γ
τ0,t(ϕ, x)) dt

)
. (2.95)

From (2.94) and (2.95) we infer that

pm(τ, ϕ, y) =
(
[∂xγ

0,τ (ϕ, x)]ma(ϕ, x)
)
|x=γτ,0(ϕ,y) . (2.96)

Evaluating the latter identity at τ = 1 and using (2.77), we obtain (2.80).

Inductive determination of pm−i. For i = 1, . . . , N , we solve the inhomogeneous transport equation,

∂τpm−i = b∂xpm−i − (m− i)bxpm−i + g̃i , pm−i(0, ϕ, x) = 0 .
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By the method of characteristics one has

pm−i(τ, ϕ, y) =

∫ τ

0

exp
(
− (m− i)

∫ τ

t

bx(s, ϕ, γ
τ,s(ϕ, y)) ds

)
g̃i(t, ϕ, γ

τ,t(ϕ, y)) dt . (2.97)

The functions pm−i(ϕ, y) in the expansion (2.79) are then given by pm−i(ϕ, y) := pm−i(1, ϕ, y).

Lemma 2.29. There are σ
(N)
N > σ

(N−1)
N > . . . > σ

(0)
N > 0 such that, for any i ∈ {1, . . . , N}, τ ∈ [0, 1],

s ≥ s0,

‖pm(τ, ·)− a‖Lip(γ)s .s ‖β‖
Lip(γ)

s+σ
(0)
N

+ ‖a‖
Lip(γ)

s+σ
(0)
N

‖β‖
Lip(γ)

s0+σ
(0)
N

,

‖pm−i(τ, ·)‖
Lip(γ)
s .s ‖β‖

Lip(γ)

s+σ
(i)
N

+ ‖a‖
Lip(γ)

s+σ
(i)
N

‖β‖
s0+σ

(i)
N

.
(2.98)

Proof. We argue by induction. First we prove the claimed estimate for pm−a with pm given by (2.96). Recall

that γ0,τ (ϕ, x) = x+ β̆(τ, ϕ, x) and γτ,0(ϕ, y) = y+ τβ(ϕ, y) (cf. (2.77)). Since a(ϕ, y+ τβ(ϕ, y))−a(ϕ, y) =∫ τ

0
ax(ϕ, y+tβ(ϕ, y))β(ϕ, y)dt, the claimed estimate for pm then follows by Lemmata 2.1, 2.27 and assumption

(2.78). Now assume that for any k ∈ {1, . . . , i− 1}, 1 ≤ i ≤ N , the function pm−k, given by (2.97), satisfies
the estimates (2.98). The ones for pm−i then follow by Lemmata 2.1, 2.2, 2.27, (2.92), (2.91), and (2.78).

Lemma 2.29 proves (2.81). Furthermore, in view of the definition (2.86) of PN (τ, ϕ), it follows from
(2.98), Lemma 2.9, (2.22) and (2.21) that for any s ≥ s0, α ∈ N,

|PN (τ, ϕ)|Lip(γ)m,s,α .m,s,N,α ‖a‖Lip(γ)s + ‖β‖
Lip(γ)

s+σ
(N)
N

+ ‖a‖
Lip(γ)

s+σ
(N)
N

‖β‖
Lip(γ)

s0+σ
(N)
N

. (2.99)

By (2.87), (2.90), and (2.93) we deduce that PN (τ, ϕ) solves

∂τPN (τ, ϕ) = [B(τ, ϕ),PN (τ, ϕ)]−Q
(1)
N (τ, ϕ) , PN (0, ϕ) = a∂m

x ,

Q
(1)
N (τ, ϕ) := QN (τ, ϕ) + [B∞(τ, ϕ),PN (τ, ϕ)] ∈ OPSm−N−1 .

(2.100)

We now estimate the difference between PN(τ) and P(τ).

Lemma 2.30. The operator RN (τ, ϕ) := P(τ, ϕ)− PN(τ, ϕ) is given by

RN (τ, ϕ) =

∫ τ

0

Φ(η, τ, ϕ)Q
(1)
N (η, ϕ)Φ(τ, η, ϕ) dη . (2.101)

Proof. One writes

PN (τ, ϕ)− P(τ, ϕ) = VN (τ, ϕ)Φ(τ, ϕ)−1 , VN (τ, ϕ) := PN (τ, ϕ)Φ(τ, ϕ) − Φ(τ, ϕ)P0(ϕ) , (2.102)

and a direct calculation shows that VN (τ) solves

∂τVN(τ, ϕ) = B(τ, ϕ)VN (τ, ϕ)−Q
(1)
N (τ, ϕ)Φ(τ, ϕ) , VN (0, ϕ) = 0 .

Hence, by variation of the constants, VN (τ, ϕ) = −
∫ τ

0 Φ(τ, ϕ)Φ(η, ϕ)−1Q
(1)
N (η, ϕ)Φ(η, ϕ) dη and, by (2.102)

and (2.70), we deduce (2.101).

Next we prove the estimate (2.82) of Proposition 2.28 of RN (τ, ϕ), given by (2.101). First we estimate

Q
(1)
N ∈ OPSm−N−1, defined in (2.100). The estimate of QN , obtained from (2.92), (2.91), (2.98) , and the

one of [B∞(τ, ϕ),PN (τ, ϕ)], obtained from (2.84), (2.99), Lemma 2.10, yield that there exists a constant
ℵN > 0 so that for any s ≥ s0, α ∈ N,

|Q
(1)
N (η, ϕ)|

Lip(γ)
m−N−1,s,α .m,s,α,N ‖β‖

Lip(γ)
s+ℵN

+ ‖a‖
Lip(γ)
s+ℵN

‖β‖
Lip(γ)
s0+ℵN

. (2.103)
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Let λ0, n1, n2 ∈ N with λ ≤ λ0 and n1 + n2 + λ0 + m ≤ N − 1, k ∈ S+. In view of the definition
(2.101) of RN (τ, ϕ), the claimed estimate of 〈D〉n1∂λ

ϕk
RN (τ, ϕ)〈D〉n2 will follow from corresponding ones of

〈D〉n1∂λ1
ϕk

Φ(η, τ, ϕ)∂λ2
ϕk

Q
(1)
N (η, ϕ)∂λ3

ϕk
Φ(τ, η, ϕ)〈D〉n2 (τ, η ∈ [0, 1] and λ1 + λ2 + λ3 = λ) which we write as

(
〈D〉n1∂λ1

ϕk
Φ(η, τ, ϕ)〈D〉−n1−λ1−1

)(
〈D〉n1+λ1+1∂λ2

ϕk
Q

(1)
N (η, ϕ)〈D〉n2+λ3+1

)(
〈D〉−n2−λ3−1∂λ3

ϕk
Φ(τ, η, ϕ)〈D〉n2

)
.

Then, we use Lemma 2.25 to estimate the tame constants of the operators 〈D〉n1∂λ1
ϕk

Φ(η, τ, ϕ)〈D〉−n1−λ1−1,

〈D〉−n2−λ3−1∂λ3
ϕk

Φ(τ, η, ϕ)〈D〉n2 , the estimates (2.103), (2.21) and Lemmata 2.9, 2.16 to estimate the tame

constant of 〈D〉n1+λ1+1∂λ2
ϕk

Q
(1)
N (η, ϕ)〈D〉n2+λ3+1 and Lemma 2.14 together with the assumption (2.78), to

estimate the tame constant of the composition. The bound (2.82) is finally proved.
Item 4 of Proposition 2.28 can be shown by similar arguments. This completes the proof of the latter.

In the sequel we also need to study the operator obtained by conjugating ω · ∂ϕ with the time one flow
Φ(ϕ) = Φ(0, 1, ϕ) of the transport equation (2.68). Here we analyze the operator Φ(ϕ) ◦ ω · ∂ϕ(Φ(ϕ)−1),
which turns out to be a pseudo-differential operator of order one with an expansion in decreasing symbols.

Proposition 2.31. (Conjugation of ω ·∂ϕ) Let N, λ0 ∈ N, S > s0 and assume that β(·;ω) is in C∞(TS+ ×
T1) and Lipschitz continuous with respect to ω ∈ Ω. Then there exist constants σN (λ0), σN > 0, δ(S,N, λ0) ∈
(0, 1), C0 > 0 so that, if

‖β‖
Lip(γ)
s0+σN (λ0)

≤ δ , (2.104)

then P(ϕ) := Φ(ϕ)◦ω ·∂ϕ(Φ(ϕ)−1) is a pseudo-differential operator of order 1 with an expansion of the form

P(ϕ) =
N∑

i=0

p1−i(ϕ, x;ω)∂
1−i
x +RN (ϕ)

with the following properties:

1. For any i = 0, . . . , N and s ≥ s0, ‖p1−i‖
Lip(γ)
s .s,N ‖β‖

Lip(γ)
s+σN

.

2. For any λ ∈ N with λ ≤ λ0, for any n1, n2 ∈ N with n1 + n2 + λ0 ≤ N − 2, and for any k ∈ S+, the
pseudo-differential operator 〈D〉n1∂λ

ϕk
RN (ϕ)〈D〉n2 is Lip(γ)-tame with a tame constant satisfying, for

any s0 ≤ s ≤ S,

M〈D〉n1∂λ
ϕk

RN (ϕ)〈D〉n2 (s) .S,N,λ0 ‖β‖
Lip(γ)
s+σN (λ0)

.

3. Let s0 < s1 < S and assume that ‖βi‖s1+σN (λ0) ≤ δ, i = 1, 2. Then

‖∆12p1−i‖s1 .s1,N ‖∆12β‖s1+σN
, i = 0, . . . , N ,

and, for any λ ≤ λ0, n1, n2 ∈ N with n1 + n2 + λ0 ≤ N − 2, and k ∈ S+

‖〈D〉n1∂λ
ϕk

∆12RN (ϕ)〈D〉n2‖B(Hs1) .s1,N,n1,n2 ‖∆12β‖s1+σN (λ0)

where we refer to Lemma 2.25 for the meaning of ∆12.

Proof. The operator Ψ(τ, ϕ) := Φ(τ, ϕ) ◦ ω · ∂ϕ(Φ(τ, ϕ)
−1) solves the inhomogeneous Heisenberg equation

∂τΨ(τ, ϕ) = [B(τ, ϕ),Ψ(τ, ϕ))] − ω · ∂ϕ(B(τ, ϕ)) , Ψ(0, ϕ) = 0 .

The latter equation can be solved in a similar way as (2.85) by looking for approximate solutions of the
form of a pseudo-differential operator of order 1, admitting an expansion in homogeneous components (cf.
(2.86)). The proof then proceeds in the same way as the one for Proposition 2.28 and hence is omitted.

We finish this section by the following application of Proposition 2.28 to Fourier multipliers.
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Lemma 2.32. Let N, λ0 ∈ N, S > s0 and assume that Q is a Lipschitz family of Fourier multipliers with
an expansion of the form

Q =

N∑

n=0

cm−n(ω)∂
m−n
x +QN (ω) , QN (ω) ∈ B(Hs, Hs+N+1−m), ∀s ≥ 0 . (2.105)

Then there exist σN (λ0), σN > 0, and δ(S,N, λ0) ∈ (0, 1) so that, if

‖β‖
Lip(γ)
s0+σN (λ0)

≤ δ(S,N, λ0) , (2.106)

then Φ(ϕ)QΦ(ϕ)−1 is an operator of the form Q+QΦ(ϕ) +RN (ϕ) with the following properties:

1. QΦ(ϕ) =
∑N

n=0 αm−n(ϕ, x;ω)∂
m−n
x where for any s ≥ s0,

‖αm−n‖
Lip(γ)
s .s,N ‖β‖

Lip(γ)
s+σN

, n = 0, . . . , N . (2.107)

2. For any λ ∈ N with λ ≤ λ0, n1, n2 ∈ N with n1 + n2 + λ0 ≤ N − m − 2, and k ∈ S+, the operator
〈D〉n1∂λ

ϕk
RN 〈D〉n2 is Lip(γ)-tame with a tame constant satisfying

M〈D〉n1∂λ
ϕk

RN 〈D〉n2 (s) .S,N,λ0 ‖β‖
Lip(γ)
s+σN (λ0)

, ∀s0 ≤ s ≤ S . (2.108)

3. Let s0 < s1 < S and assume that ‖βi‖s1+σN (λ0) ≤ δ, i = 1, 2. Then

‖∆12αm−n‖s1 .s1,N ‖∆12β‖s1+σN
, n = 0, . . . , N ,

and, for any λ ≤ λ0, n1, n2 ∈ N with n1 + n2 + λ0 ≤ N −m− 2, and k ∈ S+,

‖〈D〉n1∂λ
ϕk

∆12RN (ϕ)〈D〉n2‖B(Hs1) .s1,N,n1,n2 ‖∆12β‖s1+σN (λ0)

where we refer to Lemma 2.25 for the meaning of ∆12.

Proof. Applying Proposition 2.28 to Φ(ϕ)∂m−n
x Φ(ϕ)−1 for n = 0, . . . , N , we get

Φ(ϕ)
( N∑

n=0

cm−n(ω)∂
m−n
x

)
Φ(ϕ)−1 =

N∑

n=0

cm−n(ω)∂
m−n
x +QΦ(ϕ) +R

(1)
N (ϕ)

whereQΦ(ϕ) =
∑N

n=0 αm−n(ϕ, x;ω)∂
m−n
x with αm−n satisfying (2.107) and the remainderR

(1)
N (ϕ) satisfying

(2.108). Next we write Φ(ϕ)QNΦ(ϕ)−1 = QN +R
(2)
N (ϕ) where

R
(2)
N (ϕ) :=

(
Φ(ϕ) − Id

)
QNΦ(ϕ)−1 +QN

(
Φ(ϕ)−1 − Id

)
.

We then argue as in the proof of the estimate of the remainder RN (τ, ϕ) in Proposition 2.28. Using Lemma

2.25 and the assumption that QN is a Fourier multiplier in B(Hs, Hs+N+1−m) we get that R
(2)
N (ϕ) satisfies

(2.108), and RN (ϕ) = R
(1)
N (ϕ) +R

(2)
N (ϕ) satisfies (2.108) as well. Item 3 follows by similar arguments.

3 Integrable features of KdV

According to [20], the KdV equation (1.1) on the torus is an integrable PDE in the strongest possible sense,
meaning that it admits global analytic Birkhoff coordinates. We endow the sequence spaces hs with the
standard Poisson bracket defined by {zn, zk} = i2πn δk,−n for any n, k ∈ Z.
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Theorem 3.1. (Birkhoff coordinates, [20]) There exists a real analytic diffeomorphism Ψkdv : h0
0 → H0

0 (T1)
so that the following holds:
(i) for any s ∈ Z≥0, Ψ

kdv(hs
0) ⊆ Hs

0(T1) and Ψkdv : hs
0 → Hs

0(T1) is a real analytic symplectic diffeomor-
phism.
(ii) Hkdv ◦ Ψkdv : h1

0 → R is a real analytic function of the actions Ik := 1
2πk zkz−k, k ≥ 1. The KdV

Hamiltonian, viewed as a function of the actions (Ik)k≥1, is denoted by Hkdv
o .

(iii) Ψkdv(0) = 0 and the differential d0Ψ
kdv of Ψkdv at 0 is the inverse Fourier transform F−1.

By Theorem 3.1, the KdV equation, expressed in the Birkhoff coordinates (zn)n6=0, reads

∂tzn = iωkdv
n ((Ik)k≥1)zn , ∀n ∈ Z \ {0} , ωkdv

±m((Ik)k≥1) := ±∂ImHkdv
o ((Ik)k≥1) , ∀m ≥ 1 ,

and its solutions are given by z(t) := (zn)n6=0 where

zn(t) = zn(0)exp
(
iωkdv

n ((I
(0)
k )k≥1) t

)
, ∀n ∈ Z \ {0} , I

(0)
k :=

1

2πk
zk(0)z−k(0) , ∀k ≥ 1 .

Let us consider a finite set S+ ⊂ N+ := {1, 2, . . .} and define

S := S+ ∪ (−S+) , S
⊥
+ := N+ \ S+ , S

⊥ := S
⊥
+ ∪ (−S

⊥
+) ⊂ Z \ {0} .

In Birkhoff coordinates, a S+−gap solution of the KdV equation, also referred to as S−gap solution, is a
solution of the form

zn(t) = exp
(
iωkdv

n (ν, 0)t
)
zn(0) , zn(0) 6= 0 , ∀n ∈ S , zn(t) = 0 , ∀n ∈ S

⊥ , (3.1)

where ν := (I
(0)
k )k∈S+ ∈ R

S+

>0 and, by a slight abuse of notation, we write

ωkdv
n (I, (Ik)k∈S⊥+

) := ωkdv
n ((Ik)k≥1) , I := (Ik)k∈S+ ∈ R

S+

>0 . (3.2)

Such solutions are quasi-periodic in time with frequency vector (cf. (1.10)) ωkdv(ν) =
(
ωkdv
n (ν, 0)

)
n∈S+

∈

RS+ , parametrized by ν ∈ R
S+

>0. The map ν 7→ ωkdv(ν) is a local analytic diffeomorphism, see Remark 3.10.
When written in action-angle coordinates (cf. (1.9)),

θ := (θn)n∈S+ ∈ T
S+ , I = (In)n∈S+ ∈ R

S+

>0 , zn =
√
2πnIne

−iθn , n ∈ S+ ,

instead of the complex Birkhoff coordinates zn, the S−gap solution (3.1) reads

θ(t) = θ(0) − ωkdv(ν)t , I(t) = ν , zn(t) = 0 , ∀n ∈ S
⊥ .

3.1 Normal form coordinates for the KdV equation

In this section we rephrase Theorem 1.1 in [19] adapted to our purposes and prove some corollaries.

We consider an open bounded set Ξ ⊂ R
S+

>0 so that (1.11) holds for some δ > 0. Recall that Vs(δ) ⊂ Es,
V(δ) = V0(δ) are defined in (1.20) and that we denote by x = (θ, y, w) its elements. The space V(δ) ∩ Es is
endowed with the symplectic form

W :=
(∑

j∈S+

dyj ∧ dθj

)
⊕W⊥ (3.3)

where W⊥ is the restriction to L2
⊥(T1) of the symplectic form WL2

0
defined in (1.8). The Poisson structure

J corresponding to W , defined by the identity {F,G} = W(XF , XG) =
〈
∇F , J∇G

〉
, is the unbounded

operator
J : Es → Es , (θ̂, ŷ, ŵ) 7→ (−ŷ, θ̂, ∂xŵ) (3.4)

where 〈 , 〉 is the inner product (1.19).
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Theorem 3.2. (Normal KdV coordinates with pseudo-differential expansion, [19]). Let S+ ⊆ N

be finite, Ξ an open bounded subset of R
S+

>0 so that (1.11) holds, for some δ > 0. Then, for δ > 0 sufficiently
small, there exists a canonical C∞ family of diffeomorphisms Ψν : V(δ) → Ψν(V(δ)) ⊆ L2

0(T1) , (θ, y, w) 7→ q,
ν ∈ Ξ, with the property that Ψν satisfies

Ψν(θ, y, 0) = Ψkdv(θ, ν + y, 0) , ∀(θ, y, 0) ∈ V(δ) , ∀ν ∈ Ξ ,

and is compatible with the scale of Sobolev spaces Hs
0(T1), s ∈ N, in the sense that Ψν

(
V(δ) ∩ Es

)
⊆ Hs

0(T1)
and Ψν : V(δ) ∩ Es → Hs

0 (T1) is a C∞−diffeomorphism onto its image, so that the following holds:

(AE1) For any integer M ≥ 1, ν ∈ Ξ, x = (θ, y, w) ∈ V(δ), Ψν(x) admits an asymptotic expansion of the
form

Ψν(θ, y, w) = Ψkdv(θ, ν + y, 0) + w +
M∑

k=1

aΨ−k(x; ν) ∂
−k
x w +RΨ

M (x; ν) (3.5)

where RΨ
M (θ, y, 0; ν) = 0 and, for any s ∈ N and 1 ≤ k ≤ M , the functions

V(δ)× Ξ → Hs(T1), (x, ν) 7→ aΨ−k(x; ν) , (V(δ) ∩ Es)× Ξ → Hs+M+1(T1), (x, ν) 7→ RΨ
M (x; ν) ,

are C∞.

(AE2) For any x ∈ V1(δ), ν ∈ Ξ, the transpose dΨν(x)
⊤ of the differential dΨν(x) : E1 → H1

0 (T1) is
a bounded linear operator dΨν(x)

⊤ : H1
0 (T1) → E1, and, for any q̂ ∈ H1

0 (T1) and integer M ≥ 1,
dΨν(x)

⊤[q̂] admits an expansion of the form

dΨν(x)
⊤[q̂] =

(
0, 0,Π⊥q̂+Π⊥

M∑

k=1

adΨ
⊤

−k (x; ν)∂−k
x q̂ +Π⊥

M∑

k=1

(∂−k
x w)AdΨ⊤

−k (x; ν)[q̂]
)
+RdΨ⊤

M (x; ν)[q̂] (3.6)

where, for any s ≥ 1 and 1 ≤ k ≤ M ,

V1(δ)× Ξ → Hs(T1) , (x, ν) 7→ adΨ
⊤

−k (x; ν) ,

V1(δ)× Ξ → B(H1
0 (T1), H

s(T1)) , (x, ν) 7→ AdΨ⊤

−k (x; ν) ,

(V1(δ) ∩ Es)× Ξ → B(Hs
0(T1), Es+M+1) , (x, ν) 7→ RdΨ⊤

M (x; ν) ,

are C∞. Furthermore,

adΨ
⊤

−1 (x; ν) = −aΨ−1(x; ν) . (3.7)

(AE3) For any ν ∈ Ξ, the Hamiltonian Hkdv(· ; ν) := Hkdv ◦Ψν : V1(δ) → R is in normal form up to order
three, meaning that

Hkdv(θ, y, w; ν) = ωkdv(ν) · y +
1

2

(
Ωkdv(D; ν)w,w

)
L2

x

+
1

2
Ωkdv

S+
(ν)[y] · y +Rkdv(θ, y, w; ν) (3.8)

where ωkdv(ν) = (ωkdv
n (ν))n∈S+ ,

Ωkdv(D; ν)w :=
∑

n∈S⊥

Ωkdv
n (ν)wne

i2πnx , Ωkdv
S+

(ν) := (∂Ijω
kdv
k (ν))j,k∈S+ ,

Ωkdv
n (ν) :=

1

2πn
ωkdv
n (ν, 0) , ∀n ∈ S

⊥, w =
∑

n∈S⊥

wne
i2πnx

(3.9)

and Rkdv : V1(δ)× Ξ → R is a C∞ map satisfying

Rkdv(θ, y, w; ν) = O
(
(‖y‖+ ‖w‖H1

x
)3
)
, (3.10)

and has the property that, for any s ≥ 1, its L2−gradient

(V1(δ) ∩ Es)× Ξ → Es, (x, ν) 7→ ∇Rkdv(x; ν) =
(
∇θR

kdv(x; ν),∇yR
kdv(x; ν),∇wR

kdv(x; ν)
)

is a C∞ map as well. As a consequence

∇Rkdv(θ, 0, 0; ν) = 0 , d⊥∇Rkdv(θ, 0, 0; ν) = 0 , ∂y∇Rkdv(θ, 0, 0; ν) = 0 . (3.11)
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(Est1) For any ν ∈ Ξ, α ∈ NS+ , x ∈ V(δ), 1 ≤ k ≤ M , x̂1, . . . , x̂l ∈ E0, s ∈ N,

‖∂α
ν a

Ψ
−k(x; ν)‖Hs

x
.s,k,α 1 , ‖dl∂α

ν a
Ψ
−k(x; ν)[̂x1, . . . , x̂l]‖Hs

x
.s,k,l,α

l∏

j=1

‖̂xj‖E0 .

Similarly, for any ν ∈ Ξ, α ∈ N
S+ , x ∈ V(δ) ∩ Es, x̂1, . . . , x̂l ∈ Es, s ∈ N,

‖∂α
ν R

Ψ
M (x; ν)‖Hs+M+1

x
.s,M,α ‖w‖Hs

x
,

‖dl∂α
ν R

Ψ
M (x; ν)[̂x1, . . . , x̂l]‖Hs+M+1

x
.s,M,l,α

l∑

j=1

(
‖̂xj‖Es

∏

i6=j

‖̂xi‖E0

)
+ ‖w‖Hs

x

l∏

j=1

‖̂xj‖E0 .

(Est2) For any ν ∈ Ξ, α ∈ NS+ , x ∈ V1(δ), 1 ≤ k ≤ M , x̂1, . . . , x̂l ∈ E1, s ≥ 1,

‖∂α
ν a

dΨ⊤

−k (x; ν)‖Hs
x
.s,k,α 1 , ‖dl∂α

ν a
dΨ⊤

−k (x; ν)[̂x1, . . . , x̂l]‖Hs
x
.s,k,l,α

l∏

j=1

‖̂xj‖E1 ,

‖∂α
ν A

dΨ⊤

−k (x; ν)‖B(H1
0 ,H

s
x)

.s,k,α 1 , ‖dl∂α
ν A

dΨ⊤

−k (x; ν)[̂x1, . . . , x̂l]‖B(H1
0 ,H

s
x)

.s,k,l,α

l∏

j=1

‖̂xj‖E1 .

Similarly, for any ν ∈ Ξ, α ∈ N
S+ , x ∈ V1(δ) ∩ Es, x̂1, . . . , x̂l ∈ Es, q̂ ∈ Hs

0 , s ≥ 1,

‖∂α
ν R

dΨ⊤

M (x; ν)[q̂]‖Es+M+1 .s,M,α ‖q̂‖Hs
x
+ ‖w‖Hs

x
‖q̂‖H1

x
,

‖dl
(
∂α
ν R

dΨ⊤

M (x; ν)[q̂]
)
[̂x1, . . . , x̂l]‖Es+M+1 .s,M,l,α ‖q̂‖Hs

x

l∏

j=1

‖̂xj‖E1 + ‖q̂‖H1
x

l∑

j=1

(
‖̂xj‖Es

∏

i6=j

‖̂xi‖E1

)

+ ‖q̂‖H1
x
‖w‖Hs

x

l∏

j=1

‖̂xj‖E1 .

We now apply Theorem 3.2 to prove new results concerning the extensions of dΨν(x)
⊤ and dΨν(x) to

Sobolev spaces of negative order. We refer to the paragraph after (1.18) for the definitions of Es, Es for
negative s.

Corollary 3.3. (Extension of dΨν(x)
⊤ and its asymptotic expansion) Let M ≥ 1. There exists

σM > 0 so that for any x ∈ VσM (δ) and ν ∈ Ξ, the operator dΨν(x)
⊤ extends to a bounded linear operator

dΨν(x)
⊤ : H−M−1

0 (T1) → E−M−1 and for any q̂ ∈ H−M−1
0 (T1), dΨν(x)

⊤[q̂] admits an expansion of the form

dΨν(x)
⊤[q̂] =

(
0, 0,Π⊥q̂ +Π⊥

M∑

k=1

aext−k (x; ν; dΨ
⊤)∂−k

x q̂
)
+Rext

M (x; ν; dΨ⊤)[q̂] (3.12)

with the following properties:

(i) For any s ≥ 0, the maps

VσM (δ)× Ξ → Hs(T1) , (x, ν) 7→ aext−k (x; ν; dΨ
⊤) , 1 ≤ k ≤ M ,

are C∞. They satisfy aext−1 (x; ν; dΨ
⊤) = adΨ

⊤

−1 (x; ν) (cf. Theorem 3.2-(AE2)) and for any α ∈ NS+ , x̂1, . . . , x̂l ∈
EσM

, and (x, ν) ∈ VσM (δ)× Ξ,

‖∂α
ν a

ext
−k (x; ν; dΨ

⊤)‖Hs
x
.s,M,α 1 ,

‖∂α
ν d

laext−k (x; ν; dΨ
⊤)[̂x1, . . . , x̂l]‖Hs

x
.s,M,l,α

l∏

j=1

‖̂xj‖EσM
.

(3.13)
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(ii) For any −1 ≤ s ≤ M + 1, the map

Rext
M (·; ·; dΨ⊤) : VσM (δ)× Ξ → B(H−s

0 (T1), EM+1−s)

is C∞ and satisfies for any α ∈ NS+ , x̂1, . . . , x̂l ∈ EσM
, q̂ ∈ H−s

0 (T1), and (x, ν) ∈ VσM (δ)× Ξ,

‖∂α
ν R

ext
M (x; ν; dΨ⊤)[q̂]‖EM+1−s

.M,α ‖q̂‖H−s
x

,

‖∂α
ν d

lRext
M (x; ν; dΨ⊤)[̂x1, . . . , x̂l][q̂]‖EM+1−s

.s,M,l,α ‖q̂‖H−s
x

l∏

j=1

‖̂xj‖EσM
.

(3.14)

(iii) For any s ≥ 1, the map

Rext
M (·; ·; dΨ⊤) :

(
VσM (δ) ∩ Es+σM

)
× Ξ → B(Hs

0(T1), Es+M+1)

is C∞ and satisfies for any α ∈ NS+ , x̂1, . . . , x̂l ∈ Es+σM
, q̂ ∈ Hs

0(T1), and (x, ν) ∈
(
VσM (δ) ∩ Es+σM

)
× Ξ,

‖∂α
ν R

ext
M (x; ν; dΨ⊤)[q̂]‖EM+1+s

.s,M,α ‖q̂‖Hs
x
+ ‖x‖s+σM

‖q̂‖H1
x
,

‖∂α
ν d

lRext
M (x; ν; dΨ⊤)[̂x1, . . . , x̂l][q̂]‖EM+1+s

.s,M,l,α ‖q̂‖Hs
x

l∏

j=1

‖̂xj‖EσM

+ ‖q̂‖H1
x

( l∑

j=1

‖̂xj‖Es+σM

∏

i6=j

‖̂xi‖EσM
+ ‖x‖Es+σM

l∏

j=1

‖̂xj‖EσM

)
.

(3.15)

Proof. By Theorem 3.2, for any (x, ν) ∈ V(δ)×Ξ, the differential dΨν(x) : E0 → L2
0(T1) is bounded and, for

any M ≥ 1, differentiating (3.5), dΨν(x)[̂x] admits the expansion for any x̂ = (θ̂, ŷ, ŵ) ∈ E0 of the form

dΨν(x)[̂x] = ŵ +

M∑

k=1

aΨ−k(x; ν)∂
−k
x ŵ +R

(1)
M (x; ν)[̂x] , (3.16)

R
(1)
M (x; ν)[̂x] :=

M∑

k=1

(∂−k
x w)daΨ−k(x; ν)[̂x] + dRΨ

M (x; ν)[̂x] + dθ,yΨ
kdv(θ, ν + y, 0)[θ̂, ŷ] .

For σM ≥ M , the map R
(1)
M : VσM (δ)× Ξ → B(E0, H

M+1(T1)) is C∞ and satisfies, by Theorem 3.2-(Est1),
for any α ∈ NS+ , l ≥ 1,

‖∂α
ν R

(1)
M (x; ν)[̂x]‖HM+1

x
.M,α ‖̂x‖E0 ,

‖∂α
ν d

lR
(1)
M (x; ν)[̂x1, . . . , x̂l][̂x]‖HM+1

x
.M,l,α ‖̂x‖E0

l∏

j=1

‖̂xj‖EσM
.

(3.17)

Now consider the transpose operator dΨν(x)
⊤ : L2

0(T1) → E0. By (3.16), for any q̂ ∈ L2
0(T1), one has

dΨν(x)
⊤[q̂] =

(
0, 0,Π⊥q̂ +Π⊥

M∑

k=1

(−1)k∂−k
x

(
aΨ−k(x; ν) q̂

))
+R

(1)
M (x; ν)⊤[q̂] . (3.18)

Since each function aΨ−k(x; ν) is C∞ and R
(1)
M (x; ν)⊤ : H−M−1(T1) → E0 is bounded, the right hand side of

(3.18) defines a linear operator in B(H−M−1
0 (T1), E−M−1), which we also denote by dΨν(x)

⊤. By (2.11),
the expansion (3.18) yields one of the form (3.12) where by (3.17) and Theorem 3.2-(Est1), the remainder
Rext

M (x; ν; dΨ⊤) satisfies for any α ∈ NS+ , x̂1, . . . , x̂l ∈ EσM
, and q̂ ∈ H−M−1

0 (T1)

‖∂α
ν R

ext
M (x; ν; dΨ⊤)[q̂]‖E0 .M,α ‖q̂‖H−M−1

x
,

‖∂α
ν d

lRext
M (x; ν; dΨ⊤)[̂x1, . . . , x̂l][q̂]‖E0 .M,l,α ‖q̂‖H−M−1

x

l∏

j=1

‖̂xj‖EσM
.

(3.19)
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The restriction of the operator dΨν(x)
⊤ : H−M−1

0 (T1) → E−M−1 to H1
0 (T1) coincides with (3.6) and, by the

uniqueness of an expansion of this form,

aext−k (x; ν; dΨ
⊤) = adΨ

⊤

−k (x; ν) , k = 1, . . . ,M ,

Rext
M (x; ν; dΨ⊤)[q̂] =

M∑

k=1

(∂−k
x w)AdΨ⊤

−k (x; ν)[q̂] +RdΨ⊤

M (x; ν)[q̂] , ∀q̂ ∈ H1
0 (T1) .

The claimed estimates (3.13) and (3.15) then follow by Theorem 3.2-(Est2). In particular we have, for any
α ∈ NS+ , x̂1, . . . , x̂l ∈ EσM

, q̂ ∈ H1
0 (T1),

‖∂α
ν R

ext
M (x; ν; dΨ⊤)[q̂]‖EM+2 .M,α ‖q̂‖H1

x
,

‖∂α
ν d

lRext
M (x; ν; dΨ⊤)[̂x1, . . . , x̂l][q̂]‖EM+2 .M,l,α ‖q̂‖H1

x

l∏

j=1

‖̂xj‖EσM
.

(3.20)

Finally the estimates (3.14) follow by interpolation between (3.19) and (3.20).

Corollary 3.4. (Extension of d⊥Ψν(x) and its asymptotic expansion) Let M ≥ 1. There exists
σM > 0 so that for any x ∈ VσM (δ) and ν ∈ Ξ, the operator d⊥Ψν(x) extends to a bounded linear operator,
d⊥Ψν(x) : H

−M−2
⊥ (T1) → H−M−2

0 (T1), and for any ŵ ∈ H−M−2
⊥ (T1), d⊥Ψν(x)[ŵ] admits an expansion

d⊥Ψν(x)[ŵ] = ŵ +
M∑

k=1

aext−k (x; ν; d⊥Ψ)∂−k
x ŵ +Rext

M (x; ν; d⊥Ψ)[ŵ] (3.21)

with the following properties:

(i) For any s ≥ 0, the maps

VσM (δ)× Ξ → Hs(T1) , (x, ν) 7→ aext−k (x; ν; d⊥Ψ) , 1 ≤ k ≤ M ,

are C∞. They satisfy aext−1 (x; ν; d⊥Ψ) = aΨ−1(x; ν) (cf. Theorem 3.2-(AE1)) and for any α ∈ NS+ , x̂1, . . . , x̂l ∈
EσM

, and (x, ν) ∈ VσM (δ)× Ξ,

‖∂α
ν a

ext
−k (x; ν; d⊥Ψ)‖Hs

x
.s,M,α 1 ,

‖∂α
ν d

laext−k (x; ν; d⊥Ψ)[̂x1, . . . , x̂l]‖Hs
x
.s,M,l,α

l∏

j=1

‖̂xj‖EσM
.

(3.22)

(ii) For any 0 ≤ s ≤ M + 2, the map

Rext
M (·, ·; d⊥Ψ) : VσM (δ) × Ξ → B(H−s

⊥ (T1), H
M+1−s(T1))

is C∞ and satisfies, for any α ∈ NS+ , x̂1, . . . , x̂l ∈ EσM
, ŵ ∈ H−s

⊥ (T1), and (x, ν) ∈ VσM (δ)× Ξ,

‖∂α
ν R

ext
M (x; ν; d⊥Ψ)[ŵ]‖HM+1−s

x
.M,α ‖ŵ‖H−s

x
,

‖∂α
ν d

lRext
M (x; ν; d⊥Ψ)[̂x1, . . . , x̂l][ŵ]‖HM+1−s

x
.s,M,l,α ‖ŵ‖H−s

x

l∏

j=1

‖̂xj‖EσM
.

(3.23)

(iii) For any s ≥ 0, the map

Rext
M (·, ·; d⊥Ψ) :

(
VσM (δ) ∩ Es+σM

)
× Ξ → B(Hs

⊥(T1), H
M+1+s(T1))

is C∞ and satisfies for any α ∈ NS+ , x̂1, . . . , x̂l ∈ Es+σM
, ŵ ∈ Hs

⊥(T1), and (x, ν) ∈
(
VσM (δ) ∩ Es+σM

)
× Ξ,

‖∂α
ν R

ext
M (x; ν; d⊥Ψ)[ŵ]‖HM+1+s

x
.s,M,α ‖ŵ‖Hs

x
+ ‖x‖Es+σM

‖ŵ‖L2
x
,

‖∂α
ν d

l
(
Rext

M (x; ν; d⊥Ψ)[ŵ]
)
[̂x1, . . . , x̂l]‖HM+1+s

x
.s,M,l,α ‖ŵ‖Hs

x

l∏

j=1

‖̂xj‖EσM

+ ‖ŵ‖L2
x

( l∑

j=1

‖̂xj‖Es+σM

∏

i6=j

‖̂xi‖EσM
+ ‖x‖Es+σM

l∏

j=1

‖̂xj‖EσM

)
.

(3.24)
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Proof. By Theorem 3.2-(AE2), for any (x, ν) ∈ V1(δ) × Ξ, the operator d⊥Ψν(x)
⊤ : H1

0 (T1) → H1
⊥(T1) is

bounded and for any M ≥ 1 and q̂ ∈ H1
0 (T1), d⊥Ψν(x)

⊤[q̂ ] admits the expansion of the form

d⊥Ψν(x)
⊤[q̂ ] = Π⊥q̂ +Π⊥

M∑

k=1

adΨ
⊤

−k (x; ν)∂−k
x q̂ +R

(2)
M (x; ν)[q̂ ] ,

R
(2)
M (x; ν)[q̂ ] := Π⊥

M∑

k=1

(∂−k
x w)AdΨ⊤

−k (x; ν)[q̂] +RdΨ⊤

M (x; ν)[q̂ ] .

(3.25)

For σM ≥ M + 1, the map R
(2)
M : VσM (δ)× Ξ → B(H1

0 (T1), H
M+2
⊥ (T1)) is C∞ and by Theorem 3.2-(Est2),

satisfies for any α ∈ NS+ and x̂1, . . . , x̂l ∈ EσM

‖∂α
ν R

(2)
M (x; ν)[q̂]‖HM+2

x
.M,α ‖q̂‖H1

x
,

‖∂α
ν d

lR
(2)
M (x; ν)[̂x1, . . . , x̂l][q̂]‖HM+2

x
.M,l,α ‖q̂‖H1

x

l∏

j=1

‖̂xj‖EσM
.

(3.26)

Now consider the transpose operator
(
d⊥Ψν(x)

⊤
)⊤

: H−1
⊥ (T1) → H−1

0 (T1). It defines an extension of

d⊥Ψν(x) to H−1
⊥ (T1), which we denote again by d⊥Ψν(x). By (3.25), for any ŵ ∈ H−1

⊥ (T1), one has

d⊥Ψν(x)[ŵ] = ŵ +

M∑

k=1

(−1)k∂−k
x

(
adΨ

⊤

−k (x; ν)ŵ
)
+R

(2)
M (x; ν)⊤[ŵ] . (3.27)

Since each function adΨ
⊤

−k (x; ν) is C∞ and the operator R
(2)
M (x; ν)⊤ : H−M−2

⊥ (T1) → H−1
0 (T1) is bounded,

the right hand side of (3.27) defines a linear operator in B(H−M−2
0 (T1), E−M−2), which we also denote

by dΨν(x). By (2.11), the expansion (3.27) yields one of the form (3.21) where by (3.26) and Theorem
3.2-(Est2), the remainder Rext

M (x; ν; dΨ⊤) satisfies for any α ∈ NS+ , x̂1, . . . , x̂l ∈ EσM
, and ŵ ∈ H−M−2

0 (T1)

‖∂α
ν R

ext
M (x; ν; d⊥Ψ)[ŵ]‖H−1

x
.M,α ‖ŵ‖H−M−2

x
,

‖∂α
ν d

lRext
M (x; ν; d⊥Ψ)[̂x1, . . . , x̂l][ŵ]‖H−1

x
.M,l,α ‖ŵ‖H−M−2

x

l∏

j=1

‖̂xj‖EσM
.

(3.28)

The restriction of the expansion (3.27) to L2
⊥(T1) coincides with the one of d⊥Ψν(x)[ŵ], obtained by differ-

entiating (3.5) (see (3.16)). It then follows from the uniqueness of an expansion of this form that

aext−k (x; ν; d⊥Ψ) = aΨ−k(x; ν) , k = 1, . . . ,M ,

Rext
M (x; ν; d⊥Ψ)[ŵ] =

M∑

k=1

(∂−k
x w)d⊥a

Ψ
−k(x; ν)[ŵ] + d⊥R

Ψ
M (x; ν)[ŵ], ∀ŵ ∈ L2

⊥(T1) .

The claimed estimates (3.22) and (3.24) thus follow by Theorem 3.2-(Est1). In particular, for any α ∈ NS+ ,
x̂1, . . . , x̂l ∈ EσM

, and ŵ ∈ L2
⊥(T1),

‖∂α
ν R

ext
M (x; ν; d⊥Ψ)[ŵ]‖HM+1

x
.M,α ‖ŵ‖L2

x
,

‖∂α
ν d

lRext
M (x; ν; d⊥Ψ)[̂x1, . . . , x̂l][ŵ]‖HM+1

x
.M,l,α ‖ŵ‖L2

x

l∏

j=1

‖̂xj‖EσM
.

(3.29)

The claimed estimates (3.23) are then obtained by interpolating between (3.28) and (3.29).
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3.2 Expansions of linearized Hamiltonian vector fields

For any Hamiltonian of the form P (u) =
∫
T1

f(x, u, ux) dx with a C∞-smooth density

f : T1 × R× R 7→ R , (x, ζ0, ζ1) 7→ f(x, ζ0, ζ1) , (3.30)

define
P := P ◦Ψν , P(θ, y, w; ν) := P (Ψν(θ, y, w)) (3.31)

where Ψν is the coordinate transformation of Theorem 3.2. As a first result, we provide an expansion of the
linearized Hamiltonian vector field ∂xd⊥∇wP .

Lemma 3.5. (Expansion of ∂xd⊥∇wP) Let P (u) =
∫
T1

f(x, u, ux) dx with f ∈ C∞(T1 × R × R). For

any M ∈ N there is σM > 0 so that for any x ∈ VσM (δ) and ν ∈ Ξ, the operator ∂xd⊥∇wP(x; ν) admits an
expansion of the form

∂xd⊥∇wP(x; ν)[·] = Π⊥

M+3∑

k=0

a3−k(x; ν; ∂xd⊥∇wP) ∂3−k
x [·] +RM (x; ν; ∂xd⊥∇wP)[·] (3.32)

with the following properties:

1. For any s ≥ 0, the maps

(VσM (δ) ∩ Es+σM
)× Ξ → Hs(T1) , (x; ν) 7→ a3−k(x; ν; ∂xd⊥∇wP) , 0 ≤ k ≤ M + 3 ,

are C∞, and satisfy for any α ∈ NS+ , x̂1, . . . , x̂l ∈ Es+σM
, and (x, ν) ∈

(
VσM (δ) ∩ Es+σM

)
× Ξ,

‖∂α
ν a3−k(x; ν; ∂xd⊥∇wP)‖Hs

x
.s,M,α 1 + ‖w‖

H
s+σM
x

, (3.33)

‖∂α
ν d

la3−k(x; ν; ∂xd⊥∇wP)[̂x1, . . . , x̂l]‖Hs
x
.s,M,l,α

l∑

j=1

(
‖̂xj‖Es+σM

∏

n6=j

‖̂xn‖EσM

)
+ ‖w‖

H
s+σM
x

l∏

j=1

‖̂xj‖EσM
.

2. For any 0 ≤ s ≤ M + 1, the map

VσM (δ) × Ξ → B(H−s(T1), H
M+1−s
⊥ (T1)) , (x, ν) 7→ RM (x; ν; ∂xd⊥∇wP) ,

is C∞ and satisfies for any α ∈ NS+ , x̂1, . . . , x̂l ∈ EσM
, (x, ν) ∈ VσM (δ) × Ξ, and ŵ ∈ H−s

⊥ (T1),

‖∂α
ν RM (x; ν; ∂xd⊥∇wP)[ŵ]‖HM+1−s

x
.s,M,α ‖ŵ‖H−s

x
,

‖∂α
ν d

l
(
RM (x; ν; ∂xd⊥∇wP)[ŵ]

)
[̂x1, . . . , x̂l]‖HM+1−s

x
.s,M,l,α ‖ŵ‖H−s

x

l∏

j=1

‖̂xj‖EσM
.

(3.34)

3. For any s ≥ 0, the map

(VσM (δ) ∩ Es+σM
)× Ξ → B(Hs(T1), H

s+M+1
⊥ (T1)) , (x, ν) 7→ RM (x; ν; ∂xd⊥∇wP) ,

is C∞ and satisfies for any α ∈ NS+ , x̂1, . . . , x̂l ∈ Es+σM
, (x, ν) ∈ (VσM (δ) ∩ Es+σM

) × Ξ, and ŵ ∈
Hs

⊥(T1),

‖∂α
ν RM (x; ν; ∂xd⊥∇wP)[ŵ]‖Hs+M+1

x
.s,M,α ‖ŵ‖Hs

x
+ ‖w‖

H
s+σM
x

‖ŵ‖L2
x
,

‖∂α
ν d

l
(
RM (x; ν; ∂xd⊥∇wP)[ŵ]

)
[̂x1, . . . , x̂l]‖Hs+M+1

x
.s,M,l,α ‖ŵ‖Hs

x

l∏

j=1

‖̂xj‖EσM

+ ‖ŵ‖L2
x

(
‖w‖

H
s+σM
x

l∏

j=1

‖̂xj‖EσM
+

l∑

j=1

‖̂xj‖Es+σM

∏

i6=j

‖̂xi‖EσM

)
.

(3.35)
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Remark 3.6. The coefficient a3 in (3.32) can be computed as a3(x; ν; ∂xd⊥∇wP) = −(∂2
ζ1
f)(x, u, ux)

∣∣
u=Ψν(x)

.

Proof. Differentiating (3.31) we have that

∇P(x; ν) = (dΨν(x))
⊤
[
∇P (Ψν(x))

]
, (3.36)

where, recalling (3.30),
∇P (u) = Π⊥

0

[
(∂ζ0f)(x, u, ux)−

(
(∂ζ1f)(x, u, ux)

)
x

]
(3.37)

and Π⊥
0 is the L2-orthogonal projector of L2(T1) onto L2

0(T1). By (3.36), the w−component ∇wP(x; ν) of
∇P(x; ν) equals (d⊥Ψν(x))

⊤
[
∇P (Ψν(x))

]
. Differentiating it with respect to w in direction ŵ then yields

d⊥∇wP(x; ν)[ŵ] = (d⊥Ψν(x))
⊤
[
d∇P (Ψν(x))

[
d⊥Ψν(x)[ŵ]

]]
+
(
d⊥(d⊥Ψν(x))

⊤[ŵ]
)[
∇P (Ψν(x))

]
. (3.38)

Analysis of the first term on the right hand side of (3.38): Evaluating the differential d∇P (u) of (3.37) at
u = Ψν(x), one gets

d(∇P )(Ψν(x))[h] = Π⊥
0

(
b2(x; ν)∂

2
xh+ b1(x; ν)∂xh+ b0(x; ν)h

)

b2(x; ν) := −∂2
ζ1f(x, u, ux)

∣∣∣
u=Ψν(x)

, b1(x; ν) := (b2(x; ν))x ,

b0(x; ν) :=
(
(∂2

ζ0f)(x, u, ux)−
(
(∂2

ζ0ζ1f)(x, u, ux)
)
x

)∣∣
u=Ψν(x)

.

(3.39)

By Lemma 2.2 and Theorem 3.2 one infers that for any s ≥ 0, the maps

(V3(δ) ∩ Es+3)× Ξ → Hs
x , (x; ν) 7→ bi(x; ν) , i = 0, 1, 2 ,

are C∞ and satisfy for any α ∈ NS+ , x̂1, . . . , x̂l ∈ Es+3, and (x, ν) ∈
(
V3(δ) ∩ Es+3

)
× Ξ,

‖∂α
ν bi(x; ν)‖Hs

x
.s,α 1 + ‖w‖Hs+3

x
,

‖∂α
ν d

lbi(x; ν)[̂x1, . . . , x̂l]‖Hs
x
.s,l,α

l∑

j=1

‖̂xj‖Es+3

∏

i6=j

‖̂xi‖E3 + ‖w‖Hs+3
x

l∏

j=1

‖̂xj‖E3 .
(3.40)

By Corollary 3.3 (expansion of (d⊥Ψν)
⊤), Corollary 3.4 (expansion of d⊥Ψν), (3.40) (estimates of bi), (3.39)

(formula for d(∇P )(Ψν(x))), and Lemma 2.11 (composition), one obtains the expansion

∂x(d⊥Ψν(x))
⊤
[
d∇P (Ψν(x))

[
d⊥Ψν(x)[·]

]]
= Π⊥

M+3∑

k=0

a
(1)
3−k(x; ν)∂

3−k
x +R1(x; ν) (3.41)

where a
(1)
3 (x; ν) = b2(x; ν), the functions a

(1)
3−k(x; ν), k = 0, . . . ,M + 3, and the remainder R1(x; ν) satisfy the

claimed properties 1-3 of the lemma, in particular (3.33)-(3.35).

Analysis of the second term on the right hand side of (3.38): Since dΨν(x) is symplectic, dΨν(x)
⊤ =

J −1dΨν(x)
−1∂x where J is the Poisson operator defined in (3.4), implying that for any ŵ ∈ H1

⊥(T1),

d⊥
(
dΨν(x)

⊤
)
[ŵ] = −J−1dΨν(x)

−1
(
d⊥dΨν(x)[ŵ]

)
dΨν(x)

−1∂x

= −dΨν(x)
⊤∂−1

x d
(
d⊥Ψν(x)[ŵ]

)[
J dΨν(x)

⊤ ·
]
.

By this identity we get

∂x
(
d⊥(d⊥Ψν(x))

⊤[·]
)[
∇P (Ψν(x))

]
= −∂xdΨν(x)

⊤∂−1
x d

(
d⊥Ψν(x)[·]

)[
J dΨν(x)

⊤∇P (Ψν(x))
]
. (3.42)

Arguing as for the first term on the right hand side of (3.38) (cf. (3.41)) one gets an expansion of the form

∂x
(
d⊥(d⊥Ψν(x))

⊤[·]
)[
∇P (Ψν(x))

]
= Π⊥

M+3∑

k=3

a
(2)
3−k(x; ν)∂

3−k
x +R2(x; ν) (3.43)
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where the functions a
(2)
3−k(x; ν), k = 3, . . . ,M + 3, and the remainder R2(x; ν) satisfy the claimed properties

1-3 of the lemma, in particular (3.33)-(3.35).

Conclusion: By (3.38) and the above analysis of the expansions (3.41) and (3.43), the lemma and Remark
3.6 follow.

As a second result of this section we derive an expansion for the linearized Hamiltonian vector field
∂xd⊥∇wHkdv where Hkdv(·; ν) = Hkdv ◦Ψν (cf. Theorem 3.2-(AE3)).

Lemma 3.7. (Expansion of ∂xd⊥∇wHkdv) For any M ∈ N there is σM ≥ M + 1 so that, for any
(x, ν) ∈ VσM (δ)× Ξ, the operator ∂xd⊥∇wHkdv(x; ν) admits an expansion of the form

∂xd⊥∇wH
kdv(x; ν)[·] = ∂xΩ

kdv(D; ν)[·] + ∂xd⊥∇wR
kdv(x; ν)[·] ,

∂xd⊥∇wR
kdv(x; ν)[·] = Π⊥

M+1∑

k=0

a1−k(x; ν; ∂xd⊥∇wR
kdv) ∂1−k

x [·] +RM (x; ν; ∂xd⊥∇wR
kdv)[·] ,

(3.44)

with the following properties:

1. For any s ≥ 0, the maps

(VσM (δ) ∩ Es+σM
)× Ξ → Hs(T1), (x, ν) 7→ a1−k(x; ν; ∂xd⊥∇wR

kdv) , 0 ≤ k ≤ M + 1 ,

are C∞ and satisfy for any α ∈ NS+ , x̂1, . . . , x̂l ∈ Es+σM
, and (x, ν) ∈ (VσM (δ) ∩ Es+σM

)× Ξ,

‖∂α
ν a1−k(x; ν; ∂xd⊥∇wR

kdv)‖Hs
x
.s,k,α ‖y‖+ ‖w‖

H
s+σM
x

,

‖dl∂α
ν a1−k(x; ν; ∂xd⊥∇wR

kdv)[̂x1, . . . , x̂l]‖Hs
x
.s,k,l,α

l∑

j=1

(
‖̂xj‖Es+σM

∏

n6=j

‖̂xn‖EσM

)

+ (‖y‖+ ‖w‖
H

s+σM
x

)

l∏

j=1

‖̂xj‖EσM
.

(3.45)

2. For any 0 ≤ s ≤ M + 1, the map

RM (·; ·; ∂xd⊥∇wR
kdv) : VσM (δ)× Ξ → B(H−s

⊥ (T1), H
M+1−s
⊥ (T1))

is C∞ and satisfies for any α ∈ NS+ , x̂1, . . . , x̂l ∈ EσM
, (x, ν) ∈ VσM (δ) × Ξ, and ŵ ∈ H−s

⊥ (T1),

‖∂α
ν RM (x; ν; ∂xd⊥∇Rkdv)[ŵ]‖HM+1−s

x
.s,M,α (‖y‖+ ‖w‖HσM

x
)‖ŵ‖H−s

x
, (3.46)

‖dl∂α
ν RM (x; ν; ∂xd⊥∇Rkdv)[ŵ][̂x1, . . . , x̂l]‖HM+1−s

x
.s,M,l,α ‖ŵ‖H−s

x

l∏

j=1

‖̂xj‖EσM
. (3.47)

3. For any s ≥ 0, the map

RM (·; ·; ∂xd⊥∇wR
kdv) : (VσM (δ) ∩ Es+σM

)× Ξ → B(Hs
⊥(T1), H

s+M+1
⊥ (T1)) ,

is C∞ and satisfies for any α ∈ NS+ , x̂1, . . . , x̂l ∈ Es+σM
, (x, ν) ∈ (Es+σM

∩ VσM (δ)) × Ξ, and ŵ ∈
Hs

⊥(T1),

‖∂α
ν RM (x; ν; ∂xd⊥∇Rkdv)[ŵ]‖Hs+M+1

x

.s,M,α (‖y‖+ ‖w‖
H

s+σM
x

)‖ŵ‖L2
x
+ (‖y‖+ ‖w‖HσM

x
)‖ŵ‖Hs

x
,

(3.48)

‖dl∂α
ν RM (x; ν; ∂xd⊥∇Rkdv)[ŵ][̂x1, . . . , x̂l]‖Hs+M+1

x
.s,M,l,α ‖ŵ‖Hs

x

l∏

j=1

‖̂xj‖EσM

+ ‖ŵ‖L2
x

l∑

j=1

(
‖̂xj‖Es+σM

∏

n6=j

‖̂xn‖EσM

)
+ ‖ŵ‖L2

x
‖w‖

H
s+σM
x

l∏

j=1

‖̂xj‖EσM
.

(3.49)
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Proof. Differentiating Hkdv(x; ν) = Hkdv(Ψν(x)), we get

∇wH
kdv(x; ν) = (d⊥Ψν(x))

⊤
[
∇Hkdv(Ψν(x))

]
(3.50)

where, recalling (1.2),
∇Hkdv(u) = Π⊥

0 (3u
2 − uxx

)
(3.51)

and Π⊥
0 is the L2-orthogonal projector onto L2

0(T1). Differentiating (3.50) with respect to w in direction ŵ
we get

d⊥∇wH
kdv(x; ν)[ŵ] =

(d⊥Ψν(x))
⊤
[
d∇Hkdv(Ψν(x))[d⊥Ψν(x)[ŵ]]

]
+
(
d⊥(d⊥Ψν(x))

⊤[ŵ]
)[
∇Hkdv(Ψν(x))

]
.

(3.52)

On the other hand, by (3.8)

d⊥∇wH
kdv(x; ν) = Ωkdv(D; ν) + d⊥∇wR

kdv(x; ν)

and by (3.11) d⊥∇wRkdv(θ, 0, 0; ν) = 0, implying that

d⊥∇wH
kdv(θ, 0, 0; ν) = Ωkdv(D; ν) ,

d⊥∇wR
kdv(x; ν) = d⊥∇wH

kdv(θ, y, w; ν)− d⊥∇wH
kdv(θ, 0, 0; ν) .

(3.53)

In order to obtain the expansion (3.44) it thus suffices to expand d⊥∇wHkdv(θ, y, w; ν))[ŵ] and then subtract
from it the expansion of d⊥∇wHkdv(θ, 0, 0; ν))[ŵ]. We analyze separately the two terms in (3.52).

Analysis of the first term on the right hand side of (3.52): Evaluating the differential d∇Hkdv(u) at u =
Ψν(x), one gets

d(∇Hkdv)(Ψν(x))[h] = Π⊥
0

(
− ∂2

xh+ b0(x; ν)h
)
, b0(x; ν) := 6Ψν(x) . (3.54)

By Theorem 3.2-(AE1) and the estimates (Est1), the function b0(x; ν) satisfies, for any s ≥ 0,

‖∂α
ν b0(x; ν)‖Hs

x
.s,α 1 + ‖w‖Hs+1

x
,

‖∂α
ν d

lb0(x; ν)[̂x1, . . . , x̂l]‖Hs
x
.s,l,α

l∑

j=1

‖̂xj‖Es+1

∏

i6=j

‖̂xi‖E1 + ‖w‖Hs+1
x

l∏

j=1

‖̂xj‖E1 .
(3.55)

By Corollary 3.3 (expansion of (d⊥Ψν)
⊤), Corollary 3.4 (expansion of d⊥Ψν), (3.55) (estimates of b0), (3.54)(

formula for d(∇Hkdv)(Ψν(x))
)
, and Lemma 2.11 (composition), one obtains the expansion

∂x(d⊥Ψν(x))
⊤
[
d∇Hkdv(Ψν(x))

[
d⊥Ψν(x)[·]

]]

= Π⊥

(
− ∂3

x − (aΨ−1(x; ν) + adΨ
⊤

−1 (x; ν))∂2
x +

M+1∑

k=0

a
(1)
1−k(x; ν)∂

1−k
x

)
+R1(x; ν)

(3.7)
= Π⊥

(
− ∂3

x +

M+1∑

k=0

a
(1)
1−k(x; ν)∂

1−k
x

)
+R1(x; ν)

(3.56)

where the functions a
(1)
1−k(x; ν), k = 0, . . . ,M +1 and the remainder R1(x; ν) satisfy the properties 1–3 stated

in Lemma 3.5, in particular (3.33)-(3.35).

Analysis of the second term on the right hand side of (3.52): By (3.42) one has

∂x
(
d⊥(d⊥Ψν(x))

⊤[·]
)[
∇Hkdv(Ψν(x))

]
= −∂xdΨν(x)

⊤∂−1
x d

(
d⊥Ψν(x)[·]

)[
J dΨν(x)

⊤∇Hkdv(Ψν(x))
]
.

Arguing as for the first term on the right hand side of (3.52) one obtains an expansion of the form

∂x
(
d⊥(d⊥Ψν(x))

⊤[·]
)[
∇Hkdv(Ψν(x))

]
= Π⊥

M+1∑

k=0

a
(2)
1−k(x; ν)∂

1−k
x +R2(x; ν) (3.57)
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where a
(2)
1 (x; ν) = 0 (cf. (3.12)) and where the functions a

(2)
1−k(x; ν), k = 1, . . . ,M + 1 and the remainder

R2(x; ν) satisfy the properties 1-3 of Lemma 3.5, in particular (3.33)-(3.35).

Conclusion: Combining (3.52), (3.53), (3.56), and (3.57) one obtains the claimed expansion (3.44) with

a1−k(x; ν; ∂xd⊥∇wR
kdv) := a

(1)
1−k(x; ν)− a

(1)
1−k(θ, 0, 0; ν) + a

(2)
1−k(x; ν)− a

(2)
1−k(θ, 0, 0; ν)

RM (x; ν; ∂xd⊥∇Rkdv) := R1(x; ν)−R1(θ, 0, 0; ν) +R2(x; ν) −R2(θ, 0, 0; ν) .

Since a
(1)
1−k(x; ν), R1(x; ν), and a

(2)
1−k(x; ν), R2(x; ν) satisfy properties 1-3 of Lemma 3.5, in particular (3.33)-

(3.35), the claimed estimates (3.45)-(3.49) then follow by the mean value theorem.

3.3 Frequencies of KdV

In this section we record properties of the KdV frequencies ωkdv
n used in this paper. In Section 6 we need

to analyze ∂xΩ
kdv(D; I). Recall that by (3.9), Ωkdv(D; I) is defined for I ∈ Ξ ⊂ R

S+

>0. Actually, it is defined

on all of R
S+

>0 (cf. (3.2)) and according to [19, Lemma 4.1] ∂xΩ
kdv(D; I) can be written as

∂xΩ
kdv(D; I) = −∂3

x +Qkdv
−1 (D; I) (3.58)

where Qkdv
−1 (D; I) is a family of Fourier multiplier operators of order −1 with an expansion in homogeneous

components up to any order.

Lemma 3.8. For any M ∈ N and I ∈ R
S+

>0, Qkdv
−1 (D; I) admits an expansion of the form

Qkdv
−1 (D; I) = Ωkdv

−1 (D; I) +RM (D; I;Qkdv
−1 ) , Ωkdv

−1 (ξ; I) =
M∑

k=1

a−k(I; Ω
kdv
−1 )χ0(ξ)(i2πξ)

−k , (3.59)

where the functions a−k(I; Ω
kdv
−1 ) are real analytic and bounded on compact subsets of R

S+

>0, a−k(I; Ω
kdv
−1 )

vanishes identially for k even, and RM (D; I;Qkdv
−1 ) is a Fourier multiplier operator with multipliers

RM (n; I;Qkdv
−1 ) =

Rωn

M (I)

(2πn)M+1
, RM (−n; I;Qkdv

−1 ) = −RM (n; I;Qkdv
−1 ) , ∀n ∈ S

⊥
+ , (3.60)

where the functions I 7→ Rωn

M (I) are real analytic and satisfy, for any j ∈ S+, β ∈ N,

sup
n∈S⊥

|Rωn

M (I)| ≤ CM , sup
n∈S⊥

|∂β
Ij
Rωn

M (I)| ≤ CM,β ,

uniformly on compact subsets of R
S+

>0.

Proof. The result follows by [19, Lemma C.7].

In Section 7, we shall use the following asymptotics of the KdV frequencies

ωkdv
n (I, 0)− (2πn)3 = O(n−1) , n ∂Iω

kdv
n (I, 0) = O(1) , (3.61)

uniformly on compact sets of actions I ∈ R
S+

>0.

Lemma 3.9. ([20, Proposition 15.5]) (Non-degeneracy of KdV frequencies) For any finite subset

S+ ⊂ N the following holds on R
S+

>0:
(i) The map I 7→ det

(
(∂Ikω

kdv
n (I, 0))k,n∈S+

)
is real analytic and does not vanish identically.

(ii) For any ℓ ∈ ZS+and j, k ∈ S⊥ with (ℓ, j, k) 6= (0, j, j), the following functions are real analytic and
do not vanish identically,

∑

n∈S+

ℓnω
kdv
n + ωkdv

j 6= 0 ,
∑

n∈S+

ℓnω
kdv
n + ωkdv

j − ωkdv
k 6= 0 . (3.62)

Remark 3.10. It was shown in [11] that for any I ∈ R
S+

>0, det
(
(∂Ikω

kdv
n (I, 0))k,n∈S+

)
6= 0.
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4 Nash-Moser theorem

In the symplectic variables (θ, y, w) ∈ V(δ) ∩ Es defined by Theorem 3.2, with symplectic 2-form given by
(3.3), the Hamiltonian equation (1.6) reads

∂tθ = −∇yHε , ∂ty = ∇θHε , ∂tw = ∂x∇wHε , (4.1)

where Hε := Hε ◦Ψν and Hε given by (1.7). More explicitly,

Hε(θ, y, w; ν) = Hkdv(θ, y, w; ν) + εP(θ, y, w; ν) ,

Hkdv = Hkdv ◦Ψν , P = P ◦Ψν , ν ∈ Ξ ,
(4.2)

where Hkdv(θ, y, w; ν) has the normal form expansion (3.8). We denote by XHε
the Hamiltonian vector field

associated to Hε. For ε = 0, the Hamiltonian system (4.1) possesses, for any value of the parameter ν ∈ Ξ,
the invariant torus TS+ × {0} × {0}, filled by quasi-periodic finite gap solutions of the KdV equation with
frequency vector ωkdv(ν) := (ωkdv

n (ν, 0))n∈S+ introduced in (1.10).
By our choice of Ξ, the map −ωkdv : Ξ → Ω := −ωkdv(Ξ) is a real analytic diffeomorphism. In the sequel,

we consider ν as a function of the parameter ω ∈ Ω, namely

ν ≡ ν(ω) := (ωkdv)−1(−ω) . (4.3)

For simplicity we often will not record the dependence of the Hamiltonian Hε on ν = (ωkdv)−1(−ω).
Consider the set of diophantine frequencies in Ω,

DC(γ, τ) :=
{
ω ∈ Ω : |ω · ℓ| ≥

γ

〈ℓ〉τ
, ∀ℓ ∈ Z

S+ \ {0}
}
. (4.4)

For any torus embedding TS+ → V(δ) ∩ Es, ϕ 7→ (θ(ϕ), y(ϕ), w(ϕ)), close to the identity, consider its lift

ῐ : RS+ → R
S+ × R

S+ ×Hs
⊥(T1) , ῐ(ϕ) = (ϕ, 0, 0) + ι(ϕ) , (4.5)

where ι(ϕ) = (Θ(ϕ), y(ϕ), w(ϕ)), with Θ(ϕ) := θ(ϕ) − ϕ, is (2πZ)S+ periodic.
We look for a torus embedding ῐ such that Fω(ι, ζ) = 0 where

Fω(ι, ζ) :=




ω · ∂ϕθ(ϕ) + (∇yHε)(ῐ(ϕ))

ω · ∂ϕy(ϕ)− (∇θHε)(ῐ(ϕ))− ζ

ω · ∂ϕw(ϕ) − ∂x(∇wHε)(ῐ(ϕ))


 . (4.6)

The additional variable ζ ∈ RS+ is introduced in order to control the average of the y-component of the
linearized Hamiltonian equations – see Section 5. Actually any invariant torus for XHε,ζ

= XHε
+ (0, ζ, 0)

with modified Hamiltonian

Hε,ζ(θ, y, w) := Hε(θ, y, w) + ζ · θ , ζ ∈ R
S+ , (4.7)

is invariant for XHε
, see (5.5). Note that Hε,ζ is not periodic in θ, but that its Hamiltonian vector field is.

The Lipschitz Sobolev norm of the periodic part ι(ϕ) = (Θ(ϕ), y(ϕ), w(ϕ)) of the embedded torus (4.5) is

‖ι‖Lip(γ)s := ‖Θ‖Lip(γ)s + ‖y‖Lip(γ)s + ‖w‖Lip(γ)s

where ‖w‖
Lip(γ)
s is the Lipschitz Sobolev norm introduced in (2.1) and

‖Θ‖Lip(γ)s ≡ ‖Θ‖
Lip(γ)
Hs

ϕ
:= ‖Θ‖

Lip(γ)

Hs(TS+ ,RS+)
, ‖y‖Lip(γ)s ≡ ‖y‖

Lip(γ)
Hs

ϕ
:= ‖y‖

Lip(γ)

Hs(TS+ ,RS+ )
. (4.8)

Theorem 4.1. (Nash-Moser) There exist s̄ > (|S+| + 1)/2 and ε0 > 0 so that for any 0 < ε ≤ ε0, there
is a measurable subset Ωε ⊆ Ω satisfying

lim
ε→0

meas(Ωε)

meas(Ω)
= 1 (4.9)
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and for any ω ∈ Ωε, there exists a torus embedding ῐω as in (4.5) which satisfies the estimate

‖ῐω − (ϕ, 0, 0)‖
Lip(γ)
s̄ = O(εγ−2) , γ = εa , 0 < a ≪ 1 ,

and solves
ω · ∂ϕῐω(ϕ)−XHε

(ῐω(ϕ)) = 0 .

As a consequence the embedded torus ῐω(T
S+) is invariant for the Hamiltonian vector field XHε(·;ν) with ν =

(ωkdv)−1(−ω), and it is filled by quasi-periodic solutions of (4.1) with frequency vector ω ∈ Ωε. Furthermore,
the quasi-periodic solution ῐω(ωt) = ωt+ ιω(ωt) is linearly stable.

Theorem 4.1 is proved in Section 8. The main issue concerns the construction of an approximate right
inverse of the linearized operator dι,ζFω(ι, ζ) at an approximate solution. This construction is carried out
in Sections 5, 6 and 7.

Along the proof we shall use the following tame estimates of the Hamiltonian vector field XHε
with

respect to the norm ‖ · ‖
Lip(γ)
s . Recalling the expansion (3.8) provided in Theorem 3.2, and the definition of

P in (3.31), we decompose the Hamiltonian Hε defined in (4.2) as

Hε = N + Pε where

N (y, w; ν) := ωkdv(ν) · y +
1

2
Ωkdv

S+
(ν)[y] · y +

1

2

(
Ωkdv(D; ν)w , w

)
L2

x

, Pε := Rkdv + εP .
(4.10)

Lemma 4.2. There exists σ1 = σ1(S+) > 0 so that for any s ≥ 0, any torus embedding ῐ of the form (4.5)

with ‖ι‖
Lip(γ)
s0+σ1

≤ δ, and any maps ι̂, ι̂1, ι̂2 : TS+ → Es, the following tame estimates hold:

‖XPε
(ῐ)‖Lip(γ)s .s ε(1 + ‖ι‖

Lip(γ)
s+σ1

) + ‖ι‖
Lip(γ)
s0+σ1

‖ι‖
Lip(γ)
s+σ1

,

‖dXPε
(ῐ)[̂ι]‖Lip(γ)s .s (ε+ ‖ι‖

Lip(γ)
s0+σ1

)‖ι̂‖
Lip(γ)
s+σ1

+ ‖ι‖
Lip(γ)
s+σ1

‖ι̂‖
Lip(γ)
s0+σ1

,

‖d2XHε
(ῐ)[̂ι1, ι̂2]‖

Lip(γ)
s .s ‖ι̂1‖

Lip(γ)
s+σ1

‖ι̂2‖
Lip(γ)
s0+σ1

+ ‖ι̂1‖
Lip(γ)
s0+σ1

‖ι̂2‖
Lip(γ)
s+σ1

+ ‖ι‖
Lip(γ)
s+σ1

(‖ι̂1‖
Lip(γ)
s0+σ1

‖ι̂2‖
Lip(γ)
s0+σ1

.

Proof. Note that XPε
= εXP + XRkdv and d2XHε

= d2XN + d2XPε
. The claimed estimates then follow

from estimates of εXP , obtained from Lemmata 3.5, 2.23, 2.24, and from estimates of XRkdv obtained from
Lemmata 3.7, 2.23, 2.24, and the mean value theorem.

5 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of Fω(ι, ζ) = 0 (cf. (4.6))
we construct an almost-approximate right inverse (see Theorem 5.6) of the linearized operator

dι,ζFω(ι, ζ)[̂ι , ζ̂] = ω · ∂ϕι̂− dιXHε
(ῐ)[̂ι]− (0, ζ̂, 0) (5.1)

where Hε = N + Pε is the Hamiltonian in (4.10). Note that the perturbation Pε and the differential
dι,ζFω(ι, ζ) are independent of ζ. In the sequel, we will often write dι,ζFω(ι) instead of dι,ζFω(ι, ζ).

Since the θ, y, and w components of dιXHε
(ῐ(ϕ))[̂ι] are all coupled, inverting the linear operator

dι,ζFω(ι, ζ) in (5.1) is intricate. As a first step, we implement the approach developed in [3], [8], [10],
to approximately reduce dι,ζFω(ι, ζ) to a triangular form – see (5.29) below.

Along this section we assume the following hypothesis, which is verified by the approximate solutions
obtained at each step of the Nash-Moser Theorem 8.1.

• Ansatz. The map ω 7→ ι(ω) := ῐ(ϕ;ω) − (ϕ, 0, 0) is Lipschitz continuous with respect to ω ∈ Ω, and,
for γ ∈ (0, 1), µ0 := µ0(τ, S+) > 0 (with τ being specified later (cf. Section 8))

‖ι‖Lip(γ)µ0
. εγ−2 , ‖Z‖Lip(γ)s0 . ε , (5.2)

where Z is the “error function” defined by

Z(ϕ) := (Z1, Z2, Z3)(ϕ) := Fω(ι, ζ)(ϕ) = ω · ∂ϕῐ(ϕ) −XHε
(ῐ(ϕ)) − (0, ζ, 0) . (5.3)
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We first noe that the 2-form W given in (3.3) is

W :=
(∑

j∈S+

dyj ∧ dθj

)
⊕W⊥ = dΛ

where Λ is the Liouville 1-form

Λ(θ,y,w)[θ̂, ŷ, ŵ] :=
∑

j∈S+

yj θ̂j +
1

2

(
∂−1
x w , ŵ

)
L2

x

. (5.4)

Arguing as in [3, Lemma 6.1], one obtains

|ζ|Lip(γ) . ‖Z‖Lip(γ)s0 . (5.5)

An invariant torus ῐ with Diophantine flow is isotropic, meaning that the pull-back ῐ∗Λ of the 1-form Λ
is closed, or equivalently that the pull back ῐ∗W satisfies ῐ∗W = ῐ∗dΛ = dῐ∗Λ = 0 (cf. [8]). For an
approximately invariant torus embedding ῐ, the 1-form

ῐ∗Λ =
∑

k∈S+

ak(ϕ)dϕk , ak(ϕ) :=
(
[∂ϕθ(ϕ)]

⊤y(ϕ)
)
k
+

1

2
(∂−1

x w(ϕ), ∂ϕk
w(ϕ))L2

x
, (5.6)

is only “approximately closed”, in the sense that

i∗0W = d i∗0Λ =
∑

k,j∈S+

k<j

Akj(ϕ)dϕk ∧ dϕj , Akj(ϕ) := ∂ϕk
aj(ϕ) − ∂ϕj

ak(ϕ) , (5.7)

is of order O(Z). More precisely, the following lemma holds.

Lemma 5.1. Let ω ∈ DC(γ, τ) (cf. (4.4)). Then the coefficients Akj in (5.7) satisfy

‖Akj‖
Lip(γ)
s .s γ

−1
(
‖Z‖

Lip(γ)
s+σ + ‖Z‖

Lip(γ)
s0+σ ‖ι‖

Lip(γ)
s+σ

)
(5.8)

for some σ = σ(τ, S+) > 0.

Proof. The Akj satisfy the identity ω · ∂ϕAkj = W
(
∂ϕZ(ϕ)ek, ∂ϕῐ(ϕ)ej

)
+ W

(
∂ϕῐ0(ϕ)ek, ∂ϕZ(ϕ)ej

)
where

ek, k ∈ S+, denotes the standard basis of RS+ (cf. [8, Lemma 5]). Then (5.8) follows by (5.2) and (2.10).

As in [8], [3] we first modify the approximate torus ῐ to obtain an isotropic torus ῐδ which is still
approximately invariant. Let ∆ϕ :=

∑
k∈S+

∂2
ϕk

.

Lemma 5.2. (Isotropic torus) Let ω ∈ DC(γ, τ). The torus ῐδ(ϕ) := (θ(ϕ), yδ(ϕ), w(ϕ)) defined by

yδ(ϕ) := y(ϕ)− [∂ϕθ(ϕ)]
−⊤ρ(ϕ) , ρj(ϕ) := ∆−1

ϕ

∑
k∈S+

∂ϕk
Akj(ϕ) , (5.9)

is isotropic and there is σ = σ(τ, S+) > 0 so that, for any s ≥ s0

‖yδ − y‖Lip(γ)s .s ‖ι‖
Lip(γ)
s+σ (5.10)

‖yδ − y‖Lip(γ)s .s γ
−1

(
‖Z‖

Lip(γ)
s+σ + ‖ι‖

Lip(γ)
s+σ ‖Z‖

Lip(γ)
s0+σ

)
, (5.11)

‖Fω(ιδ, ζ)‖
Lip(γ)
s .s ‖Z‖

Lip(γ)
s+σ + ‖ι‖

Lip(γ)
s+σ ‖Z‖

Lip(γ)
s0+σ (5.12)

‖dιιδ [̂ι]‖
Lip(γ)
s .s ‖ι̂‖

Lip(γ)
s+σ + ‖ι‖

Lip(γ)
s+σ ‖ι̂‖Lip(γ)s0 . (5.13)

Remark 5.3. In the sequel, ω will always be assumed to be in DC(γ, τ). Furthermore, σ := σ(τ, S+) will
denote different, possibly larger “loss of derivatives” constants.

Proof. The Lemma follows as in [3, Lemma 6.3] by Lemma 4.2, (5.6)-(5.8) and the ansatz (5.2).
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In order to find an approximate inverse of the linearized operator dι,ζFω(ιδ), we introduce the symplectic
diffeomorpshim Gδ : (φ, η, v) 7→ (θ, y, w) of the phase space T

S+ × R
S+ × L2

⊥(T1), defined by



θ
y
w


 := Gδ



φ
η
v


 :=




θ(φ)

yδ(φ) + [∂φθ(φ)]
−T η −

[
(∂θw̃)(θ(φ))

]⊤
∂−1
x v

w(φ) + v


 (5.14)

where w̃ := w ◦ θ−1. It is proved in [8, Lemma 2] that Gδ is symplectic, since by Lemma 5.2, ῐδ is an
isotropic torus embedding. In the new coordinates, ῐδ is the trivial embedded torus (φ, η, v) = (φ, 0, 0) and
the Hamiltonian vector field XHε,ζ

(with Hε,ζ defined in (4.7)) is given by

XK = (dGδ)
−1XHε,ζ

◦Gδ where K ≡ Kε,ζ := Hε,ζ ◦Gδ . (5.15)

The Taylor expansion of K in η, v at the trivial torus (φ, 0, 0) is of the form

K(φ, η, v, ζ) = θ(φ) · ζ +K00(φ) +K10(φ) · η + (K01(φ), v)L2
x
+

1

2
K20(φ)η · η

+
(
K11(φ)η, v

)
L2

x

+
1

2

(
K02(φ)v, v

)
L2

x

+K≥3(φ, η, v) (5.16)

where K≥3 collects the terms which are at least cubic in the variables (η, v), K00(φ) ∈ R, K10(φ) ∈ RS+ ,
K01(φ) ∈ L2

⊥(T1), K20(φ) is a |S+| × |S+| real matrix, K02(φ) : L2
⊥(T1) → L2

⊥(T1) is a linear self-adjoint
operator and K11(φ) : R

S+ → L2
⊥(T1) is a linear operator of finite rank. At an exact solution of Fω(ι, ζ) = 0

one has Z = 0 and the coefficients in the Taylor expansion (5.16) satisfy K00 = const, K10 = −ω, K01 = 0.

Lemma 5.4. There exists σ := σ(τ, S+) so that

‖∂φK00‖
Lip(γ)
s + ‖K10 + ω‖Lip(γ)s + ‖K01‖

Lip(γ)
s .s ‖Z‖

Lip(γ)
s+σ + ‖ι‖

Lip(γ)
s+σ ‖Z‖

Lip(γ)
s0+σ .

‖K20 − Ωkdv
S+

(ν)‖Lip(γ)s .s ε+ ‖ι‖
Lip(γ)
s+σ ,

‖K11η‖
Lip(γ)
s .s εγ

−2‖η‖
Lip(γ)
s+σ + ‖ι‖

Lip(γ)
s+σ ‖η‖

Lip(γ)
s0+σ ,

‖K⊤
11v‖

Lip(γ)
s .s εγ

−2‖v‖
Lip(γ)
s+σ + ‖ι‖

Lip(γ)
s+σ ‖v‖

Lip(γ)
s0+σ .

(5.17)

Proof. The lemma follows as in [8], [3], by applying Lemma 4.2 and (5.2), (5.10), (5.11), (5.12) .

Denote by Id⊥ the identity operator on L2
⊥(T1). The linear transformation dGδ|(ϕ,0,0) ≡ dGδ(ϕ, 0, 0)

then reads

dGδ|(ϕ,0,0)



φ̂
η̂
v̂


 :=




∂φθ(ϕ) 0 0
∂φyδ(ϕ) [∂φθ(ϕ)]

−⊤ −[(∂θw̃)(θ(ϕ))]
⊤∂−1

x

∂φw(ϕ) 0 Id⊥






φ̂
η̂
v̂


 . (5.18)

It approximately transforms the linearized operator dι,ζFω(ιδ) (see the proof of Theorem 5.6) into the one
obtained when the Hamiltonian system with Hamiltonian K (cf. (5.15)) is linearized at (φ, η, v) = (ϕ, 0, 0),
differentiated also with respect to ζ, and when ∂t is exchanged by ω · ∂ϕ,




φ̂
η̂
v̂

ζ̂


 7→




ω · ∂ϕφ̂+ ∂φK10(ϕ)[φ̂ ] +K20(ϕ)η̂ +K⊤
11(ϕ)v̂

ω · ∂ϕη̂ −
(
∂φθ(ϕ)

)⊤
[ζ̂]− ∂φ

(
∂φθ(ϕ)

⊤[ζ]
)
[φ̂]− ∂φφK00(ϕ)[φ̂]− [∂φK10(ϕ)]

⊤η̂ − [∂φK01(ϕ)]
⊤v̂

ω · ∂ϕv̂ − ∂x{∂φK01(ϕ)[φ̂] +K11(ϕ)η̂ + K02(ϕ)v̂}


.

(5.19)

Using (5.2) and (5.10), one shows as in [3] that the induced operator ι̂ := (φ̂, η̂, v̂) 7→ dGδ [̂ι] satisfies

‖dGδ(ϕ, 0, 0)[̂ι]‖
Lip(γ)
s , ‖dGδ(ϕ, 0, 0)

−1 [̂ι]‖Lip(γ)s .s ‖ι̂‖
Lip(γ)
s + ‖ι‖

Lip(γ)
s+σ ‖ι̂‖Lip(γ)s0 , (5.20)

‖d2Gδ(ϕ, 0, 0)[̂ι1, ι̂2]‖
Lip(γ)
s .s ‖ι̂1‖

Lip(γ)
s ‖ι̂2‖

Lip(γ)
s0 + ‖ι̂1‖

Lip(γ)
s0 ‖ι̂2‖

Lip(γ)
s + ‖ι‖

Lip(γ)
s+σ ‖ι̂1‖

Lip(γ)
s0 ‖ι̂2‖

Lip(γ)
s0 .

(5.21)
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In order to construct an “almost-approximate” inverse of (5.19) we need that

Lω := Π⊥

(
ω · ∂ϕ − ∂xK02(ϕ)

)
|L2

⊥

(5.22)

is “almost-invertible” up to remainders of size O(N−a

n−1) (see precisely (5.26)) where

Nn := Kp
n , ∀n ≥ 0 , (5.23)

and
Kn := Kχn

0 , χ := 3/2 , (5.24)

are the scales used in the nonlinear Nash-Moser iteration in Section 8. Based on results obtained in Sections
6-7, the almost invertibility of Lω is proved in Theorem 7.11, but here it is stated as an assumption to avoid
the involved definition of the set Ωo. Recall that DC(γ, τ) is the set of diophantine frequencies in Ω (cf. (4.4)).

• Almost-invertibility of Lω. There exists a subset Ωo ⊂ DC(γ, τ) such that, for all ω ∈ Ωo, the
operator Lω in (5.22) admits a decomposition

Lω = L<
ω +Rω +R⊥

ω (5.25)

with the following properties: there exist constants K0, N0, σ, τ1, µ(b), a, p, sM > 0 so that for any
sM ≤ s ≤ S and ω ∈ Ωo one has:

(i) The operators Rω, R⊥
ω satisfy the estimates

‖Rωh‖
Lip(γ)
s .S εγ−2N−a

n−1

(
‖h‖

Lip(γ)
s+σ +N τ1

0 γ−1‖ι‖
Lip(γ)
s+µ(b)+σ‖h‖

Lip(γ)
sM+σ

)
, (5.26)

‖R⊥
ωh‖

Lip(γ)
sM

.S,b K
−b
n

(
‖h‖

Lip(γ)
sM+b+σ +N τ1

0 γ−1‖ι‖
Lip(γ)
sM+µ(b)+σ+b‖h‖

Lip(γ)
sM+σ

)
, ∀b > 0 , (5.27)

(ii) For any g ∈ Hs+σ
⊥ (TS+ × T1), there is a solution h := (L<

ω )
−1g ∈ Hs

⊥(T
S+ × T1) of the linear

equation L<
ωh = g, satisfying the tame estimates

‖(L<
ω )

−1g‖Lip(γ)s .S γ−1
(
‖g‖

Lip(γ)
s+σ +N τ1

0 γ−1‖ι‖
Lip(γ)
s+µ(b)+σ‖g‖

Lip(γ)
sM+σ

)
. (5.28)

In order to find an almost-approximate inverse of the linear operator (5.19) and hence of dι,ζFω(ιδ), it is
sufficient to invert the operator

D[φ̂, η̂, v̂, ζ̂] :=



ω · ∂ϕφ̂+K20(ϕ)η̂ +K11(ϕ)

⊤v̂

ω · ∂ϕη̂ − ∂φθ(ϕ)
⊤ζ̂

L<
ω v̂ − ∂xK11(ϕ)η̂


 (5.29)

obtained by neglecting in (5.19) the terms ∂φK10, ∂φφK00, ∂φK00, ∂φK01, ∂φ
(
∂φθ(ϕ)

⊤[ζ]
)
and by replacing

Lω by L<
ω (cf. (5.25)). Note that the remainder Lω − L<

ω = Rω +R⊥
ω is small and that by Lemma 5.4 and

(5.5), ∂φK10, ∂φφK00, ∂φK00, ∂φK01 and ∂φ
(
∂φθ(ϕ)

⊤[ζ]
)
are O(Z).

We look for an inverse of D by solving the system

D[φ̂, η̂, v̂, ζ̂] =



g1
g2
g3


 . (5.30)

We first consider the second equation in (5.30), ω · ∂ϕη̂ = g2 + ∂φθ(ϕ)
⊤ ζ̂. Since ∂ϕθ(ϕ) = Id + ∂ϕΘ(ϕ), the

average 〈∂ϕθ⊤〉ϕ = 1

(2π)|S+|

∫
T
S+ ∂ϕθ

⊤(ϕ)dϕ equals the identity matrix Id of RS+ . We then define

ζ̂ := −〈g2〉ϕ (5.31)

so that 〈g2 + ∂φθ(ϕ)
⊤ζ̂〉ϕ vanishes and choose

η̂ := η̂0 + η̂1, η̂1 := (ω · ∂ϕ)
−1

(
g2 + ∂φθ(ϕ)

⊤ζ̂
)

(5.32)
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where the constant vector η̂0 ∈ RS+ will be determined in order to control the average of the first equation
in (5.30). Next we consider the third equation in (5.30), (L<

ω )v̂ = g3 + ∂xK11(ϕ)η̂, which, by assumption
(5.28) on the inveritibility of L<

ω , has the solution

v̂ := (L<
ω )

−1
(
g3 + ∂xK11(ϕ)η̂1

)
+ (L<

ω )
−1∂xK11(ϕ)η̂0 . (5.33)

Finally, we solve the first equation in (5.30). After substituting the solutions ζ̂, η̂, defined in (5.32), and v̂,
defined in (5.33), this equation becomes

ω · ∂ϕφ̂ = g1 +M1η̂0 +M2g2 +M3g3 +M4ζ̂ (5.34)

where Mj : ϕ 7→ Mj(ϕ), 1 ≤ j ≤ 4, are defined as

M1(ϕ) := −K20(ϕ)−K11(ϕ)
⊤(L<

ω )
−1∂xK11(ϕ) , (5.35)

M2(ϕ) := M1(ϕ)[ω · ∂ϕ]
−1 , (5.36)

M3(ϕ) := −K11(ϕ)
⊤(L<

ω )
−1 , (5.37)

M4(ϕ) := M2(ϕ)∂φθ(ϕ)
⊤ . (5.38)

In order to solve equation (5.34) we have to choose η̂0 such that the right hand side of it has zero average.
By Lemma 5.4, by the ansatz (5.2) and (5.28), the ϕ-averaged matrix is 〈M1〉ϕ = Ωkdv

S+
(ν) +O(εγ−2). Since

the matrix Ωkdv
S+

(ν) = (∂Ikω
kdv
n (ν))k,n∈S+ is invertible (cf. Lemma 3.9-(i), Remark 3.10), 〈M1〉ϕ is invertible

for εγ−2 small enough and 〈M1〉−1
ϕ = Ωkdv

S+
(ν)−1 +O(εγ−2). We then define

η̂0 := −〈M1〉
−1
ϕ

(
〈g1〉ϕ + 〈M2g2〉ϕ + 〈M3g3〉ϕ + 〈M4ζ̂〉ϕ

)
. (5.39)

With this choice of η̂0, the equation (5.34) has the solution

φ̂ := (ω · ∂ϕ)
−1

(
g1 +M1[η̂0] +M2g2 +M3g3 +M4ζ̂

)
. (5.40)

Altogether we have obtained a solution (φ̂, η̂, v̂, ζ̂) of the linear system (5.30).

Proposition 5.5. Assume the ansatz (5.2) with µ0 = µ(b)+σ and the estimates (5.28) hold. Then, for any
ω ∈ Ωo and any g := (g1, g2, g3) with g1, g2 ∈ Hs+σ(TS+ ,RS+), g3 ∈ Hs+σ

⊥ (TS+ × T1), and sM ≤ s ≤ S, the

system (5.30) has a solution (φ̂, η̂, v̂, ζ̂) := D−1g, where φ̂, η̂, v̂, ζ̂ are defined in (5.31)-(5.33), (5.39)-(5.40)
and satisfy

‖D−1g‖Lip(γ)s .S γ−2
(
‖g‖

Lip(γ)
s+σ +N τ1

0 γ−1‖ι‖
Lip(γ)
s+µ(b)+σ‖g‖

Lip(γ)
sM+σ

)
. (5.41)

Proof. The proposition follows by the definitions of ζ̂ (cf. (5.31)), η̂1 (cf. (5.32)), v̂ (cf. (5.33)), η̂0 (cf.

(5.39)), φ̂ (cf. (5.40)), the definitions of Mj, 1 ≤ j ≤ 4, in (5.35)-(5.38), the estimates of Lemma 5.4, and
the assumptions (5.2) and (5.28).

Let G̃δ : (φ, η, v, ζ) 7→
(
Gδ(φ, η, v), ζ

)
and note that its differential dG̃δ(φ, η, v, ζ) is independent of ζ. In

the sequel, we denote it by dG̃δ(φ, η, v) or dG̃δ|(φ,η,v). Finally we prove that the operator

T0 := T0(ι) := dG̃δ|(ϕ,0,0) ◦ D
−1 ◦

(
dGδ|(ϕ,0,0)

)−1
(5.42)

is an almost-approximate right inverse for dι,ζFω(ι). Let ‖(φ, η, v, ζ)‖
Lip(γ)
s := max{‖(φ, η, v)‖

Lip(γ)
s , |ζ|Lip(γ)}.

Theorem 5.6. (Almost-approximate inverse) Assume that (5.25)-(5.28) hold (Almost-invertibility of
Lω, ω ∈ Ω0). Then there exists σ2 := σ2(τ, S+) > 0 so that, if the ansatz (5.2) holds with µ0 ≥ sM+µ(b)+σ2,
then for any ω ∈ Ωo and any g := (g1, g2, g3) with g1, g2 ∈ Hs+σ(TS+ ,RS+), g3 ∈ Hs+σ

⊥ (TS+ × T1), and
sM ≤ s ≤ S, T0(ι)g, defined by (5.42), satisfies

‖T0(ι)g‖
Lip(γ)
s .S γ−2

(
‖g‖

Lip(γ)
s+σ2

+N τ1
0 γ−1‖ι‖

Lip(γ)
s+µ(b)+σ2

‖g‖
Lip(γ)
sM+σ2

)
. (5.43)
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Moreover T0(ι) is an almost-approximate inverse of dι,ζFω(ι), namely

dι,ζFω(ι) ◦T0(ι) − Id = P + Pω + P⊥
ω (5.44)

where

‖Pg‖
Lip(γ)
sM

.S γ−3‖Fω(ι, ζ)‖
Lip(γ)
sM+σ2

(
1 +N τ1

0 γ−1‖ι‖
Lip(γ)
sM+µ(b)+σ2

)
‖g‖

Lip(γ)
sM+σ2

(5.45)

‖Pωg‖
Lip(γ)
sM

.S εγ−4N−a

n−1

(
1 +N τ1

0 γ−1‖ι‖
Lip(γ)
sM+µ(b)+σ2

)
‖g‖

Lip(γ)
sM+σ2

, (5.46)

‖P⊥
ω g‖

Lip(γ)
sM

.S,b γ
−2K−b

n

(
‖g‖

Lip(γ)
sM+σ2+b +N τ1

0 γ−1‖ι‖
Lip(γ)
sM+µ(b)+σ2+b

∥∥g‖Lip(γ)
sM+σ2

)
, ∀b > 0 . (5.47)

Proof. The bound (5.43) follows from the definition of T0(ι) (cf.(5.42)), the estimate of D−1 (cf. (5.41)), and
the estimates of dGδ(ϕ, 0, 0) and of its inverse (cf. (5.20)). By formula (5.1)) for dι,ζFω(ι) and since only
the y−components of ῐδ and ῐ differ from each other (cf. (5.9)), the difference E0 := dι,ζFω(ι) − dι,ζFω(ιδ)
can be written as

E0 [̂ι, ζ̂] =

∫ 1

0

∂ydιXHε
(θ, yδ + s(y − yδ), w)[y − yδ, ι̂]ds. (5.48)

We introduce the projection Π : (ι̂, ζ̂) 7→ ι̂. Denote by u := (φ, η, v) the symplectic coordinates defined by
Gδ (cf. (5.14)). Under the symplectic map Gδ, the nonlinear operator Fω (cf. (4.6)) is transformed into

Fω(Gδ(u(ϕ)), ζ) = dGδ(u(ϕ))[ω · ∂ϕu(ϕ)−XK(u(ϕ), ζ)] (5.49)

where K = Hε,ζ ◦Gδ (cf. (5.15)). Differentiating (5.49) at the trivial torus uδ(ϕ) = G−1
δ (ιδ)(ϕ) = (ϕ, 0, 0),

we get

dι,ζFω(ιδ) = dGδ(uδ)
(
ω · ∂ϕ − du,ζXK(uδ, ζ)

)
dG̃δ(uδ)

−1 + E1 , (5.50)

E1 := d2Gδ(uδ)
[
dGδ(uδ)

−1Fω(ιδ, ζ), dGδ(uδ)
−1Π[ · ]

]
. (5.51)

In expanded form ω · ∂ϕ − du,ζXK(uδ, ζ) is provided by (5.19). Recalling the definition of D in (5.29) and
the discussion following it, we decompose ω · ∂ϕ − du,ζXK(uδ, ζ) as

ω · ∂ϕ − du,ζXK(uδ, ζ) = D+RZ + Rω + R
⊥
ω (5.52)

where

RZ [φ̂, η̂, v̂, ζ̂] :=




∂φK10(ϕ)[φ̂]

−∂φφK00(ϕ)[φ̂]− ∂φ
(
∂φθ(ϕ)

⊤[ζ]
)
[φ̂]− [∂φK10(ϕ)]

⊤η̂ − [∂φK01(ϕ)]
⊤v̂

−∂x
(
∂φK01(ϕ)[φ̂]

)




and

Rω[φ̂, ŷ, ŵ, ζ̂] :=




0
0

Rω [ŵ]


 , R

⊥
ω [φ̂, ŷ, ŵ, ζ̂] :=




0
0

R⊥
ω [ŵ]


 .

By (5.48) and (5.50)-(5.52) we get the decomposition

dι,ζFω(ι) = dGδ(uδ) ◦ D ◦
(
dG̃δ(uδ)

)−1
+ E + Eω + E⊥

ω (5.53)

where
E := E0 + E1 + dGδ(uδ)RZ

(
dG̃δ(uδ)

)−1
, (5.54)

Eω := dGδ(uδ)Rω

(
dG̃δ(uδ)

)−1
, E⊥

ω := dGδ(uδ)R
⊥
ω

(
dG̃δ(uδ)

)−1
. (5.55)

Letting the operator T0 = T0(ι) (cf. (5.42)) act from the right to both sides of the identity (5.53) and
recalling that uδ(ϕ) = (ϕ, 0, 0), one obtains

dι,ζFω(ι) ◦T0 − Id = P + Pω + P⊥
ω , P := E ◦T0, Pω := Eω ◦T0 , P⊥

ω := E⊥
ω ◦T0 .
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To derive the claimed estimate for P we first need to estimate E . By (5.2), (5.5) (estimate for ζ), (5.17)
(estimates related to ιδ), (5.10)–(5.12) (estimates of the components of RZ), and (5.20)-(5.21) (estimates of
dGδ(uδ) and its inverse) one infers that

‖E [ ι̂, ζ̂ ]‖Lip(γ)s .s γ
−1

(
‖Z‖

Lip(γ)
s0+σ ‖ι̂‖

Lip(γ)
s+σ + ‖Z‖

Lip(γ)
s+σ ‖ι̂‖

Lip(γ)
s0+σ + ‖Z‖

Lip(γ)
s0+σ ‖ι‖

Lip(γ)
s+σ ‖ι̂‖

Lip(γ)
s0+σ

)
, (5.56)

for some σ > 0, where Z is the error function, Z = Fω(ι, ζ) (cf. (5.3)). The claimed estimate (5.45) for
P then follows from (5.56), the estimate (5.43) of T0, and the ansatz (5.2). The claimed estimates (5.46),
(5.47) for Pω and, respectively, P⊥

ω follow by the assumed estimates (5.26)-(5.27) ofRω andR⊥
ω , the estimate

(5.43) of T0, the estimate (5.20) of dGδ(uδ) and its inverse, and the ansatz (5.2).

The goal of Sections 6 and 7 below is to prove that the Hamiltonian operator Lω, defined in (5.22),
satisfies the almost-invertibility property stated in (5.25)-(5.28).

6 Reduction of Lω up to order zero

The goal of this section is to reduce the Hamiltonian operator Lω, defined in (5.22), to a differential operator
of order three with constant coefficients, up to order zero – see (6.67) below for a precise statement. In
the sequel, we consider torus embeddings ῐ(ϕ) = (ϕ, 0, 0) + ι(ϕ) with ι(·) ≡ ι(· ;ω), ω ∈ DC(γ, τ) (cf. (4.4),
satisfying

‖ι‖Lip(γ)µ0
. εγ−2 , εγ−2 ≤ δ(S) (6.1)

where µ0 := µ0(τ, S+) > s0, S > s0 are sufficiently large, 0 < δ(S) < 1 is sufficiently small, and 0 < γ < 1.
The Sobolev index S will be fixed in (8.2). In the course of the Nash-Moser iteration we will verify that
(6.1) is satisfied by each approximate solution – see the bounds (8.8). For a quantity g(ι) ≡ g(ῐ) such as an
operator, a map, or a scalar function, depending on ῐ(ϕ) = (ϕ, 0, 0) + ι(ϕ), we denote for any two such tori
embeddings ῐ1, ῐ2 by ∆12g the difference

∆12g := g(ι2)− g(ι1) .

6.1 Expansion of Lω

As a first step, we derive an expansion of the operator Lω = Π⊥

(
ω · ∂ϕ − ∂xK02(ϕ)

)
|L2

⊥

, defined in (5.22).

Lemma 6.1. The Hamiltonian operator ∂xK02(ϕ) acting on L2
⊥(T1) is of the form

∂xK02(ϕ) = Π⊥∂x(d⊥∇wHε)(ῐδ(ϕ)) +R(ϕ) (6.2)

where Hε is the Hamiltonian defined in (4.2) and the remainder R(ϕ) is given by

R(ϕ)[h] =
∑

j∈S+

(
h , gj

)
L2

x

χj , ∀h ∈ L2
⊥(T1) , (6.3)

with functions gj , χj ∈ Hs
⊥, j ∈ S+, satisfying, for some σ := σ(τ, S+) > 0 and any s ≥ s0

‖gj‖
Lip(γ)
s + ‖χj‖

Lip(γ)
s .s ε+ ‖ι‖

Lip(γ)
s+σ . (6.4)

Let s1 ≥ s0 and let ῐ1, ῐ2 be two tori satisfying (6.1) with µ0 ≥ s1 + σ. Then, for any j ∈ S+,

‖∆12gj‖s1 + ‖∆12χj‖s1 .s1 ‖ι2 − ι1‖s1+σ .

Proof. The lemma follows as in [10, Lemma 6.1], using Lemma 4.2 and the ansatz (6.1).
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By Lemma 6.1 the linear Hamiltonian operator Lω has the form

Lω = L(0)
ω −R , L(0)

ω := ω · ∂ϕ −Π⊥∂x(d⊥∇wHε)(ῐδ(ϕ)) (6.5)

where here and in the sequel, we write ω · ∂ϕ instead of Π⊥ ω · ∂ϕ|L2
⊥
in order to simplify notation. We now

prove that the Hamiltonian operator L
(0)
ω , acting on L2

⊥(T1), is a sum of a pseudo-differential operator of
order three, a Fourier multiplier with ϕ−independent coefficients and a small smoothing remainder. Since
Hε = Hkdv + εP (cf. (4.2)) and ∂xd⊥∇wHkdv = ∂xΩ

kdv + ∂xd⊥∇wRkdv (cf. (3.8)) we have

L(0)
ω = ω · ∂ϕ + ∂3

x −Π⊥Q
kdv
−1 (D;ω)−Π⊥∂xd⊥∇wR

kdv(ῐδ)− εΠ⊥∂xd⊥∇wP(ῐδ) (6.6)

where we write ∂3
x instead of ∂3

x|L2
⊥
and where Qkdv

−1 (D;ω) is given by (cf. (3.58))

Qkdv
−1 (D;ω) ≡ Qkdv

−1 (D; ν(ω)) = ∂xΩ
kdv(D; ν(ω)) + ∂3

x , (6.7)

with ν(ω) defined in (4.3). The operator Qkdv
−1 (D;ω) is a Fourier multiplier with ϕ−independent coefficients.

It admits an expansion as described in the following lemma.

Lemma 6.2. For any M ∈ N,

Qkdv
−1 (D;ω) =

M∑

k=1

ckdv−k (ω)∂
−k
x +RM (Qkdv

−1 ;ω) (6.8)

where for any 1 ≤ k ≤ M , the function Ω → R, ω 7→ ckdv−k (ω) is Lipschitz and where RM (Qkdv
−1 ;ω) :

L2
⊥(T1) → L2

⊥(T1) is a Lipschitz family of diagonal operators of order −M − 1. Furthermore, for any
n1, n2 ∈ N, n1 + n2 ≤ M + 1, the operator 〈D〉n1RM (Qkdv

−1 ;ω)〈D〉n2 is Lip(γ)-tame with a tame constant
satisfying M〈D〉n1RM (Qkdv

−1 ;ω)〈D〉n2 (s) ≤ C(s,M) for any s ≥ s0 and C(s,M) > 0.

Proof. The claimed statements follow by Lemma 3.8.

Lemma 6.3. For any M ∈ N, the Hamiltonian operator L
(0)
ω , acting on L2

⊥(T1), defined in (6.5), admits
an expansion of the form

L(0)
ω := ω · ∂ϕ −Π⊥

(
a
(0)
3 ∂3

x + 2(a
(0)
3 )x∂

2
x + a

(0)
1 ∂x +Op(r

(0)
0 ) +Qkdv

−1 (D;ω)
)
+R

(0)
M (ῐδ(ϕ);ω) (6.9)

where a
(0)
3 := a

(0)
3 (ϕ, x;ω), a

(0)
1 := a

(0)
1 (ϕ, x;ω) are real valued functions satisfying for any s ≥ s0

‖a
(0)
3 + 1‖Lip(γ)s .s,M ε(1 + ‖ι‖

Lip(γ)
s+σM

) , ‖a
(0)
1 ‖Lip(γ)s .s,M ε+ ‖ι‖

Lip(γ)
s+σM

(6.10)

for some σM > 0. The pseudo-differential symbol r
(0)
0 := r

(0)
0 (ϕ, x, ξ;ω) has an expansion in homogeneous

components

r
(0)
0 (ϕ, x, ξ;ω) =

M∑

k=0

a
(0)
−k(ϕ, x;ω)(i2πξ)

−kχ0(ξ) (6.11)

(with χ0 defined in (2.18)) where the coefficients a
(0)
−k := a

(0)
−k(ϕ, x;ω) satisfy

sup
k=0,...,M

‖a
(0)
−k‖

Lip(γ)
s .s,M ε+ ‖ι‖

Lip(γ)
s+σM

, ∀s ≥ s0 , (6.12)

the remainder is defined by

R
(0)
M (ῐδ(ϕ);ω) := −RM (ῐδ(ϕ); ν(ω); ∂xd⊥∇wR

kdv)− εRM (ῐδ(ϕ); ν(ω); ∂xd⊥∇wP) (6.13)

and the latter two remainder terms are given by (3.44) and (3.32) with ν(ω) = (ωkdv)−1(−ω).
Let s1 ≥ s0 and let ῐ1, ῐ2 be two tori satisfying (6.1) for µ0 ≥ s1 + σM . Then, for any 0 ≤ k ≤ M + 1,

‖∆12a
(0)
3 ‖s1 .s1,M ε‖ι1 − ι2‖s1+σM

, ‖∆12a
(0)
1−k‖s1 .s1,M ‖ι1 − ι2‖s1+σM

. (6.14)
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Proof. By the definition (6.6) of L
(0)
ω , the expansion (3.44) of ∂xd⊥∇wRkdv, the expansion (3.32) of ∂xd⊥∇wP ,

and the formula for the coefficient of ∂2
x, described in Lemma 2.6, one obtains (6.9) with

a
(0)
3 (ϕ, x;ω) := −1 + εa3(ῐδ(ϕ); ν(ω); ∂xd⊥∇wP) ,

a
(0)
1 (ϕ, x;ω) := a1(ῐδ(ϕ); ν(ω); ∂xd⊥∇wR

kdv) + εa1(ῐδ(ϕ); ν(ω); ∂xd⊥∇wP) ,

a
(0)
−k(ϕ, x;ω) := a−k(ῐδ(ϕ); ν(ω); ∂xd⊥∇wR

kdv) + εa−k(ῐδ(ϕ); ν(ω); ∂xd⊥∇wP) , k = 0, . . . ,M ,

and ν(ω) = (ωkdv)−1(−ω). By Lemma 3.7-1, the functions a1−k(x; ν(ω); ∂xd⊥∇wRkdv), 0 ≤ k ≤ M + 1,
satisfy the hypothesis of Lemma 2.23-(ii). In view of (5.10) one then infers that for any s ≥ s0

‖a1−k(ῐδ(ϕ); ν(ω); ∂xd⊥∇wR
kdv)‖Lip(γ)s .s,M ‖ι‖

Lip(γ)
s+σM

for some σM > 0. Similarly, by the first item of Lemma 3.5, the functions a3−k(ῐδ(ϕ); ν(ω); ∂xd⊥∇wP),
0 ≤ k ≤ M + 3, satisfy the hypothesis of Lemma 2.23-(i), implying that for any s ≥ s0,

‖a3−k(ῐδ(ϕ); ν(ω); ∂xd⊥∇wP)‖Lip(γ)s .s,M 1 + ‖ι‖
Lip(γ)
s+σM

for some σM > 0, proving (6.10), (6.12). The estimates (6.14) follow by similar arguments.

We remark that in the finitely many steps of our reduction procedure, described in this section, the loss
of derivatives σM = σM (τ, S+) > 0 might have to be increased, but the notation will not be changed.

6.2 Quasi-periodic reparametrization of time

We conjugate the operator Lω (cf. (6.5)) by the change of variable induced by the quasi-periodic reparametriza-
tion of time

ϑ = ϕ+ α(1)(ϕ)ω or equivalently ϕ = ϑ+ ᾰ(1)(ϑ)ω

where α(1) : TS+ → R, is a small, real valued function chosen below (cf. (6.17)). Denote by

(Φ(1)h)(ϕ, x) := h(ϕ+ α(1)(ϕ)ω, x) , ((Φ(1))−1h)(ϑ, x) := h(ϑ+ ᾰ(1)(ϑ)ω, x) , (6.15)

the induced diffeomorphisms on functions. The goal is to achieve that the operator L
(1)
ω , defined in (6.20),

is of the form (6.21), so that its highest order coefficient a
(1)
3 satisfies (6.23). The latter property will allow

us in Section 6.3 to conjugate L
(1)
ω to an operator with constant highest order coefficient (cf. (6.40)).

Since by (6.10), the coefficient a
(0)
3 satisfies a

(0)
3 = −1+O(ε), the expression (a

(0)
3 (ϕ, x))

1
3 is well defined

where (x)
1
3 denotes the branch of the third root of x ∈ (−∞, 0), determined by (−1)

1
3 = −1.

Lemma 6.4. Let m3 be the constant

m3(ω) :=
1

(2π)|S+|

∫

T
S+

( ∫

T1

dx

(a
(0)
3 (ϑ, x;ω))

1
3

)−3

dϑ , (6.16)

and define, for ω ∈ DC(γ, τ), the function

ᾰ(1)(ϑ;ω) := (ω · ∂ϕ)
−1

[ 1

m3

( ∫

T1

dx

(a
(0)
3 (ϑ, x;ω))

1
3

)−3

− 1
]
. (6.17)

Then for any M ∈ N, there exists a constant σM > 0 so that the following holds:
(i) The constant m3 satisfies

|m3 + 1|Lip(γ) .M ε (6.18)

and for any s ≥ s0, α
(1), ᾰ(1) satisfy

‖α(1)‖Lip(γ)s , ‖ᾰ(1)‖Lip(γ)s .s,M εγ−1(1 + ‖ι‖
Lip(γ)
s+σM

) . (6.19)
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(ii) The Hamiltonian operator

L(1)
ω :=

1

ρ
Φ(1)Lω (Φ(1))−1 , ρ(ϑ) := Φ(1)(1 + ω · ∂ϑᾰ

(1)) = 1 + Φ(1)(ω · ∂ϑᾰ
(1)) , (6.20)

admits an expansion of the form

L(1)
ω = ω · ∂ϑ −

(
a
(1)
3 ∂3

x + 2(a
(1)
3 )x∂

2
x + a

(1)
1 ∂x +Op(r

(1)
0 ) +Qkdv

−1 (D;ω)
)
+R

(1)
M (6.21)

where the coefficients a
(1)
3 := a

(1)
3 (ϑ, x;ω), a

(1)
1 := a

(1)
1 (ϑ, x;ω) are real valued and satisfy

‖a
(1)
3 + 1‖Lip(γ)s .s,M ε(1 + ‖ι‖s+σM

), ‖a
(1)
1 ‖Lip(γ)s .s,M ε+ ‖ι‖

Lip(γ)
s+σM

, ∀s ≥ s0 , (6.22)

and ∫

T1

dx

(a
(1)
3 (ϑ, x;ω))

1
3

= m
− 1

3
3 , ∀ϑ ∈ T

S+ . (6.23)

The function r
(1)
0 ≡ r

(1)
0 (ϑ, x, ξ;ω) is a pseudo-differential symbol in S0 and admits an expansion of the form

r
(1)
0 (ϑ, x, ξ;ω) =

M∑

k=0

a
(1)
−k(ϑ, x;ω)(i2πξ)

−kχ0(ξ) (6.24)

where for any 0 ≤ k ≤ M , s ≥ s0,

‖a
(1)
−k‖

Lip(γ)
s .s,M ε+ ‖ι‖

Lip(γ)
s+σM

. (6.25)

Furthermore, the function ρ appearing in (6.20) satisfies

‖ρ− 1‖Lip(γ)s , ‖ρ−1 − 1‖Lip(γ)s .s,M ε+ ‖ι‖
Lip(γ)
s+σM

. (6.26)

Let s1 ≥ s0 and let ι1, ι2 be two tori satisfying (6.1) with µ0 ≥ s1 + σM . Then

|∆12m3|, ‖∆12α
(1)‖s1 , ‖∆12ᾰ

(1)‖s1 , ‖∆12a
(1)
1 ‖s1 , ‖∆12ρ

±1‖s1 .s1,M ‖ι1 − ι2‖s1+σM
,

‖∆12a
(1)
−k‖s1 .s1,M ‖ι1 − ι2‖s1+σM

, ∀k = 0, . . . ,M .
(6.27)

(iii) Let S > sM where sM is defined in (2.54). Then the maps (Φ(1))±1 are Lip(γ)-1-tame operators with a
tame constant satisfying

M(Φ(1))±1(s) .S,M 1 + ‖ι‖
Lip(γ)
s+σM

, ∀s0 + 1 ≤ s ≤ S . (6.28)

For any given λ0 ∈ N there exists a constant σM (λ0) > 0 so that for any m ∈ S+, λ, n1, n2 ∈ N with λ ≤ λ0

and n1 +n2 + λ0 ≤ M +1, the operator ∂λ
ϕm

〈D〉n1R
(1)
M 〈D〉n2 is Lip(γ)-tame with a tame constant satisfying

M
∂λ
ϕm

〈D〉n1R
(1)
M

〈D〉n2
(s) .S,M ε+ ‖ι‖

Lip(γ)
s+σM (λ0)

, ∀sM ≤ s ≤ S . (6.29)

If in addition s1 ≥ sM and ῐ1, ῐ2 are two tori satisfying (6.1) with µ0 ≥ s1 + σM (λ0), then

‖∂λ
ϕm

〈D〉n1∆12R
(1)
M 〈D〉n2‖B(Hs1 ) .s1,M,λ0 ‖ι1 − ι2‖s1+σM (λ0) . (6.30)

Proof. Writing Π⊥ as Id + (Π⊥ − Id) the expression (6.9) for L
(0)
ω becomes

L(0)
ω = ω · ∂ϕ −

(
a
(0)
3 ∂3

x + 2(a
(0)
3 )x∂

2
x + a

(0)
1 ∂x +Op(r

(0)
0 ) +Qkdv

−1 (D;ω)
)
+R

(I)
M (ῐδ(ϕ);ω) +R

(0)
M (ῐδ(ϕ);ω)

where using that (Id−Π⊥)∂
3
xh = 0 for any h ∈ Hs

⊥, the operator R
(I)
M ≡ R

(I)
M (ῐδ(ϕ);ω) can be written as

R
(I)
M = (Id−Π⊥)

(
(a

(0)
3 + 1)∂3

x + 2(a
(0)
3 )x∂

2
x + a

(0)
1 ∂x +Op(r

(0)
0 )

)
. (6.31)
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Since (Id−Π⊥)h =
∑

j∈S

(
h, e−i2πjx

)
L2

x

ei2πjx for any h in L2
x, R

(I)
M is a finite rank operator of the form (6.3)

with functions gj , χj ∈ Hs
⊥ satisfying (6.4) (use (6.10), (6.12)).

The estimate (6.28) follows by Lemma 2.1-(iii) and (6.19). Note that

Φ(1) ◦ ω · ∂ϕ ◦ (Φ(1))−1 = ρ(ϑ)ω · ∂ϑ , ρ := Φ(1)(1 + ω · ∂ϕᾰ
(1)) ,

and that any Fourier multiplier g(D) is left unchanged under conjugation, i.e. Φ(1)g(D)(Φ(1))−1 = g(D).
Using (6.5) and (6.9), we obtain (6.21) where

a
(1)
3 := Φ(1)

( a
(0)
3

1 + ω · ∂ϕᾰ(1)

)
, (6.32)

a
(1)
1 := 1

ρΦ
(1)(a

(0)
1 ), r

(1)
0 is of the form (6.24) with a

(1)
−k := 1

ρΦ
(1)(a

(0)
−k), and the remainder R

(1)
M is given by

R
(1)
M =

1

ρ
Φ(1)R

(I)
M (Φ(1))−1 +

1

ρ
Φ(1)R

(0)
M (ῐδ(ϕ))(Φ

(1))−1 −
1

ρ
Φ(1)R(ϕ)(Φ(1))−1 . (6.33)

We choose ᾰ(1) such that (6.23) holds, obtaining (6.16), (6.17). We now verify the estimates, stated in items
(i), (ii). Recall that we assume throughout that (6.1) holds. The estimates (6.18)-(6.19) follow by (6.16),
(6.17), (6.10), and by using Lemma 2.1-(iii), Lemma 2.2. The estimate (6.26) on ρ follows by the definition
(6.20), (6.17), and by applying Lemma 2.1-(iii), Lemma 2.2. Hence, by Lemma 2.1 and the estimates (6.10),
(6.12), and (6.26), we deduce (6.25). The estimates (6.27) are obtained by similar arguments. Let us now
prove item (iii). The estimate (6.28) follows from Lemma 2.1-(iii). Since (Φ(1))±1 commutes with every
Fourier multiplier, we get

1

ρ
〈D〉n1Φ(1)R

(0)
M (ῐδ(ϕ))(Φ

(1))−1〈D〉n2 =
1

ρ
〈D〉n1R

(0)
M (ῐδ,α(ϕ))〈D〉n2 (6.34)

where ῐδ,α(ϕ) := ῐδ(ϕ + α(1)(ϕ)ω). By Lemma 2.1, (5.10), and (6.19) one has ‖ιδ,α‖
Lip(γ)
s .s ‖ι‖

Lip(γ)
s+σM

.
Moreover, by (6.3), we have

1

ρ
Φ(1)R(ϕ)(Φ(1))−1h =

∑
j∈S+

(
h , (Φ(1)gj)

)
L2

x

1

ρ
(Φ(1)χj) , ∀h ∈ L2

⊥ , (6.35)

and by (6.31), the conjugated operator 1
ρΦ

(1)R
(I)
M (Φ(1))−1h has the same form. The estimates (6.29) then

follow by (6.34), (6.13), and Lemmata 3.5, 3.7, 2.24 to estimate the first term on the right hand side of
(6.33) and by (6.35), (6.28), (6.4) and Lemma 2.22, to estimate the second and third term in (6.33). The
estimates (6.30) are proved by similar arguments.

6.3 Elimination of the (ϕ, x)-dependence of the highest order coefficient

The goal of this section is to remove the (ϕ, x)-dependence of the coefficient a
(1)
3 (ϕ, x) of the Hamiltonian

operator L
(1)
ω , given by (6.20)-(6.21), where we rename ϑ with ϕ. Actually this step will at the same time also

remove the coefficient of ∂2
x. We achieve these goals by conjugating the operator L

(1)
ω by the flow Φ(2)(τ, ϕ),

acting on L2
⊥(T1), defined by the transport equation

∂τΦ
(2)(τ, ϕ) = Π⊥∂x

(
b(2)(τ, ϕ, x)Φ(2)(τ, ϕ)

)
, Φ(2)(0, ϕ) = Id⊥ , (6.36)

for a real valued function

b(2) ≡ b(2)(τ, ϕ, x) :=
β(2)(ϕ, x)

1 + τβ
(2)
x (ϕ, x)

,

where β(2)(ϕ, x) is a small, real valued periodic function chosen in (6.38) below. The flow Φ(2)(τ, ϕ) is
well defined for 0 ≤ τ ≤ 1 and satisfies the tame estimates provided in Lemma 2.25. Since the vector
field Π⊥∂x

(
b(2)h

)
, h ∈ Hs

⊥(T1), is Hamiltonian (it is generated by the Hamiltonian 1
2

∫
T1

b(2)h2 dx), each
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Φ(2)(τ, ϕ), 0 ≤ τ ≤ 1, ϕ ∈ TS+ is a symplectic linear isomorphism of Hs
⊥(T1). Therefore the time one

conjugated operator

L(2)
ω := Φ(2)L(1)

ω

(
Φ(2)

)−1
, Φ(2) := Φ(2)(1, ϕ) , (6.37)

is a Hamiltonian operator acting on Hs
⊥(T1).

Given the (τ, ϕ)-dependent family of diffeomorphisms of the torus T1, x 7→ y = x+τβ(2)(ϕ, x), we denote

the family of its inverses by y 7→ x = y + β̆(2)(τ, ϕ, y).

Lemma 6.5. Let β̆(2)(ϕ, y;ω) ≡ β̆(2)(1, ϕ, y;ω) be the real valued, periodic function

β̆(2)(ϕ, y;ω) := ∂−1
y

( m
1/3
3

(a
(1)
3 (ϕ, y;ω))1/3

− 1
)

(6.38)

(which is well defined by (6.23)) and let M ∈ N. Then there exists σM > 0 so that the following holds:
(i) For any s ≥ s0

‖β(2)‖Lip(γ)s , ‖β̆(2)‖Lip(γ)s .s,M ε
(
1 + ‖ι‖

Lip(γ)
s+σM

)
. (6.39)

(ii) The Hamiltonian operator L
(2)
ω in (6.37) admits an expansion of the form

L(2)
ω = ω · ∂ϕ −

(
m3∂

3
x + a

(2)
1 ∂x +Op(r

(2)
0 ) +Qkdv

−1 (D;ω)
)
+R

(2)
M (6.40)

where a
(2)
1 := a

(2)
1 (ϕ, x;ω) is a real valued, periodic function, satisfying

‖a
(2)
1 ‖Lip(γ)s .s,M ε+ ‖ι‖

Lip(γ)
s+σM

. (6.41)

The pseudo-differential symbol r
(2)
0 ≡ r

(2)
0 (ϕ, x, ξ;ω) is in S0 and satisfies, for any s ≥ s0, the estimate

|Op(r
(2)
0 )|

Lip(γ)
0,s,0 .s,M ε+ ‖ι‖

Lip(γ)
s+σM

. (6.42)

Let s1 ≥ s0 and let ῐ1, ῐ2 be two tori satisfying (6.1) for µ0 ≥ s1 + σM . Then, for any k = 0, . . . ,M ,

‖∆12β
(2)‖s1 , ‖∆12β̆

(2)‖s1 , ‖∆12a
(2)
1 ‖s1 , |∆12Op(r

(2)
0 )|0,s1,0 .s1,M ‖ι1 − ι2‖s1+σM

. (6.43)

(iii) Let S > sM . Then the symplectic maps (Φ(2))±1 are Lip(γ)-1 tame operators with a tame constant
satisfying

M(Φ(2))±1(s) .S,M 1 + ‖ι‖
Lip(γ)
s+σM

, ∀s0 + 1 ≤ s ≤ S . (6.44)

Let λ0 ∈ N. Then there exists a constant σM (λ0) > 0 such that, for any λ, n1, n2 ∈ N with λ ≤ λ0 and

n1 + n2 + λ0 ≤ M − 1, the operator ∂λ
ϕm

〈D〉n1R
(2)
M 〈D〉n2 , m ∈ S+, is Lip(γ)-tame with a tame constant

satisfying

M
∂λ
ϕm

〈D〉n1R
(2)
M

〈D〉n2
(s) .S,M,λ0 ε+ ‖ι‖

Lip(γ)
s+σM (λ0)

, ∀sM ≤ s ≤ S . (6.45)

Let s1 ≥ sM and ι1, ι2 be tori satisfying (6.1) with µ0 ≥ s1 + σM (λ0). Then

‖∂λ
ϕm

〈D〉n1∆12R
(2)
M 〈D〉n2‖B(Hs1 ) .s1,M,λ0 ‖ι1 − ι2‖s1+σM (λ0) . (6.46)

Proof. The proof of this lemma uses the Egorov type results proved in Section 2.5. According to (6.21),
(6.24), the conjugated operator is given by

L(2)
ω = Φ(2)L(1)

ω (Φ(2))−1 (6.47)

= ω · ∂ϕ − Φ(2)a
(1)
3 ∂3

x(Φ
(2))−1 − 2Φ(2)(a

(1)
3 )x∂

2
x(Φ

(2))−1 − Φ(2)a
(1)
1 ∂x(Φ

(2))−1

−
M∑

k=0

Φ(2)a
(1)
−k∂

−k
x (Φ(2))−1 − Φ(2)Qkdv

−1 (D;ω)(Φ(2))−1 +Φ(2)R
(1)
M (Φ(2))−1 +Φ(2)

(
ω · ∂ϕ (Φ(2))−1

)
.
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By (6.38), (6.18), (6.22) and Lemmata 2.1, 2.2, the estimate (6.39) follows. Using the ansatz (6.1) with µ0 > 0

large enough, the estimate (6.39) implies that ‖β(2)‖
Lip(γ)
s0+σM (λ0)

.M,λ0 εγ−2, where the constant σM (λ0) is

the constant appearing in the smallness conditions (2.78), (2.104), (2.106). Now we apply Proposition 2.28
to expand the terms

Φ(2)a
(1)
3 ∂3

x(Φ
(2))−1 , 2Φ(2)(a

(1)
3 )x∂

2
x(Φ

(2))−1 , Φ(2)a
(1)
1−k∂

1−k
x (Φ(2))−1 , 0 ≤ k ≤ M + 1 ,

Lemma 2.32 to expand the term Φ(2)Qkdv
−1 (D;ω)(Φ(2))−1, and Proposition 2.31 to expand Φ(2)

(
ω·∂ϕ (Φ(2))−1

)
.

Using also the estimates (6.10), (6.12), (6.39) one deduces (6.41), (6.42). By the choice of β̆(2) in (6.38) and

Proposition 2.28, the coefficient of the highest order term of Φ(2)a
(1)
3 ∂3

x(Φ
(2))−1 (and of L

(2)
ω ) is given by

(
[1 + β̆(2)

y (ϕ, y)]3a
(1)
3 (ϕ, y)

)
|y=x+β(2)(ϕ,x) = m3

which is constant in (ϕ, x) by (6.23). Since Φ(2) is symplectic, the operator L
(2)
ω is Hamiltonian and hence

by Lemma 2.6 the second order term equals 2(m3)x∂
2
x which vanishes since m3 is constant. The remainder

Φ(2)R
(1)
M (Φ(2))−1 can be estimated by arguing as at the end of the proof of Proposition 2.28 (estimate of

RN (τ, ϕ)), using Lemma 2.25 to estimate Φ(2), (Φ(2))−1, the estimate (6.29) for R
(1)
M , the estimate (6.39) of

β(2), β̆(2), and the ansatz (6.1) with µ0 large enough. The estimates (6.44) follow by (2.72) and (6.39). The
estimates (6.43), (6.46) are derived by similar arguments.

6.4 Elimination of the x-dependence of the first order coefficient

The goal of this section is to remove the x-dependence of the coefficient a
(2)
1 (ϕ, x) of the Hamiltonian operator

L
(2)
ω in (6.37), (6.40). We conjugate the operator L

(2)
ω by the change of variable induced by the flow Φ(3)(τ, ϕ),

acting on L2
⊥(T1), defined by

∂τΦ
(3)(τ, ϕ) = Π⊥

(
b(3)(ϕ, x)∂−1

x Φ(3)(τ, ϕ)
)
, Φ(3)(0) = Id⊥ , (6.48)

where b(3)(ϕ, x) is a small, real valued, periodic function chosen in (6.50) below. Since the vector field
Π⊥

(
b(3)∂−1

x h
)
, h ∈ Hs

⊥(T1), is Hamiltonian (it is generated by the Hamiltonian 1
2

∫
T1

b(3)(∂−1
x h)2 dx), each

Φ(3)(τ, ϕ) is a symplectic linear isomorphism of Hs
⊥ for any 0 ≤ τ ≤ 1 and ϕ ∈ TS+ , and the time one

conjugated operator

L(3)
ω := Φ(3)L(2)

ω

(
Φ(3)

)−1
, Φ(3) := Φ(3)(1) , (6.49)

is Hamiltonian.

Lemma 6.6. Let b(3)(ϕ, x;ω) be the real valued periodic function

b(3)(ϕ, x;ω) :=
1

3m3
∂−1
x

(
a
(2)
1 (ϕ, x;ω)− 〈a

(2)
1 〉x(ϕ;ω)

)
, 〈a

(2)
1 〉x(ϕ;ω) :=

∫

T1

a
(2)
1 (ϕ, x;ω) dx (6.50)

and let M ∈ N. Then there exists σM > 0 with the following properties:
(i) For any s ≥ s0,

‖b(3)‖Lip(γ)s .s,M ε+ ‖ι‖
Lip(γ)
s+σM

(6.51)

and the symplectic maps (Φ(3))±1 are Lip(γ)-tame and satisfy

M(Φ(3))±1(s) .s,M 1 + ‖ι‖
Lip(γ)
s+σM

. (6.52)

(ii) The Hamiltonian operator in (6.49) admits an expansion of the form

L(3)
ω = ω · ∂ϕ −

(
m3∂

3
x + a

(3)
1 (ϕ)∂x +Op(r

(3)
0 ) +Qkdv

−1 (D;ω)
)
+R

(3)
M (6.53)

where the real valued, periodic function a
(3)
1 (ϕ;ω) := 〈a

(2)
1 〉x(ϕ;ω) satisfies

‖a
(3)
1 ‖Lip(γ)s .s,M ε+ ‖ι‖

Lip(γ)
s+σM

, (6.54)
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and r
(3)
0 := r

(3)
0 (ϕ, x, ξ;ω) is a pseudo-differential symbol in S0 satisfying for any s ≥ s0,

|Op(r
(3)
0 )|

Lip(γ)
0,s,0 .s,M ε+ ‖ι‖

Lip(γ)
s+σM

. (6.55)

Let s1 ≥ s0 and let ῐ1, ῐ2 be two tori satisfying (6.1) with µ0 ≥ s1 + σM . Then

‖∆12b
(3)‖s1 , ‖∆12a

(3)
1 ‖s1 .s1,M ‖ι1 − ι2‖s1+σM

, |∆12Op(r
(3)
0 )|0,s1,0 .s1,M ‖ι1 − ι2‖s1+σM

. (6.56)

(iii) Let S > sM , λ0 ∈ N. Then there exists a constant σM (λ0) > 0 so that for any m ∈ S+ and λ, n1, n2 ∈ N

with λ ≤ λ0 and n1 + n2 + λ0 ≤ M − 1, the operator 〈D〉n1∂λ
ϕm

RM
(3)〈D〉n2 , is Lip(γ)-tame with tame

constants satisfying

M
∂λ
ϕm

〈D〉n1R
(3)
M

〈D〉n2
(s) .S,M,λ0 ε+ ‖ι‖

Lip(γ)
s+σM (λ0)

, ∀sM ≤ s ≤ S . (6.57)

Let s1 ≥ sM and let ῐ1, ῐ2 be tori satisfying (6.1) with µ0 ≥ s1 + σM (λ0). Then

‖∂λ
ϕm

〈D〉n1∆12R
(3)
M 〈D〉n2‖B(Hs1 ) .s1,M,λ0 ‖ι1 − ι2‖s1+σM (λ0) . (6.58)

Proof. The estimate (6.51) follows by the definition (6.50) and (6.41), (6.18). We now provide estimates for
the flow

Φ(3)(τ) = exp
(
τΠ⊥b

(3)(ϕ, x;ω)∂−1
x

)
, ∀τ ∈ [−1, 1] .

By (2.20), Lemma 2.9, and (6.51), one infers that for any s ≥ s0, |Π⊥b
(3)∂−1

x |
Lip(γ)
−1,s,0 .s,M ε + ‖ι‖

Lip(γ)
s+σM

.
Therefore, by Lemma 2.12, there exists σM > 0 such that, if (6.1) holds with µ0 ≥ σM , then, for any s ≥ s0,

sup
τ∈[−1,1]

|Φ(3)(τ) − Id|
Lip(γ)
0,s,0 .s ε+ ‖ι‖

Lip(γ)
s+σM

. (6.59)

The latter estimate, together with Lemma 2.16, imply (6.52).
By (6.40) and using Lemma 6.2 for the operator Qkdv

−1 (D;ω), one has that

Φ(3)L(2)
ω (Φ(3))−1 = ω · ∂ϕ − Φ(3)

(
m3∂

3
x + a

(2)
1 ∂x

)
(Φ(3))−1 −Qkdv

−1 (D; ω) +R
(I)
0 +R

(3)
M

where

R
(I)
0 := −Φ(3)Op(r

(2)
0 )(Φ(3))−1 +Φ(3)

(
ω · ∂ϕ(Φ

(3))−1
)
− (Φ(3) − Id⊥)Π⊥

( M∑

k=1

ckdv−k (ω)∂
−k
x

)
(Φ(3))−1

−Π⊥

( M∑

k=1

ckdv−k (ω)∂
−k
x

)(
(Φ(3))−1 − Id⊥

)
,

R
(3)
M := Φ(3)R

(2)
M (Φ(3))−1 − (Φ(3) − Id⊥)RM (ω,Qkdv

−1 )(Φ
(3))−1 −RM (ω,Qkdv

−1 )
(
(Φ(3))−1 − Id⊥

)
.

(6.60)

Note that R
(I)
0 is a pseudo-differential operator in OPS0 (cf. Lemma 2.12). Moreover, by a Lie expansion,

recalling (6.48), one has

Φ(3)
(
m3∂

3
x + a

(2)
1 ∂x

)
(Φ(3))−1 = m3∂

3
x + a

(2)
1 ∂x + [Π⊥b

(3)∂−1
x , m3∂

3
x + a

(2)
1 ∂x]

+

∫ 1

0

(1− τ)Φ(3)(τ)
[
Π⊥b

(3)∂−1
x ,

[
Π⊥b

(3)∂−1
x ,m3∂

3
x + a

(2)
1 ∂x

]]
Φ(3)(τ)−1 dτ

= m3∂
3
x +

(
a
(2)
1 − 3m3b

(3)
x

)
∂x +R

(II)
0 ,

R
(II)
0 := −3m3b

(3)
xx −m3b

(3)
xxx∂

−1
x + [Π⊥b

(3)∂−1
x , a

(2)
1 ∂x] + [(Π⊥ − Id)b(3)∂−1

x ,m3∂
3
x]

+

∫ 1

0

(1− τ)Φ(3)(τ)
[
Π⊥b

(3)∂−1
x ,

[
Π⊥b

(3)∂−1
x ,m3∂

3
x + a

(2)
1 ∂x

]]
Φ(3)(τ)−1 dτ ∈ OPS0 .

(6.61)
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Note that R
(II)
0 is a pseudo-differential operator in OPS0 (cf. Lemma 2.12). Hence, (6.60)-(6.61) and the

choice of b(3) in (6.50) lead to the expansion (6.53) with R
(3)
M given by (6.60) and

Op(r
(3)
0 ) := −R

(I)
0 +R

(II)
0 . (6.62)

The estimate (6.54) follows by (6.22).

The estimate (6.55) on the operator Op(r
(3)
0 ) follows by the definitions (6.60), (6.61), (6.62), by applying

the estimates (6.18), (6.41), (6.42), (6.51), (6.59), (2.20), (2.21), (2.22), (2.24), (2.26) (using the ansatz (6.1)

with µ0 large enough). Next we estimate the remainder R
(3)
M , defined in (6.60). We only consider the second

term in the definition of R
(3)
M , since the estimates the first and third terms can be obtained similarly. We

recall that the operator RM (Qkdv
−1 ;ω) is ϕ-independent. For m ∈ S+ and λ, n1, n2 ∈ N with λ ≤ λ0 and

n1 + n2 + λ0 ≤ M − 2, one has

〈D〉n1∂λ
ϕm

(
(Φ(3) − Id⊥)RM (Qkdv

−1 ;ω)(Φ
(3))−1

)
〈D〉n2 (6.63)

=
∑

λ1+λ2=λ

Cλ1,λ2〈D〉n1∂λ1
ϕm

(Φ(3) − Id⊥)RM (Qkdv
−1 ;ω)∂

λ2
ϕm

(Φ(3))−1〈D〉n2

=
∑

λ1+λ2=λ

Cλ1,λ2

(
〈D〉n1∂λ1

ϕm
(Φ(3) − Id⊥)〈D〉−n1

)(
〈D〉n1RM (Qkdv

−1 ;ω)〈D〉n2

)(
〈D〉−n2∂λ2

ϕm
(Φ(3))−1〈D〉n2

)
.

By the estimates (2.21), (2.24), (6.59) and Lemma 2.16, one has

M
〈D〉n1∂

λ1
ϕm (Φ(3)−Id⊥)〈D〉−n1

(s) .s |〈D〉n1∂λ1
ϕm

(Φ(3) − Id⊥)〈D〉−n1 |
Lip(γ)
0,s,0 .s,M ε+ ‖ι‖

Lip(γ)
s+σM (λ0)

,

M
〈D〉−n2∂

λ2
ϕm (Φ(3))−1〈D〉n2

(s) .s |〈D〉−n2∂λ2
ϕm

(Φ(3))−1〈D〉n2 |
Lip(γ)
0,s,0 .s,M 1 + ‖ι‖

Lip(γ)
s+σM (λ0)

,

and therefore, by Lemmata 2.14, 6.8 and using (6.1), the operator (6.63) satisfies (6.57). The estimates
(6.56), (6.58) follow by similar arguments.

6.5 Elimination of the ϕ-dependence of the first order term

The goal of this section is to remove the ϕ-dependence of the coefficient a
(3)
1 (ϕ) of the Hamiltonian operator

L
(3)
ω in (6.49), (6.53). We conjugate the operator L

(3)
ω by the variable transformation Φ(4) ≡ Φ(4)(ϕ),

(Φ(4)w)(ϕ, x) = w(ϕ, x + b(4)(ϕ)) , ((Φ(4))−1h)(ϕ, x) = h(ϕ, x − b(4)(ϕ)) ,

where b(4)(ϕ) is a small, real valued, periodic function chosen in (6.65) below. Note that Φ(4) is the time-
one flow of the transport equation ∂τw = b(4)(ϕ)∂xw. Each Φ(4)(ϕ) is a symplectic linear isomorphism of
Hs

⊥(T1), and the conjugated operator

L(4)
ω := Φ(4)L(3)

ω

(
Φ(4)

)−1
(6.64)

is Hamiltonian.

Lemma 6.7. Assume that ω ∈ DC(γ, τ). Let b(4)(ϕ) be the real valued, periodic function

b(4)(ϕ;ω) := −(ω · ∂ϕ)
−1

(
a
(3)
1 (ϕ;ω)−m1

)
, m1 :=

1

(2π)|S+|

∫

T
S+

a
(3)
1 (ϕ;ω) dϕ (6.65)

and let M ∈ N. Then there exists σM > 0 with the following properties:
(i) The constant m1 and the function b(4) satisfy

|m1|
Lip(γ) .M εγ−2 , ‖b(4)‖Lip(γ)s .s,M γ−1

(
ε+ ‖ι‖

Lip(γ)
s+σM

) , ∀s ≥ s0 . (6.66)

(ii) The Hamiltonian operator in (6.64) admits an expansion of the form

L(4)
ω = ω · ∂ϕ −

(
m3∂

3
x +m1∂x +Op(r

(4)
0 ) +Qkdv

−1 (D;ω)
)
+R

(4)
M (6.67)
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where r
(4)
0 := r

(4)
0 (ϕ, x, ξ;ω) is a pseudo-differential symbol in S0 satisfying for any s ≥ s0,

|Op(r
(4)
0 )|

Lip(γ)
0,s,0 .s,M ε+ ‖ι‖

Lip(γ)
s+σM

, ∀s ≥ s0 . (6.68)

Let s1 ≥ s0 and let ῐ1, ῐ2 be two tori satisfying (6.1) with µ0 ≥ s1 + σM . Then

|∆12m1| , ‖∆12b
(4)‖s1 .s1,M ‖ι1 − ι2‖s1+σM

, |∆12Op(r
(4)
0 )|0,s1,0 .s1,M ‖ι1 − ι2‖s1+σM

. (6.69)

(iii) Let S > sM . Then the maps (Φ(4))±1 are Lip(γ)-tame operators with a tame constant satisfying

M(Φ(4))±1(s) .S,M 1 + ‖ι‖
Lip(γ)
s+σM

, ∀s0 ≤ s ≤ S . (6.70)

Let λ0 ∈ N. Then there exists a constant σM (λ0) > 0 so that for any λ, n1, n2 ∈ N with λ ≤ λ0 and

n1 + n2 + 2λ0 ≤ M − 3, the operator ∂λ
ϕm

〈D〉n1R
(4)
M 〈D〉n2 , m ∈ S+, is Lip(γ)-tame with a tame constant

satisfying

M
∂λ
ϕm

〈D〉n1R
(4)
M

〈D〉n2
(s) .S,M,λ0 ε+ ‖ι‖

Lip(γ)
s+σM (λ0)

, ∀sM ≤ s ≤ S . (6.71)

Let s1 ≥ sM and let ῐ1, ῐ2 be two tori satisfying (6.1) with µ0 ≥ s1 + σM (λ0). Then

‖∂λ
ϕm

〈D〉n1∆12R
(4)
M 〈D〉n2‖B(Hs1 ) .s1,M,λ0 ‖ι1 − ι2‖s1+σM (λ0) . (6.72)

Proof. The estimates (6.66) are direct consequences of (6.54) and of the ansatz (6.1). Note that

Φ(4) ◦ ω · ∂ϕ ◦ (Φ(4))−1 = ω · ∂ϕ −
(
ω · ∂ϕb

(4)
)
∂x

and for any pseudo-differential operator Op(a(ϕ, x, ξ)) a direct calculation shows that

Φ(4)Op(a(ϕ, x, ξ))
(
Φ(4)

)−1
= Op(a(ϕ, x+ b(4)(ϕ), ξ)) ,

and hence, by recalling (6.53) and by the definition (6.65), one obtains (6.67) with

Op
(
r
(4)
0 (ϕ, x, ξ)

)
= Op

(
r
(3)
0 (ϕ, x+ b(4)(ϕ), ξ)

)
, R

(4)
M := Φ(4)R

(3)
M (Φ(4))−1 . (6.73)

The estimates (6.68) follow by Lemma 2.1, using (6.66), (6.55) and the ansatz (6.1). The estimates (6.71) for

the operator R
(4)
M follow by (6.57), (6.66) arguing as in the proof of the estimates of the remainder RN (τ, ϕ)

(with β given by b(4)) at the end of the proof of Proposition 2.28. The estimates (6.70) follow by Lemma
2.1 and (6.66). The estimates (6.69), (6.72) follow by similar arguments.

7 KAM reduction of the linearized operator

The goal of this section is to complete the diagonalization of the Hamiltonian operator Lω, started in Section

6. It remains to reduce the Hamiltonian operator L
(4)
ω in (6.67). We are going to apply the KAM-reducibility

scheme described in [10].

Recall that L
(4)
ω is an operator acting on Hs

⊥. It is convenient to rename it as

L0 := ω · ∂ϕ + iD0 + R0 (7.1)

where ω ∈ DC(γ, τ) (cf. (4.4)) and in view of (6.7), (3.9), (4.3)

D0 := diagj∈S⊥(µ
0
j ) , µ0

j := m3(2πj)
3 −m12πj − qj(ω) , qj(ω) := ωkdv

j

(
ν(ω), 0

)
− (2πj)3 , (7.2)

R0 := −Op(r
(4)
0 ) +R

(4)
M . (7.3)

Note that µ0
−j = −µ0

j for any j ∈ S⊥. By (3.61) we have

sup
j∈S⊥

|j||qj |
sup, sup

j∈S⊥

|j||qj |
lip . 1 , (7.4)
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and, by (6.18), (6.66) and εγ−3 ≤ 1,

|µ0
j − µ0

j′ |
lip .M |j3 − j′3| , ∀j, j′ ∈ S

⊥ . (7.5)

The operator R0 satisfies the tame estimates of Lemma 7.1 below. We first fix the constants

b := [a] + 2 ∈ N , a := 3τ1 + 1 , τ1 := 2τ + 1 ,

µ(b) := s0 + b+ σM + σM (b) + 1 , M := 2(s0 + b) + 4 ,
(7.6)

where the constants σM , σM (b) are the ones introduced in Lemma 6.7 and where M is related to the order

of smoothing of the remainder R
(4)
M in (6.67) (cf. (6.71)). Note that M only depends on the number of

frequencies |S+| and the diophantine constant τ .

Lemma 7.1. Let b and M defined in (7.6) and S > sM with sM given by (2.54).
(i) The operators R0, [R0, ∂x], ∂s0

ϕm
[R0, ∂x], ∂s0+b

ϕm
R0, ∂s0+b

ϕm
[R0, ∂x], m ∈ S+, are Lip(γ)-tame with tame

constants

M0(s) := max
m∈S+

{
MR0(s),M[R0,∂x](s),M∂

s0
ϕm R0

(s),M∂
s0
ϕm [R0,∂x]

(s)
}
, (7.7)

M0(s, b) := max
m∈S+

{
M

∂
s0+b

ϕm R0
(s),M

∂
s0+b

ϕm [R0,∂x]
(s)

}
, (7.8)

satisfying, for any sM ≤ s ≤ S,

M0(s, b) := max{M0(s),M0(s, b)} .S ε+ ‖ι‖
Lip(γ)
s+µ(b) . (7.9)

Assuming that the ansatz (6.1) holds with µ0 ≥ sM + µ(b), the latter estimate yields M0(sM , b) .S εγ−2.
(ii) For any two tori ῐ1, ῐ2 satisfying the ansatz (6.1), one has for any m ∈ S+ and any λ ∈ N with λ ≤ s0+b

‖∂λ
ϕm

∆12R0‖B(HsM ), ‖∂
λ
ϕm

[∆12R0, ∂x]‖B(HsM ) . ‖ι1 − ι2‖sM+µ(b) . (7.10)

Proof. (i) Since the assertions for the various operators are proved in the same way, we restrict ourselves
to show that there are tame constants M

∂
s0+b

ϕm [R0,∂x]
(s), m ∈ S+, satisfying the bound in (7.9). The two

operators Op(r
(4)
0 ) and R

(4)
M in the definition (7.3) of R0 are treated separately. By Lemma 2.16 each

operator ∂s0+b

ϕm
[Op(r

(4)
0 ), ∂x] = −Op

(
∂s0+b

ϕm
∂xr

(4)
0

)
, m ∈ S+, is Lip(γ)-tame with a tame constant satisfying,

for s0 ≤ s ≤ S,

M
∂
s0+b

ϕm [Op(r
(4)
0 ),∂x]

(s)
(2.31)

.s

∣∣∣Op
(
∂s0+b

ϕm
∂xr

(4)
0

)∣∣∣
Lip(γ)

0,s,0
.s

∣∣∣Op(r
(4)
0 )

∣∣∣
Lip(γ)

0,s+s0+b+1,0

(6.68)

.s ε+ ‖ι‖
Lip(γ)
s+s0+b+1+σM

.

(7.11)

Next we treat ∂s0+b

ϕm
[R

(4)
M , ∂x], m ∈ S+. Note that

∂s0+b

ϕm
[R

(4)
M , ∂x] = ∂s0+b

ϕm
R

(4)
M 〈D〉〈D〉−1∂x − 〈D〉−1∂x〈D〉∂s0+b

ϕm
R

(4)
M .

Since there is a tame constant M〈D〉−1∂x
(s) bounded by 1 it then follows by (6.71) that, for any sM ≤ s ≤ S,

M
∂
s0+b

ϕm [R
(4)
M

,∂x]
(s) .S ε+ ‖ι‖

Lip(γ)
s+σM (b) . (7.12)

Combining (7.11), (7.12) and recalling the definition of µ(b) in (7.6) one obtains tame constantsM
∂
s0+b

ϕm [R0,∂x]
(s),

m ∈ S+, satisfying the claimed bound.
(ii) The estimate (7.10) follows by similar arguments using (6.69) and (6.72) with s1 = sM .

We perform the almost reducibility scheme for L0 along the scale

N−1 := 1 , Nν := Nχν

0 , ν ≥ 0 , χ := 3/2 , (7.13)

requiring at each induction step the second order Melnikov non-resonance conditions (7.18).
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Theorem 7.2. (Almost reducibility) There exists τ := τ (τ, S+) > 0 so that for any S > sM , there is
N0 := N0(S, b) ∈ N with the property that if

N τ
0 M0(sM , b)γ−1 ≤ 1 , (7.14)

then the following holds for any ν ∈ N:

(S1)ν There exists a Hamiltonian operator Lν , acting on Hs
⊥ and defined for ω ∈ Ω

γ
ν , of the form

Lν := ω · ∂ϕ + iDν + Rν , Dν := diagj∈S⊥µ
ν
j , µν

j ∈ R , (7.15)

where for any j ∈ S
⊥, µν

j is a Lip(γ)-function of the form

µν
j (ω) := µ0

j(ω) + rνj (ω) , (7.16)

with
µν
−j = −µν

j , |rνj |
Lip(γ) ≤ C(S)εγ−2 , (7.17)

and where µ
(0)
j is defined in (7.2). If ν = 0, Ωγν is defined to be the set Ωγ0 := DC(γ, τ) , and if ν ≥ 1,

Ω
γ
ν := Ω

γ
ν (ι) :=

{
ω ∈ Ω

γ
ν−1 : |ω · ℓ+ µν−1

j − µν−1
j′ | ≥ γ

|j3 − j′3|

〈ℓ〉τ
, ∀|ℓ| ≤ Nν−1, j, j

′ ∈ S
⊥
}
. (7.18)

The operators Rν and 〈∂ϕ〉bRν are Lip(γ)-modulo-tame with modulo-tame constants

M♯
ν(s) := M

♯
Rν
(s) , M♯

ν(s, b) := M
♯
〈∂ϕ〉bRν

(s) , (7.19)

satisfying, for some C∗(sM , b) > 0, for all s ∈ [sM , S],

M♯
ν(s) ≤ C∗(sM , b)M0(s, b)N

−a

ν−1 , M♯
ν(s, b) ≤ C∗(sM , b)M0(s, b)Nν−1 . (7.20)

Moreover, if ν ≥ 1 and ω ∈ Ω
γ
ν , there exists a Hamiltonian operator Ψν−1 acting on Hs

⊥, so that the
corresponding symplectic time one flow

Φν−1 := exp(Ψν−1) (7.21)

conjugates Lν−1 to
Lν = Φν−1Lν−1Φ

−1
ν−1 . (7.22)

The operators Ψν−1 and 〈∂ϕ〉
bΨν−1 are Lip(γ)-modulo-tame with a modulo-tame constant satisfying,

for all s ∈ [sM , S], (with τ1, a defined in (7.6))

M
♯
Ψν−1

(s) ≤
C(sM , b)

γ
N τ1

ν−1N
−a

ν−2M0(s, b) , M
♯
〈∂ϕ〉bΨν−1

(s) ≤
C(sM , b)

γ
N τ1

ν−1Nν−2M0(s, b) . (7.23)

(S2)ν For any j ∈ S⊥, there exists a Lipschitz extension µ̃ν
j : Ω → R of µν

j : Ωγν → R, where µ̃0
j = m3(2πj)

3 −

m̃12πj−qj(ω) (cf. (7.2)) and m̃1 : Ω → R is an extension of m1 satisfying |m̃1|Lip(γ) . εγ−2; if ν ≥ 1,

|µ̃ν
j − µ̃ν−1

j |Lip(γ) . M
♯
ν−1(sM ) . M0(sM , b)N−a

ν−1 .

(S3)ν Let ῐ1, ῐ2 be two tori satisfying (6.1) with µ0 ≥ sM + µ(b). Then, for all ω ∈ Ω
γ1
ν (ι1) ∩ Ω

γ2
ν (ι2) with

γ1, γ2 ∈ [γ/2, 2γ], we have

‖|Rν(ι1)− Rν(ι2)|‖B(HsM ) .S N−a

ν−1‖ι1 − ι2‖sM+µ(b), (7.24)

‖|〈∂ϕ〉
b(Rν(ι1)− Rν(ι2))|‖B(HsM ) .S Nν−1‖ι1 − ι2‖sM+µ(b) . (7.25)

Moreover, if ν ≥ 1, then for any j ∈ S⊥,
∣∣(rνj (ι1)− rνj (ι2))− (rν−1

j (ι1)− rν−1
j (ι2))

∣∣ . ‖|Rν(ι1)− Rν(ι2)|‖B(HsM ) , (7.26)

|rνj (ι1)− rνj (ι2)| .S ‖ι1 − ι2‖sM+µ(b) . (7.27)
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(S4)ν Let ῐ1, ῐ2 be two tori as in (S3)ν and 0 < ρ < γ/2. Then

C(S)N τ
ν−1‖ι1 − ι2‖sM+µ(b) ≤ ρ =⇒ Ω

γ
ν(ι1) ⊆ Ω

γ−ρ
ν (ι2) .

Theorem 7.2 implies that the symplectic invertible operator

Un := Φn−1 ◦ . . . ◦ Φ0, n ≥ 1 , (7.28)

almost diagonalizes L0, meaning that (7.31) below holds. The following corollary of Theorem 7.2 and Lemma
7.1 can be deduced as in [10].

Theorem 7.3. (KAM almost-reducibility) Assume the ansatz (6.1) with µ0 ≥ sM +µ(b). Then for any
S > sM there exist N0 := N0(S, b) > 0, 0 < δ0 := δ0(S) < 1, so that if

N τ
0 εγ

−3 ≤ δ0 (7.29)

with τ := τ(τ, S+) given by Theorem 7.2, the following holds: for any n ∈ N and any ω in

Ω
γ
n+1 := Ω

γ
n+1(ι) =

n+1⋂

ν=0

Ω
γ
ν (7.30)

with Ω
γ
ν defined in (7.18), the operator Un, introduced in (7.28), is well defined and Ln := UnL0U

−1
n satisfies

Ln = ω · ∂ϕ + iDn + Rn (7.31)

where Dn and Rn are defined in (7.15) (with ν = n). The operator Rn is Lip(γ)-modulo-tame with a modulo-
tame constant

M
♯
Rn
(s) .S N−a

n−1(ε+ ‖ι‖
Lip(γ)
s+µ(b)) , ∀sM ≤ s ≤ S . (7.32)

Moreover, the operator Ln is Hamiltonian, Un, U
−1
n are symplectic, and U±1

n − Id⊥ are Lip(γ)-modulo-tame
with a modulo-tame constant satisfying

M
♯

U±1
n −Id⊥

(s) .S γ−1N τ1
0 (ε+ ‖ι‖

Lip(γ)
s+µ(b)) , ∀sM ≤ s ≤ S , (7.33)

where Id⊥ denotes the identity operator on L2
⊥(T1) and τ1 is defined in (7.6).

7.1 Proof of Theorem 7.2

Proof of (S1)0. Properties (7.15)-(7.17) for ν = 0 follow by (7.1)-(7.2) with r0j (ω) = 0. Moreover also
(7.20) for ν = 0 holds because, arguing as in Lemma 7.6 in [10], the following Lemma holds:

Lemma 7.4. M
♯
0(s), M

♯
0(s, b) .b M0(s, b) where M0(s, b) is defined in (7.9).

Proof of (S2)0. For any j ∈ S⊥, µ0
j is defined in (7.2). Note that m3(ω) and qj(ω) are already defined on

the whole parameter space Ω. By the Kirszbraun Theorem and (6.66) there is an extension m̃1 on Ω of m1

satisfying the estimate |m̃1|Lip(γ) . εγ−2. This proves (S2)0.
Proof of (S3)0. The estimates (7.24), (7.25) at ν = 0 follows arguing as in the proof of (S3)0 in [10].

Proof of (S4)0. By the definition of Ωγ0 one has Ωγ0(ι1) = DC(γ, τ) ⊆ DC(γ − ρ, τ) = Ω
γ−ρ
0 (ι2).

Iterative reductibility step. In what follows we describe how to define Ψν, Φν , Lν+1 etc., at the iterative
step. To simplify notation we drop the index ν and write + instead of ν + 1. So, e.g. we write L for Lν , L+
for Lν+1, Ψ for Ψν , etc. We conjugate L by the symplectic time one flow map

Φ := exp(Ψ) (7.34)

57



generated by a Hamiltonian vector field Ψ acting in Hs
⊥. By a Lie expansion we get

ΦLΦ−1 = Φ(ω · ∂ϕ + iD)Φ−1 +ΦRΦ−1

= ω · ∂ϕ + iD− ω · ∂ϕΨ− i[D,Ψ] + ΠNR+Π⊥
NR−

∫ 1

0

exp(τΨ)[R,Ψ]exp(−τΨ) dτ

+

∫ 1

0

(1− τ)exp(τΨ)
[
ω · ∂ϕΨ+ i[D,Ψ],Ψ

]
exp(−τΨ) dτ

(7.35)

where the projector ΠN is defined in (2.15) and Π⊥
N := Id⊥−ΠN . We want to solve the homological equation

− ω · ∂ϕΨ− i[D,Ψ] + ΠNR = [R] where [R] := diagj∈S⊥R
j
j(0) . (7.36)

The solution of (7.36) is

Ψj′

j (ℓ) :=





R
j′

j (ℓ)

i(ω · ℓ+ µj − µj′)
∀(ℓ, j, j′) 6= (0, j, j) , |ℓ| ≤ N , j, j′ ∈ S⊥

0 otherwise .

(7.37)

The denominators in (7.37) are different from zero for ω ∈ Ω
γ
ν+1 (cf. (7.18)).

Lemma 7.5. (Homological equations) (i) The solution Ψ of the homological equation (7.36), given by
(7.37) for ω ∈ Ω

γ
ν+1, is a Lip(γ)-modulo-tame operator with a modulo-tame constant satisfying

M
♯
Ψ(s) . N τ1γ−1M♯(s) , M

♯
〈∂ϕ〉bΨ(s) . N τ1γ−1M♯(s, b) , (7.38)

where τ1 := 2τ + 1. Moreover Ψ is Hamiltonian.
(ii) Let ῐ1, ῐ2 be two tori and define ∆12Ψ := Ψ(ι2) − Ψ(ι1). If γ/2 ≤ γ1, γ2 ≤ 2γ then, for any ω ∈
Ω
γ1

ν+1(ι1) ∩ Ω
γ2

ν+1(ι2),

‖|∆12Ψ|‖B(HsM ) ≤ CN2τγ−2
(
‖|R(ι2)|‖B(HsM )‖ι1 − ι2‖sM+µ(b) + ‖|∆12R|‖B(HsM )

)
, (7.39)

‖|〈∂ϕ〉
b∆12Ψ|‖B(HsM ).bN

2τγ−2
(
‖|〈∂ϕ〉

b
R(ι2)|‖B(HsM )‖ι1 − ι2‖sM+µ(b)+‖|〈∂ϕ〉

b∆12R|‖B(HsM )

)
. (7.40)

Proof. Since R is Hamiltonian, one infers from Definition 2.4 and Lemma 2.5-(iii) that the operator Ψ defined
in (7.37) is Hamiltonian as well. We now prove (7.38). Let ω ∈ Ω

γ
ν+1. By (7.18), and the definition of Ψ in

(7.37), it follows that for any (ℓ, j, j′) ∈ ZS+ × S⊥ × S⊥, with |ℓ| ≤ N , (ℓ, j, j′) 6= (0, j, j),

|Ψj′

j (ℓ)| . 〈ℓ〉τγ−1|Rj
′

j (ℓ)| (7.41)

and

∆ωΨ
j′

j (ℓ) =
∆ωR

j′

j (ℓ)

δℓjj′ (ω1)
− R

j′

j (ℓ;ω2)
∆ωδℓjj′

δℓjj′ (ω1)δℓjj′ (ω2)
, δℓjj′ (ω) := i(ω · ℓ+ µj − µj′) .

By (7.5), (7.16), (7.17) one gets |∆ωδℓjj′ | . (〈ℓ〉 + |j3 − j′3|)|ω1 − ω2|, and therefore, using also (7.18), we
deduce that

|∆ωΨ
j′

j (ℓ)| . 〈ℓ〉τγ−1|∆ωR
j′

j (ℓ)|+ 〈ℓ〉2τ+1γ−2|Rj
′

j (ℓ;ω2)||ω1 − ω2| . (7.42)

Recalling the definition (2.33), using (7.41), (7.42), and arguing as in the proof of the estimates (7.61) in [10,
Lemma 7.7], one then deduces (7.38). The estimates (7.39)-(7.40) can be obtained by arguing similarly.

By (7.35)–(7.36) one has
L+ = ΦLΦ−1 = ω · ∂ϕ + iD+ + R+

which proves (7.22) and (7.15) at the step ν + 1, with

iD+ := iD+ [R] ,

R+ = Π⊥
NR−

∫ 1

0

exp(τΨ)[R,Ψ]exp(−τΨ) dτ +

∫ 1

0

(1− τ)exp(τΨ)
[
ΠNR− [R],Ψ

]
exp(−τΨ) dτ .

(7.43)
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The operator L+ has the same form as L. More precisely, D+ is diagonal and R+ is the sum of an operator
supported on high frequencies and one which is quadratic in Ψ and R. The new normal form D+ has the
following properties:

Lemma 7.6. (New diagonal part) (i) The new normal form is

D+ = D− i[R] , D+ := diagj∈S⊥µ
+
j , µ+

j := µj + rj ∈ R , rj := −iRjj(0) , ∀j ∈ S
⊥ , (7.44)

with
µ+
−j = −µ+

j , |µ+
j − µj |

Lip(γ) = |rj|
Lip(γ) . M♯(sM ) .

(ii) For any tori ῐ1(ω), ῐ2(ω) and any ω ∈ Ω
γ1
ν (ι1) ∩ Ω

γ2
ν (ι2), one has

|rj(ι1)− rj(ι2)| . ‖|∆12R|‖B(HsM ) . (7.45)

Proof. By the definition (7.19) of M♯(sM ) and using (2.30) (with sM = s1) we have that |µ+
j − µj |Lip(γ) ≤

|Rjj(0)|
Lip(γ) . M♯(sM ). Since R(ϕ) is Hamiltonian, Lemma 2.5 implies that rj = −iRjj(0), j ∈ S⊥, are odd

in j and real. The estimate (7.45) is proved in the same way by using |∆12R
j
j(0)| ≤ C‖|∆12R|‖B(HsM ).

Induction. Assuming that the statements (S1)ν -(S4)ν are true for some ν ≥ 0 we show in this paragraph
that (S1)ν+1-(S4)ν+1 hold.

Proof of (S1)ν+1. By Lemma 7.5, for all ω ∈ Ω
γ
ν+1 the solution Ψν of the homological equation (7.36),

defined in (7.37), is well defined and, by (7.38), (7.20), satisfies the estimates (7.23) at ν + 1. In particular,
the estimate (7.23) for ν + 1, s = sM and (7.6), (7.14) imply

M
♯
Ψν

(sM ) .b N
τ1
ν N−a

ν−1γ
−1M0(sM , b) ≤ 1 . (7.46)

By Lemma 2.20 and using again Lemma 7.5 one infers that

M
♯

Φ±1
ν

(sM ) . 1 ,

M
♯

〈∂ϕ〉bΦ±1
ν

(sM ) . 1 +M〈∂ϕ〉bΨν
(sM ) . 1 +N τ1

ν γ−1M♯
ν(sM , b) ,

M
♯

Φ±1
ν

(s) . 1 +M
♯
Ψν

(s) .s 1 +N τ1
ν γ−1M♯

ν(s)

M
♯

〈∂ϕ〉bΦ±1
ν

(s) . 1 +M〈∂ϕ〉bΨν
(s) +M

♯
Ψν

(s)M〈∂ϕ〉bΨν
(sM )

(7.14),(7.20),(7.38)

. 1 +N τ1
ν γ−1M♯

ν(s, b) +N2τ1
ν Nν−1γ

−1M♯
ν(s) .

(7.47)

By Lemma 7.6, by the estimate (7.20) and Lemma 7.1, the operator Dν+1 is diagonal and its eigenvalues
µν+1
j : Ωγν+1 → R satisfy (7.17) at ν + 1.
Now we estimate the remainder Rν+1 defined in (7.43).

Lemma 7.7. (Nash-Moser iterative scheme) The operator Rν+1 is Lip(γ)-modulo-tame with a modulo-
tame constant satisfying

M
♯
ν+1(s) . N−b

ν M♯
ν(s, b) +N τ1

ν γ−1M♯
ν(s)M

♯
ν(sM ) . (7.48)

The operator 〈∂ϕ〉bRν+1 is Lip(γ)-modulo-tame with a modulo-tame constant satisfying

M
♯
ν+1(s, b) .b M

♯
ν(s, b) +N τ1

ν γ−1M♯
ν(s, b)M

♯
ν(sM ) +N τ1

ν γ−1M♯
ν(sM , b)M♯

ν(s) . (7.49)

Proof. The proof follows by Lemmata 2.21, 2.19, using the estimates (7.20), (7.38), (7.47).

The estimates (7.48), (7.49), and (7.6), allow to prove that also (7.20) holds at the step ν +1. It implies
(see [10, Lemma 7.10])

Lemma 7.8. M
♯
ν+1(s) ≤ C∗(sM , b)N−a

ν M0(s, b) and M
♯
ν+1(s, b) ≤ C∗(sM , b)NνM0(s, b).
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Proof of (S2)ν+1. By Lemma 7.6, for any j ∈ S⊥, µν+1
j = µν

j + r
ν
j where |rνj |

Lip(γ) . M0(sM , b)N−a

ν .

Then (S2)ν+1 follows by defining µ̃ν+1
j := µ̃ν

j + r̃
ν
j where r̃

ν
j : Ω → R is a Lipschitz extension of rνj (cf.

Kirszbraun extension Theorem).

Proof of (S3)ν+1. The proof follows by induction arguing as in the proof of (S2)ν+1.

Proof of (S4)ν+1. The proof is the same as that of (S3)ν+1 in [2, Theorem 4.2].

7.2 Almost-invertibility of Lω

By (7.31), for any ω ∈ Ω
γ
n, we have that L0 = U−1

n LnUn where Un is defined in (7.28) and thus

Lω = V−1
n LnVn , Vn := UnΦ

(4) · · ·Φ(1) . (7.50)

Lemma 7.9. There exists σ = σ(τ, S+) > 0 such that, if (7.29) and (6.1) with µ0 ≥ sM + µ(b) + σ hold,
then the operators V±1

n satisfy for any sM ≤ s ≤ S the estimate

‖V±1
n h‖Lip(γ)s .S ‖h‖

Lip(γ)
s+σ +N τ1

0 γ−1‖ι‖
Lip(γ)
s+µ(b)+σ‖h‖

Lip(γ)
sM+σ . (7.51)

Proof. By the estimates (6.28), (6.44), (6.52), (6.70), using Lemmata 2.14, 2.15, 2.18 and (7.33).

We now decompose the operator Ln in (7.31) as

Ln = L<
n + Rn + R

⊥
n (7.52)

where
L<
n := ΠKn

(
ω · ∂ϕ + iDn

)
ΠKn

+Π⊥
Kn

, R
⊥
n := Π⊥

Kn

(
ω · ∂ϕ + iDn

)
Π⊥

Kn
−Π⊥

Kn
, (7.53)

the diagonal operator Dn is defined in (7.15) (with ν = n), and Kn := Kχn

0 is the scale of the nonlinear
Nash-Moser iterative scheme introduced in (5.24).

Lemma 7.10. (First order Melnikov non-resonance conditions) For all ω in

Λ
γ
n+1 := Λ

γ
n+1(ι) :=

{
ω ∈ Ω : |ω · ℓ+ µ̃n

j | ≥ 2γ|j|3〈ℓ〉−τ , ∀|ℓ| ≤ Kn , j ∈ S
⊥
}
, (7.54)

the operator L<
n in (7.53) is invertible and

‖(L<
n )

−1g‖Lip(γ)s . γ−1‖g‖
Lip(γ)
s+2τ+1 . (7.55)

By (7.50), (7.52), Theorem 7.3, estimates (7.55), (7.56), (7.51), and using that, for all b > 0,

‖R⊥nh‖
Lip(γ)
sM

. K−b
n ‖h‖

Lip(γ)
sM+b+3 , ‖R⊥n h‖

Lip(γ)
s . ‖h‖

Lip(γ)
s+3 , (7.56)

we deduce the following theorem, stating the almost-invertibility assumption of Lω of Section 5.

Theorem 7.11. (Almost-invertibility of Lω) Let a, b,M as in (7.6) and S > sM . There exists σ =
σ(τ, S+) > 0 such that, if (7.29) and (6.1) with µ0 ≥ sM + µ(b) + σ hold, then, for all

ω ∈ Ωγ
n+1 := Ωγ

n+1(ι) := Ω
γ
n+1 ∩ Λ

γ
n+1 (7.57)

(see (7.30), (7.54)), the operator Lω defined in (5.22) can be decomposed as

Lω = L<
ω +Rω +R⊥

ω , (7.58)

L<
ω := V−1

n L<
nVn , Rω := V−1

n RnVn , R⊥
ω := V−1

n R
⊥
nVn ,

where L<
ω is invertible and satisfies (5.28) and the operators Rω and R⊥

ω satisfy (5.26)-(5.27).
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8 Proof of Theorem 4.1

Theorem 4.1 is a consequence of Theorem 8.1 below where we construct iteratively a sequence of better and
better approximate solutions of the equation Fω(ι, ζ) = 0 where Fω is defined in (4.6).

8.1 The Nash-Moser iteration

We consider the finite-dimensional subspaces of L2
ϕ × L2

ϕ × L2
⊥, defined for any n ∈ N as

En :=
{
ι(ϕ) = (Θ, y, w)(ϕ), Θ = ΠnΘ, y = Πny, w = Πnw

}

where L2
ϕ = L2

ϕ(T1 × RS+) (cf. (4.8)) and where Πn := ΠKn
: L2

⊥ → ∩s≥0H
s
⊥ is the projector (cf. (2.2))

Πn : w =
∑

ℓ∈Z
S+ ,j∈S⊥

wℓ,je
i(ℓ·ϕ+2πjx) 7→ Πnw :=

∑

|(ℓ,j)|≤Kn

wℓ,je
i(ℓ·ϕ+2πjx) (8.1)

with Kn = Kχn

0 (cf. (5.24)) and also denotes the corresponding one on L2
ϕ, given by L2

ϕ → ∩s≥0H
s
ϕ,

p =
∑

ℓ∈Z
S+ pℓe

iℓ·ϕ 7→
∑

|ℓ|≤Kn
pℓe

iℓ·ϕ. Note that Πn, n ≥ 1, are smoothing operators for the Sobolev spaces

Hs
⊥. In particular Πn and Π⊥

n := Id − Πn satisfy the smoothing properties (2.3). For the Nash-Moser
Theorem 8.1, stated below, we introduce the constants

σ := max{σ1, σ2} , b := [a] + 2 , a = 3τ1 + 1 , τ1 = 2τ + 1 , χ = 3/2 , (8.2)

a1 := max{12σ + 13, pτ + 3 + χ(µ(b) + 2σ)}, a2 := χ−1
a1 − µ(b)− 2σ , (8.3)

b1 := a1 + µ(b) + 3σ + 4 +
2

3
µ1 , µ1 := 3(µ(b) + 2σ + 2) + 1 , S := sM + b1 , (8.4)

where σ1 is defined in Lemma 4.2, σ2 in Theorem 5.6, and a, µ(b) in (7.6). The number p is the exponent
in (5.23) and is requested to satisfy

pa > (χ− 1)a1 + χ(σ + 4) =
1

2
a1 +

3

2
(σ + 4) . (8.5)

In view of the definition (8.3) of a1, we can define p := p(τ, S+) as

p :=
12σ + 17 + χ(µ(b) + 2σ)

a
. (8.6)

We denote by ‖W‖
Lip(γ)
s := max{‖ι‖

Lip(γ)
s , |ζ|Lip(γ)} the norm of a function

W := (ι, ζ) : Ω →
(
Hs

ϕ ×Hs
ϕ ×Hs

⊥

)
× R

S+ , ω 7→ W (ω) = (ι(ω), ζ(ω)) .

The following Nash-Moser Theorem can be proved in a by now standard way as in [10], [1].

Theorem 8.1. (Nash-Moser) There exist 0 < δ0 < 1, C∗ > 0 so that if

εKτ2
0 < δ0, τ2 := max{pτ + 3, 4σ + 4 + a1} , K0 := γ−1, γ := εa , 0 < a <

1

τ2
, (8.7)

where τ := τ (τ, S+) is defined in Theorem 7.2, then the following holds for all n ∈ N:

(P1)n Let W̃0 := (0, 0). For n ≥ 1, there exists a Lip(γ)-function W̃n : RS+ → En−1 × R
S+ , ω 7→ W̃n(ω) :=

(ι̃n, ζ̃n), satisfying

‖W̃n‖
Lip(γ)
sM+µ(b)+σ . εγ−2 . (8.8)

Let Ũn := U0 + W̃n where U0 := (ϕ, 0, 0, 0). For n ≥ 1, the difference H̃n := Ũn − Ũn−1, , satisfies

‖H̃1‖
Lip(γ)
sM+µ(b)+σ . εγ−2 , ‖H̃n‖

Lip(γ)
sM+µ(b)+σ . εγ−2K−a2

n−1 , for n ≥ 2 . (8.9)
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(P2)n Let G0 := Ω and define for n ≥ 1,
Gn := Gn−1 ∩ Ωγ

n(ι̃n−1) , (8.10)

where Ωγ
n(ι̃n−1) is defined in (7.57). Then for any ω ∈ Gn

‖Fω(Ũn)‖
Lip(γ)
sM

≤ C∗εK
−a1
n−1 , K−1 := 1. (8.11)

(P3)n (High norms) ‖W̃n‖
Lip(γ)
sM+b1

≤ C∗εK
µ1

n−1, ∀ω ∈ Gn.

Proof. We argue by induction. To simplify notation, we write within this proof ‖ · ‖ for ‖ · ‖Lip(γ).

Step 1: Proof of (P1,P2,P3)0. Note that (P1)0 and (P3)0 are trivially satisfied and hence it remains to
verify (8.11) at n = 0. By (4.6), (4.10), (4.3), and Lemma 4.2, there exists C∗ > 0 large enough so that

‖Fω(U0)‖
Lip(γ)
sM

≤ εC∗.

Step 2: Proof of the induction step. Assuming that (P1,P2,P3)n hold for some n ≥ 0, we have to prove that
(P1,P2,P3)n+1 hold. We are going to define the approximation Ũn+1 by a modified Nash-Moser scheme.
To this aim, we prove the almost-approximate invertibility of the linearized operator

Ln := Ln(ω) := dι,ζFω(ι̃n(ω)) (8.12)

by applying Theorem 5.6 to Ln(ω). To prove that the inversion assumptions (5.25)-(5.28) hold, we apply
Theorem 7.11 with ι = ι̃n.

By choosing ε small enough it follows by (8.7) that N0 = Kp
0 = γ−p = ε−pa satisfies the requirement of

Theorem 7.11 and that the smallness condition (7.29) holds. Therefore Theorem 7.11 applies, and we deduce
that (5.25)-(5.28) hold for all ω ∈ Ωγ

n+1(ι̃n), see (7.57).
Now we apply Theorem 5.6 to the linearized operator Ln(ω) with Ωo = Ωγ

n+1(ι̃n) and S = sM + b1, see
(8.4). It implies the existence of an almost-approximate inverse Tn := Tn(ω, ι̃n(ω)) satisfying

‖Tng‖s .sM+b1 γ−2
(
‖g‖s+σ +Kτ1p

0 γ−1‖ι̃n‖s+µ(b)+σ‖g‖sM+σ

)
, ∀sM ≤ s ≤ sM + b1 , (8.13)

where we used that σ ≥ σ2 (cf. (8.2)), σ2 is the loss of regularity constant appearing in the estimate (5.43),
and N0 = Kp

0 . Furthermore, by (8.7), (8.8) one obtains that

Kτ1p
0 γ−1‖W̃n‖sM+µ(b)+σ ≤ 1 , (8.14)

therefore (8.13) specialized for s = sM becomes

‖Tng‖sM .b1 γ−2‖g‖sM+σ . (8.15)

For all ω ∈ Gn+1 = Gn ∩Λγ
n+1(ι̃n) (see (8.10)), we define

Un+1 := Ũn +Hn+1 , Hn+1 := (ι̂n+1, ζ̂n+1) := −ΠnTnΠnFω(Ũn) ∈ En × R
S+ (8.16)

where Πn is defined by (see (8.1))

Πn(ι, ζ) := (Πnι, ζ) , Π⊥
n (ι, ζ) := (Π⊥

n ι, 0) , ∀(ι, ζ) . (8.17)

We show that the iterative scheme in (8.16) is rapidly converging. We write

Fω(Un+1) = Fω(Ũn) + LnHn+1 +Qn (8.18)

where Ln := dι,ζFω(Ũn) and Qn is defined by (8.18). Then, by the definition of Hn+1 in (8.16), we have
(recall also (8.17))

Fω(Un+1) = Fω(Ũn)− LnΠnTnΠnFω(Ũn) +Qn

= Fω(Ũn)− LnTnΠnFω(Ũn) + LnΠ
⊥
nTnΠnFω(Ũn) +Qn

= Π⊥
nFω(Ũn) +Rn +Qn + Pn (8.19)
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where
Rn := LnΠ

⊥
nTnΠnFω(Ũn) , Pn := −(LnTn − Id)ΠnFω(Ũn) . (8.20)

We first note that for any ω ∈ Ω, s ≥ sM one has by the triangular inequality, (4.6), Lemma 4.2, and (8.2),
(8.8)

‖Fω(Ũn)‖s .s ‖Fω(U0)‖s + ‖Fω(Ũn)−Fω(U0)‖s .s ε+ ‖W̃n‖s+σ (8.21)

and, by (8.8), (8.7), (8.11)
Kτ1p

0 γ−1‖Fω(Ũn)‖sM ≤ 1 . (8.22)

We now prove the following inductive estimates of Nash-Moser type.

Lemma 8.2. For all ω ∈ Gn+1 we have, setting µ2 := µ(b) + 3σ + 3,

‖Fω(Un+1)‖sM .sM+b1 Kµ2−b1
n (ε+ ‖W̃n‖sM+b1) +K4σ+4

n ‖Fω(Ũn)‖
2
sM

+ εK−pa
n−1K

σ+4
n ‖Fω(Ũn)‖sM (8.23)

‖W1‖sM+b1 .sM+b1 K2
0ε , ‖Wn+1‖sM+b1 .sM+b1 Kµ(b)+2σ+2

n (ε+ ‖W̃n‖sM+b1) , n ≥ 1 . (8.24)

Proof. We first estimate Hn+1 defined in (8.16).

Estimates of Hn+1. By (8.16) and (2.3), (8.13), (8.8), we get

‖Hn+1‖sM+b1 .sM+b1 γ−2
(
Kσ

n‖Fω(Ũn)‖sM+b1 +Kµ(b)+2σ
n Kτ1p

0 γ−1‖ι̃n‖sM+b1‖Fω(Ũn)‖sM
)

(8.21),(8.22)

.sM+b1 Kµ(b)+2σ
n γ−2

(
ε+ ‖W̃n‖sM+b1

)
(8.25)

γ−1=K0≤Kn

.sM+b1 Kµ(b)+2σ+2
n

(
ε+ ‖W̃n‖sM+b1

)
, (8.26)

‖Hn+1‖sM
(8.15)

.sM+b1 γ−2Kσ
n‖Fω(Ũn)‖sM . (8.27)

Next we estimate the terms Qn in (8.18) and Pn, Rn in (8.20) in ‖ ‖sM norm.

Estimate of Qn. By (8.8), (8.16), (2.3), (8.27), (8.11), and since χ2σ − a1 ≤ 0 (see (8.3)), we deduce that
‖W̃n + tHn+1‖sM+σ . εγ−2K2σ

0 for all t ∈ [0, 1]. Since γ−1 = K0, by (8.7) we can apply Lemma 4.2 and by
Taylor’s formula, using (8.18), (4.6), (8.27), (2.3), and γ−1 = K0 ≤ Kn, we get

‖Qn‖sM .sM+b1 ‖Hn+1‖
2
sM+σ .sM+b1 K4σ+4

n ‖Fω(Ũn)‖
2
sM

. (8.28)

Estimate of Pn. By (5.44), LnTn − Id = P(ι̃n) + Pω(ι̃n) + P⊥
ω (ι̃n). Accordingly, we decompose Pn in

(8.20) as Pn = −P
(1)
n − Pn,ω − P⊥

n,ω, where

P (1)
n := ΠnP(ι̃n)ΠnFω(Ũn), Pn,ω := ΠnPω(ι̃n)ΠnFω(Ũn), P⊥

n,ω := ΠnP
⊥
ω (ι̃n)ΠnFω(Ũn).

By (2.3),

‖Fω(Ũn)‖sM+σ ≤ ‖ΠnFω(Ũn)‖sM+σ + ‖Π⊥
nFω(Ũn)‖sM+σ

≤ Kσ
n (‖Fω(Ũn)‖sM +K−b1

n ‖Fω(Ũn)‖sM+b1).
(8.29)

By (5.45), (8.14), (8.29), and using that (8.21), (8.22), γ−1 = K0 ≤ Kn we obtain

‖P (1)
n ‖sM .sM+b1 γ−3K2σ

n ‖Fω(Ũn)‖sM (‖Fω(Ũn)‖sM +K−b1
n ‖Fω(Ũn)‖sM+b1)

.sM+b1 K2σ+3
n ‖Fω(Ũn)‖sM (‖Fω(Ũn)‖sM +Kσ−b1

n (ε+ ‖W̃n‖sM+b1))

.s0+b1 K2σ+3
n ‖Fω(Ũn)‖

2
sM

+K3σ+3−b1
n (ε+ ‖W̃n‖sM+b1) . (8.30)

By (5.46), (8.14), (8.8), (2.3), we have

‖Pn,ω‖sM .sM+b1 εγ−4N−a

n−1K
σ
n‖Fω(Ũn)‖sM

γ−1=K0≤Kn

.s0+b1 εN−a

n−1K
σ+4
n ‖Fω(Ũn)‖sM , (8.31)
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where a is in (8.2). By (5.47), (2.3), (8.4), (8.11), (8.22) and then using (8.21), γ−1 = K0 ≤ Kn, we get

‖P⊥
n,ω‖sM .sM+b1 Kµ(b)+2σ−b1

n γ−2(‖Fω(Ũn)‖sM+b1 + ε‖W̃n‖sM+b1)

.sM+b1 Kµ(b)+3σ+2−b1
n (ε+ ‖W̃n‖sM+b1). (8.32)

Estimate of Rn. By the definition (8.12) of Ln one has that for any Û = (ι̂, ζ̂), LnÛ is given by

LnÛ = ω · ∂ϕι̂− dιXHε

(
(ϕ, 0, 0) + ι̃n

)
[̂ι]− (0, ζ̂, 0)

(4.10)
= ω · ∂ϕι̂− dιXN

(
(ϕ, 0, 0) + ι̃n

)
[̂ι]− dιXPε

(
(ϕ, 0, 0) + ι̃n

)
[̂ι]− (0, ζ̂, 0) (8.33)

where we recall that dιXN

(
(ϕ, 0, 0) + ι̃n

)
[̂ι] =

(
Ωkdv

S+
(µ)[ŷ], 0 ,Ωkdv(µ,D)[ŵ]

)
. By the estimate of dιXPε

of Lemma 4.2, one then obtains ‖LnÛ‖sM . ‖Û‖sM+σ. Using (8.20), (8.13), (8.8), (2.3) and then (8.14),
(8.21), (8.22), γ−1 = K0 ≤ Kn, we get

‖Rn‖sM .sM+b1 Kµ(b)+3σ+2−b1
n (ε+ ‖W̃n‖sM+b1). (8.34)

Estimate of Fω(Un+1). By (8.19), (2.3), (8.21), (8.28), (8.30)-(8.32), (8.34), (8.8), we get (8.23). By (8.16)
and (8.13) we now deduce the bound (8.24) for W1 := H1. Indeed

‖W1‖sM+b1 = ‖H1‖sM+b1 .sM+b1 γ−2‖Fω(U0)‖sM+b1+σ.sM+b1 εγ−2
γ−1=K0

. K2
0ε .

Estimate (8.24) for Wn+1 := W̃n +Hn+1, n ≥ 1, follows by (8.26).

By Lemma 8.2 we get the following lemma, where for clarity we write ‖ · ‖
Lip(γ)
s instead of ‖ · ‖s as above.

Lemma 8.3. For any ω ∈ Gn+1

‖Fω(Un+1)‖
Lip(γ)
sM

≤ C∗εK
−a1
n , ‖Wn+1‖

Lip(γ)
sM+b1

≤ C∗K
µ1
n ε , (8.35)

‖H1‖
Lip(γ)
sM+µ(b)+σ . εγ−2 , ‖Hn+1‖

Lip(γ)
sM+µ(b)+σ . εγ−2Kµ(b)+2σ

n K−a1
n−1 , n ≥ 1 . (8.36)

Proof. First note that, by (8.10), if ω ∈ Gn+1, then ω ∈ Gn and so (8.11) and the inequality in (P3)n holds.
Then the first inequality in (8.35) follows by (8.23), (P2)n, (P3)n, γ

−1 = K0 ≤ Kn, and by (8.3), (8.4),
(8.5)-(8.6). For n = 0 we use also (8.7).

The second inequality in (8.35) for n = 0 follows directly from the bound for W1 in (8.24), since µ1 ≥ 2,
see (8.4) and C∗ > 0 large enough (i.e., ε small enough); the second inequality in (8.35) for n ≥ 1 is proved
inductively by taking (8.24), (P3)n, and the choice of µ1 in (8.4) into account and by choosing K0 large
enough.

Since H1 = W1, the first inequality in (8.36) follows since ‖H1‖sM+µ(b)+σ . γ−2‖Fω(U0)‖sM+µ(b)+2σ .

εγ−2. If n ≥ 1, estimate (8.36) follows by (2.3), (8.27) and (8.11).

Denote by H̃n+1 a Lip(γ)-extension of (Hn+1)|Gn+1
to the whole set Ω of parameters, provided by the

Kirzbraun theorem. Then H̃n+1 satisfies the same bound as Hn+1 in (8.36) and therefore, by the definition
of a2 in (8.3), the estimate (8.9) holds at n+ 1.

Finally we define the functions

W̃n+1 := W̃n + H̃n+1 , Ũn+1 := Ũn + H̃n+1 = U0 + W̃n + H̃n+1 = U0 + W̃n+1 ,

which are defined for all ω ∈ Ω. Note that for any ω ∈ Gn+1, W̃n+1 = Wn+1, Ũn+1 = Un+1. Therefore
(P2)n+1, (P3)n+1 are proved by Lemma 8.3. Moreover by (8.9), which at this point has been proved up to
the step n+ 1, we have

‖W̃n+1‖
Lip(γ)
sM+µ(b)+σ ≤

∑n+1

k=1
‖H̃k‖

Lip(γ)
sM+µ(b)+σ ≤ C∗εγ

−2

and thus (8.8) holds also at the step n+ 1. This completes the proof of Theorem 8.1.
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We now deduce Theorem 4.1. Let γ = εa with a ∈ (0, a0) and a0 := 1/τ2 where τ2 is defined in (8.7).
Then the smallness condition (8.7) holds for 0 < ε < ε0 small enough and Theorem 8.1 applies. Passing
to the limit for n → ∞ we deduce the existence of a function U∞(ω) = (ῐ∞(ω), ζ∞(ω)), ω ∈ Ω, such that
Fω(U∞(ω)) = 0 for any ω in the set

⋂

n≥0

Gn = G0 ∩
⋂

n≥1

Ωγ
n+1(ι̃n−1)

(7.57)
= G0 ∩

[ ⋂

n≥1

Λ
γ
n(ι̃n−1)

]
∩
[ ⋂

n≥1

Ω
γ
n(ι̃n−1)

]
. (8.37)

Moreover
‖U∞ − U0‖

Lip(γ)
sM+µ(b)+σ . εγ−2 , ‖U∞ − Ũn‖

Lip(γ)
sM+µ(b)+σ . εγ−2K−a2

n , n ≥ 1 . (8.38)

Formula (5.5) implies that ζ∞(ω) = 0 for ω belonging to the set (8.37), and therefore ῐω := ῐ∞(ω) is an
invariant torus for the Hamiltonian vector field XHε

filled by quasi-periodic solutions with frequency ω. It
remains only to prove the measure estimate (4.9).

8.2 Measure estimates

Arguing as in [10] one proves the following two lemmata.

Lemma 8.4. The set
G∞ := G0 ∩

[ ⋂

n≥1

Λ
2γ
n (ι∞)

]
∩
[ ⋂

n≥1

Ω
2γ
n (ι∞)

]
(8.39)

is contained in Gn for any n ≥ 0, and hence G∞ ⊆
⋂

n≥0 Gn.

For any j ∈ S⊥, the sequence µ̃n
j : Ω → R, n ≥ 0, in Theorem 7.2-(S2)n is a Cauchy sequence with

respect to the norm | · |Lip(γ). We denote the limit by µ∞
j ,

µ∞
j := lim

n→∞
µ̃n
j (ι∞) , j ∈ S

⊥ . (8.40)

By Theorem 7.2 one has for any j ∈ S⊥,

µ∞
−j = −µ∞

j , |µ∞
j − µ̃n

j (ι∞)|Lip(γ) . εγ−2N−a

n−1 , n ≥ 0 . (8.41)

Lemma 8.5. The set

Ωγ
∞ :=

{
ω ∈ DC(4γ, τ) : |ω · ℓ+ µ∞

j − µ∞
j′ | ≥

4γ|j3 − j′3|

〈ℓ〉τ
, ∀(ℓ, j, j′) ∈ Z

S+ × S
⊥ × S

⊥,

|ω · ℓ+ µ∞
j | ≥

4γ|j|3

〈ℓ〉τ
, ∀(ℓ, j) ∈ Z

S+ × S
⊥
}

(8.42)

is contained in G∞, Ωγ
∞ ⊆ G∞, where G∞ is defined in (8.39).

In view of Lemma 8.4 and 8.5, it suffices to estimate the Lebesgue measure |Ω \ Ωγ
∞| of Ω \ Ωγ

∞.

Proposition 8.6. (Measure estimates) Let τ > |S+| + 2. Then there is a ∈ (0, 1) so that for εγ−3

sufficiently small, one has |Ω \ Ωγ
∞| . γa.

The remaining part of this section is devoted to prove Proposition 8.6. By (8.42), we have

Ω \ Ωγ
∞ = Ω \ DC(4γ, τ) ∪

⋃

(ℓ,j,j′)∈Z
S+×S

⊥×S
⊥(ℓ,j,j′) 6=(0,j,j)

Rℓ,j,j′ ∪
⋃

(ℓ,j)∈Z
S+×S⊥

Qℓ,j (8.43)

where Rℓ,j,j′ , Qℓ,j denote the ’resonant’ sets

Rℓ,j,j′ :=
{
ω ∈ DC(4γ, τ) : |ω · ℓ+ µ∞

j − µ∞
j′ | <

4γ|j3 − j′3|

〈ℓ〉τ

}
, (8.44)

Qℓ,j :=
{
ω ∈ DC(4γ, τ) : |ω · ℓ+ µ∞

j | <
4γ|j|3

〈ℓ〉τ

}
. (8.45)
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Note that Rℓ,j,j = ∅. Furthermore, it is well known that |Ω\DC(4γ, τ)| . γ. In order to prove Proposition 8.6
we shall use the following asymptotic properties of µ∞

j (ω). For any ω in DC(4γ, τ), we have µ̃0
j(ι∞) = µ0

j(ι∞)

and we write µ∞
j (ω) = µ0

j (ι∞) + r∞j (ω), where by (7.2), m∞
3 := m3(ι∞), m∞

1 := m1(ι∞),

µ0
j(ι∞) = m∞

3 (ω)(2πj)3 −m∞
1 (ω)2πj − qj(ω) .

On DC(4γ, τ), the following estimates hold

|m∞
3 + 1|Lip(γ)

(6.18)

. ε , |m∞
1 |Lip(γ)

(6.66)

. εγ−2,

sup
j∈S⊥

|j||qj |
sup, sup

j∈S⊥

|j||qj |
lip

(7.4)

. 1, |r∞j |Lip(γ)
(8.41)

. εγ−2 .
(8.46)

From the latter estimates one infers the following standard lemma see [2, Lemma 5.3]).

Lemma 8.7. (i) If Rℓ,j,j′ 6= ∅, then |j3− j′3| ≤ C〈ℓ〉 for some C > 0. In particular one has j2+ j′2 ≤ C〈ℓ〉.
(ii) If Qℓ,j 6= ∅, then |j|3 ≤ C〈ℓ〉 for some C > 0.

Lemma 8.7 can be used to estimate |Rℓ,j,j′ | and |Qℓ,j| for |ℓ| sufficiently large.

Lemma 8.8. (i) If Rℓ,j,j′ 6= ∅, then there exists C1 > 0 with the following property: if |ℓ| ≥ C1, then
|Rℓ,j,j′ | . γ|j3 − j′3|〈ℓ〉−(τ+1).
(ii) If Qℓ,j 6= ∅, then there exists C1 > 0 with the following property: if |ℓ| ≥ C1, then |Qℓ,j| . γ|j|3〈ℓ〉−(τ+1).

Proof. We only prove item (i) since item (ii) can be proved in a similar way. Assume that Rℓ,j,j′ 6= ∅. Let
ω̄ such that ω̄ · ℓ = 0 and introduce the real valued function s 7→ φℓ,j,k(s),

φℓ,j,j′(s) := fℓ,j,j′
(
ω̄ + s

ℓ

|ℓ|

)
, fℓ,j,j′(ω) := ω · ℓ+ µ∞

j (ω)− µ∞
j′ (ω) .

Using that by Lemma 8.7, |j3 − j′3| ≤ C〈ℓ〉, one infers from (8.46) that, for εγ−2 small enough and |ℓ| ≥ C1

with C1 large enough, |φℓ,j,j′ (s2)−φℓ,j,j′ (s1)| ≥
|ℓ|
2 |s2− s1|. Since DC(4γ, τ) is bounded one sees by standard

arguments that
∣∣{s ∈ R : ω̄ + s

ℓ

|ℓ|
∈ Rℓ,j,j′

}∣∣ . γ|j3 − j′3|〈ℓ〉−(τ+1) .

The claimed estimate then follows by applying Fubini’s theorem.

It remains to estimate the Lebesgue measure of the resonant sets Rℓ,j,j′ and Qℓ,j for |ℓ| ≤ C1.

Lemma 8.9. Assume that |ℓ| ≤ C1 and that εγ−3 is small enough. Then the following holds:
(i) If Rℓ,j,j′ 6= ∅, then there are constants a ∈ (0, 1) and C2 > 0 so that |j|, |j′| ≤ C2 and |Rℓ,j,j′ | . γa.
(ii) If Qℓ,j 6= ∅ then there are constants a ∈ (0, 1) and C2 > 0 so that |j| ≤ C2 and |Qℓ,j | . γa.

Proof. We only prove item (i) since item (ii) can be proved in a similar way. If |ℓ| ≤ C1 and Rℓ,j,j′ 6= ∅,
Lemma 8.7-(i) implies that there is a constant C2 such that |j|, |j′| ≤ j2 + j′2 ≤ C2. For εγ−3 small
enough one sees, using (8.46), the definition (7.2) of µ0

j , and the bounds |ℓ| ≤ C1, |j|, |j′| ≤ C2, that

|µ∞
j − ωkdv

j | . εγ−2 . γ, implying that for some constant C3 > 0,

Rℓ,j,j′ ⊂
{
ω ∈ Ω : |ω · ℓ+ ωkdv

j (ν(ω), 0)− ωkdv
j′ (ν(ω), 0)| ≤ C3γ

}
. (8.47)

By Lemma 3.9, the function ω 7→ ω ·ℓ+ωkdv
j (ν(ω), 0)−ωkdv

j′ (ν(ω), 0) is real analytic and not identically zero.
Hence by the Weierstrass preparation theorem (cf. the proof of [9, Lemma 9.7]), we deduce that the measure
of the set on the right hand side of (8.47) is smaller than γa for some a ∈ (0, 1) and γ small enough.

By (8.43) and Lemmata 8.8–8.9 we deduce that

|Ω \ Ωγ
∞| . γa + γ

∑

|ℓ|≥C1,|j|,|j
′|≤C〈ℓ〉

〈ℓ〉−τ . γa ,

where we used the assumption that τ − 2 > |S+|. This concludes the proof of Proposition 8.6.
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