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quasi-linear perturbations of KdV
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Abstract. In this paper we prove the persistence of space periodic multi-solitons of arbitrary size under
any quasi-linear Hamiltonian perturbation, which is smooth and sufficiently small. This answers positively
a longstanding question whether KAM techniques can be further developed to prove the existence of quasi-
periodic solutions of arbitrary size of strongly nonlinear perturbations of integrable PDEs.
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1 Introduction
The Korteweg-de Vries (KdV) equation
Opu = —03u + 6ud,u (1.1)

is one of the most important model equations for dispersive phenomena with numerous applications in
physics. The seminal discovery in the late sixties that (I.I)) admits infinitely many conservation laws ([27],
[29]), and the development of the inverse scattering transform method ([I7]), led to the modern theory of
infinite dimensional integrable systems (e.g. [12], [I5] and references therein).

One of the most distinguished features of (II)) is the existence of sharply localized travelling waves of
arbitrarily large amplitudes and particle like properties. Kruskal and Zabusky, who discovered them in
numerical experiments in the early sixties, both on the real line and in the periodic setup (cf. [23]), coined
the name solitons for them. More generally, they found solutions, which are localized near finitely many
points in space. In the periodic setup, these solutions are referred to as periodic multi-solitons or finite
gap solutions. Due to their importance in applications, various stability aspects, in particular long time
asymptotics, have been extensively studied. A major question concerns the persistence of the multi-solitons
under perturbations. In the last thirty years, KAM methods pioneered by Kolmogorov, Arnold, and Moser
to treat perturbations of integrable systems of finite dimension, were developed for PDEs. Most of the work
focused on small amplitude solutions or semilinear perturbations. It has been a longstanding question from
experts in PDEs and in infinite dimensional dynamical systems whether KAM results hold also for solutions
of arbitrary size under quasi-linear perturbations, called strongly nonlinear in [25], of integrable PDEs.

The aim of this paper is to prove the first persistence result of periodic multi-solitons of KdV with
arbitrary size under strongly nonlinear perturbations — see Theorem [[.J] below. Note that in this case, it was
not even known if there exist solutions of the perturbed equation which are global in time.

To describe the class of perturbations of the KAV equation considered, we recall that (II]), with space
periodic variable z in Ty := T/Z, can be written in Hamiltonian form,

1

Oru = andeU(u), dev(u) = / 5
T

(0pu)?(x) + u?(z) dz, (1.2)

where VH* denotes the L?—gradient of H*% and 0, is the Poisson structure, corresponding to the Poisson
bracket, defined for functionals F, G by

{F.G}:= | VF0,VGdx.
Ty

We consider quasi-linear perturbations of (L)) of the form
O = —3u + 6udyu + calz, u(x), Opu(x))O3u + - - - (1.3)

where € € (0, 1) is a small parameter and - - - stands for terms containing x—derivatives of u up to order two.
We assume that the perturbation is Hamiltonian, namely ad3u + - - - = 9, VP, where VP is the L2-gradient
of a functional of the form

P(u) := i flzyu(z), ug(x)) do, Ug 1= OgU. (1.4)

Note that the nonlinear term
0.V P(u) = (02_f)(z, u(w), g (2))0Pu + - - (1.5)

has the same order of the linear vector field 92u in (). When written as a Hamiltonian PDE, (L3)) takes
the form
Opu = 9, VH_(u) (1.6)

with Hamiltonian
H.(u) := H*"(u) 4+ eP(u). (1.7)



To state our main result, we first need to introduce some more notation. Note that the mean u — le u(zx) dx
is a prime integral for (IL6). We restrict our attention to functions with zero average (cf. Remark (R2) below)
and choose as phase spaces for (L) the scale of Sobolev spaces H§(T1), s > 0,

HE(Ty) == {u € H*(Ty) : /

u(z) de = 0} . LX(Ty)= HY(T,),
Ty

where

H*(Ty) = {u(m) =3 w7 s = (D () unl?)? <00, u_y =T Vn € Z}
nez neEZ
and (n) := max{1, |n|} for any n € Z. We also write L*(T;) for H(T;). The symplectic form on L3(T;) is
given by
Wrez(u,v) == / (0; Mu)v de 0y u = Z ,lunei%m , Yu,v € L3(Ty). (1.8)
T in
n#0
Note that the Hamiltonian vector field X (u) = 9, VH (u), associated with the Hamiltonian H, is determined
by dH (u)[] = Wrz2(Xu,-).
St —gap potentials. According to [20], the KdV equation (II) on the torus is an integrable PDE in the
strongest possible sense, meaning that it admits globally defined canonical coordinates on H(T;), so that
(I) can be solved by quadrature, see Theorem Bl for a precise statement. These coordinates, referred
to as Birkhoff coordinates, are particularly suited to describe the finite gap solutions of KdV. Each of
these solutions is contained in a finite dimensional integrable subsystem Ms, , of dimension 2|S|, with S
being a finite subset of N := {1,2,...}. Each Mg, can be described in terms of action angle coordinates
0 := (On)nes, I := (In)nes, : there exists a real analytic canonical diffeomorphism

U, : T xRy — Mg, (0,1) = q(0, 1), (1.9)

so that the pull-back of the KdV Hamiltonian, H* o Ug ., is a real analytic function of the actions I alone.
Elements in Mg, are referred to as S —gap potentials. The function q(p, z) = q(p, z;I) is real analytic. In
action angle coordinates, any solution of (L) on Ms, is given by

o(t) =00 — kY, I(t) =v,

where 8(9) denote the initial angles, v € RS;O the initial actions, and w*?(v) the frequency vector

W () == 0 (H* 0 W, )(v) € RS+ . (1.10)
The corresponding solution on Mg, is then given by

q(9<0> — Wk (W), z; v)

and hence is quasi-periodic in time. The map R, — RS+ v+ Wk (1), is a local diffeomorphism (see

Remark B10). In the whole paper E C RS;O is the closure of a bounded open nonempty set such that w*%
defined in (LI0) is a diffeomorphism onto its image. Moreover we require that, for some § > 0,

E + B, (9) € R, (1.11)

where Bg, (6) denotes the ball of radius ¢ in RS+ centered at the origin. Furthermore we introduce the
Sobolev spaces of periodic, real valued functions

= {f= 3 f IO Y e < oo, Tos=fown ) (112)
(0,§) €+ X7, (0,5)€7%+ X7,

where (¢, ) := max{1, |[¢], ||} and we recall the Sobolev embedding H* C C°(TS+ x T;) for s > (|Sy|+1)/2.
The main result of this paper, Theorem [T below, proves that for ¢ small enough and for v in a subset

of = of asymptotically full Lebesgue measure, there is a quasi-periodic solution of equation (L)) close to the
finite gap solution ¢(0(®) — w*¥ (v)t, z;v) of (III). More precisely, the following holds:



Theorem 1.1. Let f be a function in C*(T; x R x R,R) and Sy a finite subset of Ny. Then there exist
5> (IS+] +1)/2 and g0 € (0,1) so that for any € € (0,¢), there exists a measurable subset E. C = with
asymptotically full measure, i.e.

il_r% 2\ Z| =0,
and, for any v € 2., there exists a quasi-periodic solution u.(w:(V)t,z;v) of the perturbed KdV equation
@8) with u.(-,-;v) in H3(TS+ x Ty) and frequency vector w.(v) € RS+ satisfying

lim HUE('v ) V) - Q('v 3 V>H§ = 07 lim wE(V) = 7wkdv(y) )

e—0 e—0
where q(p, x;v), defined in (LI), is the Sy —gap potential in Ms, with frequency vector w*® (v), defined in
([CIQ). The quasi-periodic solution ue(we(v)t, x;v) is linearly stable.

We make the following remarks:

(R1) The result of Theorem [[LTholds for any density f of class C** with s, large enough and for any family
of S —gap solutions of KAV with average ¢ (cf. [20, page 112]). We assume in this paper that f is C>°
and ¢ = 0 merely to simplify the exposition.

(R2) The methods developed to prove Theorem [[I] are quite general. We expect that analogous results
can also be proved for equations in the KdV hierarchy as well as for the defocusing NLS and equations
in the NLS hierarchy such as the defocusing mKdV equation.

Let us now comment on the novelty of our result.

1. The first KAM results for (ILT) were proved by Kuksin [24] (cf. also [25]) and Kappeler-Poschel [20]
for finite gap solutions of arbitrary size, subject to semilinear perturbation. It means that the density
f of (T4) does not depend on wu,, and hence

0:VP(u) = 02 f(x,u(x))ug + - -

depends only on w and u, (note that in addition the dependence on wu, is linear). Subsequently,
Liu-Yuan [28] proved KAM results for semilinear perturbations of small amplitude solutions of the
derivative NLS and the Benjamin-Ono equations whereas Zhang-Gao-Yuan [30] proved analogous re-
sults for the reversible derivative NLS. More recently, Berti-Biasco-Procesi [6]-[7] proved existence of
small quasi-periodic solutions of derivative Klein-Gordon equations. For the NLS and the beam equa-
tions in higher space dimension, KAM results were obtained by Eliasson-Kuksin [I4] and, repsectively,
Eliasson-Grébert-Kuksin [13]. In all these works, the perturbations are required to be semilinear.

On the other hand, the results in Baldi-Berti-Montalto [3], [4], for quasi-linear perturbations of the
KdV and mKdV equations concern only small amplitude solutions. The proof of these results makes
use of pseudo-differential calculus and relies in a decisive manner on the differential nature of KdV. The
latter property cannot be read off in the action-angle coordinates outside a neighborhood of the origin.
We also mention that the results in Giuliani [18] for KdV, Feola-Procesi [16] for NLS, Berti-Montalto
[10] and Baldi-Berti-Haus-Montalto [I] for water waves concern small amplitude solutions.

Thus the challenging problem of the persistence of the finite gap solutions of (1)) of arbitrary size
under strongly nonlinear perturbations (LI) remained completely open.

2. In [9], we used the “I-smoothing property” of the Birkhoff coordinates of the defocusing NLS equation
on T!, established in [22], to prove a KAM result for semilinear perturbations. This property is used
to deal with the difficulties related to the double “asymptotic multiplicity” of the frequencies. For the
KdV equation, a “l-smoothing property” has been proved first near the equilibrium in [26] and then
in general in [2I]. However it is not sufficient for dealing with the quasi-linear perturbations (L3]).

3. The proof of Theorem [[.T] uses the canonical coordinates constructed in [19] near any given compact
family of S, —gap potentials in Ms, . These coordinates admit an expansion in terms of pseudo-
differential operators up to a remainder of arbitrary negative order. Due to its length, this part of



the proof of Theorem [[IT] has been published in a separate paper [I9]. The important fact that the
linearized Hamiltonian vector field of H., expressed in these coordinates, admits an expansion in terms
of pseudo-differential operators is proved in Section

Ideas of the proof. Theorem [[.1]is proved by means of a Nash-Moser iterative scheme to construct quasi-
periodic solutions near a given family of S; —gap solutions. One of the main issues concerns the invertibility
of the linearized Hamiltonian operator

w -0y — 0zdVH (u(p,x))

where u(wt, ) is an approximate quasi-periodic solution of (L], close to the finite gap solutions (L9). In
[19] a coordinate chart
U (0,y,w) — V(0,y,w) € L3(T;)

is constructed in a neighborhood of ']T?+ x {v}x{0}in ']T?+ X RS;O x L2 (Ty), which admits a pseudo-differential
expansion, up to regularizing operators satisfying tame estimates. Here

L2(Ty) = {w =Y we? e Lg(qu)}, St =7\ (S4 U(=S;)U{0}). (1.13)

nest

Important properties of the map ¥ are that the set of S;—gap solutions of (L) in the range of ¥ is
characterized by the equation w = 0, and that the linearized equation along the manifold {w = 0,y = 0}
is in diagonal form with coefficients only depending on v, see Theorem B:2H(AE3). This allows us to prove
(cf. Section B2)) that when expressed in these coordinates,

e the linearized Hamiltonian vector field, acting in the subspace normal to the tangent space of Mg, at
a given S, —gap potential, admits an expansion in terms of classical pseudo-differential operators, up
to smoothing remainders which satisfy tame estimates in H*(T;) — see Lemma 3.5 and 371

We then evaluate the linearized Hamiltonian vector field at an approximately invariant torus embedding
o = (0(p),y(v), w(p)), obtaining in this way a quasi-periodic operator, acting on the normal subspace
L3 (Ty), of the form (cf. Lemma [6.3)

M
L0 = w0, ~ T ()03 + 2(a8),02 + 0l70, + " a0, " + QM (Dyw)) + RY) (1.14)

k=0
where a(_Oll (p,2), k = =3,..., M are real valued functions, ago) ~ —1, and ’Rg\g) is a p-dependent operator

which satisfies tame estimates in the Sobolev spaces H S(’Jl‘i+ x Ty). The order M of regularization will
be fixed in Section [l The term Q*¥(D;w) is not small in €. It is the Fourier multiplier with symbol
wkdv — (27n)3 which takes into account the difference between the KdV-frequencies and their approximation
by the frequencies of the Airy equation. We remark that the pseudo-differential operator Ziw:o a(i),)ﬁ; ks

not present in [3]. In order to show that the operator ’Rg\g) is tame (see Lemma [2.24) we prove in Section B.]
novel results of independent interest concerning the extensions of the differential of the canonical coordinates
of [I9] to Sobolev spaces of negative order (cf. Corollaries [3.3] and B4]).

The form (I4) suggests to introduce preliminary transformations which diagonalize E&O) up to a pseudo-
differential operator of order zero plus a regularizing remainder (see Section [B]). These transformations,
inspired by [3], are Fourier integral operators generated as symplectic flows of linear Hamiltonian transport
PDEs and pseudo-differential maps. In order to conjugate the pseudo-differential terms a(_ol)ﬁ; * we need
a quantitative version of the Egorov theorem that we prove in Section We remark that in contrast to
[3] we implement in Section the time-quasi-periodic reparametrization before the conjugation with the
transport flow to avoid a technical difficulty in the conjugation of the remainders obtained in the Egorov
theorem. Furthermore, we mention that related transformations have been developed in [5] for proving upper
bounds for the growth of the Sobolev norms for various classes of PDEs.

At this point, using properties of the KAV frequencies that we collect in Section B3l we are able to
perform a KAM reducibility scheme to complete the diagonalization of &(uo) for most values of v. In view of



the remainder RSSI) in (LT4) (and others generated by the Egorov theorem) we implement in Section [7] an
iterative scheme along the lines in Berti-Montalto [I0]. The proofs are by and large self-contained.

Notation. We denote by N := {0,1,2,...} the natural numbers and set Ny := {1,2,...}. Given a Banach
space X with norm || - [|x, we denote by by H3X = H*(T®+,X), s € N, the Sobolev space of functions
f: T% — X equipped with the norm

[ fllersx o= 11 fll ez x + max 102 f 2 x -

We also denote H, gX = LiX . We recall that the continuous Sobolev embedding theorem is stronger in the
case X is a Hilbert space H, namely

H3(TS+, X)) < CO(T+, X), Vs> |Sy|,  H(TS+ H) < C(TS+ H), Vs>|S.|/2. (1.15)

Let H3 := H*(T1), s > 0, and denote by (f,g),, the L?~inner product on L2 = HY,

(19)s2 5= [ I@ia)da. (1.16)
For any s > 0, let hf := {z = (Zn)nez € h® 1 29 = 0} where h® is the sequence space

h® = {z = (2n)nez, 2n €C : ||2||? := Z<n>25|zn|2 <00, Zn=4_p, VN E Z} .
nez
By F we denote the Fourier transform, F : L?(T1) — h°, u +— (un)nez, where u,, := Jr, u(x)e 27 dg for
any n € Z and by F~1 : h® — L2(T;) its inverse.
Furthermore, we denote by I the L?—orthogonal projector onto the subspace L% (T ), defined in (LI3),
and by IIg the one onto the subspace of functions with zero average. We set

H$ (Ty) == H*(T1) N L7 (Ty) (1.17)
and HS = H5(T5 x Ty) := {u € H(TS x T1) : u(p,) € L3 (T1)}, which is an algebra for s > sg =
[%] + 1. The space H? is also denoted by L? . Let

Ey =T xRS x H(Ty), E£=&, E, :=RS xRS+ x H5(T;), E = Ey, (1.18)

where H$ (T1) is defined in (LIT). Elements of £ are denoted by r = (6,y,w) and the ones of its tangent

space F by T = (9\, y,w). For s < 0, we consider the Sobolev space Hf (T1) of distributions, and the spaces
&s and E; are defined in a similar way as in (IL.I8). Note that H | *(T;) is the dual space of Hf (T1). On E,
we denote by (-,-) the inner product, defined by

<(§1,§1,@1), (9\2,@,@2» =01 02+ 712 + (W1, W2) s - (1.19)
By a slight abuse of notation, II; also denotes the projector of E4 onto its third component,
HJ_:ES*)Hj(Tl)a (é\,@\,ﬁ)\)l—)’&}

For any 0 < 6 < 1, we denote by Bs, (6) the open ball in RS+ of radius & centered at 0 and by B3 (d), s > 0,
the corresponding one in H¢ (T;) where we also write B (§) for B} (§). These balls are used to define the
following open neighborhoods in &, s € N,

VE(8) := TS x B, (6) x B5.(8),  V(6)=V°(6), 0<ds<1. (1.20)

The space of bounded linear operators between Banach spaces X1, X5 is denoted by B(X1, X2) and endowed
with the operator norm. For two linear operators A, B we denote by [A, B] their commutator, [A4, B] :=
AB — BA and by AT the transpose of A with respect to the scalar product (LCI6).



Throughout the paper, @ C RS+ denotes a parameter set of frequency vectors. Given any function f: Q@ — X,
we denote by A, f the difference function

Apf:2xQ0— X, (w,w2)r— flwr)— flws2).
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2 Preliminaries

2.1 Function spaces and linear operators

In the paper we consider real or complex functions u(p, z;w), (¢, z) € TS+ x Ty, depending on a parameter
w € Q in a Lipschitz way, where Q is a subset of RS+. Given 0 < v < 1 and s > 0, we define the norm

[ul[Z2 = [Jul 5P = (]| 3P 4 ]| P
. _ ) 2.1
[l = sup ) o, = sup Bl )l =y
wER w1,w2 EQ w1 Fw2 |W1 - w2|

where || ||s is the norm of the Sobolev space H*® defined in (I.I2). For a function u : @ — C, the sup
norm and the Lipschitz semi-norm are denoted by |u[*"P and, respectively |u|'P. Correpondingly, we write
[l 90 = fuf**? + ],
By IIny, N € N4, we denote the smoothing operators on H?,
(Iyu)(p, z) : Z ug je! T2 Ik = 1d — Iy . (2.2)
()
They satisfy, for any a > 0, s € R, the estimates

T |[EPO) < N | L200 (2.3)

[Ty SP0) < NJu]| 2P0 o

3

Furthermore the following interpolation inequalities hold: for any 0 < s1 < s9 and 0 < 6 < 1,

Li i i —
llg T gy < 20l 5PN (Juf[EP0)1=0 (2.4)

Multiplication and composition with Sobolev functions satisfy the following tame estimates.
Lemma 2.1. (Product and composition) (i) For any s > so = [(|S+| +1)/2] + 1
[uv|FP) < O(s)[ull 5P [ 5P + Cso) [ 5P [[o]| 5. (2.5)

(ii) Let B(-,-w) : TS+ x Ty — R with Hﬁ||I§;pJQ) < 6(sp) small enough. Then the composition operator

B :u s Bu, (Bu)(p,x) :=u(p,x + B8(p,x)) satisfies, for any s > so+ 1,

i Li i Li
1Bul BP0 <, [l B 4 | B11EPO) [ LG (2.6)

The function 3, obtained by solving y = x + B¢, x) for x, x =y + By, y), satisfies

IBILPO) < BIERT L Vs > s (2.7)

(iii) Let a(-;w) : TS — R with Ha||£‘;p12) < §(sop) small enough. Then the composition operator A : u
Au, (Au)(p, z) = u(p + a(p)w, z) satisfies, for any s > so+ 1,

i Li i Li
AUl PO < [l BR[| PO [l S (2.8)

The function &, obtained by solving ¥ = ¢ + a(p)w for ¢, ¢ = 9 + &(¥)w, satisfies

9 i L
]| P00 < [l B0, Vs > s (2.9)



Proof. Ttem (i) follows from (2.72) in [10] and (4¢)-(¢4¢) follow from [I0, Lemma 2.30]. O

If w is diophantine, namely

sz%, Ve € 75+ \ {0},

the equation w - O,v = u, where u(p, x) has zero average with respect to ¢, has the periodic solution

. -1, _ Ug,j i(-p+2mjz)
(W-0y)  u = Z —iw-fe premIE)
JEZLeZ +\{0}
and it satisfies the estimate (cf. e.g. [9, Lemma 2.2])
— i — Li
(@ - 8,) " ul[ 5P < Oy ull 2 (2.10)

We also record Moser’s tame estimate for the nonlinear composition operator

u(cp, :L') = f(”)(@a :L') = f(‘Pa €L, ’U,(QD, :C)) :

Since the variables ¢ and x play the same role, we state it for the Sobolev space H®(T%), (cf. e.g. [10]
Lemma 2.31]).

Lemma 2.2. (Composition operator) Let f € C°(T? x R"*,C). If v(-;w) € H*(T4R"), w € Q, is a
family of Sobolev functions satisfying HUHI;;%;) < 1 where so(d) > d/2, then, for any s > so(d),

I£()[[FP7) < C(s, /)L + [|ol| 7). (2.11)

Moreover, if f(p,z,0) =0, then Hf(v)H];ip(V) < C(s, f)||v|\1;ip(7).

Linear operators. Throughout the paper we consider y-dependent families of linear operators A : TS+ —
L(L*(Ty,C)), ¢ = A(yp), acting on complex valued functions u(x) of the space variable z. We also regard
A as an operator (which for simplicity we denote by A as well) that acts on functions u(p, x) of space-time,
i.e. as an element in £(L?(TS+ x Ty, C)) defined by

Alul(p, z) = (Au)(p, 2) := (Alp)ulp,))(x). (2.12)

We say that the operator A is real if it maps real valued functions into real valued functions.
When v in ([2Z.I2)) is expanded in its Fourier series,

ule,w) =D ug(@)™T = N gl ermn), (2.13)
JEZ JELLET S+

one obtains

(Au)(p,z) = Y A (Qup(p)e?™ = N S° A g gt (2.14)

3,4 €L JETL LT+ 'L €T+

We shall identify an operator A with the matrix (Ag/ = E’))j Senirertt

Definition 2.3. Given a linear operator A as in (ZI4) we define the following operators:
1. |A] (MAJORANT OPERATOR) whose matriz elements are |A§/ (£—20)).
2. liyA, N € Ny (SMOOTHED OPERATOR) whose matriz elements are

Al(0—0) if ((—0)<N

) (2.15)
0 otherwise.

(A (6 —¢) = {



3. (0,)PA, b € R, whose matriz elements are (¢ — K’}Wl?l (£-2).

4. 0p,, A(p) = [0,,,, A] (DIFFERENTIATED OPERATOR) whose matriz elements are i({y, — ﬂ;n)A;:/ (e—-10).

Definition 2.4. (Hamiltonian and symplectic operators) (i) A p-dependent family of linear operators
X (), ¢ € TS+, densily defined in L2(T;), is HAMILTONIAN if X (p) = 0,G(p) for some real linear operator
G(p) which is self-adjoint with respect to the L?*—inner product. We also say that w - 8, — 0,G(p) is
Hamiltonian.

(i) A p-dependent family of linear operators A(yp) : L3(Ty) — L&(Ty), Yo € TS+, is SYMPLECTIC if

WL% (A(SQ)U, A(‘P)“) = WLS (’LL, ’U) ) VU, IS L(%(Tl) )
where the symplectic 2-form Wrz is defined in (LF]).

Under a ¢-dependent family of symplectic transformations ®(¢), ¢ € TS+, the linear Hamiltonian oper-
ator w - 0, — 0;G(¢p) transforms into another Hamiltonian one.

Lemma 2.5. A family of operators R(p), ¢ € TS+, expanded as R(p) = D vers+ R(0)eX¥, is
(i) SELF-ADJOINT if and only if ij' (0) = R}(—E);

(ii) REAL if and only if RJ,(¢) = RZ%,(—0); ) |

(#11) REAL AND SELF-ADJOINT if and only if R} (£) = R}, (().

Lemma 2.6. Let X : Hit3(T1) — H§(T1) be a linear Hamiltonian vector field of the form
2
X = Z az_1(2)037*% 4+ bounded operator (2.16)
k=0

where az_i € C*°(Ty). Then az = 2(a3)y.

Proof. Since X is a linear Hamiltonian vector field it has the form X = 9,4 where A is a densely defined
operator on L3(T;) satisfying A = A'. Therefore, using (2.16),

A= 8;1X = a3(2)0zs + ( — (a3)s + ag)am +...
AT = fXT[?;l = a3(2)0zs + (3((13)93 — 0,2)81 + ...

The identity A = A" implies that as = 2(a3).. O

2.2 Pseudo-differential operators

In this section we recall properties of pseudo-differential operators on the torus used in this paper, following
[10]. Note however that € Ty and not in R/(277Z).

Definition 2.7. We say that a : T1 Xx R = C is a symbol of order m € R if, for any o, 8 € N,
0007 a(x,€)| < Cap@™ 7, V(z,€) €Ty xR, (2.17)

The set of such symbols is denoted by S™. Given a € S™, we denote by A the operator, which maps a one
periodic function u(x) = ZjeZ u; e to

Alu](z) = (Au)(x) := Zjeza(x,j)ujeijz.

The operator A is referred to as the PSEUDO-DIFFERENTIAL OPERATOR (WDO) of order m, associated to
the symbol a, and is also denoted by Op(a) or a(x, D) where D = 10,. Furthermore we denote by OPS™
the set of pseudo-differential operators a(x, D) with a(x,£) € S™ and set OPS™° := NpyperOPS™.



When the symbol a is independent of &, the operator A = Op(a) is the multiplication operator by the
function a(zx), i.e., A : u(z) — a(z)u(x) and we also write a for A. More generally, we consider symbols
a(ip, x, & w), depending in addition on the variable ¢ € TS+ and the parameter w, where a is C* in ¢ and
Lipschitz continuous with respect to w. By a slight abuse of notation, we denote the class of such symbols
of order m also by S™. Alternatively, we denote A by A(y) or Op(a(yp,-)).

Given an even cut off function yo € C*°(R,R), satisfying

1 2
we define, for any m € Z, 97" = Op(xo(£)(i27&)™), so that
O[] = (i2mj)™e®™T, j e Z\ {0}, 971 =0. (2.19)

Note that 0%[u](x) = u(z) — ug, hence 9 is not the identity operator.

Now we recall the norm of a symbol a(p, x,&; w) in S™, introduced in [I0, Definition 2.11], which controls
the regularity in (¢, z) and the decay in £ of a and its derivatives 8?(1 € 88 0 < B < a, in the Sobolev
norm || ||s. By a slight abuse of terminology, we refer to it as the norm of the corresponding pseudo-differential
operator. Unlike [10] we consider the difference quotient instead of the derivative with respect to w, and
write | |}, , instead of | |7I11i?s(7’,§).

Definition 2.8. Let A(w) := a(p, z, D;w) € OPS™ be a family of pseudo-differential operators with symbols
alp,z,&w) € 8™, meR. Forv e (0,1), « €N, s >0, we define the WEIGHTED ¥DO NORM of A as

A(wy) — A(w
ARG = sup | A@) e+ sup A= A s
wen w1 ,w2 €Q |w1 - w2|
w1 #w2

where |A(w)|m,s.0 = maxo<p<a suPecg |97 a(-, -, & w)||s (€)™,
Note that for any s < s, a < o/, and m < m/,

|- |Lip) < | [EP(Y |- |Lip) < | [EPO) | [HPO) < | |Lip() (2.20)

5,0 — m,s’,a? 5,0 — m,s,a’ m/,s,a — m,s,o *

For a Fourier multiplier g(D;w) with symbol g € S™, one has

10p(g) 5P = [Op(g) |27 < C(m,a,g), Vs>0, (2.21)

m,s,q m,0,c

and, for a function a(y, z;w),

0p(a) |52 = |0p(a) |52 < [lal|PO) . (2.22)

0,s,a

Composition. If A = a(p,z, D;w) € OPS™, B = b(p, x, D;w) € OPS™ then the composition AB := AoB
is a pseudo-differential operator with a symbol oap(p, z,&;w) in S™F™ which, for any N > 0, admits the
asymptotic expansion

N
1
OAB 90;33 €7 Z ﬁ— 90;55 €7 )agb(@axa§7w) +7"N((,0,.T,§;W) (223)

with remainder ry € S™F™ ~N=1 " We record the following tame estimate for the composition of two
pseudo-differential operators, proved in [10, Lemma 2.13].

Lemma 2.9. (Composition) Let A = a(p, z, D;w), B = b(p, x, D;w) be pseudo-differential operators with
symbols a(p,x,&w) € S™, blp,x,&w) € S™, m,m' € R. Then A(w) o B(w) is the pseudo-differential
operator of order m 4+ m/', associated to the symbol oap(p,x,&; w) which satisfies, for any o € N, s > sp,

|AB|MP™) < C(s)|A|HPO) | B LPO) + C(s0)|A|EPO) | B|HPO) . (2.24)

m+m/,s,a ~M,Q m,s,x m’,so+a+|m|,a m,so,x m’,s+a+|m|,a
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Moreover, for any integer N > 1, the remainder Ry := Op(ry) in 223) satisfies

Lip(v) Lip(7) Lip(vy)
IBN | N—1,5,0 Sm,NaC(8) | Al Ni1tal Blo s oV 1)+ fml oo (2.25)
Lip() Lip(7) '
C(SO)|A|m,so,N+1+a|B|m/,s+2(N+1)+|m\+oz,a'

By [223) the commutator [A, B] of two pseudo-differential operators A = a(x, D) € OPS™ and B =
b(x,D) € OPS™ is a pseudo-differential operator of order m + m’ — 1, and Lemma then leads to the
following lemma, cf. [I0, Lemma 2.15].

Lemma 2.10. (Commutator) If A = a(p,z, D;w) € OPS™ and B = b(p,z, D;w) € OPS™ , m,m’ €R,
then the commutator [A, B] :== AB — BA s the pseudo-differential operator of order m +m’ — 1 associated
to the symbol o ap(p,,&w) — opalp, x,&w) € S™T™ =1 which for any o € N and s > sg satisfies

Lip(v) Lip(v) Lip(v)
4, B”"iill’—l,s,a Smam'a C(S>|A|7r;i-z2+\m/l+a,a+l| |7T?,870+2+|m\+oz,a+1
Lip(v) (2.26)

Lip(v)
+ C(SO)|A|m,so+2+|m’|+a,a+1| |m’,s+2+\m|+a,oz+1 .

In the case of operators of the special form a0, Lemma and Lemma 210 simplify as follows:

Lemma 2.11. (Composition and commutator of homogeneous symbols) Let A = ad™, B = b
where m,m’ € Z and a(p,z;w), b(p, z;w) are C°—smooth functions with respect to (p,x) and Lipschitz
with respect to w € Q. Then there exist combinatorial constants K,, ,, € R, 0 < n < N, with Ko, =1 and
K1y, = m so that the following holds:

(i) For any N € N, the composition Ao B is in OPS™ ™ and admits the asymptotic expansion

N
AoB =" Kpnma(@0)drt™ =" + Ry(a,b)
n=0

where the remainder Ry (a,b) is in OPS™t™ =N=1_ Burthermore there is a constant on(m) > 0 so that,
for any s > sg, a € N,

Li Li Li Li Li
IR (a, b)) N a2 p)|EP) el [BEO) b HRO)

<
m+m’—N—1,s,a ~m,m’,s,N, s+on(m) sot+on(m) so+on(m) ston(m)”

(ii) For any N € Ny, the commutator [A, B] is in OPS™™ =1 and admits the asymptotic expansion
N
[4,B] = Z o @(07D) — Ko s (02a)b) O™ = 1 Qi (a, b)

where the remainder Qn(a,b) is in opgmtm =N-1 Furthermore, there is a constant oy (m,m’) > 0 so
that, for any s > sg, a € N,

Li L L L L
QN (@ D))y e St S0 IBIEE  al B IR

Proof. See formula ([223) and Lemma 2.9 O
We finally give the following result on the exponential of a pseudo-differential operator of order 0.

Lemma 2.12. (Exponential map) If A := Op(a(p,z, & w)) is in OPSY, then >, <, %O’Ak (p,2,&w) is
a symbol of order 0 and hence the corresponding pseudo-differential operator, denoted by ® = exp(A), is in
OPSY, and for any s > so, a € N, there is a constant C(s,a) > 0 so that

i Li Li
1@ — 1|57 < A5 exp(Cls, )| A[GED, L) - (2.27)

0,s0+a,a

11



Proof. Tterating (Z24)), for any s > sg, a € N, there is a constant C(s,«) > 0 such that

[A¥62a < Cls, ) M (Alg L) A R YR 2T, (2.28)
Therefore
@ - 1l < 30 Lyt B ) S Lo apagng, et
k>1 k>1
< A5 2 cep(Cls, )| AgE T o)
This shows that Zkzo %JA;C (p,z,&w) is a symbol in S° and that the estimate ([Z27) holds. O

2.3 Lip(y)-tame and modulo-tame operators

In this section we recall the notion and the main properties of Lip(v)-o-tame and Lip(y)-modulo-tame
operators. We refer to [10, Section 2.2] where this notion was introduced, with the only difference that here
we consider difference quotients instead of first order derivatives with respect to the parameter w.

Definition 2.13. (Lip(y)-o-tame) Let o > 0. A linear operator A := A(w) as in (2I2) is Lip(y)-o-tame
if there exist S > s1 > so and a non-decreasing function [s1,S] — [0,4+00), s — Ma(s), so that, for any
51<s<S anduc H*F,

A(wl) — A(CLJQ)

w1 — we

sup [ A(w)ulls +7_sup ul| < MaGs)lullors +Mas)ulleso.  (229)

w1, w2 E€Q
w1 Fwy

When o is zero, we simply write Lip(y)-tame instead of Lip(y)-O-tame. We say that M(s) is a TAME
CONSTANT of the operator A. Note that M4 (s) is not uniquely determined and that it may also depend on
the “loss of derivatives” o. We will not indicate this dependence.

Representing the operator A by its matrix elements (A?l (- E’))e vt jyen S 0 2.14), we have, for
all i/ € Z, 0 € 75+, for all wy,ws € Q, wy # wo,

>, (14 e -0

where we recall that A, f = f(w1) — f(wa).

ALAT (0 — ¢
2| S EE T < (amagan) e e ) (2.30)

w1 — wal

Lemma 2.14. (Composition) Let A, B be, respectively, Lip(y)-oa-tame and Lip(y)-op-tame operators
with tame constants M4 (s) and Mp(s). Then the composition Ao B is Lip(y)-(oa + op)-tame with a tame
constant satisfying

Map(s) SWMa(s)Mp(s1+04) +DMa(s1)Mp(s+04).
Proof. See [10, Lemma 2.20]. O
We now discuss the action of a Lip(y)-o-tame operator A(w) on a family of Sobolev functions u(w) € H®.

Lemma 2.15. (Action on H?®) Let A := A(w) be a Lip(y)-o-tame operator with tame constant M4 (s).
Then, for any family of Sobolev functions u = u(w) € H*T9, Lipschitz with respect to w, one has

i Li Li
[ Aul|HPO) < 904 (51) || 28 4 904 (5) ]| 5

Proof. See [10, Lemma 2.22]. O

Pseudo-differential operators are tame operators. We shall use in particular the following lemma.

12



Lemma 2.16. Let a(p,x,&w) € SO be a family of symbols that are Lipschitz with respect to w. If A =
a(p, x, D;w) satisfies |A|31507) < 400, $ > 8o, then A is Lip(v)-tame with a tame constant satisfying

Ma(s) < O(s)|AlgPG . (2.31)

AS a consequence
i Li i Li i
| Au|[BPO) < C(s0) Al [uf| SPO) + C ()| Alg PG | LPO) (2.32)

Proof. See [10, Lemma 2.21] for the proof of (Z3T)). The estimate (Z32) then follows from Lemma[ZT5 O

In the KAM reducibility scheme of Section[7, we need to consider Lip(7y)-tame operators A which satisfy
a stronger condition, referred to Lip(v)-modulo-tame operators.

Definition 2.17. (Lip(y)-modulo-tame) Let S > s1 > sg. A linear operator A .= A(w) as in (ZI2) is
Lip(y)-modulo-tame if there exists a non-decreasing function [s1,S] — [0,+00), s — Qﬁ&(s), such that the
majorant operators |A(w)| (see Definition[2.3) satisfy, for any s1 < s < S and u € H?,

|A(w1) — A(wo)]

w1 — wol

sup || A(e)ulls +7 _sup u <o (slull+ G uly - (239)

w1,wn €Q
wyFwy

The constant 93?‘34(5) is called @ MODULO-TAME CONSTANT of the operator A.
If A, B are Lip(y)-modulo-tame operators, with |A§/ 0 < |B§/ (0)], then 90, (s) < 9% (s).
Lemma 2.18. An operator A that is Lip(7y)-modulo-tame with modulo-tame constant Dﬁﬁ,(s) is also Lip(7)-
tame and fm%(s) is a tame constant for A.
Proof. See [10, Lemma 2.24]. O
The class of operators which are Lip(y)-modulo-tame is closed under sum and composition.

Lemma 2.19. (Sum and composition) Let A, B be Lip(v)-modulo-tame operators with modulo-tame
constants respectively smﬁ, (s) and fmﬁB(s). Then A+ B is Lip(y)-modulo-tame with a modulo-tame constant
satisfying

My () < My () + M (s) (2.34)

The composed operator A o B is Lip(y)-modulo-tame with a modulo-tame constant satisfying
Ny 5 (5) < C (MM ()00 (s1) + 0Ty (51) Wi (5)) (2.35)

where C' > 1 is a constant. Assume in addition that (0,)°A, (0,)°B (see Definition [2:3) are Lip(7)-
modulo-tame with a modulo-tame constants, respectively, 931%6 >bA(s) and 931%6 )bB(S)' Then (9,)°(AB) 1is
Lip(y)-modulo-tame with a modulo-tame constant satisfying, for some C(b) > 1,

My o (5) < C(b)(ﬁﬁ%adbA(s)ﬁﬁﬁB(sl) + 4 (51)9005(5)

ri ri ﬁ ri (2.36)
+ 9 ()90, 145 (50) + SDTA(Sl)QJT(aw)bB(S)) .
Proof. See [10, Lemma 2.25]. O
Iterating (230)-(230) we obtain that, for any n > 2,
n—1
My, (s) < (20900 (s1))" 0y (s), (2.37)
and
me (s) < (4C(b)C)" L (zm'i () [0, (1)) "+ O, o (5) 9, () [0, ()] " 2.38
(O )P A™ = (8,)P A A\S1 (0,)pA\81)H Y (S A 81)] . (2.38)

As an application of (Z31)-(2Z38) we obtain the following
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Lemma 2.20. (Exponential map) Let A and (0,)°A be Lip(y)-modulo-tame operators and assume that
Sﬁ% : [s1,S] = [0,4+00) is a modulo-tame constant satisfying

M, (51) < 1. (2.39)

Then the operators ®*! := exp(+A), ®*1—1d and (9,)°(®*!—1d) are Lip(y)-modulo-tame with modulo-tame
constants satisfying, for any s1 < s < S,

miilfld(s) N m%(s) )

ot (s) <p M (s) 4+ 9%, (s)00* (s1) (2.40)
(9,)P(@E1—1d) 7/ ~b (9, )> A A (9)° A1)

Proof. In view of the identity ®*! — Id = Zn21 (i:!)n and the assumption ([239) the claimed estimates

follow by (Z317)-(2.38). O

Lemma 2.21. (Smoothing) Suppose that (0,)°A, b > 0, is Lip(y)-modulo-tame. Then the operator I3 A
(see Definition[Z.3) is Lip(y)-modulo-tame with a modulo-tame constant satisfying

Mpy () < NN puals), My, (5) < Miy(s). (2.41)

Proof. See [10, Lemma 2.27]. O

Lemma 2.22. Let a;(+;w), az(-;w) be functions in C*°(T5+ x Ty, C) and w € Q. Consider the linear operator
R defined by Rh := a; - (ag,h)Li, for any h € L2. Then for any A € N5+ and ny,ny > 0, the operator
(DY OYR(D)"* is Lip(y)-tame with a tame constant satisfying, for some o = o(n1,n2,A) >0,

M pyr1oar (D)2 (8) Ssminan (Maxi—1 o(|@ilsto) - (maxi—1 2[|ailsp+o) -
Proof. For any ni,ns >0, A € NS+ h € L2, one has

(D) ORRD)™h =" exn (D)™ (03 aa] ((D)"2[032az] , h) 1
A1+A2=A

where we used that the operator (D) is symmetric. The lemma then follows by (Z.1). O

2.4 Tame estimates

In this section we record various tame estimates for compositions of functions and operators with a torus

embedding 7 : TS+ — &, of the form (cf. (LIX))

i(p) = (¢,0,0) + (), tlp) =(O(p),y(p), w(y)),

with norm ||¢[|EP) = H@H%}g('y) + ||y||1;;§(7) + [Jw|[£P™). We shall use that the Sobolev norm in (II2) is
equivalent to
s = g, ~s I gz + 1 2z ms (2.42)

and the interpolation estimate (which is a consequence of Young’s inequality)
lwllzg g < llwllgerepz +lwllpe gpre Sso lwlls+o - (2.43)

Given a Banach space X with norm || ||x, we consider the space C*(TS+, X), s € N, of C*—smooth maps
f: TS+ — X equipped with the norm

I1f]

cox =y N0gfIX®,  IOgfIXT = sup 192 f(@)]x - (2.44)

0< || <s peET
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By the Sobolev embedding || fllcsx Ssy | f[[ ys+o1 ¢ for s1 > [Sy], whereas if X is a Hilbert space, the latter
estimate is valid for s; > |[Sy[/2. On the scale of Banach spaces C*(TS+, X) the following interpolation
inequalities hold: for any 0 < k < s,

1—k

[fllesx s ||f||cox||f||csx (2.45)

Recall that &, E, are defined in (LIS) and V*(4) in (L20). Let Q be an open bounded subset of RS+,

Lemma 2.23. Let 0 > 0 and assume that, for any s > 0, the map a : (V7(6) N Est0) X Q@ — H*(Ty) is
C> with respect to r = (0,y,w), C' with respect to w, and satisfies for any ¢ € V(6) N Esio, a € N+ with
la] <1, and | > 1, the tame estimates

105 a(x;w) s So 14wl oo,

l l
. R R R ~ R (2.46)
ld Oz a(es ), Bl Sova Y (Eille. T IEalls, ) + lwl e TT IEle. -

=1 nj j=1

Lip(7)
so+o

Then for any [ with |¢|| < 4, the following tame estimates hold for any s > 0:
(1)

o i Li
la(@)[FPO) <o 1+ (| 2R0)

s+so+o0
L Li —~ 11 Li
de@ @I S Wt + IRy 247
—~ 1 Li ~ —~ 1 Li ~ 1 Li '
ld2a (@) (i1, ]IIHP <o [P0 22 oo + IELIEED [ElI500,
Lip(y) 1~ Lip(v) -~ ;| Lip(v)
+ || ||s+so+a|| 1||Sg+0’ || ||50+a .

(i) If in addition a(6,0,0;w) =0, then |a(@)[|5™) <, [o]|FP0), .
(38) If in addition a(6,0,0;w) = 0, dya(d,0,0;w) = 0 and Oya(6,0,0;w) = 0, then

o i L L
la(@) 5P < [ 52O) fellkn)

o i L L L L
Ida@)ENEPD S el 15RO 4 el|5 20 (SR

Proof. (i) It suffices to prove the estimates in (Z.47) for ||d?a(2)[21,72]||s and ||d?a(2)[z1,72]||P since the ones
for a(f) and da(Z) then follow by Taylor expansions. By the hypothesis ([2.46) with [ = 2, o = 0, we have,
for any ¢ € TS+, s > 0,

la*a(i(e)) 1 (), 22 (D)l ;. Ss [T B (2200 B, + 710, [72()]
+ ()l .o 2 (D) 2, [22(0)| 2, -

Squaring the expressions on the left and right hand side of (2.48]) and then integrating them with respect to
©, one concludes, using ([2:42)), (Z43)), and the Sobolev embedding (TH), that

Foto (2.48)

||d2a(z)[/b\1a2\2]”L§,H; Ss ||/L\1||s+0||?2||50+0 + ||?1||80+0||?2||s+0 + ||L||s+<7||2\1||80+<7||?2||80+<7' (2-49)

In order to estimate ||d*a(7)[1, 72| gs £z, we estimate [|d*a(2)[i1, 22|

ez We claim that
|d*a(?)[21, 22]]

so that the estimate for ||d2a(?)[i1,72]||s stated in (ZZ47) follows by (Z49), Z50), and (Z42). The bound for
|d2a(?)[t1,72]||P is obtained in the same fashion.

Proof of ([250). By the Leibnitz rule, for any 3 € N5+, 0 < |3| < s,

08 (Palle ) (@) 2@)) = 3 om0 (dPali(9) [027 (9), 025 (9) (251)

B1+P2+B83=0

CeL2 Ss [allso+olZ2lls+soto + [Tllstsotol2llsoto + Nellstso+ollerlso+ollizllso+o (2.50)
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where cg, g, 8, are combinatorial constants. Each term in the latter sum is estimated individually. For
1 < |B1] < s we have

AL (d*a(i(9)) [00701(¢), 802 ()] =
Yo o and™Pali(9)) [051 (), - 05 i(0), 0201 (), 0T ()]

1<m<|B|
a1+ Fam=P41

for suitable combinatorial constants cq, ... a,,. Then, by (Z48) with [ = m + 2, & = 0, we have the bound

1071 (d®a(0)[0201, 00T leo 2 Sp (2.52)
> o+ el ) -+ (LA Nellgomi g e g2 g 2]l 151,
1<m<|B1]

ar+-tam=p1
Arguing as in the proof of the formula (75) in [9], for any j = 1,...,m, we have

lajl

1- Ll
(At llell grest g ) S A+ lelleam,)™ T+ llelleisrg, ) P

and, using the interpolation estimate (2.45), we get

L+ Nelletoaig, ) - (el gom g Ml too 2]l 1ol 5 (2.53)
\BB‘\ % \BB‘\ \‘[;3‘\ A 1,M layl
Ss ||L1||coE ||L1|| 1 ||L2||coE [|22 |C\B\Ea H(1 + ||L||cgEo) BT (1 + ”L”CL["‘EU) 181
j=1
1821 1831 B3] lajl lajl

Aﬁmmw“mn% mmw“mnﬂ (A lellen )™= T (U el )25 T

m— m— Zn,1 ‘O‘j‘
By ([CI5), @Z3), (1+ [tllegm,)™ ' S (L4 [elsoro)™ S (L+0)™ 1 and =it = Wl = 15l 1,
so that

1811+183] N B2l [B11+182] N 1831 |82 |+183l 1811
@53) S lilleo s, alless, 2ller, Rl m, 4+ ldlegs,) 7 (1 + lldleym,) ™
181] 1B2]

~ —~ T
Ss (Iiilleg . 2 lleg m, (14 lelles ) ™ (Il 5. 2 lep m, (14 elless,))
1831

~ ~ 18]
< (Illes 2, I22lle £, (1 + lelleg 2,)

and, by the iterated Young inequality with exponents |8|/|51l, |8]/152]; 18]/|83|, we conclude that ([Z53)) is
bounded by

[lles e, [22llce 2, (1 + llelles 5,) + ealleg &, [2lleg =, (L + lelleg ,) + [alles &, [22lles 2, (1 + llelles &,)

,
Ss lells+so-+o 21 so+o 22l so+o + Fle1llst+so+o l22llso+o + 21 so+o 22 s+s0+0 -

Note that (Z52) satisfies the same type of bound as (Z53). The term in (ZX5I) with §; = 0 is estimated in
the same way and thus ([2.50) is proved.

PROOF (ii)-(iii). Let v — i(p) = (6(¢), y(¢), w(p)) be a torus embedding. If a(6,0,0) = 0, we write
a(7) :/O da(ip)fe]dt, iy = (1 =)(0(¢),0,0) + ti(p), v:= (0,4(p), w(p)),

and, if a(6,0,0),9,a(6,0,0), dwa(,0,0) vanish, we write

a(Z):/ (1 )da(i)[0,7] dt .

0

Ttems (i4)-(i4¢) follow by item (), noting that ||ﬂ|£ip(7) = [](0,y(+), w(-))||£fip(7) < ||L||£Jip(7) forany s >0. O
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Given M € N, we define the constant
sy = max{sg, M + 1}. (2.54)
Lemma 2.24. Assume that, for any M > 0, there is op; > 0 so that:
e Assumption A. For any s > 0, the map
R: (VM (0) NEsioy) X Q — B(H(Ty), HTMF(T)))
is C> with respect to t, C* with respect to w and, for any r € VM (§) N Estoyy, @ € NS+ with |a] <1,
10SR(w; W)@l ga+r+r Sonr (|01 1 + lwll yotons @] 22,

and, for any 1 > 1, ||d'02R(x; w)[@][t1, - - - 8[| s rr+1 s bounded by

l l l
Seara @l TT I E.,, + 1822 (Il yoeone TT I, + D2 (ileern,, T Ralle,)) -

j=1 j=1 j=1 n#j
e Assumption B. For any —M — 1 < s <0, the map
R VM (§) x Q — B(H*(Ty), H™M+(Ty))
is C>® w.r to t, C* with respect to w and, for any r € VM (§), a € N+ with |a| < 1, and | > 1,

105 R(x; w)[@] || gzt reer Ssna 0]
l

'SR (& ) [@]F, - Bl ggoens Ssnra 0]z [ 1851, -
j=1

Then for any S > sy and A € NS+, there is a constant opr(N\) > 0, so that for any i(p) = (¢,0,0) + ()

with ||¢ ||I;;I_:_(;1)M()\) < 0 and any ny,ns € N satisfying n1 +ne < M + 1, the following holds:

(2) The operator (D >"182(R o 0){D)™ is Lip(7y)-tame with a tame constant satisfying, for any sy < s < S,

Li
My oaron Dy (8) Ss.arn L+ ellgfan ) -

(#3) The operator <D>”182(d72(f) [()(D)™ is Lip(vy)-tame with a tame constant satisfying, for any sy < s <
S,
i Li Li
Moy o3 ar oy (5) Ss.ara [T )+ 1l IR, o -

(iii) If in addition R(0,0,0;w) = 0, then the operator (D)™ 9}(R o ){D)™ is Lip(y)-tame with a tame
constant satisfying, for any sy < s < S,

M pym1 03 (Rory(Dyn2 (8) Ss,arx e ||5+0L)(A)

Proof. Since item (i) and (i7) can be proved in a similar way, we only prove (i7). For any given ny,ny € N
with ny +ny < M 41, set Q := (D)™ R(D)™. Assumption A implies that for any s > M + 1 and any
T € VM(6) N Estoyy, the operator Q(r) is in B(HE) and for any T1,...,7 € Fsyoy, with 1> 1, and @ € HE,

1)@y Ss,nr @l mrg + [[wll o vons [|@]] graeer

l
| (Q@)[@) F1- - Filllers Sonrt @] s H I%lE. ,, -

S L PRy (P, H Il &, + Z 811200y, T IRl ) -

n#j
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Furthermore Assumption B implies that, for any r € V7" (§), the operator Q(z) is in B(L2) and for any
/x\la"'a/x\l eEaMalZ 1,

l
1QW sz S 1, d'QEE, .- Blllswe Sva [ 12, - (2.56)

j=1
One computes by Leibniz’s rule
RAQUANEP]) = D v @ QIO (), -, O3 (), D ()] (2.57)

0<k<|A|
M+ A=A

where cy, are combinatorial constants.

»»»»» Ak+1
ESTIMATE OF ||8;> (dQ(Z((p))[?((p)])[@]HL?OHi. By (255), we have, for s > M + 1,
ld* T Q(e(@)[03 i), -, 03+ L(p), 3““?(@)][@(50)]”11; (2.58)
Ssar |00 103 70) | 2., H 103 e(#)ll .,

e ) e (O] PR i 1 1o I ool

n=1
k k
+ > N0y U 5o, ([T N2 2N 8, 0P TP 8, + 103 WD) | 22, [T 11057 )||EUM) -
j=1 n#j n=1
Note that by the Sobolev embedding and ([Z43)), for any s > 0, pu € NS+,
1051, S 1+ 1105llcor, ST+ lellssso+iul - (2.59)

Hence (Z5T)-@58) and || |z, S |- [l imply that for any 7 with [o|220) < 5 and any 5> M + 1,

so+onm(N)
182 (dQ (i) ()] [@ ()]l 2 15

S mx (Ol soranr 3) + 141 (el ssors ) 1lso+one ) + [Tlstoar r))

(2.60)
for some constant opr(A) > 0.
ESTIMATE OF ||8$(dQ(Z(g0))[?(g0)])||H;B(Li). For any s € N, B € N || < s, we need to estimate

1972 (dQ(E(e)[E(@)]) |22 5(22)- As in @5T) we have
05 (dQ(i(p))[ip)]) = > Carpman @ QUG 1), - .., 0g+ i), Dg+1Up)]

0<k<|B|+[Al (2.61)
ar+...fagp1=8+A
where cq, ... a;,, are combinatorial constants. By (Z56) and (Z.59) one obtains that

k
125 Q)OS 1), - - -, 02 1), 02 W) |z m(r2) S [T+ el 14mar) 1l jor e (2:62)

j=1

for some 7y, > 0. Using the interpolation inequality (2.4]), and arguing as in the proof of the formula (75)

in [9], we have, for any ¢ with ||¢||;,, <1 and any j =1,...,k,
1— lajl lajl 13 HWM<1 [l
L llelhagmar S U Nlellnae) FFA 4+ lelljgaaigna) 75 S (1 lelljgai4man) 7Y

7\Tk ﬁ‘ ‘fk+ﬁ
B+A B+
1 g s e S e P L
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Then by ([2.62)) and since 2?21 laj| + |ak+1] = |8 + A, it follows that

la* Tt Qie)[0g 1), - 8“’%“( ) 05 iz

log41l log41l

Ss,)\ (1 + ||L||\ﬂ+/\|+77M) ‘BJFM ||/\H771M A ||/\H|,(‘3B.:))\\\‘+UM
Z\zﬂl\‘;ﬂ Pletal
T
Son (4 el aremae) ) [y
S 2l igaitnar + el gm0 2l (2.63)
where for the latter inequality we used Young’s inequality with exponents El’f +)|“ £ |5 . Combining (26T
j=1 19
and (2.63) we obtain
105 (dQ@) @)l a1 522y Somtn [Tllstiarrnar + 1ellstiarrmae [Ellna - (2.64)

ESTIMATE OF [|93(dQ(0)[2])[@)]| s 2. Using that
n 2 2s 1/2
(3 AR @) Seo 1Algz-opay
Lcz+

one deduces from [9, Lemma 2.12] that for any & with [[¢[|25,4|z|4n,y, < 1 and any s > so,
103(@dQ@ M@ 1z 2 <s 105D 20 12y 1@l 11 L2 + 103D 20 g2y 1Bl ro L2 (265)

Sant [@0s T zs0+1714ma0 + 1@ N0 (Nells-t oot 171 4mar + 1ellstsot13+mae [l 25041314700 ) -
Increasing the constant ops(\) in (Z60) if needed, one infers from the estimates (2:60), (Z63) that for any
s > sy = max{sg, M + 1}, 82(dQ(Z)[?]) satisfies

103 (dQ@)ED[@]lls Ss.aex 1Bl 1Tl so+003) + 1@llsns (1Tl s400x) + Iellstons ) [Tsoronery) - (2:66)

Furthermore, arguing similarly, one can show that for any wi,ws € 2, wy # we, the operator QgAw(dQ(Z) [2])
satisfies the estimate, for any s > s/

10280 (dQ() ) @] 9 L L L
- Sotn (B NAEEDY oy + 1B llan (ITEED ) + 1l ZED G IRIEED ) (2:67)

w1 — wal

It then follows from (266) and (2.67) that there exists a tame constant mtaé(dg(z)m)(s) for 93(dQ(1)[1))
satisfying the estimate stated in item (i7).
PROOF OF (iii). Since R(6,0,0) = 0, we can write

1
R = [ AR d, 5= (1= 00().0,0)+0), e) = 0.9(0).u ().
0
Since [[7]|s < |¢lls for any s > 0, item (#4¢) is thus a direct consequence of (ii). O

2.5 Egorov type theorems

The main purpose of this section is to investigate operators obtained by conjugating a pseudo-differential
operator of the form a(p, )0, m € Z, by the flow map of a transport equation. These results are used in

Section
Let ®(79, T, ¢) denote the flow of the transport equation

aT(I)(TOaTa 90) = B(Ta @)q)(TOaTa 90)’ (I)(TO’T()":D) =1d, (2‘68)
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where

B(r,p) =10, (b(T, ©, )0y + by (T, @, z)) , b=b(r,p,x) = % , (2.69)

and the real valued function B(p,x) = B(p,x;w) is C*° with respect to the variables (¢, z) and Lipschitz
with respect to the parameter w € Q. For brevity we set (7, ) := ®(0,7, ) and ®(p) := ®(0,1,¢). Note
that ®(¢)~! = ®(1,0,¢) and that

q)(T()aTa 50) = q)(Ta 50)0(1)(7_0550)71 . (270)

By standard hyperbolic estimates, equation (2.68) is well-posed. The flow ®(79, 7, ) has the following
properties.

Lemma 2.25. (Transport flow) Let A\g € N, S > sg. For any A € N with A < Ao, n1,ne € R with
ny+ne =—A—1, and s > sg, there exist constants c(XNg,n1,n2) >0, § = 0(S, Ao, n1,n2) € (0,1) such that,
if
Li
1B sy <0 (2.71)
then for any m € S, (D)"laém@(ro, T,0){(D)"? is a Lip(y)-tame operator with a tame constant satisfying
M (pym103, a(ro.rie)(D)2 (8) S r0mima L+ [1BI15EA Vso<s<S, Vm,me[0,1]. (272

s+o(Xo,n1,m2)

In addition, if ny +ny = —X—2, then (D)™} (®(0,7, ) —1d)(D)" is Lip(y)-tame with a tame constant
satisfying

M(pymi03 (@(r0rrie) -1y (DY (5) S8 x0mms (Bl enin Vso<s<S, Vr,7€[0,1]. (2.73)

s+o(Xo,n1,m2) "’
Furthermore, let sg < s1 < S, ni,ng € R, Ag e N, A < g withny +ny=—-A—1, meS;. If 1 and B
satisfy || Bill s, +o(n1,ne) < 0 for some o(ni,n2) >0, and 6 € (0,1) small enough, then

||<D>n182mA12(I)(7'0, T, 50)<D>n2||B(H51) 551,)\017117”2 ||A12ﬂ||81+0(n1,n2) y  T0,T € [07 1] ) (274)

where A12ﬂ = 52 - ﬂl and A12q)(7—077_7 90) = (I)(7_05 T, S@ﬂ?) - (I)(7_05 T, 80,51)

Proof. The proof of (272) is similar to the one of Propositions A.7, A.10 and A.11 in [I0]. In comparison
to the latter results the main difference is that the vector field ([2:69) is of order 1, whereas the vector field
considered in [10] is of order 3. Using ([Z72) we now prove (Z73). By (Z68), one has that

ﬂmﬁw—m:/B@wﬂmaww

To
Then, for any A € N with A < A\¢ and any ni,ns € R with n; +no = —\ — 2, one has by Leibniz’ rule
(DY), (®(70,7, ) — 1d)(D)"

T

= > Cxl,&/ (D)8, B(t, p)(D)"= 1) ((D) "2~ 7182 (0,1, 0)(D)"?) dt

A1 t+A2=A o
= > CAI,AQ/ (D)™t B(t, )(D)~'~" =) ((D) "2 7227192 B(7o,t, 0)(D)"?) dt
A1 +Aa=A 7o
where ¢y, x, are combinatorial constants and we used that no + Ao +1 = —1 — n; — A;. Recalling the

definition (2.69) of B, using Lemmata 2.9 [ZT6 227 (¢), and (272), one has that for any s > s,

n —1—ny—Xp (i Li
m (5) s (DY B(DY Lm0 0] e IBIEP)

(D)r103}, B(D)~1=m1— M1 sto(A1,n1)”
Lip(y) (2.75)

m(D)*1*"2*>\26é$nq>(7—07t,g;)(p>nz (S) 557A2,n17n2 1+ ||ﬂ||s+g’(>\2,n17n2) .

Then [273) follows by (Z75), LemmaZ T4 and (271). The estimate (274) follows by similar arguments. O
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For what follows we need to study the solutions of the characteristic ODE 0,z = —b(T, ¢, ) associated
to the transport operator defined in ([2.69]).

Lemma 2.26. (Characteristic flow) The characteristic flow v™7 (¢, z) defined by
O () = =b(1, 0,7 (9, 7)), AT (py2) =, (2.76)

is given by y
7—077—(507 :C) =+ 7_05(90’ 1') + /B(Tﬂ ©, T+ 7—05(90’ :L')) ) (277)

where y — y + B('r, ©,y) is the inverse diffeomorphism of x — x + 75(p, ).

v

Proof. A direct computation proves that v*7(y) = y + 3(7, ¢, y) and therefore y7°(z) = = 4+ 78(p, x). By
the composition rule of the flow 477 = %7 0 479 we deduce ([Z.77). O

Lemma 2.27. There are 0,6 > 0 such that, if ||6||Lip(7) < 4, then

so+o
i) ||b I;IP(’Y) <, |18 Li() fop- any s > Sg.
~ s+o
(i4) For any 19,7 € [0,1], s > so, we have |77 (¢, ) — ||Llp ") Ss ||5||§fp .

(#3i) Let s1 > so and assume that ||Bjlls,+0 < 0, j = 1,2. Then Algb =b(-; B2) — b(+; 1) and Ajay™ 7 =

Y707 (5 B2) — 4T (+; B1) can be estimated in terms of A1af3 := P2 — PB1 as

[A120][s; Sor [1A12Blls1405  [1A129™ 7 [ls1 Ssr [A128]ls1 40 -
Proof. Ttem (i) follows by the definition of b in (2.69) and Lemmal[22] Ttem (i) follows by (2.77) and Lemma
2.1 Ttem (iii) follows by similar arguments. O

Now we prove the following Egorov type theorem, saying that the operator, obtained by conjugating
a(p, )0, m € Z, with the time one flow ®(p) = ®(0,1, %) of the transport equation (Z68]), remains a

T

pseudo-dlfferential operator with a homogenous asymptotic expansion.

Proposition 2.28. (Egorov) Let N, \g € N, S > s¢ and assume that B(-;w), a(-;w) are in C=(T5+ xTy) and
Lipschitz continuous with respect to w € Q. Then there exist constants on(No), on > 0, (S, N, Xo) € (0,1),
and Cy > 0 such that, if

1815035 ey < 0

so+on(Xo) —

Li
» el oy < Co, (2.78)

then the conjugated operator
Plp) == (@) Po(p)@(p)™",  Poi=alp,z;w)d;", meZ,

is a pseudo-differential operator of order m with an expansion of the form

= Pmi(, 7w)07 " + R () (2.79)
with the following properties:
1. The principal symbol p,, of P is given by
P, 750) = ([1+ By (0,55 0)] 00,5 9) )y (2509 (2.80)

where y — y + B(gﬁ, y;w) denotes the inverse diffeomorphism of x — x + B(p, x;w).

2. Foranys>sgandi=1,...,N,

i i Li Li Li
D — allEPO) | [Ipm—il FPO) S n IBIEE) 4 [lal 2B 825 (2.81)

st+onN st+onN soton

21



3. For any A € N with A < Ao, n1,ne € Nwithny+ne+ X < N—1—m, k €S, the pseudo-differential
operator (D>”182kRN(g0)<D)"2 is Lip(y)-tame with a tame constant satisfying, for any so < s < S,

Li Li Li
My 0y, Rav(p)(D)72 (8) Ss.v e IBILTT )+ al S S IBIRED) ) (2.82)

4. Let so < s1 and assume that ||Bj||s, +on (re) < 05 10515, +0n(20) < Co, J =1,2. Then
[Ar2pm—ills; Ssi.n [1A120]ls, 40y + 1A128]l51 405, i=0,..., N,
and, for any A < Ao, ni,ne € N withny +no+X < N—-1—m, and k € Sy,
(D)™, A2 RN (0)(D)™ | p(are1) Sev.Nomaima 1812651 40n (xo) T 18128151 10w (o)

where we refer to Lemma[2.2] for the meaning of A1s.

Proof. The orthogonal projector I is a Fourier multiplier of order 0, I, = Op(x1(§)), where x, is a
C>®(R,R) cut-off function which is equal to 1 on a neighborhood of St and vanishes in a neighborhood of
SuU{0}. Then we decompose the operator B(7, @) = I (b(r, ¢, 2)0: + b (T, 0, x)) as

B(T’ (P) = Bl(T’ (P) + BOO(Ta (P) )

2.83
Bi(1,0) == b(7,¢,2)0s + by (T,0,2),  Boo(T,¢) := Op(beo (7, ¢, 7,€)) € OPS™ (2:59)
where for some o > 0, By, satisfies, for any s,m > 0 and a € N, the estimate
Li Li
[Bool "0V S 181557 (2.84)
The conjugated operator P(r,¢) := ®(7, 0)Po(¢)®(7, ) ! solves the Heisenberg equation
O P(1,0) = [B(1,0), P(T,90)], P(0,0) = Polp) = alp, z;w)0;" . (2.85)
We look for an approximate solution of (28] of the form
N .
)= pmoi(r, 0, )00 (2.86)

for suitable functions p,,—;(7, ¢, x) to be determined. By (Z.83)
[B(7,0), Pn (1, 9)] = [B1(7,9), PN (T, )] + [Boo (T, ), Pn (7, )] (2.87)
where [Boo (T, ), Pn (T, )] is in OPS™°°, and

N
[B1(7, ), Pn (T, ¢)] Z (b0, + by, P—iO '] .
=0

By Lemma [2Z.17] one has for any i =0,..., N,

N—i
[baz + bmapm—ia;n_i} = (b(pm—l)m - (m - 'L)bzpm—z)a;n_l + Z gj (bapm—i)a;n_i_j + RN (bapm—l)

Jj=1

where the functions ¢;(b, pm—i) := ¢;(b, pm—i)(T,¢,2), j = 0,..., N — i, and the remainders Ry (b, prm—;)
can be estimated as follows: there exists oy := on(m) > 0 so that for any s > sg, (cf. Lemma [Z27 (7))

i Li Li Li Li
1950, Pr—)1FPD S s 1815 Do |52 4 11815 | il |22 (2.88)

and for any s > s¢ and o € N (cf. Lemma 2TT}(i7))

L L L L L
RN (0D [P 1 s 0o Smvssa IBIZE D Dl 1552 4+ 18IS il 5257 (2.89)
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Adding up the expansions for [b&E + bm,pm_ia;"_i], 0 <i< N, yields

N N N-—i
[Bi(r,0), Pn(1,0)] = D (bom-i)e = (m = )bapm—i) "+ > > gi(b, o)™ 7 + ZRN (b Pm—i)
1=0 = O_] 1 1=0
N
:Z(b(pmfi)z*( 71) zPm— z 8m Z+ZZQ] » Pm— k+] +ZRNbpm 1)
1=0 k=1 j=1 1=0
N
= (b(pm)a = Mbapm )07+ (b(pm—i)a — (M = D)bapm—i + G:) 07" + Qn (2.90)
=1

where, for any i = 1,..., N, g; := Z;Zl 9i(b,pm—i+;) and Qn := Zfio RN (b, pm—i) € OPS™N=1. Defin-
ing for any s > 0,

Mei(s) := max{||pm—r||LPD), k = 0,...,i — 1}, M(s) := max{||pm—i|SP",i=0,...,N}, (2.91)
we deduce from (2:8]) and ([289) that for any s > sg, « € N, i =0,..., N,
G157 Sow Mes(s + om)lIBIES) +Maiso + ow) 18155 (2.92)
O PR 0 S M5+ om)IIBIED, + (s +om) 18I |
By (2:84l), (287), and (290) the operator Py (7, ) solves the approzimated Heisenberg equation
0-Pn(7,¢) = [B(7,9), Pn(7,0)] + OPS™ N1,

if the functions p,,_; solve the transport equations

arpm = b(pm)m — mbePm

_ ) 2.93
OrPm—i = b(Pm—i)z — (M —)bypm—i +gi, t=1,...,N. ( )

Note that, since g; only depends on p,,—it1, ..., Pm, we can solve (203) inductively.
DETERMINATION OF p,,. We solve the first equation in (2:93)),

8'rpm (T; 2 JS) = b(Tﬂ ©s I)azpm (Ta P, 1') — mby (Tﬂ ©s :c)pm (T; 2 JS) y Pm (07 P, 1') = a(@v JS) :

By the method of characteristics we deduce that

(o () = exp( = m [ ot 0,2 )t (294)

where 7% (p, x) is given by (ZT1). Differentiating the equation (Z76]) with respect to the initial datum ,
we get

Or(0a7™7 () = =ba(T, 0,77 (2)) 0y (), D™ () =1,
implying that

0.7 (ova) =exp( = [ baltioy™ (o) ). (2.95)
From (2.94) and (2.93) we infer that
Pm (T, 0,y) = ([81 O’T(‘Pax)]ma(%x)) |r:7”°(907y)' (2.96)

Evaluating the latter identity at 7 = 1 and using ([2.77)), we obtain ([2.80).
INDUCTIVE DETERMINATION OF p,,—;. For i =1,..., N, we solve the inhomogeneous transport equation,

a‘rp7n—i - bampm—l - (m - Z)bmpm—z + 51‘ 3 pm—i(oa @, :E) =0.
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By the method of characteristics one has

Pm—i(T,0,y) = /OT exp( —(m —1) /tT bz(s,0,77%(, ) dS) 9i(t, 0,7 (@, y)) dt . (2.97)

The functions p,,—;(¢,y) in the expansion (Z79) are then given by pp—i(©,y) := Pm—i(1, 0, y).

Lemma 2.29. There are O'J(VN) > U](val) >0 > 05\?)

SZSO;

> 0 such that, for any i € {1,...,N}, 7 € [0,1],
i Li Li Li
[P, ) = all 520 <o IBIZEE + llall P 18120

i Li Li
Ipm—i(r, P . 18P + lall 2131

(0) >
(2.98)

soJra

Proof. We argue by induction. First we prove the claimed estimate for p,,, —a with p,, given by ([296]). Recall

that 17 (¢, z) = z+ B(7, ¢, x) and ¥"(p,y) = y+7B(p,y) (cf. @TD)). Since a(p, y+7(e,y)) —ale,y) =
fOT az (@, y+tB (v, y))B(p, y)dt, the claimed estimate for p,, then follows by Lemmata[ZT] 227 and assumption
@78). Now assume that for any k € {1,...,i— 1}, 1 <4 < N, the function p,,_x, given by (297, satisfies

the estimates (2.98)). The ones for p,,—; then follow by Lemmata 2.1l 222] 227 ([2.92), 2.91), and @78). O

Lemma 229 proves (2.81). Furthermore, in view of the definition (Z86) of P (7, ), it follows from
(298), Lemma 29, (2.22) and 2.21)) that for any s > so, o € N,

i i Li Li Li
[P (7 @) R S v, 2P0 + (18I p<33>+|| It P%nﬂn p%- (2.99)

~

By 287), 290), and 293)) we deduce that Py (7, ) solves

aTPN (7_7 90) = [B(Ta 50)7 Pn (7_7 90)] - 5\1[) (7_7 90) > Pn (05 50) = aa;n )

) N1 (2.100)
N (7_7 90) = QN(Ta 90) + [BOO(Ta 90)’ PN(Ta 50)] € OPS .
We now estimate the difference between Px (1) and P(7).
Lemma 2.30. The operator Ry (7,¢) := P(T,¢) — Pn(T, @) is given by
RN(T,¢) = / ®(n,7,0) QN (0, )@ (7., ) dn . (2.101)
0
Proof. One writes
Pn(7,0) = P(r,0) = Un(1,0)2(1,0) ™", V(7. ¢) = Pn(7,0) (7, 0) — (7, 0)Po(¢), (2.102)

and a direct calculation shows that V(1) solves

0-Vn(T,0) = B(1,0)Vn(1,¢) — QW (1. 9)®(r,¢), Vn(0,) =0.

Hence, by variation of the constants, Vi (7,¢) = — [ ®(7,0)®(n, ©)~10W (n, ©)®(n, @) dn and, by (ZI02)
and (Z70), we deduce 2I01).

Next we prove the estimate (2.82) of Proposition 228 of Ry (7, ), given by (2I01)). First we estimate

QS\}) € OPS™ N=1 defined in (ZI00). The estimate of Qy, obtained from ([2.92)), 2.91), (298) , and the
one of [Boo(T,¢), Pn(7,%)], obtained from (284), (299), Lemma 20, yield that there exists a constant
Ny > 0 so that for any s > sg, a € N,

1 Li Li Li Li
100 (1, @) P o S IBIERE 4 [lal| S50 85 (2.103)
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Let Ag,n1,m2 € N with A < X and n; +na + g+ m < N —1, k € S;. In view of the definition

(ZI00) of Ry (7, ¢), the claimed estimate of (D)™ 8}, Ry (7,¢)(D)™ will follow from corresponding ones of
(DY a3 ®(n, 7, 0)0)2 Qg\})(n, @)% ®(7, 1, 0)(D)"™ (1,1 € [0,1] and Ay + Az + A3 = A) which we write as

(D) a3 0,7 ) (D) M=) (D) 241922 0 (1, ) (D) 4+ (D)=L 9% (7, ) (D)™ ).

Then, we use Lemma 225 to estimate the tame constants of the operators (D)™ 931 ®(n, 7, 0)(D)~" =21 ~1,
—na—Az—1 A : :
(D)7m2= 72023 (7, m, ) (D)"2, the estimates ([ZI03), (ZZI) and Lemmata 2.9 2210 to estimate the tame

constant of (D)™ FA+1522 QS\}) (n,©){D)"2+t*3+1 and Lemma E.I4] together with the assumption ([Z.78)), to
estimate the tame constant of the composition. The bound ([2:82) is finally proved.
Item 4 of Proposition [2.28 can be shown by similar arguments. This completes the proof of the latter. [

In the sequel we also need to study the operator obtained by conjugating w - 0, with the time one flow
P(p) = ®(0,1,¢) of the transport equation (ZGH). Here we analyze the operator ®(p) o w - 9, (P(p) 1),
which turns out to be a pseudo-differential operator of order one with an expansion in decreasing symbols.

Proposition 2.31. (Conjugation of w-9,) Let N, \g € N, S > so and assume that B(+;w) is in C>°(T5+ x
Ty) and Lipschitz continuous with respect to w € Q. Then there exist constants on(Ng),on > 0, (S, N, ) €
(0,1), Co > 0 so that, if
Li
1B ) <9, (2.104)

then P(p) := ®(p)ow-0,(P(p) 1) is a pseudo-differential operator of order 1 with an expansion of the form

Zpl i(p, ;0)0, " + R ()

with the following properties:

Lip(7) «

1. Foranyi=0,...,N and s > sg, ||p1—ills SsN Hﬁ||Llp )

st+on °

2. For any A € N with A < Ao, for any ni,ne € N with ny +ne + Ao < N — 2, and for any k € S;, the
pseudo-differential operator (D)’“@ékRN (p)(D)"= is Lip(y)-tame with a tame constant satisfying, for
any so <s< S,

Li
My 0y, Rav(o)ipye2 (5) S.vno IBIEAT

3. Let so < s1 < S and assume that [|Bi||s,+ox(r0) <0, @ =1,2. Then
[Ar2p1—ills, Ssiv [[A128]ls1 408, =0,..., N,
and, for any A < Ao, n1,n2 € N withny +ne +X <N —2, and k € St
(D)8, AR (9)(D)™ || B(are1) Sov.Nomiima 1812816, 4on (r0)
where we refer to Lemma 228 for the meaning of Aqs.
Proof. The operator ¥(1, ) := ®(7,¢) ow - O, (P(7, )~ !) solves the inhomogeneous Heisenberg equation
07 U(7, ) = [B(7,¢), U(7,¢))] —w-0p(B(7:¢)),  ¥(0,) =0.

The latter equation can be solved in a similar way as ([2.83) by looking for approximate solutions of the
form of a pseudo-differential operator of order 1, admitting an expansion in homogeneous components (cf.
([2386). The proof then proceeds in the same way as the one for Proposition [2.28 and hence is omitted. O

We finish this section by the following application of Proposition 2.28 to Fourier multipliers.
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Lemma 2.32. Let N, g € N, S > s¢ and assume that Q is a Lipschitz family of Fourier multipliers with
an expansion of the form

Q= Zcm W) 4+ QN (W), On(w) € B(HS HTNHI=m) s> 0. (2.105)

Then there exist on(Xo), on >0, and 6(S, N, N\g) € (0,1) so that, if

IBIEES) 5 < (S, N, 20) (2.106)

then ®()Q®(p)~1 is an operator of the form Q + Qa(p) + R (p) with the following properties:
1. Qs(p) = Ziv:o Qm—n (0, T; W)™ where for any s > sg,

[otm—n|[EP) <, v 181X n=0,...,N. (2.107)

st+on

2. For any A € N with A\ < Ao, n1,ne € N withng +na+ X < N—m—2, and k € S, the operator
(DY 0, Ry (D)™ is Lip(7)-tame with a tame constant satisfying

M pymaoy, — (D)2 (5) S 1Bl Famngy s Vo0 S s < S. (2.108)

3. Let so < s1 < S and assume that ||3i||s, 405 (r0) <0, @ =1,2. Then
[Ar20m nlls; Soiv [B128]s140xs 7=0,...,N,
and, for any A < Ao, n1,n2 € N withny +ne +X < N—m—2, and k € S,
(D)8, AR (9)(D)™ || B(are1) Sov.Nmiima 1812816, 4on (r0)

where we refer to Lemma [2.2] for the meaning of A1s.

Proof. Applying Proposition 228 to ®(p)0m "®(¢)~! forn =0,..., N, we get

(zcm ()77 Bl zcm A0+ Qa() + RY ()
where Qg (p) = Ziv:o Om—n (0, T;w) O™ with ayy,—,, satistying (Z.107) and the remainder ’Rg\}) () satisfying
(ZI08). Next we write ®(p)OnP(p)~t = Oy + ’Rg\?)(ga) where

R () = (®(p) —1d) On®(p) " + On (B() L —1d) .

We then argue as in the proof of the estimate of the remainder Ry (7, ¢) in Proposition 228 Using Lemma
2.25 and the assumption that Qy is a Fourier multiplier in B(H*, H*+N+T1=m) we get that Rg\?) (p) satisfies
EI08), and Ry (p) = R )( )+ ’RS\Q,)(QD) satisfies (2.I08) as well. Ttem 3 follows by similar arguments. O

3 Integrable features of KAV

According to [20], the KAV equation (LI on the torus is an integrable PDE in the strongest possible sense,
meaning that it admits global analytic Birkhoff coordinates. We endow the sequence spaces h® with the
standard Poisson bracket defined by {z,, 2z} = i27n dk,_,, for any n, k € Z.
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Theorem 3.1. (Birkhoff coordinates, [20]) There exists a real analytic diffeomorphism ¥*4 : hd — HO(Ty)
so that the following holds:

(i) for any s € Z>o, V*(hE) C HE(T1) and W* : h§ — HE(Ty) is a real analytic symplectic diffeomor-
phism.

(ii) H*W o wkdv . hy — R is a real analytic function of the actions Ij = ﬁzkz,k, k > 1. The KdV

Hamiltonian, viewed as a function of the actions (Iy)g>1, is denoted by HE.
(iii) Wk (0) = 0 and the differential dgU*® of U4 at 0 is the inverse Fourier transform F~1.

By Theorem B1] the KdV equation, expressed in the Birkhoff coordinates (z,)ns0, reads
Bezn = 1wy ((Ie)kz1)2n , Y € ZN{O}, Wi ((Ik)e=1) = £0r, He™ ((Te)kz1), Ym > 1,

and its solutions are given by z(t) := (zn)nzo Where

1
zn(t) = zn(O)exp(iwsd”((IIEO))kzl) t), VneZ\ {0}, I}go) = ﬂzk(o)z—k(o)a Vk>1.

Let us consider a finite set S C Ny :={1,2,...} and define
S:=S4U(-S4), Si:=Ny\S;, St:=S:U(-S})cCzZ\{0}.

In Birkhoff coordinates, a Sy —gap solution of the KdV equation, also referred to as S—gap solution, is a
solution of the form

zn(t) = exp(lwf (v,0)) 2,(0), 2,(0) 0, Vn €S, z,(t) =0, Yn € S+, (3.1)
where v 1= (I,go))keg+ € RS;O and, by a slight abuse of notation, we write
v v S
(L (I)kest ) = wp®™ ((Te)k1) s 1= (In)res, € RZG . (3.2)

Such solutions are quasi-periodic in time with frequency vector (cf. ([TI0)) w*®(v) = (wkd(v,0)) €

neSy
RS+, parametrized by v € RS;O. The map v — w¥¥ (1) is a local analytic diffeomorphism, see Remark 3101
When written in action-angle coordinates (cf. (L9)),

0 := (On)nes, €T, I =(In)nes, €ERY, 2, =\2mnle " nesy,
instead of the complex Birkhoff coordinates z,,, the S—gap solution [B.I)) reads

0(t) =00 —* 0wy, I(t)=v,  z,(t)=0, VneS:.

3.1 Normal form coordinates for the KdV equation

In this section we rephrase Theorem 1.1 in [I9] adapted to our purposes and prove some corollaries.

We consider an open bounded set = C RS;O so that (LII) holds for some ¢ > 0. Recall that V*() C &,
V(§) = VO(§) are defined in (L20) and that we denote by r = (6,y,w) its elements. The space V(§) N &, is
endowed with the symplectic form

W= (ZjeS+ dy; A dej) ®W, (3.3)

where W, is the restriction to L2 (T;) of the symplectic form Wiz defined in (L8). The Poisson structure
J corresponding to W, defined by the identity {F,G} = W(Xp, Xq) = <VF, jVG>, is the unbounded

operator R
J:Es = Es, (0,5,0) — (=7,0,0,W) (3.4)

where (, ) is the inner product (II9).
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Theorem 3.2. (Normal KdV coordinates with pseudo-differential expansion, [19]). Let S C N

be finite, = an open bounded subset of RS;O so that (LIO) holds, for some 6 > 0. Then, for § > 0 sufficiently
small, there exists a canonical C* family of diffeomorphisms W, : V(§) — ¥, (V(8)) C LE(T1), (8,y,w) — q,
v € =, with the property that V¥, satisfies

U, (0,y,0) = Uk (0,04 4,0), Y(0,y,0) € V), YweE,
and is compatible with the scale of Sobolev spaces HE(T1),s € N, in the sense that U, (V((S) N 53) C H§(Ty)
and U, : V(6) N Es — HF(T1) is a C®°—diffeomorphism onto its image, so that the following holds:

(AE1) For any integer M > 1, v € E, ¢ = (0,y,w) € V(0), V,(r) admits an asymptotic expansion of the

form
M

U, (0,y,w) = T (0,0 +y,0) +w+ Y a5 v) 0 Fw + Ry (5 v) (3.5)
k=1

where Ry (0,y,0;v) =0 and, for any s € N and 1 <k < M, the functions
V() x E— H¥(Ty), (r,v) = a¥i(r;v), (V(©O)NE) x E— HFTMTUTY), (1,v) = Ry (15v),
are C*.
(AE2) For any ¢ € VX(6), v € Z, the transpose d¥,(x)" of the differential d¥,(x) : E1x — H(Ty) is

a bounded linear operator d¥,(x)" : HY(T1) — E1, and, for any ¢ € H}(T1) and integer M > 1,
d¥,(x) " [q] admits an expansion of the form

070 = (0,0 TG S o (6 )07+ 307 0) A% (6 0)ia) 4R (e )dl (36)

k=1 k=1
where, for any s > 1 and 1 <k < M,

(1]

VI6) x = — HY(Ty), (r,v) — a®® (r;v),
VY(8) x = — B(H{(T1), H*(T1)), (x.v) = A% (1;0),
(VX(8) N &) X E = B(H(T1), Bssars1) s (1.v) = REY (5v),

are C*°. Furthermore
b

[1]

a®t (15v) = —a¥, (1;v). (3.7)

(AE3) For any v € =, the Hamiltonian H*(-;v) := H* o, : V1(§) — R is in normal form up to order
three, meaning that

HA (0, y, wiv) = W () -y (de”(D vjw,w) ; + 5 Q’”l”( )yl -y +RM(0,y,w;v)  (3.8)

where w* (V) = (Wk (V) pes,

dev D I/ Z dev 127rnz, de'u( ) _ (aljw]]idv(y))j,kGS+7
nesS+
kdv 1 kaw 1 i2mna (3.9)
Q. (u)::%wn (v,0), VneS—, w:ane
neSt
and RF . V1(§) x = = R is a C* map satisfying
RE (0, y,w;v) = O((lyll + llwll2)?) , (3.10)
and has the property that, for any s > 1, its L?—gradient
(V(S) N &) x E = Es, (1,v) = VRMY (1;0) = (VoR ™ (1;v), V, RF (1;v), VW RF (1;v))
is a C*° map as well. As a consequence
VRFv(9,0,0;v) =0, d; VRF(6,0,0;v) =0, 9,VRF(,0,0;v) =0. (3.11)
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(Estl) Foranyve=Z, a e N*+, 1€ V(), 1<k<M,%1,....,11 € By, s€N,

l

10502y (@ )z Sswa 1, [d'05a2y @) EL - Bl Sskta [T 1615, -
j=1

Similarly, for any v € Z, a € NS+, r € V() N &, T1,..., 5 € By, s €N,

107 Ry (@ ) g+ aa+1 Ssovra 1wl
l

l
| Oz RY (65 ) s Bl gz Sonvva D (IEle, TT IRz, ) + lewllae TT 16515

j=1 i#j j=1

(Est2) Foranyve=Z, a e N®+ e VI(6),1<k<M,%i,....u € By, s>1,

l
T T o~ ~ ~
105 al% (50)ms Sea 1, |d'0gay, (5 ) [Ers - Tllas Sokta [ IE 8,
j=1
l

T T ~ ~ ~
105 AT (6 0) s ms) Sk 1, [1dOSAL () EL - Bl s, me) Sskila H il e, -

Jj=1

Similarly, for any v € Z, a € N>+, r € VY(§)NEs, Th,..., 01 € Es, € HS, s > 1,

N
102RST (& )@l Bepnrsr Ssnra 1@s; + w1l

l l

T i~ ~ ~ ~ ~
' (s RS ()@ Ers - Filll B arsn Ssovrta @l [T I8 l1e: + 131 Y (IIXjIIEs II IIZ%IIEl)

j=1 j=1 i

l
+lall ol T 16, -

j=1

We now apply Theorem to prove new results concerning the extensions of d¥,(xr)" and d¥,(x) to
Sobolev spaces of negative order. We refer to the paragraph after (ILI8]) for the definitions of &, E; for

negative s.

Corollary 3.3. (Extension of d¥,(r)" and its asymptotic expansion) Let M > 1. There emists
om > 0 so that for any t € VoM™ (8) and v € Z, the operator d¥,(x)" extends to a bounded linear operator
dv,(x)" : HyM~Y(Ty) — E_p—1 and for any g € Hy ™M~ (Ty), d¥,(x) T [q] admits an expansion of the form

M
aw, () (@) = (0,0, 1.+ 110 Y a5 (v v d¥T)0; ") + R55 (v v W) g

k=1
with the following properties:
(i) For any s > 0, the maps
VoM (§) x E— H(T1), (r,v)—a(r;d¥"), 1<k<M,

are C>®. They satisfy a®% (r;v;dV ") = a‘f‘I{T (r;v) (cf. Theorem[Z2-(AE2)) and for any a € NS+ T1,....T)

E,,,, and (x,v) € VM (§) X E,

105 s (&3 A )| s St 1,
!

|0 d a® (x; v dV ) [Ey, -y Serne [ IE 5, -
j=1
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(i4) For any —1 < s < M + 1, the map
REE (5 dP ") : VoM (§) x E — B(Hy *(T1), Enrs1—s)
is C*° and satisfies for any o € NS+, T1,.... 11 € E,,,, € Hy *(T1), and (xr,v) € V7™ (§) x =,

105 RET (e: v A% )@ Bar 1. St 1y

. R (3.14)
107 d'RSF (e 3 d® )L - Bl [@ Baraoe Ssonta 1] g H Izl e,,, -

(#i1) For any s > 1, the map
R (35dUT) - (VM(8) N sy ) X E — B(HG(T1), Esinrs1)
is C> and satisfies for any o € NS+ T1,.... 11 € Egy0,,, ¢ € H3(T1), and (x,v) € (V”M (0)n ESJFUM) x Z,

105 R (x5 A9 )@ Bas o Ssonra [z + Nellstone 12

l
09 d' RS (573 A% v, - @ Barsree Ssaria ldlms [T 18 ., 3.15)
j,l :

+ lall (Z &1l [T il , + el 22y, H IEllz.,, ) -

i#]

Proof. By Theorem 3.2 for any (r,v) € V(§) x Z, the differential d¥, (x) : Eg — L(T;) is bounded and, for
any M > 1, differentiating [3.3), d¥, (r)[z] admits the expansion for any T = (9, 7, W) € Ey of the form

M

AV, =@+ % (50)0 0+ RE) (s v), (3.16)
k=1

Z (0 Fw)da®, (1 v)[F] + dRY; (5 ) [E] + do,, W* (0, v + ,0)[0, 7]
k=1

For opr > M, the map Rg\? 1 VoM (§) x E — B(Ey, HMF1(T;)) is C> and satisfies, by Theorem 3.2} (Est1),
for any o € NS+, [ > 1,
102 R @ ) El e Sare [y

! (3.17)
o 1 = S - -~
|02 d" R (6 ) v B s Sare Bl [] 1112, -
j=1

Now consider the transpose operator d¥,(x)" : L2(T1) — Ey. By @.10), for any g € LZ(T1), one has

aw, ()@ = (0,0, mqﬂnz 0; " (@) @) + R @) [l (3.18)

k=1
Since each function a¥, (r;v) is C*° and Rg\}) (r;v)" : H-M~Y(Ty) — Ejp is bounded, the right hand side of
(BI3) defines a linear operator in B(Hy ™ ~'(Ty1), E_pr—1), which we also denote by dv,(r)". By @ID),

the expansion (B.I]) yields one of the form (B:IZI) where by (B:I:ZI) and Theorem 3.2 (Est1), the remainder
RS (1;v;dW ) satisfies for any o € NS+ 7y,...,1 € E,,,, and ¢ € H, M=1(Ty)

105 RS (x5 d% )@l 2y v [0 01

o L R (3.19)
|05 d' RS (573 A% D[, - B (@l By Sato 1] g2 [T 1515, -

j=1
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The restriction of the operator d¥, (r)" : Hy ™' (Ty) — E_p—1 to H3(Ty) coincides with (B8] and, by the
uniqueness of an expansion of this form,
aHgv;dT) = a® (my), k=1,...,M,

M
RE3H (050 )Gl = > (0 0) AN ()@ + REY ()@, Ve HY(Ty).

k=1
The claimed estimates (8.13) and (BIH) then follow by Theorem B2} (Est2). In particular we have, for any
o€ NS+5 ?15 s 5?1 € Eoyys (/]\E H&(Tl),

102 RST (1375 A% )@ Bas o Sara [z

!
o e N . N (3.20)
l0g d' R (x5 05 A D Ev - El[@ e Sara Nl [T 11, , -
Finally the estimates ([BI4]) follow by interpolation between (19) and B20). O

Corollary 3.4. (Extension of d, V¥,(r) and its asymptotic expansion) Let M > 1. There exists
oy > 0 so that for any r € V7™ (4) and v € Z, the operator d; U, (x) extends to a bounded linear operator,
di,(x) : HTM™2(Ty) — Hy™~2(Ty), and for any @ € H™~*(Ty), d1 W, (x)[@] admits an expansion

dLW,( =0+ Zam 5 dL )OSR D + R (v v; dy W) [@)] (3.21)

with the following properties:
(i) For any s > 0, the maps
VoM (§) x E— H(Ty), (r,v) = a®“(r;v;d V), 1<k<M,

are C*. They satisfy a®% (x;v;dyL V) = a¥, (r;v) (cf. Theorem[32-(AE1)) and for any o € NS+, 71y,...,7 €
E,,,, and (x,v) € VM (§) X E,

||aa ext(x,y dJ_\IJ)HHS ~s, M, 15

a gl ext » o~ l ~ (322)
|09 d' a5 (s w3 dL ) [EL, - Bl Sevna [] I lE,,, -
(i) For any 0 < s < M + 2, the map
R (5 dL W) : VIM(8) x E — B(H5(Ty), HMT174(Ty))
is C> and satisfies, for any o € N>+, T1,...,1, € E,,,, W € H *(T1), and (r,v) € V7™ (5) x E,
105 RET (5 v3 d L O) @] || grarsa—s Swra |0 s
1
o e N o N . (3.23)
|09 d'RSF (x5 vs d L W) [, - B@)] oo Sena @] [ 188, -
j=1

(#i1) For any s > 0, the map
R dr®) : (VM (8) NEstony) X E— B(HT(T1), HYH115(Ty))
is C>° and satisfies for any o € NS+ T1,....%1 € Esy0,,, © € HS (T1), and (x,v) € (V"M &) n 88+0M) x =,

105 RAT (x5 v dL )@ praesiee Ssovta @]z + 8l £y, 10 22
l

|09 d (R55 (v; v; L W)@ [Er, - - Billl gaesr e St 18]z [T 15112, (3.24)
=1 :

+ @] 2 (Z €110y, TIN5, + el 5.0, H ile.,, ) -

7]
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Proof. By Theorem B2 (AE2), for any (r,v) € V1(§) x =, the operator d, W, ()" : H(T1) — H!(Ty) is
bounded and for any M > 1 and § € H}(Ty), d; ¥, (x) " [7] admits the expansion of the form

M
A o~ T — o~ A~
div, () [q] =g+ 1Y % (50)07 55+ R (1 )],
=t (3.25)

RO (6 )[@) =10 Y (0, w) A% (s v)[d + REY (150)[7).

M=

k=1

For opr > M + 1, the map R(Y : V7 (§) x E — B(HE(Ty), HM*2(Ty)) is > and by Theorem B2 (Est2),
satisfies for any o € NS+ and 1y,...,7 € E,,,

ay (2
198RSy (&5 ) (@l yar2 St 1l

! (3.26)
o gl (2 -~ - e -
102d'RY) (& ) Ers - B@l aree Savia e [T 1606,
j=1
Now consider the transpose operator (dL\I/l,(;)T)—r : H'(Ty) — Hy'(Ty). It defines an extension of

d1 W, (x) to H'(T1), which we denote again by d| ¥, (r). By (3.25)), for any @ € H]'(T;), one has

M
dL0, @)@ =+ > (~1F (@ (51)@) + R (50) T [@)]. (3.27)
k=1

Since each function a”i'l,’; (r;v) is C*° and the operator ’Rg\? (v;v)" : H{M72(Ty) — Hy*'(Ty) is bounded,
the right hand side of ([327) defines a linear operator in B(Hy ™ ~2(T,), E_p_2), which we also denote

by d¥,(r). By (ZII)), the expansion (B.217) yields one of the form [B.2I) where by (826) and Theorem
B2 (Est2), the remainder RS (r;v;d¥ ") satisfies for any o € N+, 71,...,7 € E,,,, and @ € HO_M_2(']T1)

107 RAT" (e5 v d L ®)[@]l| g1 Sara 1D 002

a glpext... . i~ A < ~ ! —~ (328)
105 d' RS (v L W) Ers - Tl@] | gt Sara 1@ o2 [T 8., -

j=1

The restriction of the expansion B21) to L% (T1) coincides with the one of d; ¥, (r)[@], obtained by differ-
entiating B3] (see (BI6])). It then follows from the uniqueness of an expansion of this form that

v v;d ) = a‘f’k(;; v), k=1,...,M,
M

RSt (i vidoW)[@] = > (0, *w)diay, (x:v)[@] + dLRY, (5 v)[@], Vo € L7 (T4).
k=1

The claimed estimates (3.22)) and ([:24)) thus follow by Theorem B.2(Est1). In particular, for any o € N5+,
/x\la v a/x\l € Eq,,, and w e Li(Tl)a

105 R (5 v5 AL O)[@] | arer Swra 0] 22

~

!
8aleezt cved U ~ s < —~ ~ (329)
109 d"RSF (v v d L ©) 1, - - B [@] | e Saca 18]z [] 1] 2., -
j=1
The claimed estimates ([3:23) are then obtained by interpolating between ([B.28) and (3:29). O
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3.2 Expansions of linearized Hamiltonian vector fields

For any Hamiltonian of the form P(u f,ﬂ, (x,u,uy) dr with a C*°-smooth density

f:T1XRXR'_>Ra (:EaCOaCl)Hf(xaCOaCI)a (330)
define

P:=PoV¥,, POywv):=P,(0,y,w)) (3.31)

where ¥, is the coordinate transformation of Theorem B2l As a first result, we provide an expansion of the
linearized Hamiltonian vector field 0,d | V., P.

Lemma 3.5. (Expansion of 9,d,V,,P) Let P(u fT (x,u,uy)dz with f € C*(T1y x R xR). For

any M € N there is opy > 0 so that for any ¢ € VM (5) and v € E, the operator 0,d V., P(x;v) admits an
expansion of the form

M+3
amdlva(x; V)H = HL Z a3—k(x; v, azdva/P) ag—k[] + RM (L v azdLv’w/P)[] (332)
k=0

with the following properties:

1. For any s > 0, the maps
(V7M(0) N Espon) X E—= H(T1),  (65v) = a3—k(1310:d1VWP),  0<k<M+3,
are C*, and satisfy for any « € N+, T1,.... 71 € Esi0,,, and (r,v) € (V7M(6) NEsioy ) X E,

Hag‘lek(?;VQasz_va)”H; Ss.Ma 1+ ||wHH;+UM ) (3.33)
l l

105 d as (x5 v; 0d L VuP)EL, - Bl iy Senria Y, ([EllEnrey, [ IEnlles,,) + Jwl]] p+on I1IEle.,,-
=1 n#j =1

2. For any0 < s < M + 1, the map
VoM (8) x E = B(H(T1), HY'' 75 (T1),  (1,v) = Rar (55 0:dL Vi P)
is C> and satisfies for any o € N+, T1,.... 1 € E,,,, (r,v) € V'™ (§) x E, and © € H*(T1),
107 R (55 v; 02d L Vi P W] || a1 -0 Ssonta |0+

o o R R Lo (3.34)
105 d" (R (x: v; 0 d L Vo PY@]) [E1 - - Tl gaier—s Ssnso |0l [T 15 1E,,, -

j=1
3. For any s > 0, the map

(VIM(8) N Estany) X E = BH*(T1), HTFMTH(T)),  (1,0) = Ras (73 00d LV P),

is C> and satisfies for any a € N T1,....T1 € Esyoy, (1,v) € VM (0) N Esioy) X B, and © €
Hj(T1)7
00 Rt (573 O d L Vo P [W]|| geerssr Somta |01 ag + llwll gosons @]l 22

l

109 d" (Rons (x5 v; 02 d s Vo PY@)) 1 - - Bl e Sonsa 18] [T 15112, (3.35)
Jj=1 :

1@ 22 ([l yvons H I5lle.,, + Z &l 2.+, T IillE,,)

7]
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Remark 3.6. The coefficient as in (332) can be computed as as(x; v; 0,d1L V., P) = —(aglf)(x, u, “U‘u:\p o
Proof. Differentiating (331 we have that
VP(r;v) = (d¥, ()" [VP(V,(x))], (3.36)

where, recalling (3:30), - B
VP(u) =1I; [(8<0f)(:c,u,uz) (((%lf)(z,u,um))l] (3.37)

and I3 is the L2-orthogonal projector of L?(Ty) onto L3(T;). By (B:36), the w—component V,,P(x;v) of
VP(r;v) equals (dLW,(x))" [VP(¥,(x))]. Differentiating it with respect to w in direction @ then yields

VP v)[0] = (dL¥, (1) " [dVP(W, ) [do, 0)@]] + (du(di¥, (@) ' [@]) [VP(T, ()] (3.38)

Analysis of the first term on the right hand side of [B38): Evaluating the differential dVP(u) of (B37) at
u=U,(x), one gets

d(VP)(¥, (x)[h] = g (ba(x; v)02h + by (x5 v)Ouh + bo(x; v)h)
ba(x;v) = —0F, f(2,u, us) ) bi(x;v) = (b2(x;7))a (3.39)
bo(x; V) = ((8?0f)(x,u, ’U,m) - ((agoﬁf)(‘r’u’ ’U,m))x) ’u:\I/V(;) '

By Lemma and Theorem one infers that for any s > 0, the maps

(V3O NéEspa) xE— Hy,  (mv) = bi(wv), =012,
are C> and satisfy for any o € NS+ Ty,...,7 € Esy3, and (1,v) € (V?’((S) N 55+3) x =,

1050i (15 V)| s Sso0 1+ 0]l grots

H Ssila Z 18| [T IEill 5 + llw] oo H %5115 -

i#]

o - (3.40)
||8u dlb¢(?a V)[Xla cee 5?1

By Corollary B3] (expansion of (d, ¥,) "), Corollary 3.4] (expansion of d; ¥,,), 3.40) (estimates of b;), (3.39)
(formula for d(VP)(¥,(r))), and Lemma [ZTT] (composition), one obtains the expansion

M+3

Da(d LW, ()T [AVP(0, () [dr W, ()] =TI Y afl) (533 F + Raesv) (3.41)
k=0

where a( )( r;v) = ba(r; v), the functions ag )k(;, v), k=0,...,M+ 3, and the remainder R;(r;v) satisfy the
claimed properties [IH3] of the lemma, in particular (3.33)-(B.35).

Analysis of the second term on the right hand side of (3.38): Since dV,(r) is symplectic, d¥,(r)" =
J1d¥,(x)"'0, where J is the Poisson operator defined in ([3.4), implying that for any @ € H1 (Ty),

di (A0, (x)")[@] = =T 1dW, ()" (dLdV, (1) [@])dV, (v )*1896
= —d¥,(x) "0, d(do W, (0)[@]) [TdL, ()" -]
By this identity we get
0z (AL (L, (1) " []) [VP(P, ()] = —8:d%, (1) "0, 'd(d ¥, (1)[]) [Td¥, (1) 'VP(V, ()] . (342)
Arguing as for the first term on the right hand side of 38) (cf. (Z4I)) one gets an expansion of the form

M+3

0 (do (dr @, (1) T[]) [VPW, ()] =T > af) (5:0)02 7% + Ra(x;v) (3.43)
k=3
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where the functions agi)k(x; v), k=3,...,M + 3, and the remainder Rz (r;v) satisfy the claimed properties

of the lemma, in particular (3:33)-(E35).

Conclusion: By [B38) and the above analysis of the expansions (8.41) and (3.43), the lemma and Remark
follow. O

As a second result of this section we derive an expansion for the linearized Hamiltonian vector field
0pd) V. H* W where H* (-;v) = H* o U, (cf. Theorem B.2H AE3)).
Lemma 3.7. (Expansion of 0,d, V., H*") For any M € N there is oy > M + 1 so that, for any
(r,v) € VoM (§) x Z, the operator 0,d ) V., H*? (x;v) admits an expansion of the form
Oy Vo M ()] = D QR (D;v)[] + azdvadev(FQ v)[,

gaing 3.44
Opd L Vo R¥ (50)[] = TIL D a1 k(x5 03 0ed L Vi RM) 0[] + R (513 00 d L VW R¥ ) (344

k=0
with the following properties:
1. For any s > 0, the maps

(V7 (8) N Estop) X E = HY(T1), (8,v) = a1-p(150;0,d 1 Vo, RM),  0<k<M+1,
are C* and satisfy for any o € NS+ T1,... 51 € Esioy,, and (1,v) € (VM (8) N Estoyy) X Z,

185 a1k (553 02d L VW R*) 1y Sopa 1yl + ]l yoson
l

|d' 0% ar k(s v; 0ud 1 Vu R¥) L, . Bl Skt D ([EillEers,, [] IEnlle.,,)

l
+ Iyl + lwll geson) T T 1Ei 1, -

j=1
2. For any 0 < s < M + 1, the map
Rar (575 0,d L Vi, R¥Y) 1 VIM(§) x E — B(H*(Ty), HYT175(Ty))

is C* and satisfies for any o € NS+ Ty, ... 5 € E,,,, (1,v) € VM (8) x Z, and W € H*(Ty),

108 R (x5 v; 0ud L VRF) @] || yarsi—s Searar (19l + 1wl goan) @] -+ (3.46)
l
'O Rt (553 Do d . VREW) )R Bl e+ Soaara [0l T s, - (3.47)
j=1

3. For any s > 0, the map
Rt (5051 Vg RFW) - (VM () N Egiony) X E — B(HS (Ty), HSTM(Ty)),

is C* and satisfies for any o € N5+ T1,.... 5 € Esioy, (1,0) € (Esioy NVIM(S)) X Z, and 0 €

Hi(Ty),
08 Ras (x5 13 Oud L VRF) @] | gyt 1041 1s)
Sotia (Il 4+ ol o en ) 1@l 22 + (lgll + 1wl gyl @75 |
l
|05 Ras (63 Bpd L VR¥) (@)1, E)ll s Sonspa [ [] 1G5,
=1
z X (3.49)
@lz S (1lE sy, TTEalle,, ) + 18l llwll oo [T l15,,, -
J=1 n#j j=1
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Proof. Differentiating H* (r;v) = H* (W, (1)), we get
Vo H (5 v) = (dLP, () [VE (2,()] (3:50)

where, recalling (L2]),
Vdev(u) = Hé_ (3U2 - Uzz) (3.51)

and TIg is the L?-orthogonal projector onto LZ(Ty). Differentiating (B:50) with respect to w in direction @
we get
AL Vo H* (5 v) 0] =

N R (3.52)
(AP, (x) " [dVE (W, () dL P, )[@]] + (du(doP, @) " [@]) [VEH (0, (1))] -
On the other hand, by (B8]
Vo1 (g v) = QY (Div) + dL VR (1)
and by @.II) d, V,R*™(6,0,0;v) = 0, implying that
diVuHF(0,0,0;v) = Q8 (D;v),
LYH0,0,000) = 94 (D) 5

di Vo R¥Y (1) = dL Vo HF (0, y, wyv) — di Vo, 1 (6,0,0;v).

In order to obtain the expansion (.44 it thus suffices to expand d | V,, %% (0, y, w;v))[w] and then subtract
from it the expansion of d| V., H*¥"(6,0,0;v))[@]. We analyze separately the two terms in (3.52).

Analysis of the first term on the right hand side of ([3.52): Evaluating the differential dVH* (u) at u =
¥, (r), one gets

d(VH") (U, (x))[h] = O (— 02k + bo(x;v)h) ,  bo(x;v) := 6T, (x). (3.54)
By Theorem B.2H(AE1) and the estimates (Estl), the function by(r; v) satisfies, for any s > 0,

105 b0 (@ )z Ss.o 1+ [lwll g s

o - (3.55)
10 d"bo (5 ) [Ers - - il s S Z %51

Est1 H ”leEl + ”wHHS+1 H ||XJ||E1 .

i#]

By Corollary 3.3 (expansion of (d; ¥,) "), Corollary 3.4l (expansion of d, ¥,), (3.55)) (estimates of by), (3.54)
(formula for d(VH**)(¥,(x))), and Lemma ZI1] (composition), one obtains the expansion

0u(dL W, (1) " [dVH (W, (1)) [dL ¥, (2)[]]]

M+1
=1 (- 82— (@%(mv) +a® @)+ Y ol (0)0*) + Ri(xv)

=0 (3.56)
m M+1
= 83+Za1 k?a al k)+R1(Xa )

where the functions ag )k(;, v), k=0,...,M+1 and the remainder R;(r;v) satisfy the properties[IH3lstated

in Lemma 3.5 in particular (3.33)-(333).
Analysis of the second term on the right hand side of (852): By (3.42) one has

02 (dL(dL Wy (x) " []) [VHM (U, (1)] = —0:d¥, () 05 1 d(d LW, (1)[]) [TdP, (x) " VH " (0, (x))] -

Arguing as for the first term on the right hand side of (3:52]) one obtains an expansion of the form

M+1
0 (dL(dL Wy (1) "[]) [VH (¥, (1))] =TI Z ai?, (1 v)0 " + Ra(;v) (3.57)
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where a§2) (r;v) = 0 (cf. (3I12)) and where the functions aﬁ)k(;; v), k=1,...,M + 1 and the remainder
R (r; v) satisfy the properties [H3] of Lemma B35l in particular (3:33)-(335).

Conclusion: Combining (3.52), B53), (3.50), and (B.517) one obtains the claimed expansion (3.44) with
ar k(5573 Opd L Vi RMY) 1= 0y (50) = 0 2(0,0,000) 4+ 037 (1) = 0,74(6,0,0: )
Rt (13 0xd L VRM) := Ry (xiv) = Ra(6,0,0;v) + Ra(x;v) — Ra(6,0,0;0).

Since agl_)k(zc; v), Ri(x;v), and a?_)k(}:; v), Ra(x;v) satisfy properties [l of Lemma B.5 in particular ([3.33)-
, the claimed estimates - then follow by the mean value theorem.
he claimed esti hen follow by th 1 h o

3.3 Frequencies of KAV

In this section we record properties of the KAV frequencies w;*¥ used in this paper. In Section [l we need
to analyze 0,97 (D;I). Recall that by (39), Q¥ (D;I) is defined for I € = C RS;O. Actually, it is defined
on all of RS;O (cf. 2)) and according to [19, Lemma 4.1] 9,Q%%(D; I) can be written as

kdv

0,051 (D; I) = —9° + Q¥4 (D; 1) (3.58)

where Q*¥V(D; I) is a family of Fourier multiplier operators of order —1 with an expansion in homogeneous
components up to any order.

Lemma 3.8. For any M € N and I € R>0’ QW (D; I) admits an expansion of the form
QM (D; 1) = QY (D; 1) + R (D; I; QM%) QFV (1) Za R(GOEY)x0()(@276) 7", (3.59)

where the functions a_,(1; Q%) are real analytic and bounded on compact subsets of R>0’ a_p(I; k)
vanishes identially for k even, and Rar(D; I; Q%) is a Fourier multiplier operator with multipliers

Rai (1)

Rar(n; I;Q57) = (rn) M1

Rt (—n; I; Q%) = —Rar(n; I; QY)Y Wn € ST, (3.60)

where the functions I — R37(I) are real analytic and satisfy, for any j € Sy, B €N,

sup [R47 (D] < Car,  sup |07 R4 (1] < Ca,
nest nest

uniformly on compact subsets of RS;O
Proof. The result follows by [I9, Lemma C.7]. O
In Section [l we shall use the following asymptotics of the KdV frequencies
wkdv(1.0) — (27n)® = O(n™1), nowh(1,0) = 0(1), (3.61)
uniformly on compact sets of actions I € RS;O.

Lemma 3.9. ([20, Proposition 15.5]) (Non-degeneracy of KdV frequencies) For any finite subset

S+ C N the following holds on RS+

(i) The map I — det((dr,w kd”([ 0))knesy ) is real analytic and does not vanish identically.

(i) For any ¢ € Z5+and j,k € S* with (¢,7,k) # (0,4, 4), the following functions are real analytic and
do not vanish identically,

Z Lpwhd 4 w}“d” #0, Z Lpwhd 4 wfd” —whdv L0, (3.62)

neSy neSy

Remark 3.10. It was shown in [I1)] that for any I € R;O, det (07, wk™(1,0))knes, ) # 0.
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4 Nash-Moser theorem

In the symplectic variables (0, y,w) € V(§) N Es defined by Theorem B2 with symplectic 2-form given by
B33), the Hamiltonian equation (L0 reads

ate = _vyHE ) aty = VQHE ) atw = amv’wHE ) (41)
where H. := H. o ¥, and H, given by (7). More explicitly,

HE(Hayaw;V) = dev(eayaw; V) + EP(Hayaw;V) )

4.2
Hr = gFv o w, P=PoV,, veE, (4.2)

where H*% (6, y, w; v) has the normal form expansion ([3.8). We denote by X3, the Hamiltonian vector field
associated to H.. For e = 0, the Hamiltonian system (4£.1]) possesses, for any value of the parameter v € Z,
the invariant torus TS+ x {0} x {0}, filled by quasi-periodic finite gap solutions of the KdV equation with
frequency vector w*¥ (v) := (Wk® (v, 0)),es, introduced in (I0).

By our choice of Z, the map —w*® : = — Q := —w"¥(Z) is a real analytic diffeomorphism. In the sequel,
we consider v as a function of the parameter w € 2, namely
v=rv(w) = (W) (—w) . (4.3)

For simplicity we often will not record the dependence of the Hamiltonian H. on v = (w*¥)~1(—w).
Consider the set of diophantine frequencies in 2,

. . o N
DC(v,7) = {w €0l g Ve 78 \{0}}. (4.4)

For any torus embedding TS+ — V(§) N &, ¢ = (0(¢), y(¢), w(p)), close to the identity, consider its lift
[R5 = RS+ x RS+ x HS(Ty), i) = (9,0,0)+i(p), (4.5)

where 1(¢) = (O(), y(v), w(p)), with O(¢) := 0(p) — ¢, is (2rZ)5+ periodic.
We look for a torus embedding I such that F,(¢,¢) = 0 where
w - 0,0(p) + (VyHe)(i(p))
Fu(t,€) = | w-Opylp) = (VoHe)(i(p)) = C | - (4.6)
w - Gpw(p) — 0x(VwHe)(ilp ))

The additional variable ¢ € RS+ is introduced in order to control the average of the y-component of the
linearized Hamiltonian equations — see Section Bl Actually any invariant torus for X3_, = X9, + (0,¢,0)
with modified Hamiltonian

Heo(0,y,0) = H(0,y,w) + (-0, (R, (4.7)

is invariant for Xy, see (B.5)). Note that H. ¢ is not periodic in 8, but that its Hamiltonian vector field is.
The Lipschitz Sobolev norm of the periodic part () = (©(p), y(p), w(p)) of the embedded torus (@3] is

lell5®O = (|01 + ||y [P + [lew]| P

where [|w||YP" is the Lipschitz Sobolev norm introduced in @I)) and

i Li Li i _ Li Li
1817 = 0152 = 1017, gsrys MNP =yl = Iyl gory - (48)

Theorem 4.1. (Nash-Moser) There exist § > (|S1| +1)/2 and g9 > 0 so that for any 0 < € < gq, there
is a measurable subset Q. C Q satisfying

meas ()

=0 meas(Q) =1 (4.9)
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and for any w € Q)., there exists a torus embedding i, as in (L) which satisfies the estimate
i = (,0,0)[F" =0y, y=¢", 0<a<l,

and solves
W Opluy () = X, (lu(p)) = 0.
As a consequence the embedded torus i, (TS+) is invariant for the Hamiltonian vector field X () withv =

(wWkd) =Y (—w), and it is filled by quasi-periodic solutions of (@) with frequency vector w € Q.. Furthermore,
the quasi-periodic solution Iy, (wt) = wt + 1, (wt) is linearly stable.

Theorem [£1] is proved in Section 8 The main issue concerns the construction of an approximate right

inverse of the linearized operator d, ¢F.,(¢,¢) at an approximate solution. This construction is carried out
in Sections Bl [6] and [7

Along the proof we shall use the following tame estimates of the Hamiltonian vector field X4, with
respect to the norm || - | 5P, Recalling the expansion (&) provided in Theorem B2 and the definition of
P in B31)), we decompose the Hamiltonian #. defined in ([d2]) as

H. =N +P. where

4.10
Ny, wv) =)y + 5 de”( Myl -y + 2(Q'“I”(D v)w, w) 10

L2y Per= REW 4 eP .
Lemma 4.2. There exists o1 = 01(S4+) > 0 so that for any s > 0, any torus embedding [ of the form (&3]

with ||¢ ||I;;i;1) < 4§, and any maps 7,11, 7 : TS+ — Ey, the following tame estimates hold:

o i Li Li Li
X, (DI < e(1+ [l ZED) + [l 520 || hintn)

s+o1 so+o1 s+o1

o i L L Li L
ldXp. AT Ss (4 Nl DR + I35 Ia555)
o\~ o~ 1((Li ~ L ~ L ~ L ~ L L ~ L ~ L
14 X0, (D71, 22152 S N0 1505, + el 12 n” + el (17 o 2 055,
Proof. Note that Xp. = eXp + Xgrav and d2X3. = d?X + d?Xp.. The claimed estimates then follow
from estimates of eXp, obtained from Lemmata B.5] 2.23] 2.24] and from estimates of Xg«av obtained from
Lemmata 3.7 2:23] 2.24] and the mean value theorem. O

5 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of F,(¢,{) = 0 (cf. ([@H))
we construct an almost-approzimate right inverse (see Theorem [1.0]) of the linearized operator

dy Fot, Q)T C) = w - 0,7 — d. Xpi. (D]7] - (0,C,0) (5.1)

where H, = N + P. is the Hamiltonian in (I0). Note that the perturbation P. and the differential
d, cFu(t,C) are independent of ¢. In the sequel, we will often write d, ¢F,,(¢) instead of d, ¢F., (¢, ().

Since the 6, y, and w components of d, Xy, (i(p))[t] are all coupled, inverting the linear operator
dcFu(t,¢) in (BI) is intricate. As a first step, we implement the approach developed in 3], [8], [10],
to approximately reduce d, ¢F (¢, ¢) to a triangular form — see (5.29) below.

Along this section we assume the following hypothesis, which is verified by the approximate solutions
obtained at each step of the Nash-Moser Theorem Bl

e Ansatz. The map w — (w) := I(¢;w) — (p,0,0) is Lipschitz continuous with respect to w € Q, and,
for v €(0,1), o := po(7,S+) > 0 (with T being specified later (cf. Section[8))
i —2 Li
lellzP™ Sev™2, NIZIIeP) Se, (5.2)

where Z is the “error function” defined by

Z(p) = (21, Za, Z3)(9) := Fu(1, Q) (¢) = w- 9p1() = X3 (i(9)) = (0,,0). (5:3)
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We first noe that the 2-form W given in (B3) is
W= (3, dus Addy) @ Wo = dA

where A is the Liouville 1-form

~ 1,
Ao.y.w)[0,7, D] Zje&yjej + 507w, @), (5.4)
Arguing as in [3| Lemma 6.1], one obtains
GRS | Z|[5P). (5.5)

An invariant torus ¢ with Diophantine flow is isotropic, meaning that the pull-back 7*A of the 1-form A
is closed, or equivalently that the pull back t*W satisfies I*W = i*dA = di*A = 0 (cf. [§]). For an
approximately invariant torus embedding i, the 1-form

PA= Y, ader, ax(e) = (0,00 Tu9), + 505 00). 0@z, (56)

is only “approximately closed”, in the sense that

W =digh = 1 ies, Arj(@)dor Ndpj, Ak () = 0p.a;(0) — Dy, ak(p) , (5.7)
<

is of order O(Z). More precisely, the following lemma holds.
Lemma 5.1. Let w € DC(~y, 7) (cf. @4)). Then the coefficients Ax; in @) satisfy

i Li Li Li
| A 5P <oA1 215 4+ (1 2| 50 el 52 (5.8)

so+o
for some o = o(1,S4) > 0.

Proof. The Ay; satisfy the identity w - 8,Ax; = W(0,Z(0)ey,, 9,i(0)e;)+ W(0plo(p)ey, 0pZ(0)e;) where

er, k € Sy, denotes the standard basis of RS+ (cf. [8, Lemma 5]). Then (IBEI) follows by (5.2)) and (ZI0). O

As in [8], [B] we first modify the approximate torus I to obtain an isotropic torus Zs; which is still

approximately invariant. Let Ay =7, s 92,

Lemma 5.2. (Isotropic torus) Let w € DC(vy, 7). The torus is(¢) := (0(¢), ys(v), w(p)) defined by
() = 30) ~ D0 Th0) asle) = ALY, D Aus(e), (59)

is isotropic and there is o = o(1,S4) > 0 so that, for any s > so

lys — ylEPO) < flof 200 (5.10)
lys =yl < AT UZIEE + el 12155 | (5.11)
1P (s, OIEPD S 21 + 1ell5 2|1 21155 (5.12)
ldues [IIEP) S ISR + [l 5P (5.13)

Remark 5.3. In the sequel, w will always be assumed to be in DC(vy, 7). Furthermore, o := o(7,Sy) will
denote different, possibly larger “loss of derivatives” constants.

Proof. The Lemma follows as in [3, Lemma 6.3] by Lemma [£.2] (5.6)-(5.8) and the ansatz (5.2]). O
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In order to find an approximate inverse of the linearized operator d, ¢F.,(ts), we introduce the symplectic
diffeomorpshim Gy : (¢,n,v) + (0,y,w) of the phase space TS+ x RS+ x L2 (Ty), defined by

0 ¢ 0(¢) .
y | =Gs| 0| = ys(d) +[0s0(0)] "0 — [(9w)(0(9))] 05" (5.14)
w o) \w(@)+o

where @ := w o §~!. Tt is proved in [8, Lemma 2] that G5 is symplectic, since by Lemma 5.2 i is an

isotropic torus embedding. In the new coordinates, i5 is the trivial embedded torus (¢,n,v) = (¢,0,0) and
the Hamiltonian vector field X3, . (with H ¢ defined in (1) is given by

X = (dGs) ™' X3, . 0 Gs where K=K.¢:=HecoGs. (5.15)

The Taylor expansion of K in 7, v at the trivial torus (¢, 0, 0) is of the form

K(¢,n,v,¢) = 0(¢) - ¢+ Koo(®) + Kio(¢) - 1+ (Kor(e),v)r2 + %’Czo(éf’)n "1
+ (K11(¢)na U) L2 + %(ICO2 (¢)Ua U) L2 + ICZ3(¢; , U) (516)

where K>3 collects the terms which are at least cubic in the variables (n,v), Koo(¢) € R, Kio(¢) € RS+,
Ko1(¢) € L2 (Ty), Kao(9) is a [S4| x |Sy| real matrix, Ko2(¢) : L3 (T1) — L2 (Ty) is a linear self-adjoint
operator and K11(¢) : RS+ — L2 (Ty) is a linear operator of finite rank. At an exact solution of F,(,¢) = 0
one has Z = 0 and the coefficients in the Taylor expansion (B.10) satisfy Koo = const, K19 = —w, K1 = 0.

Lemma 5.4. There exists 0 := o(7,Sy) so that

186K00 5P + K10 + w|[EPO) 4 || Kor [|5PO) S | Z][2E 4 [|of| Z2O7) Z| Lim00)

so+o
1620 = QL )P S 2+ el (5.17)
[ 5P) Sy ey 2l 20 + ull5 2O | 2R '
T 0I5 o ey 2ol S + [P ol 55
Proof. The lemma follows as in [8], [3], by applying Lemma 2] and (£.2), (&10), &11), GI2) . O

Denote by Id; the identity operator on L% (T;). The linear transformation dGs(p,0,0) = dGs(,0,0)
then reads

~

¢ 940(¢) 0 0 ¢
dGsl(p00) | 7 | = %zsya((so)) [%9(50)]* —[(%w)gfl(so))ﬂa;l 0 (5.18)
v pw(p 1 v

It approximately transforms the linearized operator d, ¢F.(ts5) (see the proof of Theorem [£.6) into the one
obtained when the Hamiltonian system with Hamiltonian IC (cf. (515) is linearized at (¢,n,v) = (¢,0,0),
differentiated also with respect to ¢, and when &; is exchanged by w - 0,

o 0,0+ 0K (@)l6] + Ko@) + KT ()7

o | 7 w2 = (960(0)) [C] = 96 (960() T [C]) (6] — Do Koo(0)[8] — [06K10(0)] 11 — [0 K01 ()] D

¢ w - 0,0 — 0:{95K01 (9)[] + K11 (9)7 + Koa ()0}
(5.19)

Using (5.2) and (510), one shows as in [3] that the induced operator 7 := ((b, 7,0) — dGs|t] satisfies
4G5 (2,0, 0) @I, dGs(2,0,0) " @IE™Y) S 7P + [l 057 74P (5.20)

142G (2,0, 0)[f1, B2 [ 1) S, [T IIEPO Y1200 + 32|00 [ | 100 + el 2057 170 2P0 2 520

(5.21)
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In order to construct an “almost-approximate” inverse of (5.19) we need that

L,:=1I, (w <0y — aIICOQ((,D))‘Li (5.22)

is “almost-invertible” up to remainders of size O(N,, %) (see precisely (5.26)) where
N, :=KP, Yn>0, (5.23)
and .
K, :=K{ , x:=3/2, (5.24)

are the scales used in the nonlinear Nash-Moser iteration in Section 8 Based on results obtained in Sections
[6I7, the almost invertibility of £, is proved in Theorem [[.T1] but here it is stated as an assumption to avoid
the involved definition of the set £2,. Recall that DC(vy, 7) is the set of diophantine frequencies in 2 (cf. (@4).

e Almost-invertibility of L£,. There exists a subset Q, C DC(vy,7) such that, for all w € Q,, the
operator L, in (522) admits a decomposition

L,=LS+Ru+RS (5.25)

with the following properties: there exist constants Ko, No,o, 71, pu(b),a,p,86p > 0 so that for any
sy <s<S8 andw €, one has:

(i) The operators R, RY satisfy the estimates

i — Li T — Li Li

IRGAIEPD) s ey 2N (IIIE + NGy el o IRl ) (5.26)
Li Li T — Li Li

IRERISET S K (N5 00 o + NS ells ) o o IBIEESD) . Wb >0, (5.27)

(ii) For any g € HT7(TS+ x Ty), there is a solution h := (LS)"tg € H3 (TS+ x Ty) of the linear
equation LSh = g, satisfying the tame estimates

_ i Li T = Li Li
1£S5) 72l <o v~ (lgllsB + NGyl o lalss) - (5.28)

In order to find an almost-approximate inverse of the linear operator (L.I9) and hence of d, ¢F,(ts5), it is
sufficient to invert the operator

L 0o + Kao(0)7) + K11() 0
D[¢,7,9,(] = w- 9,7 — 030()TC (5.29)
£<v—8 ’Cll( )

obtained by neglecting in (5.I9) the terms 9yK10, 9p6Ko0s Ipko0, 0sKo1, Op (8¢9(<p)T[C]) and by replacing
L, by LS (cf. (525)). Note that the remainder £, — LS = R,, + R is small and that by Lemma [5.4] and
m, (9¢/C10, 8¢¢IC00, 8¢K00, (9¢/C01 and 8¢(8¢9(¢)T[§]) are O(Z)

We look for an inverse of D by solving the system

=N =N g1
D¢, 7,0,¢] = | g2 | - (5.30)
g3

We first consider the second equation in (5.30), w - 0,7 = g2 + 8¢9(<p)—rz. Since 9,0(p) =1d + 0,0(yp), the

average (0,0"), = W Jrss 0,07 (p)dp equals the identity matrix Id of RS+. We then define

Ci=—(g2), (5.31)

~

so that (g2 + 940(¢) " (), vanishes and choose

Be=To+m1, M= (w-9,) " (g2 +9s0(¢) C) (5.32)
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where the constant vector 7y € RS+ will be determined in order to control the average of the first equation
in (5.30). Next we consider the third equation in (530), (£5)v = g3 + 0.K11(¢)7, which, by assumption
(E28) on the inveritibility of LS, has the solution

0= (L£5) 7 (g3 + K11 (9)h) + (£5) ™ 9:K11(0)10 - (5.33)

Finally, we solve the first equation in (530). After substituting the solutions Z , 1, defined in (B32), and v,
defined in (B.33), this equation becomes

w - 890(5 = g1 + Mi7jo + Mags + Msgs + MyC (5.34)

where M; : o — M;(p), 1 < j <4, are defined as

Mi(p) == —Kao() — K11(0) " (£5) 1 0:K11() , (5.35)
Ma(p) == Mi(p)w - 8,] 7, (5.36)
M3(p) = =K () (£5) 7! (5.37)
Ma(p) := Ma()0g0(p) " (5.38)

In order to solve equation (5.34]) we have to choose 7y such that the right hand side of it has zero average.
By Lemma[5.4] by the ansatz (5.2) and (5.28), the g-averaged matrix is (M), = de”( ) +O(ey~2). Since
the matrix Qgi”( ) = (Or, Wk (1)), nes, is invertible (cf. Lemma B.9(i), Remarkm) (My), is invertible

for 772 small enough and (M;);! = Q§%(v)~" + O(e7?). We then define

Mo := — (M) ((91>¢ + (M2g2), + (M3gs)e + <M4Z>¢) : (5.39)
With this choice of 7, the equation (5.34) has the solution
¢ = (w-8y) " (g1 + Mi[fo) + Mags + Mags + MyC) . (5.40)

Altogether we have obtained a solution (qAﬁ, 7,0, Z) of the linear system (&.30).
Proposition 5.5. Assume the ansatz (5.2) with po = p(b)+o and the estimates (5.28) hold. Then, for any
w € Q, and any g := (g1, g2, g3) with g1,g2 € HsﬂL‘T(']I‘S+ RS+) g3 € HYP7(TS+ x Ty), and sy < s < S, the

system (B5:30) has a solution (¢,7,7,C) :=D~Lg, where ¢, 1, 0, ¢ are defined in (531)-G33), (6:39)-(GA0)

and satisfy

_ i - Li - Li Li
I~ gl S5 472 (gl + Ne Ay el PG o lale D). (5.41)

Proof. The proposition follows by the definitions of { (cf. &3T), m (cf. E32)), v (cf. E33)), 7o (cf
E39)), ¢ (cf. (E40)), the definitions of M;, 1 < j < 4, in (£.35)-(E.38), the estimates of Lemma [5.4] and
the assumptions (5.2]) and (5.25). O

Let Gs : (6,m,v,¢) = (Gs(¢,7,v), ¢) and note that its differential dG;(¢,7, v, ¢) is independent of ¢. In
the sequel, we denote it by dGs (¢,m,v) or dé5|(¢,n,v). Finally we prove that the operator

~ _ -1
To := To(1) := dGs|(4,0,0) D" 0 (dGs](4,0,0)) (5.42)

is an almost-approximate right inverse for d, ¢ F,(¢). Let ||(¢,n,v, ) ||I;ip(7) := max{||(¢,n,v) ||£Jip(7), |¢[HP(NY,

Theorem 5.6. (Almost-approximate inverse) Assume that (20)-(E28) hold (Almost-invertibility of
Ly, w € Q). Then there exists oo := 02(7,S4) > 0 so that, if the ansatz [B2) holds with o > spr+p(b)+02,
then for any w € Q, and any g := (g1, 92,93) with g1,g2 € H*T7(TS+ RS+), g5 € HYT7(TS+ x Ty), and
sy <8< S, To(t)g, defined by (B42), satisfies

i Li o Li Li
ITo(gll =) S5 772 (IglEE + N A IR o gl 20, ) (5.43)
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Moreover To(t) is an almost-approzimate inverse of d, ¢ Fu, (L), namely

dy ¢ Foo(t) 0 To(t) —1d =P + Py + Py (5.44)

where
IPls™ Ss v 17l OISR, (14 Ne A )0 ) 2002, (5.45)
1Puglen™ Ss ev N2 (14 NGy 20 ) o) e, (5.46)
P2l Sow v 2K (gl ), 4 + NG A e ) ronsal oo sn,) W0 > 0. (5.47)

Proof. The bound (5.43)) follows from the definition of Tq(¢) (cf.([542)), the estimate of D! (cf. (G.41])), and
the estimates of dGs(,0,0) and of its inverse (cf. (5.20)). By formula (5.1)) for d, ¢F.,(¢) and since only
the y—components of 75 and [ differ from each other (cf. (@3), the difference & = d, ¢ Fu,(t) — d, ¢ Fu(ts)
can be written as

1
= / aydLXHE (95 Ys + S(y - yﬁ)a ’LU)[y - yﬁaﬂds- (548)
0

We introduce the projection II : (z, Z) — 7. Denote by u := (¢, n,v) the symplectic coordinates defined by
G5 (cf. (5I4)). Under the symplectic map G5, the nonlinear operator F, (cf. (48])) is transformed into

Fu(Gs(u(p)), €) = dGs(u(p))[w - Opu(p) — Xic(ulep), O)] (5.49)
where K = H. ¢ o G5 (cf. (5I5)). Differentiating (5.49) at the trivial torus us(¢) = G5 ' (15)(¢) = (,0,0),
we get

d, ¢ Fuo(t5) = dGs(us) (w - Oy — du e Xx(us, €))dGs(us) ™t + &1, (5.50)
& = d2G5(U5) [dG(;(u(s)_l]:w(L(;, ), ng(u(s)_lﬂ[ -] ] . (5.51)

In expanded form w - 9, — du,¢ Xic(us, () is provided by (5I9). Recalling the definition of D in (5.29) and
the discussion following it, we decompose w - 9y — du ¢ Xk (us, () as

w0y — dy ¢ Xxc(u5,¢) =D+ Rz + R, + RS (5.52)
where
. ~ 95K 10(0) (9]
Rz[6,7.3,¢] = | =050Ko0()[0] — 96 (060(0) T[C]) [6] — [0pK10(0)] T — [0 Kon ()] 70
=0, (0sKo01 ()0 )
and
N R 0 N R 0
Rol¢.g@.¢:={ 0 |, Rigga={ 0
R [w] R[]
By (£4]) and (B50)-([E52) we get the decomposition
d,.cFoult) = dGs(us) o Do (AGs(us)) ™" + & + Eu + EL (5.53)
where ~ 1
E =& + & +dGs(us)Rz (dG5(u5))7 , (5.54)

€ = dCi(us) Ry (dGs(ws)) ', EF = dGi(ug)RS (dCs(ug)) (5.55)

Letting the operator Tg = To(¢) (cf. (B42)) act from the right to both sides of the identity (E53) and
recalling that us(¢) = (¢, 0,0), one obtains

dycFu()oTog—ld=P+P,+PL, P:=E0Ty, P,=E&,0Ty, PL:=ELoT,
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To derive the claimed estimate for P we first need to estimate £. By (52), (5 (estimate for ¢), (EI7)
(estimates related to ¢5), (I0)—(EI2) (estimates of the components of Ry), and (B.20)-(E21]) (estimates of
dGs(us) and its inverse) one infers that

~ i — Li Li Li Li Li Li Li
13 CINERD S o~ (121D IR + 121 RS + 121 W B 75D ) . (5.56)

sot+o soto sot+o so+o

for some o > 0, where Z is the error function, Z = F,(¢,¢) (cf. (@3))). The claimed estimate (5.45) for
P then follows from (E50), the estimate ([43]) of To, and the ansatz (52). The claimed estimates (5.46)),
(5A7D) for P, and, respectively, P+ follow by the assumed estimates (5.26)-(5-27) of R., and R, the estimate
E43) of Ty, the estimate (20) of dGs(us) and its inverse, and the ansatz (5.2)). O

The goal of Sections [ and [7] below is to prove that the Hamiltonian operator L, defined in (5:22]),
satisfies the almost-invertibility property stated in (0.25)-([E.28).

6 Reduction of £, up to order zero

The goal of this section is to reduce the Hamiltonian operator L, defined in (5.22), to a differential operator
of order three with constant coefficients, up to order zero — see ([G.67]) below for a precise statement. In
the sequel, we consider torus embeddings i(¢) = (¢,0,0) + ¢(¢) with ¢(-) = ¢(- ;w), w € DC(~y, 7) (cf. (&),
satisfying

PO Sey™ ey 2 < 6(S) (6.1)

where po := po(7,S4+) > so, S > sg are sufficiently large, 0 < §(5) < 1 is sufficiently small, and 0 < v < 1.
The Sobolev index S will be fixed in 82]). In the course of the Nash-Moser iteration we will verify that
(610 is satisfied by each approximate solution — see the bounds ([88]). For a quantity g(¢) = ¢g() such as an
operator, a map, or a scalar function, depending on I(¢) = (¢, 0,0) + ¢(p), we denote for any two such tori
embeddings i1, 2 by Ai2g the difference

Arag = g(t2) — g(ta) -
6.1 Expansion of L,
As a first step, we derive an expansion of the operator £, = II | (w - 0p — 0:K02 ((p)) L3 defined in (2.22)).
Lemma 6.1. The Hamiltonian operator 8,Ko2(¢) acting on L2 (T1) is of the form
9:Ko2(p) =111 0x(d L VwHe (s () + R(p) (6.2)
where H is the Hamiltonian defined in (£2) and the remainder R(p) is given by

R()h =)

ses, (s 93)p2Xs s Vh € LL(T4), (6.3)

with functions g;,x; € HS, j € Sy, satisfying, for some o := o(1,S4) > 0 and any s > s
i i Li
g5 + I IFPD Sa e+ el (6.4)
Let s1 > so and let 1,12 be two tori satisfying (G with puo > s1 + o. Then, for any j € Sy,
[A12g;lls, + 1A12X5]ls1 Ssi lle2 — tallsi+o -

Proof. The lemma follows as in [10, Lemma 6.1], using Lemma 2] and the ansatz (6.1]). O
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By Lemma the linear Hamiltonian operator £, has the form
Lo=LP—R, LY :=w 0, —T10:(dLVuHe)(ls5(¢)) (6.5)

where here and in the sequel, we write w - 0, instead of IT| w - 0| r2 in order to simplify notation. We now

prove that the Hamiltonian operator E&O), acting on L? (T), is a sum of a pseudo-differential operator of
order three, a Fourier multiplier with ¢—independent coefficients and a small smoothing remainder. Since
He = HF 4+ &P (cf. @D)) and 9pd) V HF Y = 0,0 + 9,d, V., RF¥ (cf. [@38)) we have

LY =w- 9,4+ 02 —1,Q*(D;w) — 119,d, V. RFY (i5) — el 0pd 1 Vo P(i5) (6.6)
where we write 02 instead of 8§’|Li and where Q*%"(D;w) is given by (cf. (355))
QY (Dyw) = QY (D;v(w)) = 9,95 (D v(w)) + 03, (6.7)

with v(w) defined in ([@3]). The operator Q4" (D;w) is a Fourier multiplier with ¢—independent coefficients.
It admits an expansion as described in the followmg lemma.

Lemma 6.2. For any M € N,

M
Q (D Zc Y (w)0y "+ R (QF; w) (6.8)

k=1

where for any 1 < k < M, the function Q@ — R, w ~ c*¥?(w) is Lipschitz and where Ry (Q*%;w) :
L2 (Ty) — L2 (Ty) is a Lipschitz family of diagonal operators of order —M — 1. Furthermore, for any
ni,n2 € N, ny +ng < M + 1, the operator (D)™ Ry (QF%:w) (D)™ is Lip(v)-tame with a tame constant
satisfying M pyni gy, Qv i) (Dyn2 (8) < C(s, M) for any s 2 50 and C(s, M) > 0.

Proof. The claimed statements follow by Lemma [3.8 O

Lemma 6.3. For any M € N, the Hamiltonian operator LY, acting on L2 (Ty), defined in ([63), admits
an expansion of the form

£ = w0, ~ T (093 + 2(af"),02 + a0, + Op(rf”) + Q¥4 (D3w)) + RY) (ts(w)iw)  (6.9)

where ago) = aéo)(go, Tw), ago) =aq (0)(<p, x;w) are real valued functions satisfying for any s > sg
0 i Li (0 i Li
lag” + 150 Soar e+l V1P Soar e+ 11l (6.10)
for some oy > 0. The pseudo-differential symbol Téo) = 7’(0) (p,2,&;w) has an expansion in homogeneous
components
M
0 . _
i (g2, & w) = S a0, 23w) (127€) F xo(€) (6.11)
k=0

with xo defined in where the coefficients aSO) a'?) Y, x;w) satisfy
—k

Csup a0 S e+ TS Vs > 0, (6.12)
the remainder is defined by
RO (15(0); w) := =R (£5(0): (w); Ondy Vi RF®) — eRps (15(0); v(w); 8y Voo P) (6.13)

and the latter two remainder terms are given by (B.44) and (B.32) with v(w) = (W)~ 1(—w).
Let s1 > so and let 1,12 be two tori satisfying @) for po > s1+ onr. Then, for any 0 < k < M + 1,

0 0
181205 16y Sevnr eller = allsrrons 181207 sy Souonr o1 = e2lsr o (6.14)
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Proof. By the definition (G.6]) of £ the expansion B44) of 9,d 1 V., R¥ | the expansion ([3.32) of 9,d | V., P,
and the formula for the coefficient of 92, described in Lemma 26 one obtains ([6.9) with

) (¢, x50) == —1 + cas(i5(); v(w); e dy Vo P),
al” (0, 23w) 1= a1 (5 (9); V(w); Dud L Vo R¥™) + 20y (i5(0); v(w); 0nd L Vi P),

0l (0, 330) 1= a_((5(0); v(w); Do d L Vi R¥) + ca_i(i5(0); v(w);: 0dL ViuP), k=0,...., M,

and v(w) = (wk)~!(—w). By Lemma B+, the functions a3 (r; v(w); 0.dL V,RF), 0 < k < M + 1,
satisfy the hypothesis of Lemma 2.23}(i7). In view of (5I0) one then infers that for any s > s

a1 (55 (0); v(w); Dudy Vo REW) || HPO) <y le HLlp('y)

stom
for some oy > 0. Similarly, by the first item of Lemma [0l the functions as_x(i5(p); v(w); 0:d1 VWP),
0 <k < M + 3, satisfy the hypothesis of Lemma 223}(7), implying that for any s > sq,

||(13,k(55(50) ( ) 8 diVu 'P)HLIP(’Y) < s M 14+ ” ||L1p(’y

s+on
for some ops > 0, proving (G10), [GI2). The estimates ([G.I4]) follow by similar arguments. O

We remark that in the finitely many steps of our reduction procedure, described in this section, the loss
of derivatives opy = op(7,S4) > 0 might have to be increased, but the notation will not be changed.

6.2 Quasi-periodic reparametrization of time

We conjugate the operator £, (cf. (6.3)) by the change of variable induced by the quasi-periodic reparametriza-
tion of time
V=9p+ CY(I)((p)w or equivalently =1+ d(l)(ﬁ)w

where a(!) : TS+ — R, is a small, real valued function chosen below (cf. ([6.17)). Denote by
(@Wh)(p,2) = b+ aD(p)w,z), (@) 7'h)(¥,2) := h(d + &M (P)w, ), (6.15)

the induced diffeomorphisms on functions. The goal is to achieve that the operator L',S), defined in (620,
is of the form (G.2T]), so that its highest order coefficient a( ) satisfies 623). The latter property will allow
us in Section [6.3] to conjugate Kfu to an operator with constant highest order coefficient (cf. ([G.40)).

Since by (6.10), the coefficient ago) satisfies aéo) = —1+ O(e), the expression (aéo)(go, 2))3 is well defined
where (z)3 denotes the branch of the third root of 2 € (—o0,0), determined by (—1)5 = —1.

Lemma 6.4. Let m3 be the constant

my(w) i= ﬁ/ﬁ (/T M—Zw))é)_3 dv, (6.16)

and define, for w € DC(y, ), the function

3O (0 w) = (w- 9,) [mig(/m (ago)(d—x_))%)g - 1} . (6.17)

9, x;w

Then for any M € N, there exists a constant o > 0 so that the following holds:
(i) The constant ms satisfies _
Ims + 1|HPO) <)/ e (6.18)

and for any s > so, oM, &M satisfy

Ja PO, &0 Soar ey 1+ ) (6.19)

s+aM
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(i) The Hamiltonian operator

£y = %qﬂ)zw @=L pd) =W (1 4w 99aM) =1+ W (w-9paV), (6.20)
admits an expansion of the form

£ = w0y — (a2 + 2(af"),02 + a0, + Op(r{") + Q"4 (D)) + RYY (6.21)

where the coefficients ag ) agl)(ﬂ, T w), agl) = agl)(ﬁ,:c;w) are real valued and satisfy

i i Li

las” + 1150 Soar e felsan)s 1 IEP) Sonr e+ WIS, Vs =50, (6.22)

and p

_1
—z:m 3 W9 e TS+, (6.23)
(1) 1 3
T (a3 (¥, 73w))3

The function ré ) = To (19 x, & w) is a pseudo-differential symbol in S° and admits an expansion of the form

1) (3 2z, &w Za (0, ;w) (127€) Fx0(€) (6.24)

where for any 0 < k< M, s > sg,

a2 1520 < ap e 4 [lel|5) (6.25)

s+onm

Furthermore, the function p appearing in [620) satisfies

lp— L5 [p=t — 1 LPO) <y e[| SO (6.26)

s+onm

Let s1 > s and let 11,12 be two tori satisfying (6.1) with po > s1 + onr. Then

|Azms|, | Ar2a® s, [| 81280 s, [ A1208 |16, 18120 sy Ssvonr ler = 2llsy4ons » (6.27)
181205, Ssuonr 1 = 2llsison s VR =0,..., M.

(iii) Let S > sy where sy is defined in (Z54). Then the maps (®1))*! are Lip(y)-1-tame operators with a
tame constant satisfying
Mgy (s) Ssoar L+ |57, Wsp+1<s<8S. (6.28)

s+on

For any given Ao € N there exists a constant opr(Ag) > 0 so that for any m € S, A\,n1,ne € N with A < Ag
and ny +ng + Ao < M +1, the operator 0} (D)’“Rg\? (D)™ s Lip(vy)-tame with a tame constant satisfying

() Ssar e+ e ), Vom <s<S. (6.29)

m
93, (DY RS (Dyn2

If in addition s1 > sy and I1,12 are two tori satisfying @) with po > s1+ oar(No), then
102, (D)™ Ao REDY™ a1y Sovarin 11 = 1240000 - (6:30)
Proof. Writing I1; as Id + (IT, — Id) the expression (G.9) for £ becomes
£ = w0, — (a0} + 200”20} + o 00 + Op(rE”) + QLY (Dsw) ) + RE) (is(0); ) + R (s () )
where using that (Id — I1,)02h = 0 for any h € H?, the operator ’R(I) = R(I)(L§ (p);w) can be written as

R{Y = (10 = ) ((af” + 182 + 2(a§”),02 + a{”0, + Op(r() ) . (6.31)
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Since (Id =TI )h =3~ g (h, e_iQWj””)Lz 2™ for any hin L2, Rg\? is a finite rank operator of the form (G3))

with functions g;, x; € H? satisfying (g@r@ﬂl) (use (6.10), 6.12)).
The estimate (6.28) follows by Lemma 21} (i4i) and ([@I9). Note that

W ow- 9,0 (@) =p(w -8y, p:=dV(1+w-d,aV),

and that any Fourier multiplier g(D) is left unchanged under conjugation, i.e. ®*)g(D)(®M)~1 = g(D).

Using (63) and (69), we obtain ([G.21]) where

(0)

1) ._ g - T
all .= @ (1+w~a¢&<1>)’ (6.32)

agl) = %@(1)(1150)), r(()l) is of the form ([@.24) with a(_lli = %tﬁ(l)(a(_ol)v), and the remainder ’RS\? is given by
1 1 y 1 _
Ry = S @URG @)+ @R (s () (81) 7 - @D R() (@) (6.33)

We choose &1 such that ([6.23) holds, obtaining (6.16), ([617). We now verify the estimates, stated in items
(4), (i7). Recall that we assume throughout that (G.I]) holds. The estimates (G.IS)-(E19) follow by (G.I6l),
©17), (6.10), and by using Lemma 2T} (4i7), Lemma[Z2l The estimate ([G.26]) on p follows by the definition
©20), (617), and by applying Lemma 21} (i4¢), Lemma 221 Hence, by Lemma 2] and the estimates (G.10I),
612), and ([626), we deduce ([625]). The estimates ([G.27) are obtained by similar arguments. Let us now
prove item (iii). The estimate ([E28) follows from Lemma 2I}(iii). Since (®™M))*! commutes with every
Fourier multiplier, we get

1 1

(D @RI (s (2)) (@) THD)™ = (D)™ R (15.a()) (D)™ (6.34)

where 54 (¢) = i5(p + aV(¢p)w). By Lemma 21, (5I0), and (GI9) one has ||L57a||£ip(7) <s ||L||§fa(;y/[)
Moreover, by (63]), we have

Lo 1)y—1 1 L s 2

;‘1’( 'R(p)(@M) ' h = Zj€S+ (h, (@ )gj))Li;(‘I’( 'X;), VhelLi, (6.35)
and by (G31)), the conjugated operator %q)(l)’Rg\f[) (®1)~1h has the same form. The estimates (6.29) then
follow by (6.34), (6I3), and Lemmata B.5 B.7 to estimate the first term on the right hand side of

©33) and by (6.35), 628), 64) and Lemma [Z22] to estimate the second and third term in ([G.33]). The
estimates ([G.30) are proved by similar arguments. O

6.3 Elimination of the (p, z)-dependence of the highest order coefficient

The goal of this section is to remove the (p, z)-dependence of the coefficient agl)(ga, z) of the Hamiltonian

operator ES), given by (6.:20)-(6.21]), where we rename ¢ with ¢. Actually this step will at the same time also

remove the coefficient of 92. We achieve these goals by conjugating the operator E&l) by the flow ®®) (7, ¢),
acting on L? (T), defined by the transport equation

00 (1,) = 110, (b (7, 0, )8 (1,0)) , @ (0,0) =1d.1, (6.36)
for a real valued function
B3 (p,x)
1+ 788 (¢, 2)

where 8 (p,x) is a small, real valued periodic function chosen in (638) below. The flow &3 (7, ¢) is
well defined for 0 < 7 < 1 and satisfies the tame estimates provided in Lemma Since the vector
field I1, 9, (b®h), h € H3(Ty), is Hamiltonian (it is generated by the Hamiltonian %fﬂ‘l b h? dx), each

b2 =@ (1, p,2) =
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O (1,0), 0 < 7 < 1, p € TS is a symplectic linear isomorphism of H$(T;). Therefore the time one
conjugated operator

L? =@M (@)™ 0@ .= 0@ (1,9), (6.37)
is a Hamiltonian operator acting on H? (T).

Given the (7, p)-dependent family of diffeomorphisms of the torus Ty, z — y = z+73?) (g, ), we denote
the family of its inverses by y — = =y + 3 (1, ¢, y).

Lemma 6.5. Let 52 (¢, y;w) = 8P (1, ¢, y;w) be the real valued, periodic function

1/3

B (e, y;w) = 0, ((()(Z#))l/?’ 1) (6.38)

(which is well defined by (6.23)) and let M € N. Then there exists oar > 0 so that the following holds:
(i) For any s > s
|8 EPO, DR < ar (1 + 1)) - (6.39)

stom

(i) The Hamiltonian operator £? in ©3T) admits an expansion of the form

LP =w-8, — (m3d2 +a’0, + Op(rl?) + Q" (D;w)) + R (6.40)
where a§2) = a§2)(<p, x;w) s a real valued, periodic function, satisfying
(2 i Li
laf 5% Sar e+ L) (6.41)
The pseudo-differential symbol T( ) = 7’(()2) (p,z,&w) is in SO and satisfies, for any s > sq, the estimate
Li Li
006655 Sear &+ 1l (6.42)

Let s1 > sg and let I1,15 be two tori satisfying @) for po > s1 + onr. Then, for any k =0,..., M,

18128 |, 18128 ||s1, 18125 |15 12120D(r$ ) 0610 Ssvonr 61 = talsr o (6.43)

(iii) Let S > syr. Then the symplectic maps (®2))*! are Lip(y)-1 tame operators with a tame constant
satisfying

Em(@@))ﬂ( ) Soom L+ || ||§jrp(£z/[, Vsp+1<s<S8§. (6.44)
Let Ao € N. Then there exists a constant opr(Ag) > 0 such that, for any A\,ni,na € N with A < Ao and
ny +ng + Ao < M — 1, the operator 8;;m (D}"l’Rg\? (D)™, m € S, is Lip(y)-tame with a tame constant
satisfying

Li
My (pyrard (pys (8) Ss.arn €+ e 27 ) e <5< S (6.45)

Let s1 > sy and 11,12 be tori satisfying @) with po > s1+ oar(Xo). Then

n 2 n
182, (D)™ AR (D)™ 51y Ssuatong 61 = t2llssons (20) - (6.46)

Proof. The proof of this lemma uses the Egorov type results proved in Section According to (@21,
[624)), the conjugated operator is given by

£ = o L) (@)1 (6.47)
=w-0, — d@a{ P (@) — 20P) (a{M),02(@?) 1 — 2@V, (&)1

Z @ g (1 q)(?)) (I)(?)indlv(D;w)(q)(Q))—l + @(Q)Rg\?(q)@))—l + o> (w -0, (@(2))—1) )
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By (6398), (6.13), (6:22) and Lemmata 2.1} 22 the estimate ([6.39)) follows. Using the ansatz ([6.1]) with 1o > 0

large enough, the estimate ([G.39) implies that ||ﬁ(2)||2;§r(;M()\o) Swmx, €772, where the constant o (o) is

the constant appearing in the smallness conditions (Z.78)), (Z104), (2I06). Now we apply Proposition 228
to expand the terms

e@aNB @)1 20 (afM),02(@2) 1, @V ol F@@) T 0<k<M41,

Lemma[2Z32to expand the term &2 Q"% (D;w)(®®)~!, and Proposition2:31to expand &2 (w-9,, (@)~1).

Using also the estimates (6.10), (612), ([@39) one deduces ©41), ©42). By the choice of 52 in ([6.38) and
Proposition 228, the coefficient of the highest order term of ®®a{"”93(®®)~1 (and of L) is given by

(1 + B2 (0, NPaS (0. 9)) lymrt 53 (o.0) = M3

which is constant in (¢, 2) by ([.23). Since ®?) is symplectic, the operator cEf’ is Hamiltonian and hence
by Lemma the second order term equals 2(ms3),02 which vanishes since m3 is constant. The remainder

<I>(2)’RS\Z)(<I>(2))*1 can be estimated by arguing as at the end of the proof of Proposition (estimate of
R (7, ¢)), using Lemma L5 to estimate &2, ()1, the estimate @2ZJ) for R{Y, the estimate B37) of

B@ . 3? and the ansatz [61) with po large enough. The estimates [@.44) follow by ZZ2) and (639). The
estimates ([6.43)), ([6.40) are derived by similar arguments. O

6.4 Elimination of the z-dependence of the first order coefficient

The goal of this section is to remove the z-dependence of the coefficient a§2) (p, x) of the Hamiltonian operator

£ in ©31), ([640). We conjugate the operator £ by the change of variable induced by the flow ®©) (7, ),
acting on L? (Ty), defined by

029 (1, 0) = I (b (0, )07 @ (7, 9)) . @ (0) =1d., (6.48)
where b®)(p, x) is a small, real valued, periodic function chosen in (650) below. Since the vector field
I, (b9, k), h € Hi (Ty), is Hamiltonian (it is generated by the Hamiltonian %le b3 (971h)? dx), each
®B) (1, ) is a symplectic linear isomorphism of H$ for any 0 < 7 < 1 and ¢ € TS+, and the time one

conjugated operator
LY =B (@)™ o® .= a®)(1), (6.49)

is Hamiltonian.
Lemma 6.6. Let b(?’)(tp,x;w) be the real valued periodic function
1 _
b (g, 2:0) = 50 (a0 msw) — (@)a(oiw) L {al)alprw) = / Pp.aiw)dr (650

and let M € N. Then there exists opr > 0 with the following properties:
(i) For any s > sy,

i Li
BN Senr &+ el 7, (6.51)
and the symplectic maps (PG are Lip(y)-tame and satisfy
Mgy () Sonr L+ el - (6.52)

(i) The Hamiltonian operator in (GA9) admits an expansion of the form
£ = w0, — (msd + af” (2)0, + Op(r(”) + QM (D3 w)) + RE) (6.53)

where the real valued, periodic function agg)(tp;w) = (a@)z(@;w) satisfies
3”5 Sonr e+ el (6.54)

stom
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and r((f’) = 7“63)(@, x, & w) is a pseudo-differential symbol in SO satisfying for any s > s,

3 Li Li
0p(r§ )62 Soonr &+ [Jel[ 2B (6.55)

stom

Let s1 > s and let I1,12 be two tori satisfying (6.I)) with po > s1 + opr. Then

18120 |, [ A120 |6, Sevnr 1 = t2llsrtons s 1812000610 Sovonr 11 = t2llsrpons - (6.56)

(iii) Let S > spr, Ao € N. Then there exists a constant opr(Xo) > 0 so that for any m € Sy and A\, ni,n2 € N
with A < Ao and n1 +ng + Ao < M — 1, the operator (D)"lﬁngM(B) (D)™, is Lip(y)-tame with tame
constants satisfying

m 2(8) Ssarag e+ Il gy Ve <s<S. (6.57)

83, (D)ym R (D)2 s+oa(Xo)?

Let s1 > sy and let Iy, 12 be tori satisfying @) with po > s1+ oa(Xo). Then

mn1 3 na
182, (D)™ Ao R (DY a1y Ssvontng 61 = t2llsr tonr () - (6.58)

Proof. The estimate ([6.51]) follows by the definition ([6.50) and (6.41), (€I8). We now provide estimates for
the flow
o) (1) = exp(THLb@)((p, x;w)@;l) , Vrel[-1,1].

By [220), Lemma 23 and (65), one infers that for any s > s, [ 030, 1|L1p(svg <ot €+ o500

s+on

Therefore, by Lemma [2.12] there exists ops > 0 such that, if (61 holds with g > o, then, for any s > so,

Li Li
mp @@ (1) — 1|50 <y e+ ||| L) (6.59)
Te[—1,

The latter estimate, together with Lemma 216 imply (6.52)).
By (6.40) and using Lemma [6.2] for the operator Q*%’(D;w), one has that

POLA@D) T =w- 9y — 0P (myd? + a0,) (@) 7! — QMY (D; w) + REY +REY

where

M
R = ~0@0p(r? ) (@)1 4 0P (w- 9,(@@) 1) — (@@ —1a )L (D (w)o; ) (@)
k=1

(o) (0 ).
R = ¢<3>R<Aj>(q><3>)— — (@3 —1d ) Rar(w, Q%) (@) ™1 — Rar(w, Q%) ((@®)~1 —1d, ) .

Note that R((JI) is a pseudo-differential operator in OPSY (cf. Lemma [Z12). Moreover, by a Lie expansion,
recalling (6.48)), one has

@ (m302 + a{9,) (@)~ = m3d? + a9, + L6, L, m3d? + af? 0]
n /0 1(1 —e® (1) [HLb(B)Z?;l, [HLb@)a;l, msd3 + a§2)8z”¢(3) (r)"tdr
= mgag + (a?) - 3m3b§’))8x + ’R(()H) ,
R = —3msb®) — msb(¥,0, " + 100, afP0,] + (T — 1), msd3)

1 o (6.61)
+/ (1—7)8®(7) {Hlb(?’)a;l , {HLb@)&;l,mg@i’ +al 81”‘19(3)(7')_1 dr € OPS°.
0
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Note that R((JH) is a pseudo-differential operator in OPS® (cf. Lemma Z12]). Hence, (6.60)-(6.61) and the
choice of 5@ in ([E50) lead to the expansion ([6.53) with RS\?/’I) given by (6.60) and

op(r§y == =R + R{D. (6.62)

The estimate ([6.54) follows by ([6.22).

The estimate (6.55]) on the operator Op(rég)) follows by the definitions (6.60), ([G.61), (662), by applying
the estimates (G.I8), (641), (6-42), (651), (659), (220), (21), (Z22), (Z24), (Z20) (using the ansatz (6.1
with po large enough). Next we estimate the remainder ’Rs\‘?, defined in (G.60). We only consider the second
term in the definition of ’RS\?, since the estimates the first and third terms can be obtained similarly. We
recall that the operator R ( ’jdl”;w) is ¢-independent. For m € S; and A,ny,ny € N with A < A\g and
ny+ng + Ao < M — 2, one has

(DY) (((IJ(g’)fIdL)RM( hdv, w)(@(3))’1)<D>”2 (6.63)
= > Cayan(D)moy (% —1d ) Rar(QF;w)a, ()~ (D)™
A1 +A2=A

= Y O (D)o (@ —1d)(D) ) (D) Rar QX4 w)(D)"™ ) ((D)~"2022 (@) (D)™ ).

A1+Aa=A

By the estimates (Z2I)), (2.24), (6.59) and Lemma [216] one has

n —nqLi Li
(5) So (D)™ (@) — T )(D) ™™ 520 Sonr e+ [ellEe? 0y s

m

(Dyr19)L (®()—1d )(D)—™1
n — no Li Li
(5) s (D) "2022 (@)~ HD)"2 [P0 <y 14 o PO

INES Pm st+on(Xo)

m

(D)="2032, () =1(D)"2
and therefore, by Lemmata [Z14] and using (6.10), the operator (6.63)) satisfies ([@.57). The estimates
(6356), ([6.58) follow by similar arguments. O

6.5 Elimination of the p-dependence of the first order term

The goal of this section is to remove the p-dependence of the coefficient agg)(go) of the Hamiltonian operator

£P in ©49), [653). We conjugate the operator £% by the variable transformation ®® = M (),

(@Ww)(p,2) = w(p,z +bD(p)), (@) 'h)(p,2) = h(p,z — b (),

where b*(p) is a small, real valued, periodic function chosen in (6.65) below. Note that ®®) is the time-
one flow of the transport equation d,w = b (¢)d,w. Bach ®®(y) is a symplectic linear isomorphism of
H# (T1), and the conjugated operator

LY = oW LB (aW) 7 (6.64)
is Hamiltonian.

Lemma 6.7. Assume that w € DC(v, 7). Let b () be the real valued, periodic function

b (prw) = —(w - 0p) " (0l (gsw) — i), ma :zﬁ/ﬁ+ al? (p;w) dp (6.65)

and let M € N. Then there exists o > 0 with the following properties:
(i) The constant my and the function b satisfy
MR S ey, [BIIEPO) Sy e+ ER)) Vs > s (6.66)

s+on

(i) The Hamiltonian operator in ([G.64) admits an expansion of the form

LY =y. Dy — (mg,@g’ +m10y + Op(ré4)) + Q]idf’(D;w)) + Rg\? (6.67)
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where 7“64) = r84) (p, 7, & w) is a pseudo-differential symbol in SO satisfying for any s > so,

4)\Li Li
Op(r§)IGES S e+ [4lIE) Vs > s0. (6.68)
Let s1 > sg and let 1,12 be two tori satisfying (61) with pwo > s1 + op. Then

4
1Arama], [|A126@ s, Sevnr 1 = t2llssrons 1A120P(F) 0,000 Serr 61 = t2llr 4o - (6.69)

(iii) Let S > spr. Then the maps (2™ are Lip(y)-tame operators with a tame constant satisfying

s+op?

Mgy (5) Ssoar L+ el|5R)) vsg <5< 5. (6.70)

Let Ao € N. Then there exists a constant opr(Ao) > 0 so that for any A,ni,na € N with A < Xy and
ny +nag + 2x0 < M — 3, the operator 827” (D>”1RS§[) (D)™, m € Sy, is Lip(y)-tame with a tame constant
satisfying
Li
Moy, (Dym R (Dynz (8) S M0 €+ ”LHsfa(ZJ)(Ao) , VoM <s<S. (6.71)

Let s1 > sy and let I1,12 be two tori satisfying @) with po > s1+ oa(No). Then
102, (D)™ ARG (DY 1151y Sov o 114 = 221las o 00y - (6.72)
Proof. The estimates (6.66) are direct consequences of ([6.54)) and of the ansatz ([G.1]). Note that
W ow-0,0 (@MW)t =w 9, — (w-9,b™)0,
and for any pseudo-differential operator Op(a(yp,x,£)) a direct calculation shows that
@ 0p(a(p, z,€))(@@) " = Op(a(p, z + b@ (), €))

and hence, by recalling ([6.53) and by the definition (G.63]), one obtains ([G.67)) with

Op(r5” (. 2,€)) = Op(rg” (9.2 + b (9),€)) . RfY == POR) (@)1 (6.73)

The estimates ([G.68)) follow by Lemma 2] using (G:66]), (G.55]) and the ansatz ([G.I]). The estimates (671]) for
the operator Rsé) follow by ([@571), (6.60) arguing as in the proof of the estimates of the remainder Ry (7, ¢)
(with 8 given by b(®*)) at the end of the proof of Proposition The estimates (G.70) follow by Lemma

2T and (666]). The estimates ([6.69), (6.72) follow by similar arguments. O

7 KAM reduction of the linearized operator

The goal of this section is to complete the diagonalization of the Hamiltonian operator L,,, started in Section
It remains to reduce the Hamiltonian operator £ in (667). We are going to apply the KAM-reducibility
scheme described in [10].

Recall that 5&4) is an operator acting on H{. It is convenient to rename it as

LO Z:w-ap—i-iDo—f—RO (71)

where w € DC(y, 7) (cf. (£4) and in view of [@1), (9), (@3)
Do = dingyeg. (1), 0 = ma(2m))? — ma2mj — qi(w),  g(w) == W (n(w),0) — @mj)P,  (7.2)
Ro := —Op(rs") + RY} . (7.3)

Note that u(lj = fu]Q for any j € S, . By (B.61) we have

sup |jllg;[**?, sup |jllg;|"™ < 1, (7.4)
JESt JESt
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and, by ([6.I8), (6.66) and ey~3 <1,
1 — " Sar 15 =51, V4G e st (7.5)
The operator Ry satisfies the tame estimates of Lemma [T below. We first fiz the constants

b:=[a]+2€eN, a:=3n+1, 7 :=27+1,

7.6
p®):=so+b+oy+opud)+1, M:=2(sg+b)+4, (7.6)

where the constants oy, o (b) are the ones introduced in Lemma and where M is related to the order

of smoothing of the remainder ’R in (667) (cf. (@XI)). Note that M only depends on the number of
frequencies [S4| and the dlophantme constant 7.

Lemma 7.1. Let b and M defined in (L8) and S > sy with sy given by (Z54).
(i) The operators Ro, [Ro,0z], 03 [Ro,x], 90F°Ro, 020 °[Ro,0z], m € Sy, are Lip(y)-tame with tame
constants

Mo(s) := max { Mg, (5), Mgy 0,1(5)s Maz0 g, (5): M0 gy 0, (5) )+ (7.7)
My (s,b) := rgleaS)i {om, 929 +R, (s),ma;%bmaz](s)}, (7.8)

satisfying, for any spr < s < .S,
M (s, b) := max{Mo(s), Mo(s,b)} Ss & + [P - (7.9)

Assuming that the ansatz [6.1) holds with o > sy + p(b), the latter estimate yields Mo(spr,b) Sg ey 2.
(i) For any two tori Iy, s satisfying the ansatz (6.]), one has for anym € S; and any A € N with A < sp+b

103, AvaRollg(areanys 103, [A12Ro, Oalllperreary S ller — t2llsptuw) - (7.10)

Proof. (i) Since the assertions for the various operators are proved in the same way, we restrict ourselves
to show that there are tame constants Smasoﬂ[% P ](s), m € Sy, satisfying the bound in (Z9)). The two
Pm Ehtd

operators Op(r (4)) and ’Rgé) in the definition (Z3]) of Ry are treated separately. By Lemma [2.I6] each

operator 930 7°[Op(r, (4)), A —Op(aggjbamrg‘”), m € Sy, is Lip(y)-tame with a tame constant satisfying,
for sg < s § S

Lip(v) Lip(v)

@3
Moz +*i0p(ri?).0.(8) o ’Op(aggjbazrg‘*)) 0 (rg")

0,s+so+b+1,0 (711)
< Lip(v)
Js e+ || ||s+so+b+1+UM .

Next we treat 930° [Rg\?, 9.], m € S4. Note that
O3 PR 0] = 9P RENDND) 10, — (D) 70, (D)OR PR
Since there is a tame constant 9 py-1p, (s) bounded by 1 it then follows by (6.71)) that, for any spy < s < S,

Li
mé’iﬁbm(ﬁ)ﬁx]( s) Sset e ||S+pO'ZI)(b) (7.12)

Combining (ZIT)), (CI2) and recalling the definition of (b) in (.0]) one obtains tame constants 93?6;9:&)[%7 8] (s),

m € Sy, satisfying the claimed bound.
(#7) The estimate (T.I0) follows by similar arguments using (6.69) and (672) with s1 = s). O
We perform the almost reducibility scheme for Ly along the scale
N_;:=1, N, ::NOXV, v>0, x:=3/2, (7.13)

requiring at each induction step the second order Melnikov non-resonance conditions (Z.I8)).
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Theorem 7.2. (Almost reducibility) There exists T := 7(7,S1) > 0 so that for any S > sy, there is
No := No(S,b) € N with the property that if
NgMo(sa,b)y P <1, (7.14)
then the following holds for any v € N:
(S1), There exists a Hamiltonian operator L,, acting on HS and defined for w € Q, of the form

v’

L,:=w-0,+iD, +R,, D,:=diag;esipi, pj€R, (7.15)

where for any j € S*, py is a Lip(7y)-function of the form

1 (w) = pd(w) + 7% (), (7.16)
with .
nly=—py, o I MPO) < 0(8)er?, (7.17)
and where ‘ugo) is defined in (T2). If v =0, Q) is defined to be the set Q) :=DC(~y,T) , and if v > 1,
7% =57

@or

The operators R, and (0,)°R, are Lip(vy)-modulo-tame with modulo-tame constants

Q=Ql() = {w el | : |w-€+u}’71 fugfl| >

Ve < Ny-1,j,5" € SL} . (718)

ME(s) =M (s),  ME(s,0) := My oo (s), (7.19)
satisfying, for some Cy(spr,b) > 0, for all s € [sp, 5],
ML (s) < Culsnar,D)Mo(s,b)N, 2, ME(s,0) < Ci(501,0)Mo(5,b)N,y_1 . (7.20)

Moreover, if v > 1 and w € Q}, there exists a Hamiltonian operator ¥, _1 acting on HS, so that the
corresponding symplectic time one flow

Dy 1 = exp(V, 1) (7.21)

conjugates L,_1 to
L,=®, 4L, 1@} . (7.22)

The operators W,,_1 and (0,)°V,_1 are Lip(vy)-modulo-tame with a modulo-tame constant satisfying,

for all s € [sp, 5], (with T1, a defined in (L6]))

C(EM,b)
0

C(SM,b>

ome s) <
v, ,(8) < S

N N2,9M(s,b) mt'gawb%fl(s) < NI N, _5Mo(s,b). (7.23)

(S2), For any j € S, there exists a Lipschitz extension Q= Rof uy 1 Q) — R, wﬁer@ ﬁ? = ms(27j)3 —
mi2mj —qj(w) (cf. (@2)) and My : Q — R is an extension of my satisfying |m|“PO) < ey=2; if v > 1,

|ﬁ;j - ﬁju‘_1|Lip(7) 5 mlﬁ/71(5M) ,S mo(HM,b)NV_fl .
(S3), Let i1, I be two tori satisfying @) with po > sy + u(b). Then, for all w € Q) (1) N QY2 (t2) with
Y,%2 € [v/2,27], we have

1R, (1) = Ru (e2) [l B(rronry S5 Ny 21ller = t2llsps+uo)s (7.24)
[1{0)° (Ro (e1) — R ()|l B(rroary S5 No—tlltr — t2llsps o) - (7.25)

Moreover, if v > 1, then for any j € S*,

(7 (1) = 75 (12)) = (r} 7 (1) = 757 ()| S MlIRw (1) = Ra(e2) [l scrone) (7.26)

7 (e1) =757 (e2)] Ss ller — t2llsps o) - (7.27)

56



(S4), Let iy, Iz be two tori as in (S3), and 0 < p < /2. Then

CON_1ller = 2llsyrane) <p = Q1) S Q7 (e2).

Theorem implies that the symplectic invertible operator
U, =®, 10...009, n>1, (7.28)

almost diagonalizes Ly, meaning that ([Z31]) below holds. The following corollary of Theorem [I-2] and Lemma
[Tl can be deduced as in [10].

Theorem 7.3. (KAM almost-reducibility) Assume the ansatz [©1) with po > sar+p(b). Then for any
S > sy there exist Ny := No(S,b) >0, 0 < dg := d0(5) < 1, so that if

Niey™ < 6 (7.29)
with 7 := 7(1,S4) gwen by Theorem [7.3, the following holds: for any n € N and any w in

n+1
Q=920 ﬂ Q) (7.30)

with Q) defined in (TIR), the operator Uy, introduced in (T.28), is well defined and L,, := U,LoU, ! satisfies
L, =w- 0, 4 iD, + R, (7.31)

where D,, and Ry, are defined in ({12 (with v =n). The operator R,, is Lip(7y)-modulo-tame with a modulo-
tame constant

M (5) So N (e+ [l P00) Ve <5< S, (7.32)

Moreover, the operator L,, is Hamiltonian, U,, U ! are symplectic, and Ur! —1d, are Lip(7y)-modulo-tame
with a modulo-tame constant satisfying

G () Ss Y N (e + e H“p(” ), Veyu <s<S$, (7.33)

UFl_1d, s+p(b)

where Id | denotes the identity operator on L% (T1) and 1 is defined in (8.

7.1 Proof of Theorem

PROOF OF (S1),. Properties (ZI5)-(ZI7) for v = 0 follow by (ZI)-(Z2) with r}(w) = 0. Moreover also
[C20) for v = 0 holds because, arguing as in Lemma 7.6 in [10], the following Lemma holds:

Lemma 7.4. fmg(s), m?ﬂo(s,b) So Mo(s,b) where M(s,b) is defined in (TI).

PROOF OF (S2),. For any j € S+, p is defined in (Z.2). Note that m3(w) and gj(w) are already defined on
the whole parameter space €. By the Kirszbraun Theorem and (G.60]) there is an extension m; on € of my
satisfying the estimate |1 |“P(") < ey~2. This proves (S2),.

PROOF OF (S3),. The estimates (Z.24), (Z.25) at v = 0 follows arguing as in the proof of (S3), in [10].
PROOF OF (S4),. By the definition of Q] one has Q) (¢1) =DC(y,7) CDC(y — p,7) = Q] " (t2).

Iterative reductibility step. In what follows we describe how to define ¥, ®,, L, etc., at the iterative
step. To simplify notation we drop the index v and write + instead of v 4+ 1. So, e.g. we write L for L,,, L,
for L,41, ¥ for ¥,, etc. We conjugate L by the symplectic time one flow map

® = exp(P) (7.34)
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generated by a Hamiltonian vector field ¥ acting in H7. By a Lie expansion we get
PLO ™ = P(w- D, +iD)® ! + PR

1
=w-0, +iD — w9,V —i[D, ¥] + xR + ITxR — /0 exp(7¥)[R, Ulexp(—7T) dr (7.35)

1
+ / (1 —7)exp(7¥)|w - 0, ¥ +i[D, ¥, \Il} exp(—7V) dr
0
where the projector Iy is defined in (Z.I5) and I3 := Id; —IIy. We want to solve the homological equation

—w -0,V —iD, V] +IINR = [R] where [R] := diagjeSLRg(O) . (7.36)
The solution of (7.30) is

R7 (¢
Wi () = d 7 s (0 V(¢,5,5') #(0,4,5), (| <N, j,j €S+
T = i(w -+ py — ) (7.37)
0 otherwise .

The denominators in (Z37) are different from zero for w € Q) (cf. (ZIF)).

Lemma 7.5. (Homological equations) (i) The solution ¥ of the homological equation (T3], given by
C37) for w € Q) ,, is a Lip(y)-modulo-tame operator with a modulo-tame constant satisfying

M (s) S N7y 19MA(s), MY, 1y (s) S Nyt (s, ), (7.38)

where 11 := 27 + 1. Moreover ¥ is Hamiltonian.
(i) Let U1, l2 be two tori and define A2V = (1) — U(11). If v/2 < y1,72 < 2v then, for any w €
9314-1(“) N 9324-1@2);

ALY gy < CN*TY 2 (| R(2) | Bareany 1 — t2llsy+um) + AR BEea)) 5 (7.39)
11000)° D129 || garoary So N2y 2 (I1(0) "R (e2) [l Berrenn) llt1 — t2lsprtuiv) + 11{0p) Aol gcrreary) - (7.40)

Proof. Since R is Hamiltonian, one infers from Definition 2:4land Lemmal[Z35}(ii7) that the operator ¥ defined
in (Z37) is Hamiltonian as well. We now prove (Z38). Let w € @) ;. By (ZI8), and the definition of ¥ in
T30, it follows that for any (¢,7,5") € Z5+ x St x S+, with |[¢| < N, (¢,4,5") # (0,4, 7),

U7 (O] S (67 RS () (7.41)
and y
] AR () Auduij .
ALUS (1) = ———— — R} ({;w2) Yi o Oy (w) r=i(w - L4y — pyr)

e (wr) g0 (wW1)0ejjr (w2)

By ([@3), [CI6), (TI7) one gets |Aydejir| S ((€) + |52 — j3|)|w1 — wa|, and therefore, using also ([ZIF), we
deduce that

AT (O £ (0™ |AuR] (O + (0B (G wa)llwr — wal (7.42)
Recalling the definition (2.33), using (Z41)), (T.42), and arguing as in the proof of the estimates (7.61) in [10]
Lemma 7.7], one then deduces (T.38]). The estimates (Z.39)-(T40) can be obtained by arguing similarly. O
By (C35)—(Z.30) one has
Ly =®Ld ' =w-0, +iD; +Ry
which proves ({22 and (Z.I3) at the step v + 1, with
iD, :=iD + [R],

1 1 7.43
Ry = IIyR — /0 exp(7V)[R, Ulexp(—7V) dr —l—/o (1 — 7)exp(7¥) [IInR — [R], U]exp(—7V) dr . (743)
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The operator Ly has the same form as L. More precisely, D is diagonal and R, is the sum of an operator
supported on high frequencies and one which is quadratic in ¥ and R. The new normal form Dy has the
following properties:

Lemma 7.6. (New diagonal part) (i) The new normal form is
D, =D —i[R], Dy := diagjeSLu;' , u;r =pj+r; R, rj:= —iR;(O), Vj e st (7.44)

with . .
phy=—pl, = PPO) = M) < (s )

(i1) For any tori {1 (w), l2(w) and any w € Q' (11) NQJ2(12), one has
|rj(e1) — x;(e2)| S I[Av2Rll|Bcren) - (7.45)

Proof. By the definition (ZI9) of M*(sas) and using @30) (with 557 = s1) we have that |[L;L — i |FPO) <
|R§ (0)[MP() < 9% (sps). Since R(p) is Hamiltonian, Lemma 5 implies that r; = —iRg(O), j € S*, are odd
in j and real. The estimate (Z.45) is proved in the same way by using |A12R§(0)| < C||Aw2R||gaeny. O
Induction. Assuming that the statements (S1),-(S4), are true for some v > 0 we show in this paragraph
that (S1),41-(S4),1 hold.

PROOF OF (S1),41. By Lemma [ZF for all w € Q) the solution ¥, of the homological equation (Z36),
defined in (T3, is well defined and, by (Z38), (C20), satisfies the estimates (C.23)) at v + 1. In particular,

the estimate (.23) for v + 1, s = s) and (T.6), (TI14) imply
M, (sar) So NJ'N, 2y Mo(sar,b) < 1. (7.46)

174

By Lemma [2.20] and using again Lemma one infers that

)

Y w)bq)ﬂ(ﬁM) S 14+ Mg,yew, (510) S 1+ NJy 0 (s, b)
) S 14D, (5) o 1+ Ny (s) (7.47)
)< 1+ mw‘p)bq;v (S) + Sﬁfpv (S)mt(aw)b‘llv (SM)

~

1+ Ny~ (s,0) + N2 Ny—1y 00tk (s) .

By Lemma [[L6] by the estimate (Z20) and Lemma [T.1] the operator D, is diagonal and its eigenvalues
MJV'+1 : Q) — Resatisfy (ZI7) at v + 1.
Now we estimate the remainder R, 41 defined in (T.43).

Lemma 7.7. (Nash-Moser iterative scheme) The operator R,11 is Lip(y)-modulo-tame with a modulo-
tame constant satisfying

M1 (s) S N, P90 (s,b) + Ny~ ()90 (1) (7.48)
The operator (9,)°Ry41 is Lip(y)-modulo-tame with a modulo-tame constant satisfying
ML, (5,B) S ML (s,0) + N1y~ (5, 0)IE (sr) + NJ'y ™ O (5r, B) MR () (7.49)

Proof. The proof follows by Lemmata [Z21] [ZT9] using the estimates (T20), (Z38)), (C47). O

The estimates (48], (Z.49), and (L8], allow to prove that also (C20) holds at the step v + 1. It implies
(see [10, Lemma 7.10])

Lemma 7.8. Dﬁnuﬂ(s) < Ci(snm,b) N, 2My(s,b) and Sﬁiﬂ(s,b) < Ci(sp, )N, My (s,b).
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PROOF OF (S2),.;. By Lemma [Z.6 for any j € S*, i ”+1 = pf + 1Y where |rV|Lip(v) S Mo(sar,b) N2

Then (S2),41 follows by defining u”"'l = MJ + r where r7 : @ — R is a Lipschitz extension of r¥ (cf.
Kirszbraun extension Theorem).

PROOF OF (S3),41. The proof follows by induction arguing as in the proof of (S2),;.
PROOF OF (S4),+1. The proof is the same as that of (S3),41 in [2| Theorem 4.2]. O

7.2 Almost-invertibility of L,
By (Z31), for any w € Q), we have that Lo = U, 'L,U,, where U, is defined in (Z.28) and thus

Lo=V 'LV,  Vo:i=U,0"... 00, (7.50)

Lemma 7.9. There ezists 0 = o(1,S4+) > 0 such that, if (C29) and @) with po > sy + p(b) + o hold,
then the operators VE! satisfy for any sy < s < S the estimate

i Li =1y L Li
IVERIEPO) g ([ ER + NGl 22D, o IR ). (7.51)
Proof. By the estimates (6:2]), ([@44)), (652), ([C10), using Lemmata 214 215 218 and (T33)). O
We now decompose the operator L,, in (3] as
L, =Ly +R, +Ry (7.52)
where
gy =1k, (w0, + D)k, + 1k, , Ry :=1Ig, (w-0,+iD,)g, — i, (7.53)

the diagonal operator D,, is defined in (CIH) (with v = n), and K,, := Kgfn is the scale of the nonlinear
Nash-Moser iterative scheme introduced in (5.24).

Lemma 7.10. (First order Melnikov non-resonance conditions) For all w in
Ny = AL () = {w e o 04+ ] = 290, V0l < Ky, j €85}, (7.54)

the operator £ in (L53)) is invertible and

— i — Li
e glEPD S v Mgl (7.55)
By (C50), (T52), Theorem [[3] estimates (Z5H), (Z5H0), (Z5]I), and using that, for all b > 0,
Li Li i Li
IRER[ ™ S KRN0 s, IRERIEPO) < [l)SE (7.56)

we deduce the following theorem, stating the almost-invertibility assumption of £, of Section

Theorem 7.11. (Almost-invertibility of £,) Let a,b, M as in (L8) and S > sp;. There exists 0 =
o(7,S4) > 0 such that, if (T29) and @) with po > sy + u(b) + o hold, then, for all

weQ) =Q) ()= NN}, (7.57)
(see 30, (CH)), the operator L,, defined in [B22) can be decomposed as
L,=L5+Ru+RS, (7.58)

LS =YY, Ro:=V,'R,V., RL:=V, R}V,

where LS is invertible and satisfies (5.28) and the operators R, and R} satisfy (5.26)-(E21).
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8 Proof of Theorem 4.1

Theorem ETlis a consequence of Theorem [B.] below where we construct iteratively a sequence of better and
better approximate solutions of the equation F(¢,() = 0 where F,, is defined in (4)).

8.1 The Nash-Moser iteration
We consider the finite-dimensional subspaces of L?, x L? x L7}, defined for any n € N as
E, = {L(cp) = (0,y,w)(p), ©=11,0, y=I,y, w= Hnw}
where L2 = L2(T; x R%+) (cf. @R)) and where II,, :=Ilg, : L3 — Ne>oH? is the projector (cf. ([Z2))
II, : w= Z wgyjei(l"PJrQ”jx) —  I,w:= Z wgyjei(l"PJrQ”jx) (8.1)
€75+ jest [(€,5)|<Kn

with K, = Ka‘n (cf. (524)) and also denotes the corresponding one on L2, given by L2 — Ne>oH},
D= pert+ prel® ZWKKn peelt?. Note that II,,, n > 1, are smoothing operators for the Sobolev spaces
H$. In particular II,, and II;> := Id — II, satisfy the smoothing properties ([2.3]). For the Nash-Moser
Theorem R1] stated below, we introduce the constants

7 := max{oy,02}, b:=[a] + 2, a=3m+1, m=27+1, X =3/2, (8.2)
a; := max{125 + 13, pr + 3 + x(u(b) +25)}, as:=x ‘'a; — u(b) — 27,

2
by =2 +,u(b)+36—|—4+§u1, p1:=3(ub)+20+2)+1, S:=sp+by, (8.4)

where o7 is defined in Lemma[£.2] o4 in Theorem [5.0] and a, u(b) in (Z.8). The number p is the exponent
in (5.23) and is requested to satisfy

1 3
pa>(x—1l)as +x(@+4) = §a1+§(3+4). (8.5)

In view of the definition (R3] of a;, we can define p := p(7,S;) as

. 126 + 17 + x(u(b) + 27)

o (8.6)
We denote by || |5 := max{||¢||5"?, |¢|MP(M} the norm of a function
W= (1,¢): Q— (H) x H} x H}) X RS+, wis W(w) = (1w),C(w)) .
The following Nash-Moser Theorem can be proved in a by now standard way as in [10], [I].
Theorem 8.1. (Nash-Moser) There exist 0 < 69 < 1, Ci > 0 so that if
eKJ* < g, mi=max{pT+3, 46+4+a1}, Ko:=7"' ~:i=¢", 0<a< 1 ) (8.7)

T2
where T :=T(7,S4) is defined in Theorem[7.3, then the following holds for all n € N:

(P1),, Let IN/NVO := (0,0). Forn > 1, there exists a Lip(y)-function W,, : RS+ — E,_1 x RS+, w = W, (w) :=
(tn,Cn), satisfying

T Li —
W 2P0 s S €772 (8.8)

Let U, := Uy + W,, where Uy := (,0,0,0). For n > 1, the difference H, := U, — Un_1, , satisfies

Lip(7v) < o2 [

Iy Li — —az
|| 1||5N[+#(b)+5 = EY ) HnH p(’Y) < 199 2K fOT n Z 2. (89)

EMJr,u(b)JrE ~ n—1>
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(P2), Let Gy :=Q and define for n > 1,

gn = gn_l n Q%(Zn—l) y (810)
where Q) (i,—1) is defined in (CX0). Then for any w € G,
|Fu(O)|[520) < CreKp®,  Koy:=1. (8.11)

(P3), (High norms) ||Wn||Lip(7) < CheK" . YweG,.

Sar+bi n—1»

Proof. We argue by induction. To simplify notation, we write within this proof || - || for || - ||*P().

STEP 1: Proof of (P1,P2,P3)o. Note that (P1)y and (P3), are trivially satisfied and hence it remains to
verify (811) at n = 0. By (@8), (£10), @3)), and Lemma [L2] there exists C, > 0 large enough so that
| Fo(Wo) oy ™ < <C

STEP 2: Proof of the induction step. Assuming that (P1,P2,P3),, hold for some n > 0, we have to prove that
(P1,P2,P3),+1 hold. We are going to define the approximation U, 41 by a modified Nash-Moser scheme.
To this aim, we prove the almost-approximate invertibility of the linearized operator

L, = Lp(w) :==d, ¢ Fo(in(w)) (8.12)

by applying Theorem to Ly (w). To prove that the inversion assumptions (B.20)-({5.28)) hold, we apply
Theorem [T.1T] with ¢ = Z,,.

By choosing ¢ small enough it follows by (7)) that Ny = K{ =77 = ¢~ P satisfies the requirement of
Theorem [.TT]and that the smallness condition (.29) holds. Therefore Theorem [T 1Tl applies, and we deduce

that (5.25)-(E.28) hold for all w € Q) (i), see (L5T).

Now we apply Theorem [5.8] to the linearized operator L, (w) with Q, = Q) (Z,) and S = sp; + by, see

B4). It implies the existence of an almost-approximate inverse T, := Ty, (w, I, (w)) satisfying

T1P

ITnglls Sensvr v 2 (1954 + K5 linllst w4z l9llsna) . Voar <5 <spr+ba, (8.13)

where we used that @ > o9 (cf. [B2)), o2 is the loss of regularity constant appearing in the estimate (5.43)),
and Ny = K. Furthermore, by (87), (8:8) one obtains that
Kglp771||wn||sM+u(b)+E <1, (8.14)

therefore (BI3]) specialized for s = sp; becomes
ITngllsn Sor Y2 lgllsrs+o - (8.15)
For all w € Gpy1 = Gu NA] 1 (in) (see (BI0)), we define
Unt1:=Up+ Hos1,  Hpg1 = @ng1, Gopr) = —ILT, I, F(U,) € E, x RS (8.16)
where II,, is defined by (see (81]))
IL,(1,¢) = (I, ¢),  TL(1,€) i= (I14,0),  ¥(2,0). (8.17)
We show that the iterative scheme in (816) is rapidly converging. We write
FoUnt1) = Fu(Un) + LuHpi1 + Qn (8.18)

where L,, := dbﬁg]-"w(ﬁn) and @, is defined by (8I8). Then, by the definition of H, 41 in ([&I6), we have
(recall also (BIT))

= Fo(Un) + Ro + Qu + P (8.19)
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where ~ _
Ry = LT, Tl Fou(Un), Poi= —(Ln Ty — 1)L, Fou (Uy) - (8.20)

We first note that for any w € Q, s > s); one has by the triangular inequality, (£6]), Lemma 2] and ([82]),

||]:w(Un)||s Ss H}—W(UO)HS + HJ:W(UH) - ]:w(UO)Hs Ss €+ ||Wn||s+5 (8-21)

and, by B.3), B.1), @1I) o
Kg'Py [ Fo(Un) s < 1. (8.22)

We now prove the following inductive estimates of Nash-Moser type.

Lemma 8.2. For all w € G, 11 we have, setting p2 := u(b) + 37 + 3,

| FoUnt)llsnr Senrtor Kbz (e + [Wallartv,) + Ko PHIF(Un)lI2,, + K, PTEKT | Fu(Un)llsy,  (8:23)
||W1||5M+b1 <5M+b1 KOEa ||Wn+1||5M+b1 <5M+b1 Kﬁ(b)+20+2(5 + ||Wn||5M+b1)a n=>1. (8'24)

~ ~

Proof. We first estimate H,,y; defined in (8I6).
Estimates of H, ;. By (8I6) and 23), §13), B3], we get

[ Hpt1lsns400 Sonson ¥ 2 (K IFu(Un)llsptvy + KA 2T KT Py i [ls 400 [ Fe (Tn) 1)
E21),E 22)

§5M+b1 Kﬁ(b)+25772(5+||Wn||5M+b1) (825)
Y '=Ko<Kn (b) 42542 .
55M+b1 Kﬁ (5 + ||Wn||5M+b1) ’ (8'26)
m
[ Hot1 lsar Sontor v K I Fu(Un) s (8:27)

Next we estimate the terms Q,, in (81I8) and P,, R, in (820) in || ||s,, norm.

Estimate of Q,. By (88), 816), 23), 8.27), (811)), and since x27 —a; < 0 (see [B.3))), we deduce that
Wi + tHpi1llsy45 S ey 2KE for all t € [0,1]. Since v~ = Ky, by B7) we can apply Lemma 2 and by

Taylor’s formula, using (8IF), &8), B217), 3), and v~ ! = Ky < K,,, we get
||Qn||5M ~S5M b1 ||Hn+1||5M+a §5M“Fb1 K;410+4||‘F ( )HsM . (828)
Estimate of P,. By (&44), L, T, —Id = P(i,) + Pu(in) + PL(in). Accordingly, we decompose P, in
B20) as P, = 7P7(11) —Ppw— P,f:w, where
PV =T, P(n) 0 Fu(Us),  Pow = Pu(in) I Fu(Us), Py =, Pr(in) I Fu(Uy).

By 2.3), ) )
1Fe () lssr+7 < IMnFo(Un)llsar+a + 1T Foo(Un)llspr+7

< K (1Fu (Un)llsay + 5 P 1 Fo(Un) lsas+0:)-
By (545), (814), (829), and using that 82ZI), B822), v~ = Ko < K,, we obtain
1P lsas Ssnsvor ¥ Ko [ Fo (U llsns (1Fe (Tn)llsys + K> 1 F (Un) s +0:)

Sear+or KN Fu(On) lans (1Fo(Un)llsns + K72 e + [Wallsysv:))
Ssoror Ko7 P Fu(Un)ll2,, + K727 (e + [ Wallsys v, ) - (8.30)

(8.29)

n

By 6.44), B.14), B.3), R.3), we have

Y =Ko<Kn
[Pawllsns Sonrtor €7 N2t K1 Fu(Un)llons Ssoror NG 2 K1 Fu(Un) s » (8.31)
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where a is in (82). By E47), @3), B4), BII), B22) and then using B2ZI), v~ ! = Ko < K,,, we get

|| nw”ﬁM ~SM+Db1 K#(b)+2g b1 72(”‘/—'. ( )||5M+b1 +EHVV ||5M+b1)

Seonrtby KACTITHI00 (1T |1 ). (8.32)

n

~

Estimate of R,,. By the definition ([8I2) of L,, one has that for any U= @ 0), L,U is given by

LU =w- 8,0 — d, X ((,0,0) + 7,) [i] - (0,¢,0)

@ w- a‘PZ\_ dLXN(((tD’ 0, O) + Z”l) m - dLXPs ((90’ 0, O) + Zn) [/L\] - (Oa Zv 0) (833)

where we recall that d, X ((,0,0) + 7,,)[]] = (de”(u)[ 9], 0,9~ (u, D)[@]). By the estimate of d, Xp,

of Lemma [£2 one then obtains ||Lnﬁ||5M < ||U||5M+g. Using (820), BI3), BS), @3) and then (814,
®2D), B22), v ' = Ko < K, we get

1Rnllsps Ssarvon KEPFTH2700 (e 4 [Woals40,)- (8.34)

Estimate of F,(Uy11). By €19, €3), €21), G28), E30-E32), €3, G3), we get (£23). By (E10)
and (8I3) we now deduce the bound (824 for Wi := H;. Indeed

7 =Ko
||W1||5M+b1 = ||H1||5M+b1 551v1+b1 772||‘FUJ(UO)||51VI+b1+E§5M+b1 5772 /S ng'
Estimate (824) for W, 11 := W, 4+ H, 41, n > 1, follows by (820). O
By Lemma B2 we get the following lemma, where for clarity we write || - | 5*" instead of || - || as above.

Lemma 8.3. For any w € Gp41

IFoUni)llen™ < CucK 7™, [[Wasa 5050, < CLEle (8.35)
Li Li lod a
IR s S o772 Haa 5P e S ev 2KEOY K2 n> 1 (8.36)

Proof. First note that, by (8I0), if w € G,41, then w € G, and so (BI1]) and the inequality in (P3),, holds.
Then the first inequality in (835) follows by ®23), (P2)n, (P3)n, v+ = Ko < K, and by B3), B4),

B3H)-@®8). For n =0 we use also (7).
The second inequality in ([838]) for n = 0 follows directly from the bound for Wi in [824), since 1 > 2,

see ([84) and C, > 0 large enough (i.e., € small enough); the second inequality in (833]) for n > 1 is proved

inductively by taking (824, (P3),, and the choice of y1 in (8] into account and by choosing K large
enough.

Since Hy = W1, the first inequality in (830) follows since [|[H1l|s,+pum)+7 S 7 2Fo(Uo)lsns+uo)+25 S

O

ey~2 If n > 1, estimate (838) follows by [Z3), (827) and (&II).

Denote by Hy,;1 a Lip(v)-extension of (Hy11)g,,, to the whole set € of parameters, provided by the
Kirzbraun theorem. Then H,,,; satisfies the same bound as H, 1 in (836) and therefore, by the definition
of ag in ([B3)), the estimate (89) holds at n + 1.

Finally we define the functions

Wn+1 = Wn + HnJrl 3 0n+1 = 071 + I:In+1 = UO + Wn + I:In+1 = UO + I/T/YnJrl 5

which are defined for all w € 2. Note that for any w € G,41, Wn+1 = Whn4t1, Un+1 = Up41. Therefore
(P2)n+1, (P3)n+1 are proved by Lemma [83 Moreover by (89]), which at this point has been proved up to
the step n 4+ 1, we have

Lip(v) ntl, = Lip(y) -2
||Wn+1||5M+# (b)+7 < ZkzlnHkHSM‘f’#(b)‘f’U < Cuey

and thus (838) holds also at the step n + 1. This completes the proof of Theorem Rl o
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We now deduce Theorem [l Let v = &® with a € (0,a9) and ag := 1/72 where 75 is defined in (&7)).
Then the smallness condition (1) holds for 0 < ¢ < g small enough and Theorem [R] applies. Passing
to the limit for n — oo we deduce the existence of a function U (w) = (lso(w), (0 (w)), w € £, such that
Fo(Uso(w)) = 0 for any w in the set

M G =600 () Risin) =2 6o [ M2G)] 0 [ ) 931G00)] (8:37)

n>0 n>1 n>1 n>1

Moreover Lin(r) Lin(r)
1Ueo = UO”s;iju (047 > v, U —Un ||5;/PI)+’Y# ©)+7 S €7 Ko, n>1. (8.38)

Formula (B.5]) implies that (oo(w) = 0 for w belonging to the set (83M), and therefore 7, = Ioo(w) is an
invariant torus for the Hamiltonian vector field Xy, filled by quasi-periodic solutions with frequency w. It
remains only to prove the measure estimate (4.9)).

8.2 Measure estimates
Arguing as in [I0] one proves the following two lemmata.

Lemma 8.4. The set

Goo =G0 [ (227 (0)| 0 [ ) 927 (1c0)] (8.39)

n>1 n>1

is contained in G, for any n > 0, and hence G, C ﬂn>0 Gn.
For any j € St, the sequence g — R, n >0, in Theorem [[.2(S2),, is a Cauchy sequence with
respect to the norm | - [“P("), We denote the limit by [

p5e = lim 7 (teo) jest. (8.40)

n—oo
By Theorem one has for any j € S+,
P ==t = ()PP S ey AN, n > 0. (8.41)
Lemma 8.5. The set
4y[5° - 3"
(07

47|5)?
|w - €4 p5°| > ZJ;' , (¢, 5) € Z5+ xSL} (8.42)

is contained in Goo, Q) C Goo, where Goo is defined in (839).
In view of Lemma B and B it suffices to estimate the Lebesgue measure |2\ Q2| of Q\ Q2.

QL = {w € DC(dy,7) : Jw - £+ u® — pF| > (¢, j,5') € 75+ x S* x S+,

Proposition 8.6. (Measure estimates) Let 7 > [Sy| + 2. Then there is a € (0,1) so that for ey™3
sufficiently small, one has |\ QL | < ~°.

The remaining part of this section is devoted to prove Proposition 6l By (842]), we have
Q\ QL =Q\DC(4v,7) U U Rejjo U U 2w (8.43)
(£.5,5") €%+ xS X8 (£,5,5)#(0.4.) (£.) €77+ xS+

where Ry ; ;/, Qr,; denote the resonant’ sets

0 00 47] 7j8
Rejj = {w €DC(4y,7) : |w L4 p5® —pi] < Kl it o |}, (8.44)
o . o _ 4P
Qyj = yw €DC(4y,T) : |w- £+ p5°| < Tk (8.45)
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Note that Ry ; ; = 0. Furthermore, it is well known that |Q2\DC(4~, 7)| < 7. In order to prove Proposition 8.6l
we shall use the following asymptotic properties of u3°(w). For any w in DC(4v, 7), we have ﬁ?(LOO) = ug-’(LOO)
and we write p3°(w) = 9 (too) + 73°(w), where by ([T2), m3° := m3(too), M = M1 (teo),

13 (toc) = m3F (w)(2m7)* — mi®*(w)271] — g5 (w) -
On DC(47, 7), the following estimates hold

@I . @z0)
Im + 1|FP) < e [m§e PO < ey,

, g @D ey & (8.46)
sup |7llg;[*"", sup [jl[¢;"™" < 1, [re [P S ey

jest jest
From the latter estimates one infers the following standard lemma see [2] Lemma 5.3)).

Lemma 8.7. (i) If Ry .y # 0, then |3 — j'3| < C{€) for some C > 0. In particular one has j*+ 5% < C{¢).
(ii) If Quj # 0, then |j|*> < C{l) for some C > 0.

Lemma B7 can be used to estimate |Ry; ;| and |Qy ;| for |¢| sufficiently large.

Lemma 8.8. (i) If Ry j» # 0, then there exists C1 > 0 with the following property: if |¢| > Ci, then
Rejgrl S 715% = 372~ CHD.

(1) If Qo ; # 0, then there exists Cy > 0 with the following property: if |¢| > C4, then |Qp ;| S yl7)2 () =+,
Proof. We only prove item (i) since item (i) can be proved in a similar way. Assume that Ry ; j # 0. Let
@ such that @ - ¢ = 0 and introduce the real valued function s — ¢g ; x(s),

V4
be.jjr(8) = fojg(@+ Sm) o ey (W) =w b+ pd(w) = p (W)

Using that by Lemma B |52 — j3| < C(¢), one infers from (8.486)) that, for ¢y~2 small enough and [¢| > C4
with Cy large enough, |y ;s (s2) — ¢e,j.5 (s1)] > %|52 — 51| Since DC(4+, 7) is bounded one sees by standard
arguments that

4
(s €R : 0t s € Regy}] S915° - 0007

The claimed estimate then follows by applying Fubini’s theorem. o
It remains to estimate the Lebesgue measure of the resonant sets Ry, ; ;» and Qg ; for |¢| < Cj.

Lemma 8.9. Assume that |[{| < Cy and that ey~=3 is small enough. Then the following holds:
(i) If Re ;o # 0, then there are constants a € (0,1) and Cy > 0 so that |j],]j'| < Cs and |Re | S v°.
(1) If Qp; # 0 then there are constants a € (0,1) and Cy > 0 so that |j| < C2 and |Qp ;| < ~°.

Proof. We only prove item (i) since item (i7) can be proved in a similar way. If [¢| < C; and Ry # 0,
Lemma [B7(i) implies that there is a constant Cy such that [j],|j’| < j% + j2 < Cs. For ey~3 small
enough one sees, using (B46), the definition (T2) of xY, and the bounds |[¢| < Ci,[j,|5/| < Ca, that

| — w;?d”| < ey72 < v, implying that for some constant C3 > 0,

Rejj C{weQ : |w-l+ wfd”(l/(w), 0) — wf/d”(l/(w), 0)] < Csv}. (8.47)
By Lemma [3.9] the function w — w ~€+w§?d” (v(w),0) fw;?,d”(l/(w), 0) is real analytic and not identically zero.
Hence by the Weierstrass preparation theorem (cf. the proof of [9, Lemma 9.7]), we deduce that the measure
of the set on the right hand side of (847) is smaller than * for some a € (0,1) and ~ small enough. O

By (843) and Lemmata [B:8H89 we deduce that

I\ QLIS+ > O <,
j1>C 115 1<

where we used the assumption that 7 — 2 > |S;|. This concludes the proof of Proposition Bl
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