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ABSTRACT

The first part of the guidelines and recommendations for

musculoskeletal ultrasound, produced under the auspices of

the European Federation of Societies for Ultrasound in Medi-

cine and Biology (EFSUMB), provides information about the

use of musculoskeletal ultrasound for assessing extraarticular

structures (muscles, tendons, entheses, ligaments, bones,

bursae, fasciae, nerves, skin, subcutaneous tissues, and nails)

and their pathologies. Clinical applications, practical points,

limitations, and artifacts are described and discussed for

every structure. After an extensive literature review, the

recommendations have been developed according to the

Oxford Centre for Evidence-based Medicine and GRADE crite-

ria and the consensus level was established through a Delphi

process. The document is intended to guide clinical users in

their daily practice.

ZUSAMMENFASSUNG

Der erste Teil der Leitlinien und Empfehlungen für den mus-

kuloskelettalen Ultraschall, die unter der Schirmherrschaft

der European Federation of Societies for Ultrasound in Medi-

cine and Biology (EFSUMB) erstellt wurden, enthält Informa-

tionen über den Einsatz des muskuloskelettalen Ultraschalls

zur Beurteilung von extraartikulären Strukturen (Muskeln,

Sehnen, Gelenke, Bänder, Knochen, Schleimbeutel, Faszien,

Nerven, Haut, subkutanes Gewebe und Nägel) und deren

Pathologien. Für jede Struktur werden die klinische Anwen-

dung, praktische Punkte, Einschränkungen und Artefakte be-

schrieben und diskutiert. Nach einer ausführlichen Literatur-

recherche wurden die Empfehlungen gemäß den Kriterien

des Oxford Centre for Evidence-based Medicine und den

GRADE-Kriterien entwickelt, und der Konsensgrad wurde

durch die Delphi-Methode ermittelt. Das Dokument ist als

Leitfaden für klinische Anwender in der täglichen Praxis ge-

dacht.

Introduction

General considerations

Musculoskeletal ultrasound (MSUS) has become a routine imaging
modality in clinical practice. Its use has increased substantially not
only in radiology but also in rheumatology, orthopedics, physical
medicine and rehabilitation, sports medicine, podiatry, neurology,
anesthetics, and many others. Several professional societies have
contributed over time to the standardization, implementation,
and training in MSUS. In Europe, significant work has been carried
out by the European League Against Rheumatism (EULAR), Europe-
an Society of Musculoskeletal Radiology (ESSR), and European
Federation of Societies for Ultrasound in Medicine and Biology
(EFSUMB) [1–10].

Taking into consideration the huge number of MSUS indica-
tions and the multitude of users from a variety of medical special-

ties, the need for a multidisciplinary consensual position among
MSUS experts has become evident. For this reason, under the
umbrella of EFSUMB, a Steering Committee consisting of 8 inter-
national experts from 7 countries was created. The group identi-
fied the main topics that needed to be analyzed and invited other
MSUS experts (rheumatologists, radiologists, orthopedic sur-
geons, physical and rehabilitation medicine doctors, pediatri-
cians, dermatologists, anesthesiologists) in order to draw up valid
recommendations. The authors group consists of 36 experts from
15 countries.

Based on an extensive literature review on the previously selec-
ted topics (▶ Fig. 1), the panel members produced a descriptive
text on different aspects of clinical applications and a number of
recommendations for each field. The level of evidence (LoE) was
appraised using the Oxford Centre for Evidence-based Medicine
(OCEMB) criteria [11]. The strength of the recommendation
(SoR) was analyzed using the Grading of Recommendations
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bAssessment, Development and Evaluation (GRADE approach)
[12], and the consensus level between the task force members
was established through a Delphi process following the EFSUMB
policy document development strategy for Clinical Practice
Guidelines [13].

Initially, 84 recommendations/statements were proposed.
After the first round of voting, 2 recommendations were discar-
ded and 75 were approved. After a second round of voting, an
additional 7 recommendations were proposed and approved. In
total, we produced 82 consensual recommendations. The results
of the voting process are presented as follows: percent of partici-
pants who agree/disagree/abstain and the percentage of agree-
ment. Consensus was considered strong when the percentage
who voted in favor of a statement/recommendation was > 95 %
and broad when the percentage was between 75–95% [13].

US techniques used in MSUS

The US techniques used in MSUS are detailed in ▶ Supplementary
Table 1.

Training

There are many forms of MSUS training (mentorship, theoretical
and practical courses, cadaver courses stressing sonoanatomy and
procedural proficiency, E-learning, self-teaching, team-based learn-
ing) that vary between different professional societies and across
Europe [14–16]. In 2008, EFSUMB published the minimum training
requirements for the practice of MSUS, comprising 3 levels, with
the need to acquire competency for each level [17]. Many MSUS
courses endorsed by EFSUMB take place throughout Europe.

EULAR has organized dozens of MSUS courses and published
guidelines for conducting these courses (basic, intermediate, and
advanced levels) [18]. The minimum training requirements for
rheumatologists performing MSUS were also published, and a
3-level competency assessment (COMPASS) was established [9]

and implemented [19]. Recommendations for Teaching the Tea-
chers courses have been developed [20]. Important efforts have
been made to standardize the MSUS examination and reporting
[3, 21].

ESSR produced technical guidelines for the ultrasound exami-
nation of joints [22] and guidelines on clinical indications of
MSUS [4, 6] and organized many courses accompanying their
annual meetings [23].

Courses organized by national professional societies, including
some with integrated competency assessment, deserve explicit
acknowledgement, along with the general trend towards embed-
ding MSUS into fellowship curricula of various specialties [24].

Terminology

▶ Supplementary Table 2 provides the current US definitions of
the main musculoskeletal structures and those of US pathologies
[25–37].

Safety

Diagnostic US has been widely used in clinical medicine for many
years with no proven deleterious effects [38], with possible biolo-
gical effects of non-thermal origin being reported in animals [39]
but none in humans. Contrast agents used for US are adminis-
tered safely in several settings with minimal risk to patients. They
are not excreted through the kidneys and hence can be safely
administered to patients with renal impairment without risking
contrast induced nephropathy or nephrogenic systemic fibrosis
[40]. Based on the scientific evidence of US-induced biological
effects to date, there is no reason to withhold diagnostic scanning
during pregnancy, provided it is medically indicated and is used
prudently by fully trained operators [41, 42].

In the last decade new imaging methods have been intro-
duced, such as elastography, plane wave imaging, and vector
Doppler. The EFSUMB Committee for Medical Ultrasound Safety
(ECMUS) drew the following conclusions regarding the safety of
elastography [43]: when acoustic radiation force impulses are
used, significant temperature rises may occur, especially if bone
lies in the beam; and when using ARFI, the temperature has its
maximum at the focus, whereas in B-mode the maximum is close
to the transducer.

Therefore, according to the ALARA (As Low As Reasonably
Achievable) principle, diagnostic ultrasound can be considered
safe [38] when the thermal and mechanical index values are as
small as possible, while keeping the quality of the scan as high as
possible [44].

Overarching principles

1. B-mode (grayscale), Doppler techniques, elastography and
CEUS can be used for the musculoskeletal system examination.
Broad consensus (27/3/6, 90%)

2. Appropriate knowledge and training are necessary for per-
forming MSUS. Strong consensus (34/0/2, 100%)

3. The use of standardized US terminology is highly recommen-
ded. Strong consensus (34/0/2, 100%)

▶ Fig. 1 The flowchart of the searching process used for every
chapter of the musculoskeletal ultrasound recommendations.
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4. Although no side effects of grayscale and Doppler US are

known, ALARA principles should be taken into consideration.
Broad consensus (27/6/3, 81%)

Extraarticular anatomical structures

Muscles

Background

The US appearance of skeletal muscles is determined by their his-
tological structure, which consists of an alternance of hypoecho-
genic bundles of myofibrils and hyperechogenic intramuscular
aponeuroses, septae, and fasciae. The blending of these funda-
mental components inside each muscle belly results in an incon-
sistent US appearance throughout the human body, as their rela-
tive quantity, respective relationship, and orientation change
greatly depending on the particular specialized tasks of each mus-
cle. Moreover, the US image of the same muscle is influenced by
factors like sex, age, and fitness status [45, 46]. Thus, muscle
appearance may be inconsistent among normal subjects. Finally,
skeletal muscles are intrinsically highly anisotropic structures [47].

Clinical application

Intrinsic muscle injuries are most often caused by simultaneous
contraction and elongation of the myofibrils and represent one
of the more common indications for MSUS examinations. These
injuries, which most commonly occur in muscles spanning two
joints and in the proximity of the myotendinous junction
[48, 49], are classified into four grades of severity [50]: Grade 0
when US is not able to detect any pathological finding in patients
with local pain following an acute injury; Grade 1 lesions consist of
minor destruction of the muscle fibers and may show subtle US
alterations, such as intramuscular hypo- or hyperechoic areas or
swollen aponeuroses; Grade 2 lesions are referred to as partial
muscle tears and are caused by disruption of the muscle fibers
and hematoma formation; Grade 3 lesions correspond to com-
plete tears and are characterized by total discontinuity and retrac-
tion of the muscle belly. In Grade 0 and 1, dynamic evaluation may
show hypomobility of muscle fibers. In Grade 2 and 3 lesions, US
shows interruption and retraction of the muscle fibers, along with
an intramuscular gap filled with blood. Torn muscle fragments
may float inside the intramuscular collection, giving rise to the
“clapper in bell sign” on US [51]. The role of US in patients with
suspected muscle injury is to establish the extent of the damage
and to rule out differential diagnoses, such as deep venous throm-
bosis [52]. Measurement of the cross-sectional area of muscle
injuries has prognostic value, as it may predict time to recovery
during rehabilitation [48]. Moreover, the time at which the
hemorrhagic cavity is filled with hyperechoic connective tissue
scar corresponding to the repair process can be considered safe
for restarting low-level activity, in the absence of clinical symp-
toms [50]. However, US tends to underestimate the extent of
muscle damage, especially when compared to magnetic reso-
nance imaging (MRI) [48].

US may show the direct consequences of an extrinsic injury
and it may detect local complications of muscle contusions, such
as cysts, myositis ossificans, and, more rarely, calcific myonecro-
sis. Local swelling, focal irregularities/inhomogeneity of the mus-
cle tissues, and partial or complete tears are the most common US
findings in the context of contusion injuries. In the subacute/
chronic setting, muscle hernia may develop if the external blow
damaged the muscle fascia [52].

US commonly represents the imaging modality of choice for
the initial evaluation of muscle masses, to confirm the presence
of a mass and to gather information about its nature (solid or
cystic), size, margins, compressibility, and vascularity [53–55].
US may establish the anatomical location and relationship with
adjacent structures, detects signs of infiltration, and assists in
imaging-guided sampling for histological evaluations. However,
patients with a soft-tissue mass frequently need further evalua-
tion with MRI [56, 57].

Recently, US has demonstrated its potential to quantify and
qualify skeletal muscles in both young and old populations
[58–61]. Several US parameters have proved reliable not only for
the prediction of muscle strength and function, but also for the
detection and monitoring of sarcopenia [62–69]. Muscle size,
echogenicity, pennation angle, and vascularity appear most pro-
mising for this purpose [70, 71]. It is plausible that in the next
few years US will be increasingly used for the diagnosis and follow
up of sarcopenia [72].

US may assist with the diagnosis and characterization of
disease activity in inflammatory myopathies (82.9 % sensitivity
for detecting histologically proven myositis) [73]. Inflammation
and edema cause an increased echogenicity of muscles, which
may also appear swollen. In chronic disease, the muscles appear
atrophic with reduced volume and further increased echogenicity
due to progressive infiltration of fatty tissue [74].

Practical points, limitations, and artifacts in muscle exami-
nation are detailed in ▶ Supplementary Table 3, 4.

Recommendations

1. In muscle injuries, US should be performed to confirm the
lesion, define its anatomic location, and establish its extension
(LoE 2, SoR strong). Broad consensus (31/2/3, 94%)

2. US should be used to confirm the presence of a muscle mass
and provide information about its structure (LoE 1, SoR
strong). Strong consensus (33/0/3, 100%)

3. US might play a role in diagnosis and the monitoring of disease
activity in patients with suspected myositis (LoE 2, SoR strong).
Broad consensus (26/7/3, 79%).

Tendons

Background

Tendinopathy refers to persistent tendon pain and dysfunction
related to mechanical loading. While several models of tendon
pathology exist, the continuum model proposed by Cook et al.
[75, 76] is widely used to clinically describe and diagnose tendino-
pathy. This model proposed three key stages of tendon patho-
logy: reactive tendinopathy, tendon disrepair, and degenerative

Fodor D et al. The EFSUMB Guidelines… Ultraschall in Med | © 2021. Thieme. All rights reserved.

Guidelines & Recommendations



b
tendinopathy. The staging of tendon pathology may be beneficial
for clinicians to target treatment according to the tendon struc-
ture [77]. A clinical diagnosis of tendinopathy is primarily derived
from the patient history and clinical tests. The latter have been
shown to be sensitive for detecting tendinopathy, but they are
not specific for identifying pathological changes when compared
with imaging [78].

MSUS is the foremost imagingmodality for tendon pathologies
since it more sensitive than clinical examination and MRI for
detecting pathological structural changes within tendons, but it
does not always correlate with pain and dysfunction [79, 80].
Although reviews have demonstrated both an association and a
dissociation between tendon structure, function, and pain, struc-
tural changes identified on US can be considered a risk factor for
the development of symptomatic tendinopathy [81, 82]. Using
Doppler US, neovascularization due to autoimmune inflamma-
tion, overuse, or trauma repair can be easily identified. Further-
more, nearly all tendons are readily accessible. The presence of
blood vessels and accompanying nerves has previously been
implicated as a source of pain, with moderate associations report-
ed between the Doppler signal and the presence and location of
pain [82, 83]. However, an increased Doppler signal is present in
asymptomatic tendons, suggesting that blood vessels and accom-
panying nerves are not the primary source of pain. In addition, the
reliability of detecting a Doppler signal is poor, as exercise has
been shown to affect both intra- and peritendinous vascularity
[84, 85].

In calcific tendinopathy, cartilaginous metaplasia sponta-
neously occurs, together with calcium deposition inside the ten-
don matrix [86, 87]. The pathogenesis is still unclear (may be
related to reduced oxygen tension, which can promote sponta-
neous metaplasia and cellular necrosis, in turn associated with
calcium deposition [88]). Calcifications may occur in all tendons
[89, 90] although the rotator cuff tendons are most frequently
affected [91].

Clinical applications

US is widely used to detect inflammation, traumatic lesions, and
degenerative alterations in tendons. The US study of tendon rup-
tures allows confirmation of partial or complete ruptures at many
anatomical sites [92–97]. The degree of tendon inflammation in
rheumatic disease, namely tenosynovitis, paratenonitis, or tendi-
nitis, as well as the extent of tendon damage can be evaluated
[98, 99]. Several US scores have been introduced and validated
with good intra- and interobserver reliability [100–102].

The most common parameters used to characterize tendon
pathology include tendon thickness, echogenicity, vascularity
[103], and stiffness [104]. Abnormal tenocyte morphology and
changes in proteoglycan content with a resultant increase in
bound water are the primary changes in tendinosis. These
changes have been described on US as increases in tendon dimen-
sions and heterogeneous or diffuse changes in echogenicity
[105, 106]. Furthermore, the shadowing generated by fibrillar
disorganization and the lack of parallel-aligned fibers contribute
to areas of hypoechogenicity within the tendon matrix [78].

US is the most accurate imaging modality to detect calcific
deposits (sensitivity of 94%, specificity of 99%) [107]. Calcific ten-
dinopathy usually shows hyperechoic foci within the tendon, with
or without acoustic shadowing. However, the appearance
changes depending on calcium content, which varies according
to the stage of this condition. Occasionally, calcifications may
also appear as hypo/anechoic fluid collections with no acoustic
shadowing [108, 109].

Practical points, limitations, and artifacts in tendon exami-
nation are detailed in ▶ Supplementary Table 3, 4.

Recommendations

1. In patients with suspected tendon pathology, US is recommended
as the first imaging modality after clinical examination (LoE 1, SoR
strong). Strong consensus (33/0/3, 100%)

2. Color/power Doppler US should be used to evaluate active
inflammation in tendons and tendon sheaths (LoE 1, SoR
strong). Broad consensus (30/3/3, 91%)

Enthesis

Background

Enthesis is the insertion of a tendon, ligament, or capsule into the
bone. Entheses may be affected in inflammatory conditions
grouped under the term spondyloarthritis (SpA), where enthesitis
is considered a key feature. The enthesis may also be the subject
of overuse as seen in sport injuries and in crystal diseases. How-
ever, while the enthesis is the origin of the disease in SpA (with
potential subsequent involvement of the tendon), the overuse
condition is perceived to be a tendon disease with potential
subsequent involvement of the enthesis.

The term “enthesitis” (i. e., inflammation of the enthesis)
should only be used in relation to SpA and the term “enthesopa-
thy” for any pathological condition of the enthesis regardless of
cause. US provides a more sensitive assessment of entheses than
clinical evaluation, comparable with MRI (except for locations not
accessible to ultrasound, such as pelvis entheses, cruciate liga-
ments entheses, spinal, etc.) [110–119].

Clinical points

Definition

On grayscale US, pathological entheses are characterized by the
loss of normal fibrillar echogenicity of the tendon insertion with
or without an increase in tendon thickness, or intralesional focal
changes at the tendon insertion, such as calcium deposits, fibrotic
scars and bone or periosteal changes (erosions or new bone for-
mation – enthesophytes). When using Doppler US, active inflam-
mation is detected as abnormal vascularity in the area adjacent to
the cortical insertion (< 2mm). Additionally, involvement of the
body of the tendon far from the enthesis, of adjacent bursae,
and fat tissue may be observed. However, these processes can
also be observed in the absence of enthesitis in other inflamma-
tory and non-inflammatory diseases [28, 120].
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Diagnosis

US may be used for the early diagnosis of enthesitis and especially
the presence of Doppler activity has been shown to be a sensitive
marker [121–136]. Several enthesitis scoring systems exist for dis-
tinguishing between SpA and other joint diseases but the only
consensus-based scoring system is the OMERACT (Outcome
Measures in Rheumatology) enthesitis scoring system [28, 120].

Monitoring

At the moment only the consensus-based OMERACT scoring
system appears suitable for monitoring purposes [28, 120]. Large
international, multi-center studies assessing validity and sensiti-
vity to change are still lacking, thus hindering the routine use of
such instruments in both clinical practice and clinical trials. Only
a few studies have evaluated sensitivity to change over time or
responsiveness of US in SpA patients under anti-TNFα treatment,
where Doppler activity has been shown to be the most sensitive to
change [122, 124, 125, 130, 137–153].

Differential diagnosis

Whether and to what extent US can distinguish between enthesitis
of different origins including local non-inflammatory conditions
needs to be established [144–153].

Practical points, limitations, and artifacts in entheses exa-
mination are detailed in ▶ Supplementary Table 3, 4.

Statements

1. Ultrasound might be more sensitive than clinical examination
and MRI for detecting peripheral enthesitis accessible to US
(LoE 4). Broad consensus (27/6/3, 82%)

2. Ultrasound findings should be interpreted in the context of clini-
cal and laboratory data for etiological diagnosis of peripheral
enthesitis (LoE 4). Strong consensus second round (31/1/4, 97%)

Recommendation

1. US should be used as the first-line imaging modality for per-
ipheral enthesitis diagnosis (LoE 2, SoR strong). Strong con-
sensus (33/0/3, 100%)

2. Increased vascularity of enthesis on Doppler US should be
considered as the most diagnostic feature of enthesitis. (LoE 2,
SoR strong). Broad consensus (28/2/6, 93%)

3. Ultrasound may be used to monitor peripheral enthesitis (LoE
2, SoR strong). Broad consensus (30/2/4, 94%)

Bursae

Background

Bursae, sac-like structures containing a small amount of synovial
fluid, some communicating with the adjacent articular cavity,
reduce the friction between soft tissues and bones [154–156].
Bursitis, inflammation of the bursa, appears in various pathologi-
cal conditions: mechanical, degenerative, septic, inflammatory
rheumatic diseases, tumors, etc. [157, 158]. The main US findings
consist of an increased amount of synovial fluid (of variable echo-
genicity) with or without synovial hypertrophy, internal septation,

mural nodules or loose bodies, but generally no specific
appearance can be linked to any particular etiology [154]. Distin-
guishing from normal bursae is important, as in many situations a
small amount of intrabursal fluid can be detected by US in healthy
subjects [156, 159].

Clinical application

In patients with shoulder pain, the presence of subacromial-
subdeltoid (SASD) bursitis was associated with acromioclavicular
joint arthritis (70.4 %), supraspinatus calcific tendinopathy
(67.8 %), rotator cuff full-thickness (96.7 %) or partial (72.7 %)
tear, trauma (95.6 %), rheumatoid arthritis (RA) (94.7 %), or infec-
tion (100%), often independently from the underlying pathology
[160]. US can accurately detect subacromial bursitis in patients
with painful arc syndrome (100% specificity, 87% accuracy) [161].

The detection of SASD bursitis by US improves the specificity of
clinical and serological criteria for the diagnosis of polymyalgia
rheumatica (PMR) from 68% to 89% [162]. Bilateral SASD had a
specificity of 89 % (95%CI 66 % to 97%) and a sensitivity of 66%
(43 % to 87 %) for the diagnosis of PMR [163] and US was con-
firmed to be a useful tool to improve the classification and
management of patients with PMR [164]. Bursitis is more severe
and of proliferative type in the shoulders of patients with elderly
onset RA compared with the exudative type in PMR [165, 166].
The severity of tenosynovitis of the long head of the biceps and
that of SASD bursitis are independent predictors of an inadequate
response to glucocorticoid treatment in patients with PMR [167].

Subcoracoid bursae are rarely distended, generally in the pre-
sence of subcoracoid impingement [168, 169]. Bicipitoradial bur-
sitis results more commonly from chronic mechanical friction and
less commonly from inflammation, tumors, or infections [170].
Only case reports have been published about the bicipitoradial
bursa [171, 172].

The most common etiology of olecranon bursitis is trauma and
infection [173, 174]. Despite its superficiality, few reports about
the US appearance of the olecranon bursae have been published
[175, 176]. The olecranon bursa is very commonly involved in
tophaceous gout [177, 178] and rarely in calcium pyrophosphate
dihydrate crystal deposition disease [179].

Iliopsoas bursitis was identified by US in 2.2 % of patients with
hip osteoarthritis (OA) [180] and in 5–6% of patients with post-
arthroplasty complications [181]. As compared to surgery, US
had excellent results in evaluating the iliopsoas bursa wall thick-
ness and internal texture but underestimated its size and the pre-
sence of communication with the joint [182]. US identified bursi-
tis in 20.2 % of patients with great trochanteric pain syndrome
[183]. Agreement with MRI was good to excellent [184, 185].
When compared to surgical findings, US had a sensitivity of 0.61,
specificity of 1.0, positive predictive value of 1.0, and negative
predictive value of 1.0 for diagnosing trochanteric bursa patho-
logy [186]. However, US was unable to distinguish between bursi-
tis in inflammatory diseases and bursitis with a mechanical origin
[185].

US was able to identify bursitis in 9.5 % of patients with knee
pain and, compared to MRI, had a sensitivity of 88.67% and a spe-
cificity of 100% with a kappa index of 0.92 [187]. In medial knee
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pain, US could detect pes anserine bursitis in 20% of patients, with
the incidence increasing with patient age and grade of knee OA
[188]. US was as specific, but less sensitive than knee arthrogra-
phy and as accurate as MRI in detecting Baker cysts [189].

In the heel area, a significant increase in both retrocalcaneal
bursa detection and its thickness were shown in SpA patients
[190]. A positive likelihood ratio of 4.6 % was found when a cut-
off of ˃2mm for retrocalcaneal bursa thickness was used. Of
note, the retrocalcaneal bursa could be seen by US in 27.6 % of
healthy people [191] and in nearly 50% of military recruits [156].
In addition, retrocalcaneal bursitis was frequently observed in RA
(in 24% of established and 38% of early RA patients) [165].

In the foot, US was able to identify forefoot bursae distention
(intermetatarsal and plantar) with a high prevalence in both OA
(94 %) and RA (88 %) compared to healthy subjects (56 %) [191].
These bursae are often missed by clinical examination (US vs.
clinical examination: 92.6 % vs. 23.5 % in RA) and their presence
is associated with self-reported activity restrictions and foot im-
pairment [192]. In patients with metatarsalgia, US detected inter-
metatarsal bursae distention as the most common underlying
pathology (in 20.5 % of cases, including in 21.5 % of clinically sus-
pected Morton neuromas) [193].

Practical points, limitations, and artifacts in bursae examina-
tion are detailed in ▶ Supplementary Table 3, 4.

Statement

1. US findings in bursitis are nonspecific and must be completed
with clinical and laboratory data and fluid analysis (LoE 3b).
Strong consensus (30/1/5, 96%)

Recommendation

1. US should be used as the first-line imaging method for diagno-
sing bursitis (LoE 2b, SoR strong). Strong consensus (31/1/4,
97%).

Ligaments and retinacula

Background

US and MRI are complementary tools for assessing intrinsic and
extrinsic ligaments and for diagnosing ligament tears, pulleys,
and retinacular lesions [194, 195] including lax, torn, thickened,
or absorbed ligaments and non-union avulsion fractures
[196, 197]. US has the potential to provide a novel approach to
the rating and treating of ligament injuries [198].

Ligaments, pulleys, and retinacula are composed mostly of col-
lagen and appear as less echogenic, fibrillar structures on US. Liga-
ments are best visualized under strain, highlighting the impor-
tance of dynamic examination. Point-of-care ankle US was shown
to be as precise as MRI for detecting ligament and tendon injuries
and may be used for immediate diagnosis and further preopera-
tive imaging [199].

Clinical applications

Lateral collateral ankle ligament complex

Acute ankle sprains are the most common reason for visiting the
doctor after sports-related incidents.

Compared with operative findings, the sensitivity, specificity,
and accuracy of US were 98.9 %, 96.2 %, and 84.2 %, respectively,
for anterior talofibular ligament (ATFL) injury and 93.8 %, 90.9 %,
and 83.3 %, respectively, for calcaneofibular ligament (CFL) injury,
comparable to MRI results [200, 201]. A systematic review with
meta-analysis showed that the pooled sensitivities were 0.99
(0.96, 1.00) with specificities of 0.91 (0.82, 0.97) for diagnosing
chronic ATFL injury and 0.94 (0.85, 0.98) with specificities of
0.91 (0.80, 0.97) for chronic CFL injury [202].

Medial collateral ankle ligament (deltoid) complex

In the case of disruption, comparison between US and stress
radiography revealed high sensitivity and specificity, proving that
US is an accurate method for identifying the involved ligament
components dynamically [203]. Although US may provide impor-
tant information about the spring ligament complex and the ankle
syndesmosis, available evidence for their US assessment is scarce
[204]. Thickness measurement in a weightbearing position has
been recommended to assess the dorsal Lisfranc ligament
[205, 206].

Knee

Anterolateral knee ligament injuries that occur with anterior
cruciate ligament tears are often associated with bone avulsion
at the enthesis and are better viewed with US [207–209].

Structural changes of the lateral and medial patellofemoral
joint retinaculum were found to be associated with patellofemoral
pain. High-frequency US and MRI showed similarly high accuracy
in diagnosing medial patellofemoral joint retinaculum lesions,
with very good interobserver agreement for high-frequency US
[210, 211].

Two meta-analyses demonstrated high diagnostic perfor-
mance in anterior and posterior cruciate ligament injuries.
However, future prospective studies comparing US and MRI are
warranted [212, 213].

Acromio-clavicular joint (ACJ)

The acromio-clavicular ligament, which is always damaged when
the ACJ is injured, can be reliably examined by US. Both distortion
and rupture can be recognized morphologically, while instabilities
due to a height difference between the clavicle and acromion
edge or due to hypermobility, should be assessed in a dynamic
examination. Two studies demonstrated the diagnostic value of
US in comparison to X-ray imaging [214, 215]. Direct visualization
of the coraco-clavicular ligament is almost as reliable with US as
with the “gold standard” MRI [216].

Shoulder

The coraco-humeral and coraco-acromial ligaments, which stabi-
lize the interval between the subscapularis and supraspinatus ten-

Fodor D et al. The EFSUMB Guidelines… Ultraschall in Med | © 2021. Thieme. All rights reserved.



b
dons, are relevant for the diagnosis of subacromial impingement.
In adhesive capsulitis, the ligaments are noticeably different mor-
phologically [217] or using elastography [218] and may show
Doppler signal. The glenohumeral ligaments are difficult to visua-
lize.

Elbow

The radial ligament complex can be examined morphologically as
well as by testing the stability. The same applies to the ulnar liga-
ment complex [219–221].

Visualization of the Struthers ligament may be helpful in the
median nerve entrapment syndrome [222]. Similarly, assessment
of the Osborneʼs ligament and the arcuate ligament in the entrap-
ment syndrome of the ulnar nerve may provide relevant informa-
tion.

Hand and wrist

The scapho-lunar ligament can be examined with US both for
morphology and stability under dynamic conditions [223], albeit
with low sensitivity but high specificity [224]. The trapezio-meta-
carpal ligament can be well visualized and examined for its stabi-
lity [225]. In cases of instability of the ulnar collateral ligament of
the thumb, its morphology can be examined and assessed in con-
junction with a dynamic examination, especially if the ligament is
dislocated over the aponeurosis of the adductor pollicis muscle
[226].

The thickness of the flexor retinaculum of the carpal tunnel
(transverse carpal ligament) and its position in relation to the
median nerve can be readily assessed on US [227]. The triangular
fibrocartilage complex is difficult to detect sonographically.
Nevertheless, high-resolution US allows for radial and ulnar colla-
teral wrist ligament assessment [228] and US findings have been
shown to correlate with ulnar-sided pain and instability [229].

US can be used to evaluate finger pulleys in trigger fingers and
annular pulley ruptures. Accurate static and dynamic US evalua-
tion are of comparable value to MRI in distinguishing partial, com-
plete, and combined pulley ruptures from overuse injuries
[230–232]. Flexor tendon thickness and annular pulley measure-
ments have been proven to be feasible and valid in cadaver studies
as well as in patients and healthy volunteers with good inter- and
intraobserver reliabilities [233, 234]. Collateral ligament tears,
palmar plate injuries, and thumb sesamoid fractures may be criti-
cal in the diagnostic workup of closed finger joint trauma and US
may help improve outcomes [235].

Practical points, limitations, and artifacts in ligament
examination are detailed in Supplementary ▶ Supplementary
Table 3, 4.

Statement

1. For the knee, US can be considered as an accurate and
reproducible imaging technique for diagnosing medial/lateral
ligament and retinaculum injuries (LoE 2). Broad consensus
(23/7/6, 77%)

Recommendations

1. US is useful to diagnose acute lateral ankle ligament injury
(LoE 1, SoR strong). Strong consensus (31/1/4, 96%)

2. US is useful to predict the prognosis of acute ankle sprain
(LoE 1, SoR strong). Broad consensus (27/4/5, 87%)

3. In addition to the manual anterior drawer test and stress
radiography, dynamic stress US might be useful for diagnosing
chronic ankle instability (LoE 3, SoR weak). Broad consensus
(27/3/6, 90%)

4. US might be used to evaluate the injuries of acromio-clavicular
joint and ligament, as well as of the coraco-humeral and
coraco-acromial ligaments (LoE 3, SoR weak). Broad consen-
sus (28/5/3, 85%)

5. In the elbow, US may be used to evaluate the medial/lateral
collateral and annular ligaments, particularly during dynamic
examination (LoE 3, SoR weak). Broad consensus (28/2/6, 93%)

6. In the hand and wrist, US may be used for the assessment of
injuries in ligaments (scapholunate and thumb ulnar collateral)
or the annular pulley, as well as trigger finger pathology (LoE 3,
SoR weak). Broad consensus (29/3/4, 91%)

Bones

Background and clinical application

Enthesophytes

Enthesophytes have been defined in the OMERACT ultrasound
group [28] and are included as one of the core elementary lesions
of US-detected enthesitis [27]. High reliability has been found for
enthesophytes compared to other elementary lesions in enthesitis
[119]. Enthesitis is typical for psoriatic arthritis (PsA), and enthe-
sophytes at typical sites were included among potential elemental
US abnormalities able to distinguish PsA from controls [236].
However, a recent study on healthy volunteers found entheso-
phytes to be the most common lesion at tendon insertions,
detected in 87.5 % of participants and 23.1 % of the entheses
[237].

Bone erosions

In accessible areas, US was found to be highly accurate for the
detection and semiquantitative assessment of bone erosions in
patients with RA [238]. However, a recent review on the ability of
US to detect erosions in patients with RA found a pooled sensiti-
vity and specificity of US for the detection of early bone erosion of
58.4 % and 93.9 %, respectively [239].

Erosions, however, are not specific for RA. A study including
patients with several inflammatory joint diseases found the pre-
sence of US-detected erosions not to be specific for RA, while
larger erosions in selected joints, especially the 2nd and 3 rd
MCP, 5th metatarso-phalangeal (MTP) joint, and distal ulna, were
highly specific for and predictive of RA [240]. This was supported
by a recent study exploring differences in radiographic and US
detection of erosions between ACPA-positive and -negative
patients. On both imaging methods, the most discriminating joint
between the two groups was MTP5, especially in patients with
bilateral erosion [241].
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Periostitis

Periostitis is a nonspecific finding corresponding to a thickening
and elevation of the periosteum from the underlying cortex. It
can be seen in malignant tumors, infections and inflammation,
eosinophilic granuloma, aneurismal bone cyst, osteoid osteoma,
hemophilia, or trauma [242, 243]. Radiographs are the first
imaging modality to study periostitis although MRI or CT is the
imaging reference standard.

Fractures

Bone fractures are a very common occurrence. Plain radiography
is the imaging method of choice. In acute fractures, US can be
used as a complementary method when radiographic imaging is
negative but clinical suspicion is high. In these cases, US shows
interruption of the cortical line, frequently together with perio-
steal thickening and hematoma [244, 245]. In stress fractures,
plain radiography is often normal in the early stages. US may be
highly effective in detecting the periosteal reaction and callus for-
mation. MRI may also be used in cases where US is still negative
[246]. After an acute fracture, US is superior to plain radiography
for showing early organization of the bone callus. US and CEUS
can be used to evaluate callus status in patients with bone non-
union before and after treatment, also predicting clinical out-
come [247, 248].

Practical points, limitations, and artifacts in bones examina-
tion are detailed in ▶ Supplementary Table 3, 4.

Recommendations

1. US should be used to detect peripheral enthesophytes and
erosions (LoE 1, SoR strong). Broad consensus (30/4/2, 88%)

2. In accessible bone areas, when radiography is negative but
clinical suspicion of acute fracture is high, US should be used
(LoE 1, SoR strong). Strong consensus (32/2/2, 95%)

3. In regions with an acoustic window, US should be used for
monitoring fracture healing (LoE 2, SoR strong). Broad
consensus (22/7/7, 76%)

4. In regions with an acoustic window, US might be used to
detect periostitis (LoE 4, SoR weak). Broad consensus (25/8/3,
76%).

Nerves

Expanding evidence has supported the use of US as a valuable
imaging modality to investigate the peripheral nervous system
[249–252]. In the short axis, normal peripheral nerves demon-
strate a characteristic stippled (honeycomb-like) appearance
(axons arranged in fascicles and multiple layers of connective
tissue supporting and binding the fascicle bundles together)
[253]. In long-axis planes, nerves appear as elongated structures
with alternating hypo- and hyperechoic bands. The development
of ultrahigh frequency probes (up to 30MHz) has provided new
perspectives in the evaluation of sub-millimetric terminal nerve
branches, visualized as single small hypoechoic dots within a
hyperechoic frame lacking the expected classic “honeycomb”
appearance [254–261].

Clinical application

Compression neuropathies

When investigating compression neuropathies, three main classes
of nerves should be considered:
▪ Class 1 includes large nerves (e. g., median, ulnar, peroneal,

tibial, etc.), which are readily evaluated by probe frequencies
of up to 13MHz. Diagnosis is based on pattern recognition
analysis and on calculation of the nerve cross-sectional area
(CSA) [262–267].

▪ Class 2 consists of small nerves (e. g., posterior and anterior
interosseous, sural, suprascapular, etc.), which require probe
frequencies of up to 24MHz. In this case, pattern recognition
together with side-to-side comparison of the major nerve
diameter plays a significant role in diagnosing compressive
neuropathies [268, 269].

▪ Class 3 includes both large nerves (e. g., the femoral and sciatic
nerves in their intrapelvic course) and small nerves (e. g., the
deep peroneal nerves) which are poorly visualized or unde-
tectable with US due to their anatomical location. In this case,
US diagnosis relies only on indirect signs of nerve damage,
including signs of denervation of the skeletal muscles supplied
by the affected nerve [270, 271].

US signs of compressive neuropathy consist of nerve flattening at
the compression point and nerve swelling proximal or (less com-
monly) distal to it [272, 273]. The transition between swollen and
flattened segments is abrupt (“notch sign”). In the early phases of
compression, nerve enlargement is detected due to intraneural
edema and venous congestion. With time, the nerve echotexture
may appear massively subverted due to loss of the fascicular pat-
tern and diffuse nerve hypoechogenicity. If nerve compression
persists, irreversible intraneural fibrosis may occur and nerves
with fibrotic changes remain swollen after decompressive surgery
[256, 274, 275].

Nerve injuries

In penetrating injuries with complete nerve transection, stump
neuromas develop in continuity with the edges of the nerve
(round hypoechoic masses which may be displaced or retracted
from the site of injury) [276, 277]. In partial nerve tears, a spindle
neuroma may develop along the injured nerve tract and US can
estimate the percentage of involved and preserved fascicles
[278–280]. Stretching injuries most commonly affect nerves with
a tortuous course and typically occur in relation to fixation points,
such as where the nerve pierces fascial planes or crosses tight
osteofibrous tunnels [281]. Contusion injuries most often occur
where nerves run close to bony surfaces and are vulnerable to ex-
ternal pressure. The nerve may show various degrees of swelling
with or without preservation of the fascicular echotexture, de-
pending on the severity of trauma [282, 283].

Polyneuropathies

US findings in patients with dysimmune neuropathies are similar
among the various forms and mainly consist of segmental nerve/
fascicle swelling, which typically involves the nerve sections where
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conduction blocks are identified by electrophysiology [284–288].
US may demonstrate focal changes in nerve/fascicle thickness in
early phases, when electrophysiology is still negative, and reduced
fascicular swelling during treatment, before neurophysiological
improvement occurs [289–291].

In leprosy, US findings consist of markedly swollen nerves with
loss of the fascicular echotexture, thickened epineurium, and
intense intraneural hyperemia on Doppler imaging (“nerve
inferno”) in acute neuritic phases [292]. In Charcot-Marie-Tooth
(CMT), marked generalized fascicular enlargement, akin to an
“onion bulb”, and Schwann cell hypertrophy due to attempted
remyelination are typical findings of CMT-1A [293–296]. In
hereditary neuropathy with liability to pressure palsies patients,
US demonstrates multifocal nerve enlargements (tomaculae) fol-
lowing minor trauma, which most commonly occur in areas where
the nerves are prone to compression [297, 298].

Nerve tumors and tumor-like conditions

The US diagnosis of peripheral nerve sheath tumors relies on the
detection of a soft-tissue mass in continuity with a nerve. Alterna-
tively, the “fat-split sign”, which consists of a rim of fat at the
poles of an intramuscular mass, may suggest a lesion originating
in the intermuscular space about the neurovascular bundle
instead of the muscle itself [299, 300]. Although schwannoma
and neurofibroma are often indistinguishable on US, schwanno-
mas appear as eccentric ovoid masses arising from a single fascicle
and displacing the unaffected fascicles to the periphery, whereas
neurofibromas encase the fascicles of the parent nerve deve-
loping in a fusiform shape. Moreover, neurofibromas may show a
“target sign” with a hyperechoic (fibrous) core and a hypoechoic
(myxomatous tissue) rim. Compared to schwannomas, they are
usually avascular or less vascular on Doppler imaging [301–303].
Malignant peripheral nerve sheath tumors tend to be larger
(> 5 cm) and more heterogeneous and often show indistinct
margins, calcifications, areas of internal bleeding and necrosis
[304–307]. However, a definite diagnosis usually requires histolo-
gical sampling.

Practical points, limitations, and artifacts in the examination
of nerves are detailed in ▶ Supplementary Table 3, 4.

Recommendations

1. The cross-sectional area (CSA) of 10mm2 of the median nerve
at the carpal tunnel inlet, together with wrist-to-forearm ratio
of the median nerve CSA, should be used in the diagnosis of
median nerve compression (LoE 2A, SoR strong). Broad
consensus (24/6/6, 80%)

2. In the diagnosis of carpal tunnel syndrome, cross-sectional
area measurements of the median nerve should be considered
complementary to electrodiagnostic tests (LoE 2A, SoR
strong). Broad consensus (30/2/4, 94%)

3. An ulnar nerve cross-sectional area within the epitrochlear
groove of 10mm2 should be assumed as the cut-off value for
diagnosing ulnar nerve entrapment at the elbow region (LoE 2A,
SoR strong). Strong consensus second round (30/1/5, 97%)

4. US should be used to identify, localize, and follow up full and
partial thickness nerve injuries (LoE 1C, SoR strong). Broad
consensus (29/2/5, 94%)

5. US might be used to detect nerve alterations in acquired and
inherited polyneuropathies (LoE 3B, SoR weak). Broad consen-
sus (24/6/6, 80%)

6. US might be used to recognize peripheral nerve sheath tumors,
but histopathological examination is mandatory for differential
diagnosis (LoE 3B, SoR weak). Strong consensus (32/1/3, 96%)

Skin and subcutaneous tissues

Background

US of the skin is nowadays considered part of a wider US applica-
tion known as dermatologic US [308]. Musculoskeletal diseases
and alterations may affect the skin to some extent or may be an
incidental finding during exploration.

Skin US is an imaging method complementary to clinical exa-
mination and histopathology. Correct interpretation of skin US
images requires corroboration of all available patient information
and thorough knowledge of skin diseases and their management
[309].

Clinical applications

Normal skin

Aging and ultraviolet- or sex-related changes have been effectively
studied using high-frequency B-mode (thickness or echodensity)
US and elastography [310–314]. Of note, using even higher fre-
quencies (> 50MHz), US imaging correlates well with histological
findings as far as hair follicles/tracts, glands, and erector pili
muscles are concerned [315].

Scar

While scar type/depth or echogenicity differences can be safely
ascertained on US [316], unlike normal skin, scar tissues have not
been shown to correlate with histology in terms of skin thickness
[317, 318].

Hidradenitis suppurativa

For more prompt diagnosis, staging, treatment planning, and
monitoring, B-mode or Doppler US has recently been used to
scan patients with hidradenitis suppurativa (HS) [318–326]
including children [327, 328].

Infection

Point-of-care US has high sensitivity and specificity (range 89%-
96 % and 64 %-88 %, respectively) for diagnosing skin abscesses
[329], distinguishing them from cellulitis [330], and following up
treatment [331]. Furthermore, these values remained high for
novice sonographers as well as experts [332–334].

Systemic sclerosis

Compared to clinical evaluation, US examination proved more
sensitive and reliable for quantifying systemic sclerosis (SSc) skin
involvement in both patients and controls [335–339]. A better
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discrimination between clinical and subclinical skin involvement
[335–340], different forms of SSc, and disease stages [335–337]
was achieved. An inverse relationship between skin echogenicity
and thickness was identified in patients with SSc in the edematous
phase of the disease [335, 336]. US findings were found to corre-
late with clinical activity scores (Rodnan Skin Score), degree of
pulmonary involvement, specific histologic and pathogenetic fea-
tures [336, 341, 342] and are sensitive for detecting longitudinal
skin thickness changes and vascularity [341].

Elastography can quantify skin stiffness by adding information
about the disease stage and helping to distinguish subclinical SSc
involvement from healthy skin [340, 343, 344]. Shear wave velo-
city values were significantly higher in SSc patients than in
controls at almost all modified Rodnan Skin Score sites and thus
correlated with the degree of pulmonary involvement [339, 343].

Morphea

US provided qualitative and quantitative anatomical data, such as
thickness measurements, detection of structural abnormalities,
and Doppler analysis of the lesional and perilesional vessels in
both clinical and subclinical stages of the disease [345–349].

Psoriatic plaque

In a psoriatic plaque, the epidermis and dermis appear thicker
compared with the normal surrounding skin. A hypoechoic band
in the upper dermis can be observed, representing inflammatory
edema and vasodilatation within the papillary dermis. This sign
was shown to be linked to the most active stages of the disease
[350–354].

Lymphatic vessels

Currently, several studies have assessed the applicability of US and
elastography as early methods for the diagnosis, staging, and
assessment of clinical and subclinical lymphedema [355, 356].
High-resolution US was proven to distinguish lower limb lymphe-
dema from other edematous conditions [357, 358]

Melanoma

In melanoma staging, US contributes to the primary staging and
detection of metastases. The Breslow index (measurement from
the granular epidermal layer to the deepest melanoma extension
in millimeters) is the main predictor of lymphatic extension and
prognosis worsening [359]. Most studies showed a high correla-
tion between the Breslow Index and US measurements. In a retro-
spective cohort study [360–362], correlation with manual mea-
surements reached r = 0.88, permitting a single stage excision in
most cases.

Regarding US follow-up of melanoma patients, US was not
superior to clinical follow-up in terms of survival in a prospective
cohort study comparing these two follow-up modalities in stage
IB IIA patients [363–365].

Nonmelanoma skin cancer (NMSC)

Most common NMSCs are basal cell and squamous cell carcino-
mas. The heterogeneity of studies and techniques does not per-

mit a clear recommendation on the systematic use of US in
NMSC management [364]. However, some retrospective cohort
studies [366, 367] and multiple case series indicate the possibility
of using US to detect occult basal cell carcinoma foci, to discrimi-
nate between high- and low-risk forms.

Other neoplastic and inflammatory skin lesions

US features of other skin lesions such as mycosis fungoides, other
skin lymphomas [368, 369], Kaposi sarcoma [370], and dermato-
fibrosarcoma protuberans [371] have also been described.

Other benign skin tumors, such as pilomatrixomas [372], cysts
[373], lipomas [374], and neurofibromas [375], have also been
characterized and they present distinct sonographic patterns
that are potentially useful for noninvasive diagnosis. However,
these observations were derived from cross-sectional studies and
small case series.

In other inflammatory skin diseases, such as panniculitis [376],
pseudoxanthoma elasticum [377], atopic dermatitis [368], and
sarcoidosis [378], US provides additional information that is useful
for early diagnosis or follow-up.

Practical points, limitations, and artifacts in skin and subcu-
taneous tissue examination are detailed in ▶ Supplementary
Table 3, 4.

Recommendations

1. US is recommended for prompt diagnosis, staging, treatment
planning, and monitoring in patients with hidradenitis suppu-
rativa (LoE 2, SoR strong). Strong consensus (32/1/3/ 97%)

2. US is recommended as the first-line modality in the detection of
skin abscesses (LoE 2, SoR strong). Strong consensus (33/1/2,
97%)

3. US is recommended for the qualitative and quantitative evalua-
tion of skin layers, the differentiation between disease forms,
and the staging and monitoring of skin abnormalities in sys-
temic scleroderma patients (LoE1, GoR strong). Broad consen-
sus (28/3/5, 90%)

Fascia

Background

The fascia is a collagenous tissue continuum that surrounds and
separates muscles, forms sheaths for nerves and vessels, and
strengthens ligaments around joints [379]. The deep fascia has a
complex structure formed by two or three layers of densely
packed collagen fibers, interpolated by a layer of loose connective
tissue [380].

Both morphological and dynamic properties (sliding, displace-
ment) are important for the functional integrity of the fascia sys-
tem [381]. Fascial layers have some sites of potential weakness
which could give rise to hernias (sports hernia or incisional hernia)
Herniation of skeletal muscles through fascial defects has also
been described. The tibialis anterior, extensor digitorum longus,
peroneus longus and brevis, the gastrocnemius are the most com-
monly affected muscles [382].

Deep fascia can be affected, though rarely, by a severe infec-
tion (necrotizing fasciitis) or inflammation (eosinophilic fasciitis).
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The former is a fulminant infection, which can follow minor inju-
ries, while the latter is a chronic progressive condition which
usually affects the limbs symmetrically.

Neoplastic lesions involving the fascia are generally uncom-
mon, with benign lesions being far more frequent.

Clinical application

High-resolution US of fasciae can assess morphometric characte-
ristics such as thickness and echogenicity [383] and allows visua-
lization of fascia sliding or displacing [381].

The fascia generally appears as a linear hyperechoic structure
with boundaries easily identifiable due to the adjacent hypoechoic
muscles. It consists of a single or several discrete layers [380].

The plantar fascia is by far the most studied fascia with a well
standardized scanning protocol (longitudinal scan at its most
proximal part) [383] and an accepted cut-off point of 4mm for
its normal thickness [384]. There are no agreed-upon reference
values for the normal thickness of other fasciae, though apo-
neurotic fasciae seem to be generally thicker than epimysial ones
[381].

In detecting sport hernias, with laparoscopy as the gold stan-
dard, US has a high sensitivity (95 %) and specificity (100 %), as
well as a positive and a negative predictive value close to 100%
[385]. In identifying incisional hernias, US was found to have an
added value of 29.4 % over clinical examination alone [386].
Dynamic US or MRI can be used to confirm muscle hernias. An
additional advantage of US is that the patient can be examined in
a standing position [387].

Necrotizing fasciitis shows on US as marked subcutaneous
edema and thickening, with interconnected fluid collections
resulting in a cobblestone appearance and small bright foci with
dirty acoustic shadowing representing microbubbles of gas
[388]. Regarding the amount of deep fascia fluid accumulation, a
study showed that a cut-off value of 2mm had the best accuracy
(72.7 %) with a sensitivity of 75 % and a specificity of 70.2 %.
Patients with this level of fluid accumulation were hospitalized
longer and needed amputation more often [389].

Eosinophilic fasciitis appears on US as a thickened fascia of
altered echogenicity with thickening, hyperechogenicity, and
markedly reduced compressibility of the subcutaneous tissue
[390]. Thickness reduction was observed with treatment [391].

Plantar fibromatosis frequently exhibits mixed echogenicity in
large lesions [392, 393] and hypoechogenicity in small lesions
[392], with acoustic enhancement, a comb sign (linear hypo-
echoic areas located near isoechoic areas), and, possibly, internal
vascularity. Increased stiffness of the nodular thickening on elas-
tography was described in Dupuytren disease [394]. Hypoecho-
genicity of the nodules does not predict the progression of this
condition [395].

Nodular fasciitis may have various appearances: a hypoechoic
mass with internal echogenic foci [396, 397], a peripheral hypere-
choic nodule or an echoic rim [397, 398], oval or round in shape
with irregular or lobular margins, fascial tail [397], and usually avas-
cular [398]. In children, this condition is found most frequently in
the head or neck [399]. Proliferative fasciitis is a rare lesion

described as an ill-defined hyperechoic structure with a thickened
hypoechoic reticular pattern [400].

The relative reliability of thickness and echogenicity measure-
ment of the plantar fascia was proven to be high (interclass corre-
lation coefficient, ICC= 0.88) [401]. Good reproducibility was also
found (intra- and interrater reliability, ICC > 0.821, ICC> 0.849)
[402], as well as good agreement between an experienced and a
novel sonographer [403]. In another study the intra-tester reliabi-
lity was shown to significantly surpass the inter-tester reliability in
plantar fasciitis (0.89 vs. 0.61, respectively) [404]. Multiple mea-
surements showed higher reliability compared to a single mea-
surement (ICC > 0.90) [404].

The inter-rater reliability proved to be good also for the
abdominal fasciae (ICC= 0.83) [405]. The intraobserver reliability
of the echogenicity of Dupuytrenʼs nodules was excellent
(ICC = 0.996; 95 %CI, 0.993 to 0.998), while the interobserver
reliability was fairly good but imprecise (ICC = 0.688; 95 %CI,
0.329 to 0.977) [388].

Practical points, limitations, and artifacts in fascia examina-
tion are detailed in ▶ Supplementary Table 3, 4.

Recommendations

1. Ultrasound may be used to assess muscular fasciaʼs morpho-
metric characteristics like thickness and echogenicity, as well
as fascia sliding and displacement (LoE 3, SoR weak). Broad
consensus (29/5/2, 85%)

2. US should be used as point-of-care diagnostic imaging method
in fascia infection (necrotizing fasciitis), proliferative diseases,
and fascia defects (LoE 3, SoR strong). Broad consensus (29/4/3,
82%)

Nails

Background

The nail plates, nail matrix, and nail bed form the nail unit. The
periungual area is composed of the periungual folds, i. e., the
proximal fold (eponychium), lateral folds (perionychium), and
distal fold (hyponychium). The bilaminar nail plate is visualized as
two parallel hyperechoic bands, i. e., ventral plate and dorsal
plate, separated by a hypoechoic virtual space, i. e., the interplate
space. The nail plate thickness varies between 0.3 and 0.65mm.
The nail matrix appears as a 1–5.3mm long echogenic structure,
located in the proximal aspect of the nail bed. The nail bed is seen
as a 0.7–6mm thick hypoechoic structure immediately deep to
the nail plate and extending to the bone profile of the distal
phalanx. Doppler mode shows a high level of low-resistance, low-
velocity blood flow in the nail, especially in the nail bed
[406–409].

Performance of nail US has been standardized through a con-
sensus-based methodology by an international expert working
group [410].

Clinical application

Psoriatic onychopathy (PsO)

US assessment of nails in psoriasis has recently emerged based on
the fact that the nail is conceptually an extension of the distal
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interphalangeal enthesis. It is aimed at detecting early signs of
psoriatic involvement [411]. A systematic review [412] showed
that the evidence for the role of US in the detection of PsO is
low, mainly due to methodology limitations, based on case-
control cross-sectional studies with high variability in the US
features measured. Despite these considerations, there is a
marked tendency to show differences between patients with PsO
and healthy controls mainly in nail bed and nail plate thickness,
even before clinical PsO signs are evident [413]. However, no
study was able to predict more severe disease or the development
of PsA based solely on this parameter [414].

In both clinical and subclinical PsO patients there is a tendency
towards increased Doppler signals [415]. The spatial relationship
of these CD/PD signals with anatomical structures of the nails,
such as the ventral plate [416] may warrant assessment in future
studies.

The EFSUMBʼS Position Statement on Dermatologic Ultrasound
suggested US assessment of nails in patients with suspicion of
clinical psoriasis to support the diagnosis of this condition [308].

Nail tumors

Scientific evidence to date on US and subungual tumors is very
scarce, mostly as isolated clinical cases describing the ultrasono-
graphic features of tumors, such as subungual schwannoma
[417], keratoacanthoma [418], and squamous cell carcinoma
[419].

In the review of onychomatricoma imaging tests by Cinnoti et
al. [420], dermoscopy is highlighted as a first diagnostic step. In
six cases US techniques were performed. In four cases hypoecho-
genic solid areas affecting the ungual matrix with hyperechogenic
dots corresponding to the finger-like projections that deform the
plate were found. Doppler US showed a non-specific hypovascular
pattern.

Nakamura et al. [421] measured the tumor-to-bone distance
of invasive subungual melanoma. In tumor sizes below 4mm, the
probability of bone involvement was low and non-amputative sur-
gery was possible. This study was performed on surgical speci-
mens and the authors raised the possibility of using US techniques
to measure this distance.

The subungual glomus tumor is described as a subungual
hypervascular mass, with bone erosion or bone remodeling. US is
able to locate the tumor, is more cost-effective than MRI, and
detects small tumors. US may be used as a complementary tech-
nique to clinical diagnosis and for surgical planning [422–427].

In subungual exostosis a hyperechogenic subungual image
with acoustic shadowing connected to the phalanx was described
as a pathognomonic finding in two case series [428, 429].

Other nail conditions

US can differentiate solid and cystic nail lesions and can be used as
a valuable aid to optimize the clinical diagnosis of a number of nail
disorders [430–435]. In onycholysis an anechoic gap between the
nail plate and the nail bed is seen on US. In onychomadesis, the
separation of the proximal edge of the nail plate from the nail
matrix and bed is detected.

Based on a retrospective case-control study [434], diagnostic
criteria for retronychia have been described as follows: 1) hypo-
echoic halo surrounding the origin of the nail plate; 2) distance
between the origin of the nail plate and the base of the distal pha-
lanx of 5.1mm or less in big toes and thumbs and/or a difference
of 0.5mm of this distance or greater between the affected nail
and the contralateral healthy nail; and 3) proximal nail fold thick-
ness of 2.2mm or greater for male patients or 1.9mm or greater
for female patients and/or a proximal nail fold 0.3mm thicker or
greater in comparison with the contralateral healthy nail. The
presence of all criteria supports the diagnosis of unilateral retro-
nychia and the presence of 2 or more criteria (one of them crite-
rion 1) supports the diagnosis of bilateral cases.

In onychomycosis, US shows an increased thickness of the nail
bed, diffuse thickening and irregularity of the nail plates, fusion of
the nail plates, and later acoustic shadowing in the nail bed. On
US, in paronychia, diffuse thickening of the periungual fold is
seen, with areas of increased echogenicity interposed with hypo-
echoic areas and increased vascularity in Doppler mode. US
abnormalities in SSc, lupus, and dermatomyositis can be found
within the nail bed, mainly described as a decrease of both echo-
genicity and blood flow, secondary to microvascular changes. US
has shown a high diagnostic accuracy for traumatic nail bed
lesions and distal phalanx fractures [435].

Practical points, limitations, and artifacts in nails examina-
tion are detailed in ▶ Supplementary Table 3, 4.

Recommendations

1. US might be used to increase clinical diagnostic accuracy in
structural, infectious, inflammatory, and vascular nail disorders
(LoE 4, SoR weak). Broad consensus (25/4/7, 86%)

2. US assessment of nails in patients with clinical suspicion of
psoriasis may support diagnosis (LoE 4, SoR weak). Broad
consensus (28/2/6, 93%)

3. US assessment of subungual glomus tumors and exostoses
may support the clinical diagnosis and help in surgical planning
(LoE 4, SoR weak). Strong consensus (29/1/6, 96%)
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