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Abstract
Weargue that the very effective cover of hermitian K -theory in the sense ofmotivic homotopy
theory is a convenient algebro-geometric generalization of the connective real topological K -
theory spectrum. This means the very effective cover acquires the correct Betti realization, its
motivic cohomology has the desired structure as a module over the motivic Steenrod algebra,
and that its motivic Adams and slice spectral sequences are amenable to calculations.
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1 Introduction

Algebraic and hermitian K -theory have been widely studied since the pioneering works
on the Grothendieck–Riemann–Roch theorem [3] and on rings with anti-involutions [14].
Both theories are representable in the stable motivic homotopy category SH of a field of
characteristic �= 2, and more generally over regular noetherian base schemes of finite Krull
dimension onwhich 2 is invertible [10,29]. Fundamental properties imply that, with respect to
the standard motivic spheres S p,q := S p−q ∧Gq

m for p ≥ q , the motivic spectra of algebraic
K -theory KGL and hermitian K -theory KQ are (2, 1)- and (8, 4)-periodic, respectively.
More precisely, there exist Bott elements in the Grothendieck group π2,1KGL ∼= K0 and in
the Grothendieck–Witt group π8,4KQ ∼= GW0 inducing motivic weak equivalences
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1022 A. Ananyevskiy et al.

S2,1 ∧ KGL
∼=−→ KGL and S8,4 ∧ KQ

∼=−→ KQ. (1)

Because of (1),KGL andKQ are non-connective and should be thought of as “large”motivic
spectra. When using K -theoretic invariants to inform the homotopy sheaves of the sphere
1 in [25], it is convenient to employ smaller “connective” versions of the motivic K -theory
spectra. The geometrical meaning of this notion is still not well understood.

One fascinating aspect of motivic homotopy theory is that it offers different notions of
“connectivity” based on:

– Voevodsky’s slicefiltration for the localizing triangulated subcategoryof effectivemotivic
spectra SHeff ⊂ SH generated under homotopy colimits by motivic P1-suspension spec-
tra of smooth schemes [30, §2].

– Morel’s homotopy t-structure [18, §6.2] characterized over perfect fields by the vanishing
of homotopy sheaves, and its extension to general base schemes in [11, §2.1].

– Spitzweck–Østvær’s very effective slice filtration for the full subcategory SHveff ⊂ SH
generated under homotopy colimits and extensions by motivic P1-suspension spectra of
smooth schemes [28, Definition 5.5].

The essential difference between the effective and the very effective slice filtrations is
that the former records slices with respect to the multiplicative group scheme Gm and the
latter with respect to the projective line P1. By construction SHveff is a subcategory of
SHeff closed under the tensor product, but it is not closed under simplicial desuspension
and hence not a triangulated subcategory of SH. The sphere 1, algebraic cobordism MGL,
and quotients thereof such as motivic Moore spectra and the effective cover of KGL are
examples of very effective motivic spectra. Both of the slice filtrations interact well with
A∞- and E∞-structures [7], but only the very effective one maps to (the even part of) the
topological Postnikov filtration under Betti realization [7, §3.3]. Over perfect fields SHveff

is the nonnegative part of the t-structure on SHeff , and the identification of the very effective
slices ofKQ up to extensions in [2, Theorem16]makes a strong case for further investigations
of the very effective slice filtration.

In this paper we argue that the very effective cover kq of hermitian K -theory KQ is a
convenient algebro-geometric generalization of the connective cover ko of real topological
K -theory KO. The question of whether there is a motivic spectrum with similar properties
as ko was first addressed in [13] and [9, Conjecture 5.8] over the fields of complex and real
numbers, respectively. As we learned from the referee, work by Mike Hill and Kyle Ormsby
concerning such a motivic spectrum was presented during a sectional meeting of the AMS
in 2014.

Section 2 beginswith some preliminary results onKGL.We identify the effective and very
effective covers of KGL over perfect fields of characteristic �= 2, and similarly for KGL/2
and base schemes over Spec(Z[ 12 ]). Proposition 11 relates the very effective covers kq of
KQ and kgl of KGL to the motivic Hopf map η : A2

�{0} → P1 via the cofiber sequence

Σ1,1kq
η−→ kq → kgl. (2)

Over the complex numbers, (2) has been obtained independently by Bachmann. The same
result holds for η, KQ, KGL, and base schemes over Spec(Z[ 12 ]) by [23, Theorem 3.4], but
it is plainly false for the effective covers ofKQ andKGL by the proof of [24, Corollary 5.1].
By using (2) we identify the Betti realization of kq with ko and calculate the mod-2 motivic
cohomology MZ/2�kq as A�//A�(1); the quotient of the mod-2 motivic Steenord algebra
A� by the augmentation ideal of the MZ/2�-subalgebra generated by Sq1 and Sq2 [12,32].
By dualizing, the mod-2 motivic homology MZ/2�kq identifies with A��A�(1)MZ/2� as
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On very effective hermitian K -theory 1023

anA�-comodule algebra, and by change-of-rings theMZ/2-based Adams spectral sequence
for kq takes the form

Ext∗,�
A�(1)

(MZ/2�,MZ/2�) ⇒ kq�
∧
2,η. (3)

As indicated in the notation, the filtered target groups of the spectral sequence (3) are all
(2, η)-completed. The Ext-algebra overA�(1) appearing in (3) is accessible via homological
algebra. For explicit calculations with (3) we refer to [9] and [13].

Section 3 is concerned with slice calculations. The negative slices of kq are evidently zero
because kq is an effective motivic spectrum. Over a perfect field of characteristic �= 2 and
i ≥ 0, we show in Theorem 17 the calculation

sqkq=
⎧
⎨

⎩

Σ2n,2nMZ/2 ∨ Σ2n+2,2nMZ/2 ∨ · · · ∨ Σ4n−2,2nMZ/2 ∨ Σ4n,2nMZ q=2n,

Σ2n+1,2n+1MZ/2 ∨ Σ2n+3,2n+1MZ/2 ∨ · · · ∨ Σ4n+1,2n+1MZ/2 q=2n+1.

(4)

The slices of kq are considerably “smaller” than those of KQ [23]. This is a helpful fact
which is used in the calculation of the first stable homotopy groups of motivic spheres [25].

An immediate consequence of (4) is the explicit form of the slice spectral sequence given
by mod-2 motivic cohomology groups h� and integral motivic cohomology groups H �

πp,wsqkq=
{
h2n−p,2n−w ⊕ · · · ⊕ h4n−2−p,2n−w ⊕ H4n−p,2n−w q = 2n

h2n+1−p,2n+1−w ⊕ · · · ⊕ h4n+1−p,2n+1−w q = 2n + 1
⇒kqp,w.

(5)

In Theorem 20 we identify the d1-differentials in (5) in terms of motivic Steenrod operations.
We also calculate the slices and the slice differentials for the η-inversion of kq.

In Sect. 4 we identify the 0-line of kq with the Milnor–Witt K -theory over fields of
characteristic not 2, and determine the associated graded for the groups on the 1-line of kq.

Throughout the paper we employ the following assumptions and notations. In all results

F , S Perfect field, finite dimensional separated noetherian scheme

SmS Smooth schemes of finite type over S

Ss,t , Ωs,t , Σs,t Motivic (s, t)-sphere, (s, t)-loop space, (s, t)-suspension

SH, SHeff Motivic and effective motivic stable homotopy categories of S

E, 1 = S0,0 Generic motivic spectrum, the motivic sphere spectrum

Λ, MA Ring, motivic Eilenberg–MacLane spectra of a Λ-module A

KGL, KQ, KW Algebraic and hermitian K -theory, Witt-theory

fq , f̃q , sq qth effective cover, very effective cover, and slice

concerningKQ andkqwe assume that 2 is invertible on the base scheme S, as for Spec(Z[ 12 ]),
and following [27] we impose the condition that

S is essentially smooth over a Dedekind domain. (6)

Applications will mostly concern perfect fields of characteristic �= 2.
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1024 A. Ananyevskiy et al.

2 Connecting connective K -theories

Definition 1 Following [28, §5] we let kq → KQ denote the very effective cover of the
hermitian K -theory spectrum KQ of quadratic forms [10] and let kgl → KGL denote the
very effective cover of the algebraic K -theory spectrum KGL [29].

Remark 2 Following [2,28], and working over F we can identify the very effective cover f̃qE
of E with f0(E≥0), the effective cover of the connective cover E≥0 of E with respect to the
homotopy t-structure on SH [18].

Lemma 3 If F admits a complex embedding, the Betti realization of kgl coincides with the
connective cover ku of the complex topological K -theory spectrum KU in the topological
stable homotopy category.

Proof Recall from [28, Proposition 5.12] that kgl is a homotopy quotient ofMGL under the
orientation or Todd genus map, and similarly but easier that ku is a homotopy quotient of
MU. The Betti realization functor [21, Appendix A] preserves homotopy colimits, and sends
MGL to MU. 
�
Lemma 4 Over F the effective and very effective covers of KGL coincide in SH.

Proof When char(F) = 0 this is shown in [28, Corollary 5.13] by writing the effective
cover of KGL as a homotopy quotient of MGL (the latter is very effective over any base
scheme [28, Theorem 5.7]). If char(F) > 0 we follow the proof of [2, Theorem 16] where
the effective cover f0KGL → KGL is shown to be connective. For t ≥ 0 the presheaf on
SmF

X �→ [Σ s,t X+, f0KGL] = Ks−2t (X)

is zero for s < 2t , e.g., for s − t < 0 (this holds if X is regular, hence over any regular base
scheme S). The case t = 0 implies by [2, Proposition 4] that f0KGL is connective, and by
[2, Lemma 10] that f0KGL is the very effective cover. 
�
Remark 5 Lemma 4 holds more generally for motivic Landweber exact spectra over a field
in the sense of [20].

Over a noetherian scheme S of finite Krull dimension d , the presheaf on SmS

X �→ [Σ s,t X+,KGL] = K Hs−2t (X)

is zero for s − 2t < −d by [15], sinceKGL represents homotopy K -theory over S [4]. Thus
for t ≥ q , the presheaf

X �→ [Σ s,t X+, fqKGL] = Ks−2t (X)

is zero for s−t+d < q , and fqKGL is q-connected in the sense of [25, Definition 3.16]. If the
very effective slice filtration coincides with the combination of the homotopy t-structure and
the effective slice filtration over S, then f0KGL is the very effective cover, i.e., the effective
and very effective slices of KGL agree. We can argue differently for KGL/2 when 2 is
invertible as follows (this proof can also be adapted to motivic Landweber exact spectra).

Lemma 6 Over a base scheme S as in (6) on which 2 is invertible, the effective and very
effective covers of KGL/2 coincide in SH.
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On very effective hermitian K -theory 1025

Proof We claim KGL/2 affords the description as a homotopy quotient of MGL/2 for the
generators of the Lazard ring xi ∈ π2i,iMGL. Since MGL is effective the orientation map
for KGL factors through

φ : MGL → f0KGL.

For i ≥ 2 we have π2i,iφ(xi ) = 0, so that φ admits a factorization

MGL/(x2, x3, . . . ) → f0KGL.

We claim there is a canonically induced motivic weak equivalence

ψ : MGL/(2, x2, x3, . . . )
∼=→ f0KGL/2.

The map ψ yields an isomorphism on slices by [27, Theorem 10.3] and an appropriate
adaption of [26, Proposition 5.4].We show that holimq→∞ fqψ is amap between contractible
motivic spectra, i.e., ψ is a map between slice complete spectra. For KGL/2 this follows
by the argument prior to Lemma 6: By [15] we know fqKGL is q-connected in the sense
of [25, Definition 3.16]. Thus holimq→∞ fqKGL ∼= ∗, and likewise for f0KGL/2. The
contractibility of holimq→∞ fqMGL/(2, x2, x3, . . . ) follows from the description of the
covers fqMGL in the proof of [26, Theorem 4.6]. To conclude for ψ we use that slices detect
motivic weak equivalences between slice complete motivic spectra, cf. [11, §8.3]. Recall that
MGL is a very effective motivic spectrum [28, Theorem 5.7]. The lemma follows from the
canonically induced motivic weak equivalences in the commutative diagram

f̃0MGL/(2, x2, x3, . . . )
∼=

∼=

f̃0f0KGL/2
∼=

f̃0KGL/2

f0MGL/(2, x2, x3, . . . )
∼=

f0f0KGL/2
∼=

f0KGL/2.


�
The Bott element P1 → KGL lifts canonically to a map β : P1 → kgl because P1 is very

effective. Let γ denote the canonical composite

kgl → f0(KGL) → s0KGL.

Proposition 7 Over F multiplication with the Bott element induces the cofiber sequence

Σ2,1kgl
β−→ kgl

γ−→ MZ
δ−→ Σ3,1kgl.

Proof By Lemma 4 we have f0(KGL≥0) ∼= kgl and by (2, 1)-periodicity f−1(KGL≥−1) ∼=
Σ−2,−1kgl. Let β ′ : f1(KGL≥1) −→ f0(KGL≥0) denote the natural map in the very effective
slice filtration for KGL The commutative diagram

Σ2,1f0(KGL≥0)
∼=

β

f1(Σ2,1KGL≥0)
∼=

f1((Σ2,1KGL)≥1)
∼=

f1(KGL≥1)

β ′

f0(KGL≥0)
id

f0(KGL≥0)

shows that it corresponds tomultiplicationwith theBott element onkgl. The cofiber sequence

f1(KGL≥1)
β ′
−→ f0(KGL≥0) → MZ,
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1026 A. Ananyevskiy et al.

for the very effective zero slice of KGL [2, Lemma 7], which coincides with the usual zero
slice s0KGL ∼= MZ computed in [16], [31], concludes the proof. 
�
Proposition 8 Over a base scheme S as in (6) on which 2 is invertible, multiplication with
the Bott element induces the cofiber sequence

Σ2,1kgl/2
β−→ kgl/2

γ−→ MZ/2
δ−→ Σ3,1kgl/2.

Proof This follows from Lemma 6. 
�
Lemma 9 If 2 is invertible on a base scheme S as in (6), then the composite

MZ ∧ MZ/2
δ∧MZ/2−−−−−→ Σ3,1kgl ∧ MZ/2

γ∧MZ/2−−−−−→ Σ3,1MZ ∧ MZ/2

is given by multiplication with the first Milnor operation

Q1 = Sq1Sq2 + Sq2Sq1 : MZ/2 → Σ3,1MZ/2.

Proof The proof of Lemma 6 shows KGL and f0KGL/2 are invariant under base change,
being homotopy quotients of MGL. The same holds for MZ and the dual motivic Steenrod
algebra MZ/2 ∧ MZ/2 by [27, Section 9, Theorem 10.26]. Hence it suffices to show the
statement in the case S = Spec(Z[ 12 ]). The inclusion Z[ 12 ] ↪→ C induces a bijection on the
bidegree (3, 1) summand of the motivic Steenrod algebra (which in both cases is given as
in [27, Theorem 10.26, Remark 10.27] over the mod two motivic cohomology of the base),
because the Picard group of Z[ 12 ] vanishes. Hence it remains to prove the statement over C,
where it follows by complex realization from Lemma 3 and the corresponding topological
result [1, p. 366]. 
�
Remark 10 Following [13, Theorem 5.4], Lemma 9 shows the mod-2 motivic cohomology
MZ/2�kgl is the quotient of the mod-2 motivic Steenord algebra A� by the augmentation
ideal of theMZ/2�-subalgebra generated by Q0 = Sq1 and Q1.

Proposition 11 Over a field of characteristic �= 2, multiplicationwith theHopfmap η induces
a cofiber sequence

Σ1,1kq
η−→ kq

f−→ kgl
h−→ Σ2,1kq. (7)

Here f and h are functorially induced by the forgetful and hyperbolic maps between algebraic
and hermitian K -theory, respectively.

Proof Consider the fiber F of the naturally induced forgetful map f≥0 : KQ≥0 → KGL≥0.
Since f0 is a triangulated functor, f0(F) is the fiber of f := f0(f≥0). The composite map

Σ1,1kq
η−→ kq

f−→ kgl

is trivial because the first negative algebraic K -group π1,1kgl = π1,1KGL = K−1

vanishes over regular schemes. We show there is an induced motivic weak equivalence
Σ1,1kq → f0(F) of effective motivic spectra by checking the map of homotopy sheaves πs,t

is an isomorphism for t ≥ 0. This follows if (7) induces a long exact sequence of sheaves
for t ≥ 0

· · · πs,tΣ
1,1kq

η

∼=

πs,tkq
f

=

πs,tkgl
h

=

· · ·

· · · πs−1,t−1kq
η

πs,tkq
f

πs,tkgl
h · · · .

(8)
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On very effective hermitian K -theory 1027

By construction, (8) is exact for t ≥ 1 and s ≥ t since in the said range it coincides with the
long exact sequence

· · · → πs,tΣ
1,1KQ

η−→ πs,tKQ
f−→ πs,tKGL

h−→ · · ·
induced by the Wood cofiber sequence for η, KQ, and KGL [23, Theorem 3.4].

If t ≥ 1 and s = t , πt,t (f) : πt,tkq → πt,tkgl is surjective since its target is trivial. Thus
(8) is exact for t ≥ 1 and all s; recall that πs,tkq = πs,tkgl = 0 for all s < t .

It remains to consider the case t = 0. By [2, Theorem 16] the composite

f0(KQ≥0) → f−1(KQ≥0) → f−1(KQ≥−1)

is an equivalence. The canonical map KQ≥0 → KQ≥−1 is an isomorphism on homotopy
sheaves πs,t for all t ≥ −1 and all s. When s < t − 1 and s ≥ t this follows by construction.
The case s = t − 1 holds since πt−1,tKQ = 0 for all t ≥ −1. More precisely, the vanishing
for t ≥ 0 is implied by comparison with Witt theory because πt−1,tKW = 0 for all t . The
case t = −1 follows from the long exact sequence

· · · → π0,0KGL
0−→ π−2,−1KQ

η−→ π−1,0KQ
f−→ π−1,0KGL = 0,

and surjectivity of the rank map f : π0,0kq → π0,0kgl. It follows that there is a canonical
motivic weak equivalence

f0(KQ≥0)
∼=→ f−1(KQ≥0),

which implies exactness of (8) for t = 0. 
�
Lemma 12 If 2 is invertible on a base scheme S as in (6), then the composite

kgl ∧ MZ/2
h∧MZ/2−−−−−→ Σ2,1kq ∧ MZ/2

f∧MZ/2−−−−−→ Σ2,1kgl ∧ MZ/2

is given by multiplication with Sq2 : MZ/2 → Σ2,1MZ/2.

Proof As in the proof of Lemma 9 it suffices to work over Spec(Z[ 12 ]), and hence over C.
The result follows from Lemma 13 and the corresponding topological statement. 
�
Lemma 13 If F admits a complex embedding, the Betti realization of kq coincides with the
connective cover ko of the real topological K -theory spectrum KO in the topological stable
homotopy category.

Proof This follows since the Betti realization sends KQ to KO, kgl to ku by Lemma 3, and
preserves the Wood cofiber sequence. 
�
Remark 14 As in [13, Theorem 5.11], Lemma 9 identifies MZ/2�kq with the quotient of
the mod-2 motivic Steenord algebraA� by the augmentation ideal of theMZ/2�-subalgebra
generated by Sq1 and Sq2, and the homotopy of kq ∧ MZ/2 as a comodule over the dual
motivic Steenrod algebra recorded by theMZ/2-based Adams spectral sequence for kq (3).

Remark 15 If F admits a real embedding, the Betti realization of kq acquires the structure
of a genuine Gal(C/R)-equivariant spectrum [8]. Equivariant forms of connective real and
complex topological K -theory exist. The survey [5], pointed out to us by John Rognes,
emphasizes a particularly well-behaved form. A natural question following Lemma 13 is
whether the Gal(C/R)-equivariant Betti realization of kq is this Gal(C/R)-equivariant con-
nective real topological K -theory spectrum. Dan Isaksen sketched an argument, based on the
Adams spectral sequence, that the Gal(C/R)-equivariant Betti realization of kq coincides
with the form employed in [6], at least after completion at the prime two.
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1028 A. Ananyevskiy et al.

Next we observe that kgl differs from the cover of algebraic K -theory introduced in [13].
By the cofiber sequence

kgl = f0(KGL≥0) → f−1(KGL≥−1) → s−1KGL = Σ−2,−1MZ,

we obtain a long exact sequence and an isomorphism

· · ·→π0,−1s−1KGL → π−1,−1kgl
∼=→ π−1,−1f−1(KGL≥−1)→π−1,−1s−1KGL→· · · .

(9)

The outer terms in (9) are trivial. Since π−1,−1f−1(KGL≥−1) ∼= π−1,−1KGL it follows that
π−1,−1kgl ∼= K1(F) ∼= F×. Over the complex numbers, this calculation distinguishes kgl
from the (2-complete) positive cellular cover of KGL in [13] because π−1,−1 of the latter is
trivial by construction.

Finally, we remark that kq does not coincide with the effective cover f0KQ featuring in
the solution of the homotopy limit problem for the C2-action on kgl in [24].

3 Slice computations

We shall identify the slices of kq similarly to the slices ofKQ in [23]. The crucial ingredients
are the Wood cofiber sequence (7) and the slices of connective algebraic K -theory kgl.

Theorem 16 Over F the canonical map kgl → KGL induces an isomorphism on all non-
negative slices. The negative slices of kgl are zero.

Proof Since kgl = f0KGL by Lemma 4, this follows by construction. 
�
Identifying the slices of kq is more involved because kq �= f0KQ.

Theorem 17 When char(F) �= 2 the nonnegative slices of kq are given as

sqkq=
{

Σ2n,2nMZ/2 ∨ Σ2n+2,2nMZ/2 ∨ · · · ∨ Σ4n−2,2nMZ/2∨Σ4n,2nMZ q=2n,

Σ2n+1,2n+1MZ/2 ∨ Σ2n+3,2n+1MZ/2 ∨ · · · ∨ Σ4n+1,2n+1MZ/2 q=2n+1.

The negative slices of kq are zero. Moreover, the canonical map kq → KQ induces a natural
inclusion on slices, and respects the multiplicative structure.

Proof Sincekq = f0(KQ≥0) is (very) effective, its negative slices are zero.Applying the slice
functor to (7) yields a cofiber sequence. The natural isomorphism sq ◦ Σ1,1 ∼= Σ1,1 ◦ sq−1

of [23, Lemma 2.1] shows the forgetful map f : kq → kgl induces an isomorphism on zero
slices

s0kq
∼=−→ s0kgl,

and likewise for the unit map 1 → kq.
For the 1-slices there is a cofiber sequence

Σ1,1s0kq = Σ1,1MZ
η−→ s1kq

s1f−→ s1kgl = Σ2,1MZ
s1h−→ Σ2,1s0kq = Σ2,1MZ.

Here s1h can be identified with an integer n ∈ Z. Comparison with the hyperbolic map
KGL → KQ in [23, §4.3] shows that n = 2, so that s1kq = Σ1,1MZ/2.
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On very effective hermitian K -theory 1029

For the 2-slices there is a cofiber sequence

Σ1,1s1kq = Σ2,2MZ/2
η−→ s2kq

s2f−→ s2kgl = Σ4,2MZ
s2h−→ Σ2,1s1kq = Σ3,2MZ/2.

Hence s2h = 0, the cofiber sequence splits, and we get s2kq = Σ2,2MZ/2 ∨ Σ4,2MZ.
Moreover, s2f is the projection map onto Σ4,2MZ.

For the 3-slices there is a cofiber sequence

Σ1,1s2kq = Σ3,3MZ/2 ∨ Σ5,3MZ
η−→ s3kq

s3f−→ s3kgl = Σ6,3MZ
s3h−→ Σ2,1s2kq.

Here s3h maps trivially to Σ4,3MZ/2, while the component of s3h mapping to Σ6,3MZ can
be identified with an integer n ∈ Z. We deduce n = 2 by comparison with the hyperbolic
map KGL → KQ in [23, §4.3]. Hence we obtain s3kq ∼= Σ3,3MZ/2 ∨ Σ5,3MZ/2.

Iterating these arguments produces the claimed calculation. 
�
Remark 18 Contrary to the calculation of the slices of KQ in [23] there is no “mysterious
summand” appearing in Theorem 17 thanks to the connectivity of kq. Each slice of kq is a
finite sum of motivic Eilenberg–MacLane spectra for the groups Z and Z/2. The odd slices
of kq are cellular of finite type for every F [25, §3.3], and likewise for all the slices when
char(F) = 0.

The multiplicative structure on the graded slices s∗kq can be identified similarly to s∗KQ
as in [22, Theorem3.3]. In more details, there is a motivic weak equivalence

s∗kq ∼= MZ[η,
√

α]/(2η = 0, η2
δ−→ √

α)

where η has bidegree (1, 1) and
√

α is a class of bidegree (4, 2) arising from the (8, 4)-
periodicity operator onKQmentioned in the introduction. The multiplicative structure is not
quite that of a polynomial ring; for example, the multiplication s1kq ∧s0kq s1kq → s2kq is
given as the composition

s1kq ∧s0kq s1kq ∼= Σ2,2MZ/2 ∨ Σ3,2MZ/2
id∨δ−−→ Σ2,2MZ/2 ∨ Σ4,2MZ

where δ : MZ/2 → Σ1,0MZ is the connecting map. Moreover, the action of the Hopf map
η on the slices of kq can be read off from the proof of Theorem 17, giving us the next result.

Theorem 19 When char(F) �= 2 the slices of kq[ 1
η
] = KW≥0 are given by

sq(KW≥0) = Σq,q
(
MZ/2 ∨ Σ2,0MZ/2 ∨ Σ4,0MZ/2 ∨ · · ·

)
,

and

s∗(KW≥0) ∼= MZ[η±1,
√

α]/(2η = 2
√

α = 0, η2
Sq1−−→ √

α).

The canonical map KW≥0 → KW induces the natural inclusion on slices, and respects the
multiplicative structure.

As in the case of s∗kq, the multiplicative structure is not quite polynomial, and because
of the occurrence of Sq1 notMZ/2-linear. Let dkq1 (q) : sqkq → Σ1,0sq+1kq denote the first

slice differential as amap ofmotivic spectra, and similarly forKW≥0. ByTheorem17,dkq1 (q)

is a map between finite sums of motivic Eilenberg–MacLane spectra for the groups Z and
Z/2. Thus dkq1 (q) can be described via its restriction dkq1 (q, i) to the summand corresponding
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to the unique suspension Σq+i,q . We note that dkq1 (q, i) splits into at most three nontrivial
components.

Let τ ∈ h0,1 ∼= μ2(F) and ρ ∈ h1,1 ∼= F×/2 denote the classes represented by −1 ∈ F ;
h p,q is shorthand for the mod-2 motivic cohomology group of F in degree p and weight q .
There are canonical maps pr : MZ → MZ/2 and ∂ : MZ/2 → Σ1,0MZ.

Theorem 20 When char(F) �= 2 the d1-differential in the slice spectral sequence for kq is
given by

dkq1 (q, i) =
{

(Sq3Sq1, Sq2, 0) q − 1 > i ≡ 0 mod 4

(Sq3Sq1, Sq2 + ρSq1, τ ) q − 1 > i ≡ 2 mod 4

dkq1 (q, q) =
{

(0, Sq2 ◦ pr, 0) q ≡ 0 mod 4

(0, Sq2 ◦ pr, τ ◦ pr) q ≡ 2 mod 4

dkq1 (q, q − 1) =
{

(∂Sq2Sq1, Sq2, 0) q ≡ 1 mod 4

(∂Sq2Sq1, Sq2 + ρSq1, τ ) q ≡ 3 mod 4.

Proof Use Theorem 17 and the identification of dKQ
1 for KQ in [23, Theorem 5.5]. 
�

Theorem 21 When char(F) �= 2 the d1-differential in the slice spectral sequence forKW≥0

is given by

dKW≥0
1 (q, i) =

{
(Sq3Sq1, Sq2, 0) i ≡ 0 mod 4

(Sq3Sq1, Sq2 + ρSq1, τ ) i ≡ 2 mod 4.

Proof This follows from Theorem 19 and the identification of dKW
1 forKW recorded in [23,

Theorem 5.3]. 
�
Following [22, §4] we calculate the first slice differentials for kq and KW≥0 in terms of

the multiplicative generators for their slices.
We note that dkq1 (

√
α
m
ηn) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
√

α
m−1

ηn+3 + (Sq2 + ρSq1)
√

α
m
ηn+1 + Sq3Sq1

√
α
m+1

ηn−1 m ≡ 1(2), n > 1

Sq2
√

α
m
ηn+1 + Sq3Sq1

√
α
m+1

ηn−1 m ≡ 0(2), n > 1

τ
√

α
m−1

η4 + (Sq2 + ρSq1)
√

α
m
η2 + δSq2Sq1

√
α
m+1 m ≡ 1(2), n = 1

Sq2
√

α
m
η2 + δSq2Sq1

√
α
m+1 m ≡ 0(2), n = 1

τpr
√

α
m−1

η3 + Sq2pr
√

α
m
η m ≡ 1(2), n = 0

Sq2
√

α
m
η m ≡ 0(2), n = 0,

(10)

while d
KW≥0
1 (

√
α
m
ηn) is given by

⎧
⎨

⎩

τ
√

α
m−1

ηn+3 + (Sq2 + ρSq1)
√

α
m
ηn+1 + Sq3Sq1

√
α
m+1

ηn−1 m ≡ 1(2)

Sq2
√

α
m
ηn+1 + Sq3Sq1

√
α
m+1

ηn−1 m ≡ 0(2).
(11)
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Remark 22 The corresponding formula for dKQ
1 (

√
α
m
ηn) in [22, §4] contains a typo when

m ≡ 1(2), n = 0. We thank Bert Guillou for pointing this out to us.

Remark 23 Bachmann [2] determined the very effective slices of KQ and hence of kq up to
extensions. Additional work is needed to identify the corresponding first very effective slice
differentials. A first step is to calculate the endomorphisms of the very effective zero slice of
KQ. The very effective slices of KW≥0 were determined up to extensions in [2, Lemma 6].

4 Homotopy computations

First we identify the target of the slice spectral sequences for the sphere and very effective
hermitian K -theory.

Theorem 24 Over a field F of characteristic �= 2 there are conditionally convergent slice
spectral sequences

π�s∗1 �⇒ π�1∧
η , (12)

and

π�s∗kq �⇒ π�kq∧
η . (13)

Proof Here (12) is shown in [25, §3]. The only issue in (13) is to identify the quotient of
kq by η with a slice complete spectrum [24, §4]. This follows directly from Lemma 4,
Proposition 11 and [24, Lemma 3.11]. 
�

To formulate our identification of the 0-line of kq we recall the definition of Milnor–Witt
K -theory KMW∗ (F) in [19]. It is the quotient of the free associative integrally graded ring
on the set of symbols [F×] := {[u] | u ∈ F×} in degree 1 and η in degree −1 by the
homogeneous ideal enforcing the relations

(1) [uv] = [u] + [v] + η[u][v] (η-twisted logarithm),
(2) [u][v] = 0 for u + v = 1 (Steinberg relation),
(3) [u]η = η[u] (commutativity), and
(4) (2 + [−1]η)η = 0 (hyperbolic relation).

Milnor–Witt K -theory is ε-commutative for ε = −(1+[−1]η). By work of Morel [17] there
is an isomorphism with the graded ring of endomorphisms of the sphere

KMW∗ (F) ∼=
⊕

n∈Z
πn,n1.

Moreover, KMW
0 (F) ∼= GW (F), the Grothendieck–Witt ring of quadratic forms with

its standard presentation, inverting η in KMW∗ (F) yields the ring of Laurent polynomials
W (F)[η±1] over the Witt ring, and KMW∗ (F)/η = KM∗ (F), the Milnor K -theory ring of F .

Theorem 25 Over a field F of characteristic �= 2 the unit map 1 → kq induces an isomor-
phism on 0-lines

K MW∗ (F) =
⊕

n∈Z
KMW
n (F)

∼=→
⊕

n∈Z
π−n,−nkq. (14)
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Proof Recall from [25, §5] the short exact sequence

0 → πn,n1 → πn,n1∧
η ⊕ πn,n1[ 1η ] → πn,n1∧

η [ 1
η
] → 0. (15)

Similarly, following [25, §3], the η-arithmetic square

kq kq[ 1
η
]

kq∧
η kq∧

η [ 1
η
]

for very effective K -theory yields a short exact sequence

0 → πn,nkq → πn,nkq∧
η ⊕ πn,nkq[ 1

η
] → πn,nkq∧

η [ 1
η
] → 0. (16)

Here we use the vanishing of πn+1,nkq∧
η [ 1

η
] and πn−1,nkq. On the terms contributing to the

0-line, the map from (12) to (13) is an isomorphism. Theorem 20 combined with the same
computations as in [25, §4] show the said isomorphism persists to the E∞-page. By invoking

Theorem 24 we conclude πn,n1∧
η

∼=→ πn,nkq∧
η and πn,n1∧

η [ 1
η
] ∼=→ πn,nkq∧

η [ 1
η
]. As noted

above, by [17] we have πn,n1[ 1η ] ∼=→ πn,nkq[ 1
η
] ∼= πn,nKW≥0 ∼= W (F). A straightforward

comparison between (15) and (16) allows us to deduce (14). 
�

Remark 26 It was pointed out to us by Bachmann that the results of [2] yield an isomorphism
of the zeroth generalized slices s̃01 ∼= s̃0KQ. This gives another proof for Theorem 25.

We note the isomorphism πn+1,nkq
∼=→ πn+1,nkq∧

η follows as in [25, Proposition 5.3].
Thus for the purpose of identifying the 1-line ofkqwemay use Theorem20 and computations
as in [25, §4] to deduce:

Proposition 27 The only nontrivial terms in (13) contributing to πn+1,nkq are

E∞
n+1,q,n(kq) =

⎧
⎪⎪⎨

⎪⎪⎩

h−n+1,−n+2/Sq2(h−n−1,−n+1) q = 2

h−n,−n+1/Sq2pr(H−n−2,−n) q = 1

H−n−1,−n q = 0.

Here hi, j and Hi, j denote the mod-2 and integral motivic cohomology groups of F in degree
i and weight j . This determines the 1-line of kq up to extensions; these are nontrivial in
general, as already the classical computation of K3(Q) implies. When n > 1 we read off the
vanishing πn+1,nkq = 0. The first nontrivial group on the 1-line is π2,1kq ∼= μ2(F) ∼= Z/2.
When n = 0 we obtain π1,0kq ∼= π1,0KQ ∼= F×/2 ⊕ μ2(F). Furthermore, there is a short
exact sequence

0 → h2,3/Sq2(h0,2) → π0,−1kq → h1,2 → 0. (17)

When n ≤ −2 the group πn+1,nkq surjects onto the integral motivic cohomology group
H−n−1,−n , with kernel described by Proposition 27.
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