
Xenon doping of Liquid Argon in ProtoDUNE Single Phase

Niccolò Gallice for the DUNE Collaboration

LIDINE 2021 14/09/2021 San Diego

Content

- Motivation of xenon doping in ProtoDUNE-SP
- Scintillation model
- ProtoDUNE Single Phase
 - Status
 - Dedicated X-ARAPUCA setup
 - ProtoDUNE Photon Detection System
- Xenon injection
- Results
- Conclusions

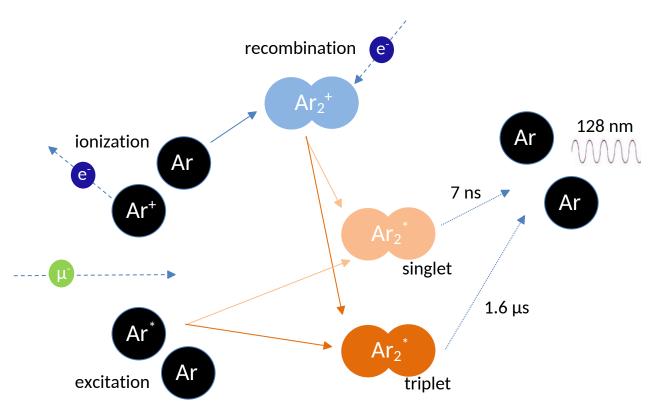
Motivation of Xe doping (I)

- *LAr* as a scintillating medium and challenges to use it:
 - Scintillation efficiency comparable with other liquid noble gases
 - Very efficient Pulse Shape Discrimination (PSD) due to the significant difference in relative intensity of the fast and slow components
 - Wavelength of scintillation that lies in the VUV range (~128 nm). A common and convenient solution is the use of wavelength shifters (WLS) that comes with some issues:
 - Low geometrical efficiency
 - Sensitivity to mechanical stress
 - Scattering and re-absorption of the re-emitted light inside the WLS layer
 - Dependence of the WLS efficiency on the coating method
 - Long term stability?

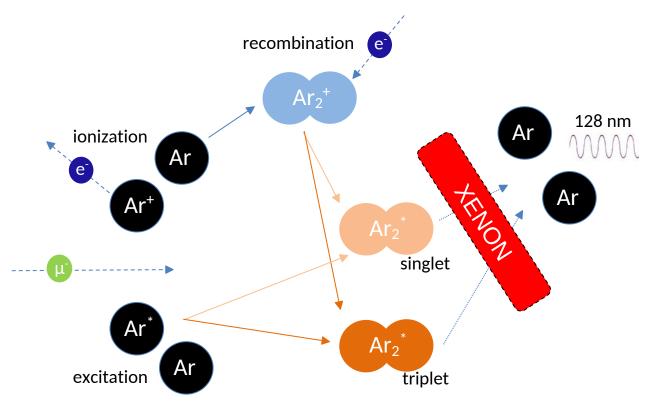
14/09/2021

Motivation of Xe doping (II)

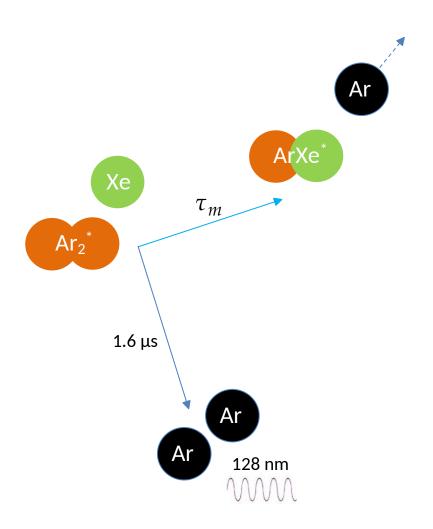
- Elegant alternative: volume distributed "WLS" in LAr experiments \rightarrow xenon doping
 - Shift 128 *nm* wavelength to 178 *nm*
 - Uniform light distribution
 - Larger Rayleigh scattering length @178 nm
 - Increase light yield and detection efficiency far from readout planes
- In literature small scale tests or gas mixture tests so far
 - How about physics, uniformity and stability of large scale Xe doped LAr setups?


With these in mind, an R&D effort and Xe-doping in ProtoDUNE-SP was performed

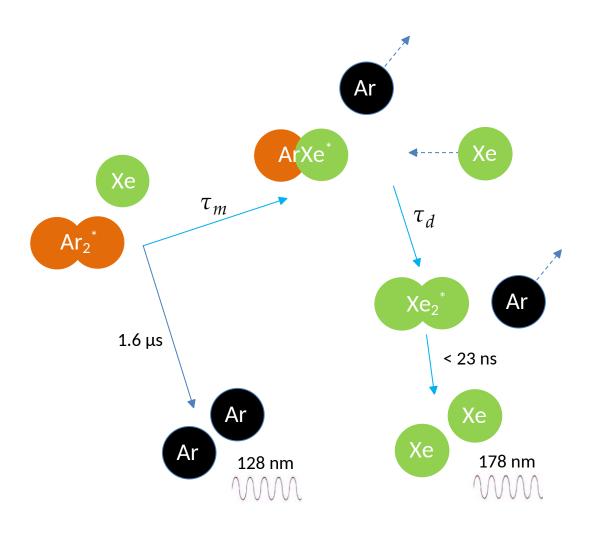
LAr scintillation


- An ionizing particle creates liquid argon ionization and excitation
- These states interact with argon creating excited molecules
- Singlet and triplet states are created
- De-excitation emits 128 *nm* light

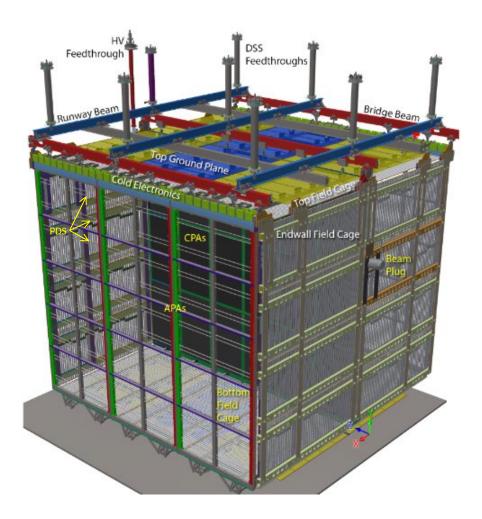
LAr scintillation


- An ionizing particle creates liquid argon ionization and excitation
- These states interact with argon creating excited molecules
- Singlet and triplet states are created
- De-excitation emits 128 *nm* light

LAr + Xe scintillation

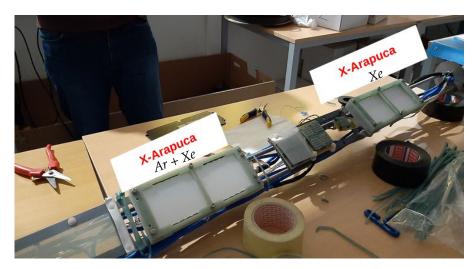

- The excited Ar dimer can interact with xenon
- The result will be an excited state of ArXe molecule
- The time scale of $ArXe^*$ creation τ_m depends on Xenon concentration
- τ_m is smaller at higher concentration making this process more effective

LAr + Xe scintillation

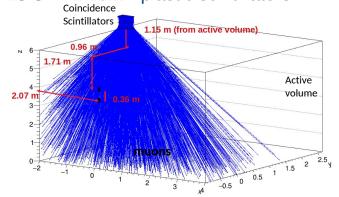

- The excited $ArXe^*$ dimer can interact with Xenon creating a Xe_2^*
- The time constant of this process is τ_d and it depends on Xenon concentration
- The higher the concentration the more effective the process is
- As final process Xe_2^* de-excites (very fast) emitting $178 \ nm$ light

ProtoDUNE Single Phase

ProtoDUNE-SP is a full scale LAr-TPC prototype for the first module of DUNE far detector located at CERN Neutrino Platform.


- Total LAr mass of 770 t
- Two drift volumes separated by a CPA (Cathode Plane Assembly)
- 500 *V/cm* electric field to drift ionization charge
- Charge is collected by APA (Anode Plane Assembly) wires
- Photon Detection System (PDS) modules are installed in APA frames
- Ar recirculation pump failure caused a steady contamination of 5.4 ppm of N₂ before xenon doping tests.

Dedicated X-ARAPUCA setup

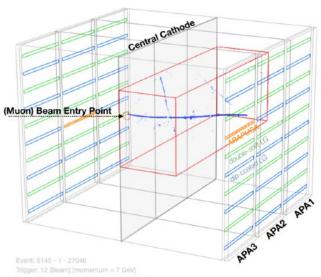


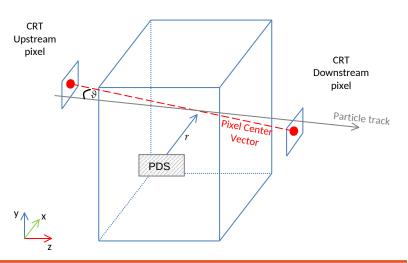
APA-5
frame

X-Arapuca

APA-6
frame

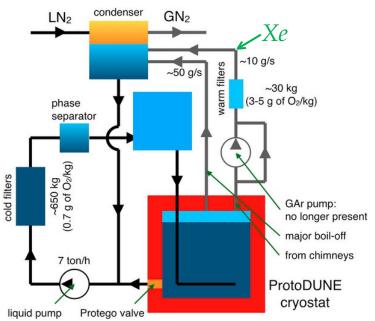
- Installation of xenon scintillation sensitive modules into the cryostat:
 - X-ARAPUCA **equipped with a fused-silica window** that is sensitive to *Xe* (178 *nm*) light only "Xe XA"
 - X-ARAPUCA sensitive to Ar (128 nm) + Xe (178 nm) light"Ar+Xe XA"
- Sample of vertical cosmic muons, triggered through a standard triple coincidence of $15.5 \times 44~cm^2$ plastic scintillators.





ProtoDUNE-SP PDS

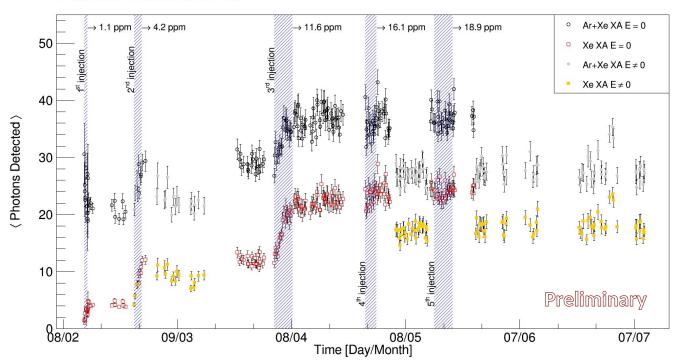
- 10 PDS detectors, regularly spaced along the vertical direction, are inserted into each APA module
- Three different designs: "double-shift light guides", "dipcoated light guides", and ARAPUCA light traps
- Sample of horizontal crossing muons, selected through a Cosmic Ray Tagger (CRT)
- The CRT is made of scintillator counters (strips) that enable the estimation of muons tracks position
- (@500 V/cm) If TPC and CRT reconstructed track are compatible $\cos\theta > 0.999$, the radial distance r is computed.



Xenon Injection

- Xenon injection was tested in a small-scale setup with *Ar* recirculation system
- $\frac{Ar}{Xe} > 10^3$ to avoid freeze-out effect
- Xe is injected in the gas phase far from the LAr condenser at a rate $36 \ g/h \ [50 \ ppb/h]$, this allows full mixing in gas flow
- From numerical (CFD) simulation of LAr flow, Xe is expected to be uniformly distributed within few hours
- 5 different injections were operated, and the detector response was monitored in the meanwhile
- In total 13.5 kg of Xe injected into the cryostat. This is equivalent to 18.8 ppm of Xe in mass, assuming 770 tons of LAr.

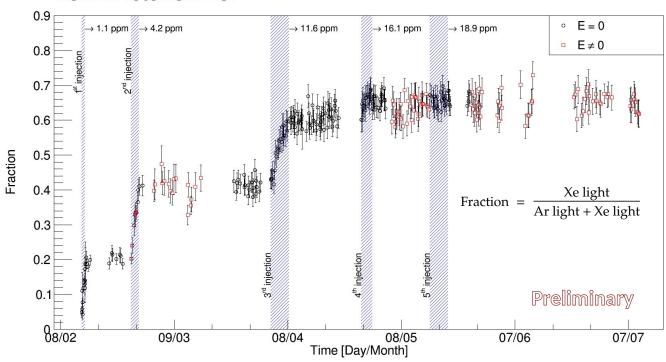
# Injection	Date	Injected Xe [gr]	Injected Xe [ppm]	Cumulative Xe [ppm]
1	13-14 February 2020	776	1.1	1.1
2	26-28 February 2020	2234	3.1	4.2
3	3-8 April 2020	5335	7.4	11.6
4	27-30 April 2020	3192	4.5	16.1
5	15-16 May 2020	400	0.6	16.7
	18-20 May 2020	1584	2.2	18.9



Photons collected

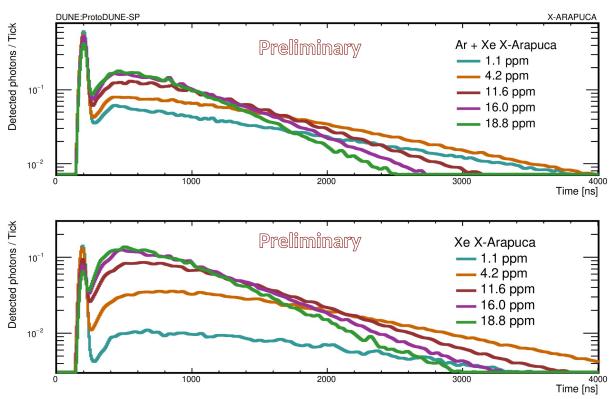
DUNE:ProtoDUNE-SP

 Light detected by the X-ARAPUCA system as a function of time: number of photons detected increases steadily at each doping. Samples with lower photon yield correspond to periods when TPC electric field was on (lower recombination).

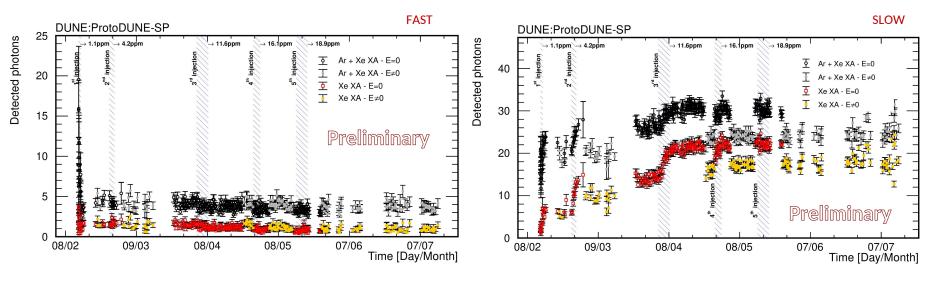


Light Fraction

DUNE:ProtoDUNE-SP


- Fraction of Xe light w.r.t. total light (Ar + Xe). The fraction increases with the doping and reaches a plateau around 0.65 for xenon concentration greater than 16.1 ppm.
- The red points correspond to data collected with the nominal TPC electric field, while black points refer to data with no electric field.

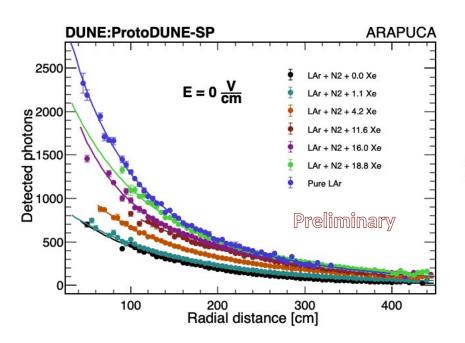
Light time-distribution

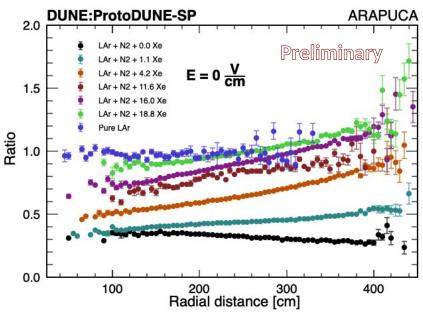

• Single PhotoElectron deconvolved waveforms of X-ARAPUCA for different xenon concentrations: Ar + Xe light (top) and Xe light only (bottom). Light increases as a function of Xe concentration, and the distribution becomes shorter in time.

Fast vs Slow components

- FAST: integrated light from trigger to $70 \, ns$. Unexpected very quick drop during the first doping period, it can be reasonably explained with slight absorption of LAr light from Xe^{\dagger} . Thereafter the light remains constant.
- **SLOW**: integrated light from 70 ns to the end of the signal. It increases steadily at each doping.

[†] Neumeier et al., "Attenuation of vacuum ultraviolet light in pure and xenon-doped liquid argon — an approach to an assignment of the near-infrared emission from the mixture", EPL (EurophysicsLetters)111(jul, 2015) 12001, doi:10.1209/0295-5075/111/12001.





16

Light collection vs distance

Analysis of ProtoDUNE-SP PDS:

- Light collected by a PDS module as a function of its distance to the track[†]. N_2 contamination decreases significantly the light collected, while the Xe injection recovers the light.
- Ratio of collected light relative to the pure LAr (no N_2). The light collection uniformity improves as the light collection efficiency far from the APA increases. The trends shown are unaffected by the presence of the TPC electric field.

[†]Kyle Spurgeon, "Measuring the Rayleigh Scattering Length of Liquid Argon in ProtoDUNE-SP", LIDINE 2021

Charge collection

- Signal strength is used as indicator of charge collection efficiency. It is the average amount of charge collected on the TPC collection wires during a standard run with cosmic rays.
- A straight line indicates the reference value of 93 $ke^-/channel/ms$ at $E = 500 \ V/cm$
- Sudden drops were due to temporary purity degradation
- The response for APA-3 is always lower for the first few days after high voltage is turned on
- No difference in signal strength after xenon injection.

Conclusion

- First demonstration that a large size (770 t) LAr-TPC can be safely operated with xenon at the level of ~20 ppm
 - In total 13.5kg of Xe, 18.8 ppm in mass injected into the cryostat
- $128 \rightarrow 178 \ nm$ light shift is effective already at xenon concentrations of a few ppm and it reaches a plateau at $\sim 16 \ ppm$
- It helps recovering about 95% of the light originally lost due to N_2 pollution
- The light signal is faster, reducing late light ambiguity
- The profile of the collected light versus the distance is more uniform after the doping, indication of the longer Rayleigh scattering length
- Xenon up to 18.8 ppm does not affect the performance of the charge collection by TPC.

THANK YOU

