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THE JORDAN ALGEBRAS OF RIEMANN, WEYL
AND CURVATURE COMPATIBLE TENSORS

CARLO ALBERTO MANTICA AND LUCA GUIDO MOLINARI

ABSTRACT. Given the Riemann, or the Weyl, or a generalized curvature tensor
K, a symmetric tensor b;; is named ‘compatible’ with the curvature tensor

if 0" Kjkim + ;™ Kiitm + b Kijim = 0. Amongst showing known and

new properties, we prove that they form a special Jordan algebra, i.e. the
symmetrized product of K-compatible tensors is K-compatible.

1. Introduction

Let (M,g) be a n—dimensional Riemannian or pseudo-Riemannian manifold,
and Kk, a generalized curvature tensor (the Riemann, the Weyl, or any tensor
with the algebraic properties of the Riemann tensor). In ref.[I5] we introduced this
concept: a symmetric tensor b;; is K —compatible if

(1) bi"™ Kjkim + b Kpitm + bk Kijim = 0.

We name (K, b) a compatible pair. The motivation was the following theorem [15]: if
b;; is K —compatible with eigenvectors X, Y, Z and eigenvalues z,y, z with z # z, v,
then:

(2) KijimX'Y7Z™ = 0.

It extends a result by Derdziriski and Shen [7] who proved the same for the Riemann
tensor, with the hypothesis that b;; is a Codazzi tensor, V;bjr, = V;b;;,. Despite the
increased generality, the replacement of the Codazzi condition with the algebraic
condition (), enabled a far simpler proof of the new theorem.

Equation () with Riemann’s tensor originally appeared in a paper by Roter,
on conformally symmetric spaces ([21I] lemma 1). Riemann and Weyl compatible
tensors were studied in refs. [16] [18| [10].

Examples of Riemann compatible tensors are the Codazzi tensors [I5], the Ricci
tensors of Robertson-Walker or perfect-fluid generalized Robertson-Walker space-
times [20], the second fundamental form and the Ricci tensor of a hypersurface
embedded in a (pseudo)Riemannian manifold [18], the Ricci tensors of ‘weakly Z-
symmetric’ manifolds (V;Z;, = A;Zji, + B;j Zii, + DiZs; with Z;; = Ri; + ©gij,
Ay — By, closed 1-form) [I7] that include ‘weakly Ricci-symmetric’ ones (¢ = 0)
[24] and others (see [4, B]), or ‘pseudosymmetric manifolds’ [§] ([V;, V] Riimp =
LQkimpij, where L # —1/3 is a scalar function and @ is the Tachibana tensor built
with the Riemann and Ricci tensors).

A Riemann compatible tensor is also Weyl compatible, but not the opposite. The
Ricei tensors of Godel ([I1], th.2), or pseudo-Z symmetric space times [19] are Weyl
compatible.
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In sections 2 and 3 we review Riemann and Weyl compatible tensors, with some
new results and examples, and their relation with known identities by Lovelock.
Then, in sections 4, 5 and 6, we investigate the algebraic properties of generalized
curvature tensors and K —compatible tensors. The main result is that the latter
form a special Jordan algebra, i.e. the set of K —compatible tensors is closed for the
symmetrized product.

2. RIEMANN COMPATIBLE TENSORS

A symmetric tensor is Riemann compatible if:
(3) 0" Rikim + b;"" Riitm + bi™ Rijim = 0.

The relation may be written b;™ Rjg), = 0, where (ijk) denotes the sum on

cyclic permutations of the indices. Contraction with the metric tensor g/ gives
Rim b — b Ry = 0 i.e. b commutes with the Ricci tensor. Contraction with bt
gives biijklmbjl + bkaijlmbjl = 0 i.e. b commutes with the symmetric tensor

ij = jklmbkl

Example 2.1. Codazzi tensors are Riemann compatible.

Proof: in the identity [V;, Vb = —Riji"bkm — Riji™bmi sum on cyclic permu-
tations of ijk. The first Bianchi identity R ;)™ = 0, gives:

Vi, Vjlbe + [V, Vilbi + [V, Vilbji = —(b" Rjkim + b Riitm + b Rijim)-
The left hand side is zero for Codazzi tensors.
Example 2.2. If V; A, = p; Ay, then A;A; is Riemann compatible.
P'I“OOf.' Ai[Vj,Vk]Al = Ai(Vjpk — V;gpj)Al = Al[Vj, Vk]Ai. Then AiRjklmAm =

AlRjii™ A ; the sum on cyclic permutations of ijk gives zero in r.h.s.

2.1. Codazzi deviation. In ref.[16] we introduced the natural concept of Codazzi
deviation of a symmetric tensor:

(4) ngkl = vjbkl — vkbjl-
Properties: ngkl = —Cgkjl, ngkl + cgklj + cgljk =0, and
(5) ViGiki + ViCri + ViGiji = —(bimRju™ + bjmRea™ + bemRii™).

Once again we read that a Codazzi tensor is Riemann compatible. By eq.(@) the
differential condition V ;@ = 0 is equivalent to the algebraic eq.(3]).
A Veblen-like identity holds:

(6) VG + ViCri + Vi + Vi
=bimBji™ + bjmBRra™ + bem Riji™ + bim Rir; ™

Example 2.3. For a concircular vector, V; X; = pg;;, the tensor X; X; is Riemann
compatible.

Proof: It is City = (Vip)gr — (Vip)gj and Vi€ = (ViVip)gr — (ViVip)gi.
The cyclic sum in [l gives zero.

Note: the existence of a concircular time-like vector is necessary and sufficient for
a space-time to be generalized Robertson-Walker [6].
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Example 2.4 (Lovelock’s identities).
1) The Codazzi deviation of the Ricci tensor is: € = V;jRu—ViRj = —V™Rjjim.
Property ([@]) becomes a Lovelock’s identity for the Riemann tensor ([14], p.289):

(7) ViV Rjkim + ViV™ Riitm + ViV Rijim = —R™ (i Rjgyim -

2) The Codazzi deviation of Schouten’s tensmﬂ is Cjr = —ﬁVijklm. Property
@) is V(i Gy = —(n—=3)S™ (i Rjkyim- The term with the metric tensor in S; does
not contribute (Bianchi identity), and one is left with (see [16]):

n—3
n—2

(8) ViV Cikim + ViV Critm + ViV Cijim = — R"™ (i Rjyim -

In particular inn > 3, if V,,Cij™ = 0 (conformally symmetric spaces, Roter [21])
the Ricci tensor is Riemann compatible.

Proposition 2.5. If u;u; is Riemann compatible, and uPuy # 0, then u; is eigen-
vector of the Ricci tensor.

Proof. Since u;u; is Riemann compatible, it commutes with the Ricci tensor: R;; wug,
= Ryju/u;. Contraction with u® gives: Rijul (upuk) = (Rkjujuk)ui =0. O

We extrapolate a simple statement from Proposition 5.1 in [10]. A direct proof
is possible, by writing (B]) for the Ricci tensor in the warping coordinates:

Proposition 2.6. In a warped spacetime ds? = +dt* + a(t)zgzudx“dx” the Ricci
tensor is Riemann compatible if and only if the Ricci tensor of the Riemannian
submanifold (M*, g*) is compatible with the Riemann tensor of the submanifold:

* x O * * o * * o __
R;LdRup)\ +RuaRp,u)\ +Rpcr JUIZDN =0.

2.2. Geodesic maps. A map (M,g) — (M,g) is geodesic if every geodesic line
is mapped to a geodesic line. It is necessary and sufficient that there exists a 1-

form such that the Christoffel symbols are related by ffj = l"fj + 68X, + X0,
(Levi-Civita, 1896). The relation between the Riemann tensors is

_ —m o =m —d=m  —d=m
Rju™ = =0il + 0Ly = Tilja + Ujilhg = Rji™ — 8™ Pji + 0™ Pra,

where Pkl = Vle — Xle = Bk- It is: le = le + (n — 1)le.

Geodesic maps preserve the (3,1) projective curvature tensor [22]: Pju™ = Pju™,
where ijlm = jklm + ﬁ(éijkl — 5kaﬂ).

Proposition 2.7 ([I6]). If b;; = bji, a geodesic map satisfies

9) bimBikt™ + bjm Biit™ + brm Rijt™ = bim Rjta™ + bjm Riit™ + brm Riji™

Then, if (R,b) is a compatible pair, also (R,b) is.

1Schouten tensor: Sij = ﬁ [Rij — ﬁgijl Properties: VkSkj = VjSkk, VCikim =
(n—=3)(ViSji — V;Ski)-
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3. WEYL COMPATIBLE TENSORS

A symmetric tensor is Weyl compatible if:
(10) bimCirt™ + bjmCrit™ + b Ciji™ = 0.
This identity holds for any symmetric tensor [16]:
(11) bimCit™ + bjimCrit™ + biemCiji™ = bimRji™ + bjmRiit™ + bem Riji™
+ =5 [kt (bim B;™ = bjm Ri™) + git (0jm Ri™ — bim B;™) + g5t (bem Ri™ — bim Ri™)] .
A simple consequence is obtained in dimension n = 3, where the Weyl tensor is
zero (see [9], in less simple manner):

Proposition 3.1. Inn = 3 a Ricci tensor is Riemann compatible.

If b;; is Riemann compatible, then it commutes with the Ricci tensor. As a
result, the identity shows that b;; is also Weyl compatible. Therefore, Riemann
compatibility is a stronger condition than Weyl compatibility. The identity (II))
can be rewritten in terms of the Codazzi deviation:

(12) bimCirt™ + bimCrit™ + bimCist™ = Vi@t + Vi Drit + Vi Diji
=L V"™ (GijmGrt + CirmGit + Crimii)-

where Zji = Gt — 5 (Cim™ gk — Com™ gj1)-

Example 3.2. If a vector field is torqued [5), i.e. V;7; = pgij+cut; with ay. ™ =0,

then 1;7; is Weyl compatible.

Proof: one evaluates i = —p(Tigk1 — Tkgj1) and Djg = —ﬁ‘ﬁjkl. It turns out

that the r.h.s. of [A2) is zero.

Note: the existence of a torqued time-like vector is necessary and sufficient for a
space-time to be twisted [5].

Proposition 3.3 (see remark 4.2 of [12]). In a space-time of dimension n = 4, if
u;u; is Weyl compatible and time-like unit (uFu, = —1) then the Weyl tensor is
wholly determined by the electric tensor Ex = Cjklmujum:

(13) Cabcd - 2(uaudEbc - uauchd + ubucEad - ubudEac)
+gadEbc - gachd + gbcEad - gdeac
Proof. In n = 4 the following Lovelock’s identity holds ([I4], ex 4.9 page 128):
0 :garcbcst + gbrccast + gcroabst + gathcrs + gthcars + gctoabrs
+ gastctr + gbchatr + gcscabtr
The contraction with u®u" gives
0=- Cbcst + uburccrst + ucurcrbst + uturcbcrs + gbtuaurccars + gctuaurcabrs
+ ’UJSUTOthT + gbsuaurocatr + gcsuauTCabtr
= - Cbcst + u” (usztcr + uccrbst + utccbsr + ustctr)
+ gthcs - gctEbs - gbsEct + gcsEbt

This gives the Weyl tensor in terms of its single and double contractions with u’.
If u;u; is Weyl compatible, the single contraction is: Cjpru” = uplj — uj By, and
the result is obtained. For an extension to n > 4 see [12]. O
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3.1. Conformal maps. A map (M,g) — (M,g) is conformal if gr = €27 gu.
The Christoffel symbols transform according to: ff} =TI+ 0™ X + Xi0™y —
gi;X™, where X; = V,0. A conformal map leaves the Weyl tensor (3,1) unchanged:
C’jklm = Cj™. Therefore, Weyl compatibility is an invariant property of conformal
maps.

4. K-COMPATIBLE TENSORS

Riemann and Weyl compatibility extend to K —compatibility, where K is a gen-
eralised curvature tensor (GCT), i.e. a tensor with the algebraic properties of the
Riemann tensor under permutation of indices [I3]:

(14) Kirim = —Krjim = —Kjkmi,
(15) Kigim + Kpijm + Kijem = 0,
(16) Kjkim = Kimjk-

In analogy with the Riemann tensor, one shows that (I4)) and (I3 imply the sym-
metry (I6), and the identity Kj(x;m) = 0. The tensor Kj = K™ is symmetric.
A symmetric tensor b;; is K —compatible if:

(17) b K jkim + 0" Kiitm + bt Kijim =0

and (K, b) is a compatible pair. The property can be written b™ ; Kz, = 0.

The metric tensor is K —compatible, by the Bianchi property ([I3). The tensors
bi; and K;; commute: b, K, — Kinb™r = 0 (contract (I7) with gjl and use
symmetry).

Examples of K—compatible tensors were obtained by Shaikh et al. starting from
specific metrics (see for example [23,[1]). Bourguignon proved that if b;; is a Codazzi

tensor then f{jklm = Rjjrsb" 10, is a GCT, [2]. We prove a more general statement:
Proposition 4.1. If a;; and b;; are K—compatible, then I%jklm = Kjprs(a™ by, +

b"1a%,,) is a GCT.

Proof. The properties (I4)) and (@) are obvious; the Bianchi property (&) com-
pletes the proof: K¢xym = a" (1 Kjryrs 0°m + 0" 1 Kjp)rs a°m = 0 because each term
is zero being a or b K —compatible. ([l

4.1. Properties of K—compatible tensors. A linear combination of K-compatible
tensors obvioulsy is K-compatible. Now we prove:

Theorem 4.2. If a and b are K—compatible, then %(ab + ba) is K—compatible.

Proof. Let ¢;; = aikbkj + bikakj. Then:
Cm(ink)rm = aisbsijkrm + ajsbskairm + aksbsmKijrm +aSb
- _ais(bjkasrm + bkasjrm) - ajs(bkaisrm + bimKskrm)
- aks(biijsrm + bjmKsirm) +aSb
= —(a;°b;"™ — a;°0;"") Kisrm — (a;°b5™ — ax’0;"™) Kisrm
(aksbim — aisbkm)KJ—STm +aSb
isbjm - ajsbim)(Kksrm - Kkmrs) - (ajsbkm - aksbjm>(Kisrm - Kimrs)
aksbzm

= —(a
- - aisbkm)(strm - ijrs)

(
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= (a;°b;™ — a;°b;") Kirsm + (a;°01™ — arp®b;™ ) Kirom + (ax°0;™ — a;°05™) Kjrom
= (a;°b;" + b;%a;") Kirsm + (a;°01™ + b;%ar™ ) Kirom + (ax0;™ + bea;™ ) Kjrom
= Kprij + Kirjr + Kjrpi = f{(km’)j =0

because K is a GCT by Prop Bl O

Therefore, the linear space of K —compatible tensors is a special Jordan algebra.
In particular, the powers of b are K —compatible (powers n,n + 1,... are linear
combinations of lower powers by Cayley-Hamilton theorem). In particular (with
an exchange of indices) the tensor (b%);%(b*)x" Ky sim is a GCT. This enables the
simple proof of the theorem in [15], so short that we reproduce it:

Theorem 4.3 (Extended Derdzitiski-Shen theorem). Let b;; be K-compatible, X*,
Y?, Z% be eigenvectors of b;™ with eigenvalues x, y, z. If v # z and y # z then:

(18) KijuX'YiZF =0,
Proof. Consider the identities g™ (; Kjxyim = 0, 0™ (;Kjxyim = 0, (b2)m(iKJ—k)lm =0

and contract them with X?Y7Z*. The three algebraic relations are put in matrix
form:

1 1 1 KjkliXinZk 0
x Yy Z KkileinZk =10
z? y? 22 KijlkXinZk 0

The determinant of the matrix is (x — y)(z — z)(z — y). If the eigenvalues are
all different then Kjj;pX iYJZF = 0 (with contraction of any three indices). If
T =y # 2, the reduced system of equations still implies K;;;; XY’ Z* = 0. O

Proposition 4.4. If b is K-compatible and invertible, then b~' is K-compatible:
(19) (0~ (Krpprg =0

Proof. Multiply () by (b=1)%.(b=1)7s and obtain the identity: (b71)7 sKjpy +
(b1 Kyirs + (071" (b71) 0™ Kyjim = 0. Rewrite it as:
(bil)j(sKrl)kj - (bil)lesrkj + (bil)ir(bil)jsbkaijlm =0
The last two terms cancel, as shown by the chain:
(b_l)lesrkj = (b_l)ir(b_l)jsbkaijlm = Ksrkbbra = bib(b_l)jsbkaajlm
= bSCKSkabTa = blbbkaaclm = Kkbca :Kacbk; which is true as K is a GCT. O
We prove a Veblen-like identity:
Proposition 4.5. If b;; is K-compatible then:
(20) 0" Kikim — 0" Kitem + 1™ Kitjm — 0™ Kjkim = 0.
Proof. 0= ;" Kjkim +b;" Kyitm + bx™ Kijim = 0" Kjgim — b;™ (Kitkm + Kikim) +

b Kijim = 0" Kjkim — ;" Kitem + 0" Kijim + 08" Kjiim + 1™ Kijim
=b"Kjrim — b;" Kitkem + 01" Kijim — b1 Kiijm.- O
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4.2. More on generalised curvature tensors. A linear combination of GCTs is
a GCT. Given two compatible pairs (K, a) and (K,b) a new GCT tensor is obtained

in Prop[41l In particular, if a;; = g;; (the metric tensor) the following K’ is a GCT:
(21) = Djkrs (6rlbsm + brlésm) = Kjklsbsm - Kjkmsbsl

/
Jjkim

Proposition 4.6. If b is K-compatible, then b is K'-compatible.

Proof. The tensor J’Mm = Kjprb"m — Kjkmrb" is a GCT. Let us evaluate:
bmiK]/'klm = bminlebTm - bminkale = (bQ)Tinle — f{jkim- Both tensors
vanish if the cyclic sum (ijk) is taken. O

Proposition 4.7. (K,b) is a compatible pair for any symmetric tensor b if and
only if

K
(22) jim = = 1)(9 19jm — GimJjt)
where K is a scalar field.

Proof. The symmetry of the tensor is made explicit by writing b;; = %bTS(girgjs +
gisgjr). The compatibility relation must hold for any b"*, then:

0 = girKjis + 9jr Krits + gir Kijis + 9is Kirir + 9is Kritr + Grs Kijir-

Contraction with g** gives (n— 1)Kijir = gjr K — gir Kj1; contraction with g" gives
Kj, = 2g;,K*; and ([22) follows. The reverse, i.e. (22) implies (I7), is shown by
direct check. [l

A pseudo-Riemannian manifold of dimension n > 2 is an Finstein manifold if
Rij = L1Rg;; where R is the scalar curvature. Since V;R'; = VR, the scalar
curvature is constant. A manifold is a constant curvature manifold if the Riemann
tensor has the form (22)). Such manifolds are Einstein manifolds.

Corollary 4.8. A manifold is a constant curvature manifold if and only if
bi"™ Rjkim + b;" Riitm + b Rijim = 0 for all symmetric tensors.
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