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ABSTRACT2

High-density electroencephalography (hd-EEG) provides an accessible indirect method to3
record spatio-temporal brain activity with potential for disease diagnosis and monitoring. Due to4
their highly multidimensional nature, extracting useful information from hd-EEG recordings is a5
complex task. Network representations have been shown to provide an intuitive picture of the6
spatial connectivity underlying an electroencephalogram recording, although some information is7
lost in the projection. Here, we propose a method to construct multilayer network representations8
of hd-EEG recordings that maximize their information content and test it on sleep data recorded9
in individuals with mental health issues. We perform a series of statistical measurements on the10
multilayer networks obtained from patients and control subjects and detect significant differences11
between the groups in clustering coefficient, betwenness centrality, average shortest path length12
and parieto occipital edge presence. In particular, patients with a mood disorder display a13
increased edge presence in the parieto-occipital region with respect to healthy control subjects,14
indicating a highly correlated electrical activity in that region of the brain. We also show that15
multilayer networks at constant edge density perform better, since most network properties are16
correlated with the edge density itself which can act as a confounding factor. Our results show17
that it is possible to stratify patients through statistical measurements on a multilayer network18
representation of hd-EEG recordings. The analysis reveals that individuals with mental health19
issues display strongly correlated signals in the parieto-occipital region. Our methodology could20
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be useful as a visualization and analysis tool for hd-EEG recordings in a variety of pathological21
conditions.22

Keywords: high density electroencephalogram (hd-EEG); multilayer networks; bipolar disorder; maximum information23

1 INTRODUCTION
Recent developments in neuroscience are giving rise to an increasing amount of data on the functioning24
of the brain at different scales, from molecular processes at the level of single neurons to macroscopic25
signals encompassing the whole brain, as in electroencephalogram (EEG) or functional magnetic resonance26
imaging (fMRI). Despite the trove of accumulating data, disentangling the complexity of brain function is27
still a largely open issue. A particularly important goal is to develop tools that are able to extract useful28
information from brain activity measurements on individual subjects in order to identify potential network29
dysfunction and support diagnosis (Bassett, 2021).30

It is becoming increasingly clear that brain activity is strongly interconnected and hierarchically organized,31
requiring a sophisticated mathematical description to infer its underlying properties from measurements.32
The emerging field of network neuroscience is advocating the use of networks descriptions for a statistical33
analysis of brain functions at multiple spatio-temporal scales (Bassett and Sporns, 2017). As in many34
other applications, a network representation can be derived by suitably thresholding the covariance matrix35
of the signal recorded at different locations (Masuda et al., 2018) with sophisticated metodologies to36
chose an optimal threshold (De Vico Fallani et al., 2017) or using singular value decomposition of37
the multidimensional signal (Worsley et al., 2005). A typical feature of many complex networks that38
appears promising to describe the hierarchical brain organization is the small-world topology involving at39
the same time small-scale local clusters and long-range connections between distant areas (Bassett and40
Bullmore, 2006). Networks provide a visual representation of brain connectivity (Rubinov and Sporns,41
2010), but extracting robust statistical information from brain network is a challenging task. Measures42
at the intersection between neuroscience and complexity theory have emerged such as topological data43
analysis (Phinyomark et al., 2017) or multivariate auto-regressive models (Astolfi et al., 2007).44

EEG recordings have attracted a wide interest for many years in the study of brain function due to the45
relative simplicity in which spatially localized time dependent data can be acquired through non-invasive46
instrumentation. EEG data are conventionally analyzed by sampling time depended signals into different47
frequency bands at different locations on the scalp and then looking for specific signatures in each band.48
For instance, resting state EEG in patients diagnosed with First Episode Psychosis and Bipolar Disorder49
revealed a general trend of increased delta (0.5-4 Hz) and theta (4-8 Hz) activity, and a decrease in50
alpha (8-13 Hz) activity (Clementz et al., 1994). Resting state EEG of bipolar patients has also been51
studied using complex network analysis in (Kim et al., 2013), yielding differences from healthy control52
subjects across several network measures such as clustering coefficient or characteristic path length. More53
recently, machine learning combined with complex network analysis was used to classify non-epileptic and54
epileptic EEG signals (Gao et al., 2020). Network analysis was also performed for EEG signals recorded in55
Alzheimer Disease patients during cognitive tasks and resting state (Das and Puthankattil, 2020), revealing56
a higher betweenness centrality in patients compared to controls subjects.57

Since EEG signals are highly multidimensional, considering their dependence on time, location and58
frequency band, a projection into a single network may overshadow some essential feature of the system.59
To overcome this limitation, multilayer netwroks have been recently proposed as a promising tool to study60
the dynamics of brain activity, reducing the information loss due to the projection into a single network61
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(Muldoon and Bassett, 2016; De Domenico, 2017). A multilayer network can be seen as an interconnected62
set single-layer networks where each layer represents a particular dimension of the original signal (Aleta63
and Moreno, 2019; Bianconi, 2018). In the context of EEG we can assign distinct layers to different time64
windows and/or different frequency bands and assign each electrode to a node in each single-layer network.65
For example, a time-based multilayer complex network analysis was perfomed on EEG recordings in66
patients with epilepsy (Leitgeb et al., 2020). The central issues in multilayer network based methods for67
EEG signal is to find a representation that minimizes information loss and introduce suitable statistical68
tools to extract readable information from the networks.69

In this paper, we propose a multilayer network representation of EEG signals that maximize the70
information content and apply it to a set of sleep EEG data from patients diagnosed with First Episode71
Psychosis (FEP) or Bipolar Disorder (BD) and compared with control subjects. We then use a set of72
network measures and show that it is easier to reliably stratify patients from control subjects when using73
network representations with constant edge densities.74

2 RESULTS
2.1 Maximization of total information change over time75

Sleep hd-EEG recordings from 12 FEP, 7 BD patients, and 13 control subjects were analyzed, see76
Methods for details and Fig. 1. Raw data are extremely fine-grained: the sampling frequency of 500Hz77
during an average of 8 hours of sleep, multiplied by the 64 electrodes that comprise the EEG headset78
yields approximately, 1, 000, 000, 000 measurements per patient. Clearly, these measurements are not all79
independent of each other, but they encode information that spans several sleep phases and brain regions.80
Therefore, we aim at finding a satisfactory compromise between compression and information.81

To do so, we process the raw sleep EEG records through our pipeline as described in Methods in detail82
and illustrated in Fig. 1. The first step is to remove artifacts from the data. Eye-movement artifacts are83
well known to influence raw sleep EEG data. To mitigate their impact on our results, we use a fast linear84
regression model to correct for eye movements, see Methods for details and Fig. 1B: in this illustrative85
figure, the horizontal electro-oculogram potential (HEOG) well correlated with channels AF8, F7, FP286
and FP1 in the top plot. After the correction step (bottom plot in pannel B), this dependence was almost87
completely eliminated. After splitting the signal into different frequency bands (see Methods for details),88
we compute time- and band-specific electrode-to-electrode correlations of the form Cbij(t), represented as a89
heatmap in Fig. 1C. Finally, we construct time-varying multilayer networks using an innovative strategy90
that takes into account the whole dataset (and not each time snapshot individually), maximising the total91
amount of information contained in the time-varying dataset. Figure 1D offers a visual representation of92
the final output we obtain after processing the raw EEG data: a set of time-varying multilayer networs,93
where different layers correspond to different frequency bands, network nodes represent electrodes and94
edges represent high EEG correlations.95

Networks offer a simplified and effective representation of interactions between nodes, but deciding the96
correlation threshold beyond which edges are added to the network is a nontrivial subject. In order to make97
an informed choice, here we introduce the Integrated Jensen-Shannon Divergence (IJSD),98

I(θ) =
θ∑
t=1

D(ρt−1, ρt), (1)
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a measure of the total information change over time, computed as the sum of the Jensen-Shannon99
divergence of each epoch with respect to the previous one. Here ρt are the density matrices associated to100
each network in the framework of spectral entropies (Domenico and Biamonte, 2016), see Methods for101
details. The value of I depends on θ in non-trivial ways, but the limit cases are clear: if θ is too low (high),102
all edges are present (absent) at all time steps, so there is no information change over time and thus I = 0103
for both θ = 0 and θ = 1. It is only for intermediate values of the correlation threshold θ that the sequence104
of multilayer networks can display richer temporal variations, yielding a higher information change. This105
can be clearly seen in Fig. 2 panels (A, B, C), which show the value of I as a function of θ for one BD, one106
FEP and one control example. As anticipated, I(θ) = 0 for both θ = 0 and θ = 1, with a clear maximum107
at around θ ∼ 0.7 for most frequency bands.108
2.2 Fixed-threshold and fixed-density networks109

We implement two strategies to choose the optimal correlation threshold θ∗ from the analysis of the110
information content quantified by IJSD. In the first approach, we set a global absolute value for the111
correlation threshold, while in the second approach that value is relative to each network and chosen to112
maintain a constant edge density, keeping only the interactions with highest absolute correlation. In both113
cases, the adjacency matrices can be build as114

Abij(t) =

{
1 if |Cbij(t)| ≥ θ∗

0 else
(2)

that is, we place edges for both large positive and large negative correlations.115

The optimal correlation threshold θ∗ for fixed-threshold networks is computed as the average of the band-116
and patient-specific optimal values that result from optimizing each case separately,117

θ∗ =
〈
θ∗b,p
〉
b,p

(3)

θ∗b,p = argmaxθ∈[0,1]Ib,p(θ) (4)

where Iθ(b, p) denotes the IJSD of patient p at frequency band b. In other words, for each patient p we118
compute a band-specific optimal threshold θ∗b,p. The group averages and variability of these are shown in119
Fig.2. Taking the average of all θ∗b,p, we reach an overall value of θ∗ = 0.72, shown as a black solid line in120
Fig.2. Overall, the figure shows that a single global threshold can reasonably accommodate for the band-121
and patient-specific optimal values.122

The second approach consists in keeping the same fraction of edges in all networks, yielding what we123
call fixed-density networks. The optimal density value in this case is set so that it coincides with the average124
density of the fixed-threshold networks. This second approach takes into account that different patients,125
time point or bands might have different intrinsic correlation levels, and presents additional advantages126
from the network analysis point of view.127
2.3 Network edge presence shows differences between groups128

We investigate the group differences between BD and control patients, as well as between FEP and control129
patients. To do so, we need to condense the information contained in our multilayer and time-varying130
networks into simpler summary statistics. A simple yet useful measure in this case is what we coin as edge131
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presence, which is the fraction of time an edge is present (that is, Abij(t) = 1) during one full EEG sleep132
session. Formally,133

P bij =
〈
Abij(t)

〉
t

(5)

Figure 3 shows the group differences of P bij for each edge (i, j) and each band when comparing BD134
patients with controls (panels A, C), as well as FEP patients with controls (panels B, D). This analysis is135
shown both for fixed-density networks (A, B) and for fixed-threshold networks (C, D). In both cases we see136
differences in the parieto-occipital area, but the signal is stronger for fixed-density networks. If we focus137
on Fig. 3A, for instance, we see that BD patients tend to have a lower edge presence in the parieto-occipital138
area (strong blue edges). Notice that we employ a colorbar that goes from red to transparent to blue, so that139
edges that do not have strong differences are effectively not drawn. Overall, the figure shows important140
differences in the parieto-occipital area, with a similar but stronger signal for fixed-density networks.141
2.4 Parieto-occipital correlations and clustering measures differ between groups142

Motivated by the results shown visually in Fig. 3, we construct a parieto-occipital (PO) specific measure.143
Selecting the 18 electrodes of that region (see methods for details), we compute the difference of PO144
presence between the PO area and the rest.145

PPO =
〈
P bij

〉
(ij)∈PO

−
〈
P bij

〉
(ij)/∈PO

(6)

Additionally, we also consider the average clustering coefficient, the average shortest path length and146
the betweenness centrality as measures related to clustering and information navigability as candidates to147
better quantify the differences that we see in Fig. 3.148

Figure 4 shows boxplots of these four measures comparing, BD and FEP patients with control subjects.149
Statistically significant differences are marked with a star, see Methods for details. Panels (A, B) show that150
for bands 1 to 4 (that is, between 1Hz and 16Hz), FEP patients have a higher clustering coefficient when151
compared to controls, while panels (C, D) shows some significant results on the same range of frequencies152
for the average shortest path length, both for BD and for FEP patients. Turning to betweenness centrality,153
panel E shows that when using fixed-threshold networks, FEP patients significantly differ from controls154
in bands 2, 3 and 4 (2Hz to 16Hz) Interestingly, when looking at the parieto-occipital relative presence155
(panels G, H), we observe a different pattern of marked differences between BD and control patients for156
lower frequency bands, 0.5Hz to 4Hz. This is consistent with the fact that the more standard network157
measures used in panels A to F treat all nodes under the same footing, independently of the brain region158
they correspond to, while PO presence is a tailor-made measure, specifically designed to capture the visual159
results of Fig. 3 taking into account the location of parieto-occipital electrodes.160
2.5 Network measures correlate with edge density161

It is interesting to ask if the network measures shown in Fig. 4 are correlated with network edge density,162
for the case of fixed-threshold networks. Fig. 5 shows how indeed edge density is a strong driver of average163
clustering coefficient, average shortest path length and betweenness centrality for all patient groups, but164
not of parieto-occipital presence. This is consistent with the fact that, by construction, PPO is a relative165
difference of two averages taken on the same network.166

Frontiers 5



Font-Clos et al. Multilayer network for EEG

3 DISCUSSION
Hd-EEG represents an attractive method to study brain function by providing non-invasive spatio-temporal167
measurements of brain activity with possible applications to disease diagnosis and monitoring. While it168
is relatively easy to obtain large amount of data from individual subjects, extracting useful information169
from hd-EEG recordings is a challenging task. Hd-EEG only provides an indirect far-field measurement170
of the underlying electrical activity and is intrinsically subject to noise. Furthermore, hd-EEG recordings171
typically involve noisy signals recorded in parallel through different electrodes for long time periods so172
that even the mere visualization of the data is complex.173

Network representations have been shown in the past to provide a useful tool to highlight the connectivity174
and spatio-temporal correlation of brain activity as revealed from EEG or other measurments such as fMRI.175
Due to the complexity of hd-EEG recordings, multilayer networks are more appropriate to represent the176
data since they provide separate visualization for potentially crucial features of EEG signals such as the177
frequency band and/or the time dependence. An effective network representation of hd-EEG recordings178
should be able to extract most of the relevant information from the signal cross-correlation. To address this179
issue, we use the IJSD to quantify information content in the multilayer network (Domenico and Biamonte,180
2016) and adjust correlation threshold parameters to maximize it. In this way, we obtain a multilayer181
networks that maximizes the information content of the underlying hd-EEG recordings and test it on a set182
of EEG data obtained from patients with mental health issue, as well as healthy control subjects.183

Statistical analysis on the resulting multilayer networks reveals a number of distinguishing topological184
features between patients and the control group. In particular, observed differences in parieto-occipital edge185
presence appear to be particularly relevant. These results indicate a stronger correlation of EEG signals in186
that area for BD patients with respect to control subjects, a feature that warrants further study and could187
potentially be used as a diagnostic tool.188

An important issue in our analysis is that most statistical indicators crucially depend on the density189
of edges present in the network. To discount this effect, we constructed and analyzed constant-density190
multilayer networks. While our analysis only considers pairwise correlations, future work could also extend191
our analysis to the study of interactions between groups of nodes (Battiston et al., 2020).192

We applied our strategy to a particular set of EEG recordings from patients with mental disorders, but the193
methodology could readily be generalized and applied to a variety of pathological conditions. It would194
be interesting for instance to use our multilayer network approach to predict the response of individual195
patients to specific drugs. Finally, the analysis of EEG signals could be enriched by measuring at the same196
time other physiological signals, such as heartbeat or respiration adding further layers to the network, in197
the spirit of the emerging field of network physiology (Bashan et al., 2012; Bartsch et al., 2015; Ivanov198
et al., 2016).199

4 METHODS
4.1 Data200

Hd-EEG recordings where obtained from San Paolo Hospital in Milano. In particular, the dataset consists201
of sleep EEG recordings from 12 FEP patients (8 males and 4 females, mean age 21.0 ± 3.77), 7 BD202
patients (3 males and 4 females, mean age 34.57± 7.09), and 13 control subjects (6 males and 7 females,203
mean age 25.61 ± 10.64). All participants underwent an in-laboratory sleep hd-EEG recording with a204
64-electrode Easycap net designed to enhance electrode contact with the scalp (BrainAmp, Brain Products205
GmbH, Gilching, Germany). The night of the recording, all subjects were accommodated in a sleep suite206
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and allowed to sleep within 1 hour of their usual bedtime. All subjects were recorded throughout the207
night and until they woke up naturally the next morning. Table S1 shows the average length of recording208
sessions and total sleep time for each participant group. The headset has 64 unipolar electrodes positioned209
following the standard 10-20 system, and include two channels that record eye movements (one for vertical210
movements and one for horizontal movements). All recordings had a sampling frequency of 500Hz. Data211
was provided in anonymized form as pairs of .set and .fdt files.212

4.2 Data preprocessing213

Our preprocessing pipeline transforms the raw EEG recordings into correlation tensors of the form Cbij(t),214
with (i, j) denoting and edge between electrodes i and j, b a specific frequency band, and t a 30-second215
epoch. The steps we carry are as follows:216

1. Epochs division: divide the raw signal into epochs of approximately 30 seconds, see below for details,217
obtaining a signal Si(t) for electrode i and epoch t.218

2. Artifact correction: apply eye-movement correction.219

3. Bands division: divide the corrected signal into seven frequency bands. This gives a signal Sbi (t) with220
b ∈ {0, . . . , 6}.221

4. Correlation analysis: compute electrode-to-electrode Pearson correlations, obtaining a correlation222
tensor of the form Cbij(t).223

Epochs division: We divide EEG recordings into epochs of around 30 seconds following Aboalayon et al.224
(2016). To be precise, each epoch has a length of 214 raw time points which, at a sampling frequency of225
500Hz, corresponds to 32.768 seconds. This choice is particularly convenient because pure powers of two226
allow for faster discrete Fourier transform calculations.227

Artifact correction: Following Gratton et al. (1983), we correct for eye-movements using a linear228
regression equation of the form229

Y = XB (7)

where Y corresponds to the EEG data (62 channels in our case), X corresponds to the eye-movement data230
(2 channels in our case), and B is the regression coefficient matrix to be determined. Solving for B via231
least squares, the corrected signal X∗ is computed as232

X∗ = (X − Y B)T (8)

Bands division: We use seven frequency bands, numbered from 0 to 6 throughout the manuscript, which233
logarithmically interpolate the 0.5 to 64 Hz range typical of brain waves.234

• Band 0: [0.5, 1] Hz.235

• Band 1: [1, 2] Hz.236

• Band 2: [2, 4] Hz.237

• Band 3: [4, 8] Hz.238

• Band 4: [8, 16] Hz.239

• Band 5: [16, 32] Hz.240

• Band 6: [32, 64] Hz.241
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4.3 Correlation analysis242

We use the Pearson correlation coefficient to measure the strength and direction of dependence between243
the signals xi, xj recorded by two electrodes i, j,244

Cij =
cov(xi, xj)
σxiσxj

. (9)

Repeating this measurement for each band b and timepoint t, we get a full correlation tensor Cbij(t).245

4.4 Jensen-Shannon Divergence246

We use Jensen-Shannon Divergence (JSD) as a distance measure between networks, in the framework of247
spectral entropies (Domenico and Biamonte, 2016). For a pair of networks with density matrices ρ and σ,248
the JSD is defined as249

J (ρ||σ) = S

(
ρ+ σ

2

)
− 1

2
[S(ρ) + S(σ)] , (10)

where S(ρ) is the spectral entropy of the network,250

S(ρ) = log2 Z +
τ

ln 2
Tr[Lρ], (11)

with L denoting the Laplacian, τ diffusion time and the density matrix ρ defined as251

ρ =
e−τL

Z
, Z = Tr(e−τL) (12)

4.5 Network measures252

Parieto-occipital edge presence: The parieto-occipital area is mapped to the following electrodes: P7, P5,253
P3, P1, PZ, P2, P4, P6, P8, PO7, PO3, PO4, PO8, O1, OZ, O2, and IZ. From this list, the parieto-occipital254
presence is computed as explained in the main text, mainly the difference of average presence between255
nodes in the parieto-occipital area and the rest.256

Clustering Coefficient: We use the standard definition of clustering coefficient,257

ci =
2 · ti

ki · (ki − 1)
(13)

as implemented in the networkx python library (Hagberg et al., 2008), where ti is the number of triangles258
in which node i is involved and ki is the node degree. Averaging over all nodes, we define the clustering259
coefficient of the network as260

c =
1

N

N∑
i=1

ci (14)

Betweenness Centrality: We use the convention of Brandes (2008), which defines a node-dependent261
quantity as follows:262

cB(i) =
2

(N − 1)(N − 2)

∑
j,k∈V

σ(j, k|i)
σ(j, k)

(15)
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where σ(j, k|i) is the number of shortest path that connect nodes j and k that passes through i and263
σ(j, k|i) = 0 if i = j, k. σ(j, k) is the total number of shortest path connecting j and k and σ(j, k) = 1 if264

j = k. By convention the fraction σ(j,k|i)
σ(j,k) is considered zero if both elements are zero. We then average265

over all nodes to get a single measure for each network:266

BC =
1

N

N∑
i=1

cB(i). (16)

Average Shortest Path Length: We start from the standard definition of average shortest path length267
(ASPL) for a connected graph G268

aG =
1

N · (N − 1)

∑
i6=j

d(i, j). (17)

where d(i, j) is defined as the length of the shortest path connecting two nodes , j. If i and j belong to two269
different connected components d(i, j) is said to be infinite, while d(i, j) = 0 if i = j.270

In our setting, networks can have more than one connected component, and we do not want to limit271
ourselves to the largest connected component as important information could be missed. Hence we employ272
a weighted version of the ASPL,273

waG =

∑nc
c=1 ac · wc∑nc
c=1wc

(18)

where nc is the number of connected components with more than 2 nodes and wc = Nc · (Nc − 1), Nc274
is the number of nodes of component c. This formulation takes into account the ASPL of all nodes but275
effectively gives more weight to the larger components.276
4.6 Statistical Analysis277

Group differences are assessed with a two-sided T -test without assuming equal variances between278
groups, as implemented in the ttest ind function from the scipy Python scientific library. Cases marked as279
significant (∗) in Figure 4 correspond to a P -value below 0.05.280
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FEP BD HEALTHY CONTROL
RECORDING TIME (mean ± S.D.) 431.02± 136.94 526.06± 44.84 489.22± 42.44
TSLEEP TIME (mean ± S.D.) 300.02± 115.75 351.77± 102.38 361.47± 73.92

Table 1. Recording time and sleep time. Sleep time is obtained by visual scoring according to the American
Academy of Sleep Medicine (AASM) Manual for the Scoring of Sleep and Associated Events (Berry, R.
B., Brooks, R., Gamaldo, C. E. & Susan, M. 2012). All values expressed in minutes.
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A B

C D

lo=1

Data Acquisition Data preprocessing

Data transformation Multilayer Network

Data cleaning and eye artefact 
correction.

7 BD, 12 FEP, 13 Control 
~8h of sleep EEG recording 
64 electrodes, 500Hz sampling

Band and time-specific electrode-
to-electrode correlations.

Figure 1. Overview of the method. (A) Short description of the dataset, see Methods for complete
details. (B) Example of the eye-artifact correction method, showing the correlation of the signal from
electrodes AF8, F7, Fp1 and Fp2 (black lines) with horizontal eye movements (HEOG, orange line) before
(Raw data panel) and after (HEOG correction panel) the eye-artifact correction method. (C) Example of a
electrode-to-electrode correlation matrix, depicted as a heatmap. Correlation goes from -1 (blue shading)
to +1 (red shading). Correlations are both time- and band-specific. (D) Example of the resulting band- and
time-depended multilayer networks, where nodes represent electrode and edges represent high correlations,
see Methods for the details of the different thresholding procedures.
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Figure 2. Choice of correlation thresholds. (A, B, C) CHECK WHICH PATIENT. Integrated Jensen-
Shannon divergence (JSD) as a function of the correlation threshold θ, for each band (colored lines), for
BD (A), Control (B) and FEP (C) patients. The panel shows a consistent maximum of the integrated JSD at
around θ = 0.7. (B) Threshold that maximizes the integrated JSD. The errorbars correspond to the average
over different patients. The overall chosen best threshold is marked as a solid horizontal black line, see
Methods for details. The panel shows that a single correlation threshold value can accommodate all patient
groups and frequency bands.
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Figure 3. Network edge presence highlights differences between groups. Multilayer EEG fixed-density
(A, B) or fixed-threshold (C, D) networks, with edges colored according to the average BD (A, D) or FEP
(C, D) presence minus the corresponding average value of control patients. Edge presence is a measure of
the fraction of time an edge is active, see Methods for details. The four panels use a divergent colormap that
is blue for negatives values, red for positive values, and becomes gradually transparent as values approach
zero. Overall, the figure visually shows clear differences between BD and control patients, and between
FEP and control patients.
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Figure 4. EEG network measures evidence differences between groups. Boxplots of average clustering
(A, B), average shortest path length (C, D), betweenness centrality (E, F) and parieto-occipital presence
(G, H) for control (gray), BD (blue) and FEP (pink) patients. Panels in the left column correspond to
fixed-threshold networks, while panels in the right column correspond to fixed-denstiy networks.
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A B

C D

Figure 5. Fixed-threshold networks yield measures that correlate with edge density. Scatter plots of
average clustering (A), average shortest path length (B), betweenness centrality (C) and parieto-occipital
presence (D) vs network density, for fixed-threshold networks. Overall, the figure shows that all measures
except parieto-occipital presence correlate with network density.
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