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ABSTRACT
Every year, in Europe alone, hundreds of workers die by falling
from high height. This number could be greatly reduced by means
of better training and quick detection of individuals with issues
toward work at height. Workers proving to be less suited for the job
can be subject to more intensive training or recruited for different
positions. Unfortunately, the early detection of workers unsuited
for working at height involves specialized personnel and expensive
equipment to recreate a stressful environment. In this paper we
propose a methodology to predict fear of heights by means of
a virtual reality environment. We demonstrate that a 3D virtual
environment is feasible for the prediction and give guidelines about
meaningful physiological parameters useful for detection.

CCS CONCEPTS
• Human-centered computing → Virtual reality; Empirical
studies in HCI .
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1 INTRODUCTION
Every year, work-related accidents are causing a considerable num-
ber of deaths. The World Health Organization is reporting, for
European Union alone, 5144 and 4712 casualties in 2017 and 2018 re-
spectively [23]. Among these accidents, a fair share (around 25% [9])
is cause of death due to fall from high height. As a consequence,
the correct training of workers has always been of paramount im-
portance for many companies. Unfortunately, standard training is
requiring specialized personnel and the setup of a very expensive
environment in order to put the trainee under elevation stress.
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In these last years, Virtual Reality (VR) technology proved to be
a viable alternative to training in a real setup [20]. By using VR, it is
possible to put a trainee under stress by providing a visual stimulus
of the working environment without recreating a real dangerous
situation. Moreover, in a virtual environment it is possible to moni-
tor physiological parameter and correlate them with the stress level
to achieve a better understanding of the situation.

In this paper we propose an evaluation methodology based on
the correlation between stress and physiological parameters to
assess the attitude of an individual to work at height. This test can
identify the best suited subjects to train for working at height while
other worker can undergo specialized training or be assigned to
less dangerous tasks in safer environments.

We use a VR environment to stress the user and evaluate her
suitability to work at height. In particular, we use the VR applica-
tion Richie’s Plank Experience to expose test subjects to a simulated
height. In the simulation, the user is supposed to walk on a virtual
plank suspended in the void while wearing an oculus device. During
the experiment, a sensor is also used to record physiological param-
eters in real time. These physiological parameters are correlated
with affect state dynamics along the simulation.

Affect denotes the mental counterpart of bodily sensation and
affective features, such as valence and arousal, capture what a
given instance of experience feels like [3]. Valence refers to the
feeling of pleasure or displeasure; arousal refers to a feeling of
activation or sleepiness. It is worth remarking that in the literature
concerning the computational modelling of emotions, the term
“affect” is often used interchangeably with that of “emotion” but
they should not be confused; emotions are constructed from affect,
emotional events being specific instances of affect that are linked to
the immediate situation and involve intentions to act [3]. Indeed, the
approach presented here deals with affect. However, inwhat follows,
markedly when discussing related work, we will occasionally adopt
such relaxed convention for sake of simplicity.

Under such circumstances and the peculiar experimental setup
of this work, gauging the affect state of participants is assumed to
be effective in order to assess a potential acrophobia (fear of heights)
or basophobia (fear of falling). To evaluate affect, a feedback form
based on the Pleasure (Valence) - Arousal - Dominance (PAD) [19]
affect state model is used.

The remainder of this paper is organized as follows: in Sec. 2
related work is discussed while in Sec. 3 our virtual plank experi-
ment is described in detail. Collected data is analyzed in Sec. 4 and
observed results are discussed in Sec. 5. Section 6 concludes the
paper and proposes future work.
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2 RELATEDWORK
A wide spectrum of studies are already present in literature about
emotional response analysis in virtual environments. These studies
focus mainly on how to analyze physiological response and how
different environments can stimulate distinct emotions.

With respect to physiological response analysis, the general
approach is to stress the user and then correlate physiological
parameters such as heart rate and blood pressure variation to the
proposed virtual situation.

In [18] a test subject is placed first inside an elevator and then on
an aerial moving platform, from which she is supposed to jump off.
Authors claim that, despite an increase of heart rate, blood pressure
and hydrocortisone (also known as cortisol) levels remain constant
while on the platform. Moreover, the hydrocortisone level decreases
when inside the elevator.

In [1], instead, the test subject is asked to traverse a grid of ice
blocks with the risk of falling down. During the experiment user
movements are recorded alongside skin conductance level and fa-
cial electromyography. Authors found that a risk-averse behavior
was more evident in participants with an high neuroticism person-
ality profile. Moreover, these users made also more frequent Risk
Assessments than the average.

Authors of [15] measure cardiovascular and cortisol reactivity to
the VR equivalent of a Trier Social Stress Test (TSST). In a TSST the
participant is asked to hold a speech and to do an arithmetic task
in front of an audience to reproduce stress in laboratory settings.
Virtual reality was used to recreate a virtual audience to the pre-
senter and, for the proposed case, results resembled those obtained
in prior studies using a real-life TSST.

Other contributions in literature, such as [8] focus on understand-
ing if a VR environment is capable to generate the right psychophys-
iological condition for an effective exposure treatment. In [8], au-
thors found that VR exposure does provoke psychophysiological
arousal, especially in terms of electro-dermal activity, making it
feasible for cognitive behavioral therapy.

Another branch of research is focusing instead in understanding
the emotional state induced by a virtual environment. The gen-
eral idea is to devise and perform a reliable classification of the
emotional state in the user and correlate it with a virtual experience.

The Affective Virtual Reality System (AVRS) [17] is a system to
elicit emotions using a VR environment. AVRS detect the level of
arousal (i.e., the autonomic nervous system stimulation) through
measurement of the heart rate and using the Self-AssessmentManikin
(SAM) technique. Using SAM, a stylized figure representing the
intensity of the affect dimension must be selected on a scale or grid.
This way, SAM can overcome problems related to the social and
cultural context linked to the adjective used to describe the level
of arousal. In the paper, the levels of arousal solicited by the same
video in VR and via standard screen are compared. Authors claim
that the average arousal level is higher in VR when the scene is
depicting happiness or fear, while there is no significant difference
for other emotions. In particular, for fear, the difference seems to
depend on the negativity of the scene and the VR visual quality.
Distaste seems to be the only emotion stronger on screen, even if
the heart rate did not show significant changes between the two
technologies.

Similar to AVRS, the EMMA project [21] proposes the develop-
ment of a Mood Induction Procedure using VR (VR-MIP) to elicit
emotions such as sadness, joy, anxiety, and relax in experimental
subjects. Users have been exposed to virtual environments popu-
lated with objects capable to trigger an emotion. The goal was to
observe relevant changes in the mood of the users during the simu-
lation. During the experiments, the virtual environment proposed
to the user was neutral at first, but then it got modified with respect
to the emotion that should be reached. In this project the intensity
of the emotion has been evaluated using the combination of three
feedback forms: Visual Analogue Scale (VAS), ITC-Sense of Presence
Inventory (ITC-SOPI), and Reality Judgement and Presence Question-
naire (RJPJ). Results demonstrated that the four environments (one
for each emotion) were actually able to induce a mood change in
the user. Differently from other contributions, in [21] anxiety is
kept well separated from fear. This is due to the definition from
Barlow [2] stating that “anxiety is a diffuse, objectless apprehen-
sion” while fear is an emotional response provoked by a “present”
and specific threat.

In [6] authors demonstrated that observed geometric shapes
and daylight illumination are in correlation with heart rate and
skin conductance. Different building façade patterns have been
considered. Each pattern induced light with a specific geometric
diffusion (irregular, regular, and “venetian style”) inside a virtual
space. Experimental results hinted that participants found the space
to be more interesting when illuminated using an irregular pattern.
The calculation of Spearman’s coefficient [24] showed a statistically
significant negative correlation between mean heart rate change
and interest.

3 THE PLANK EXPERIMENT
In this section we are going to describe the setup and how the
experiments have been performed in detail.

As already mentioned in Sec. 1, we are using Richie’s Plank Expe-
rience as a virtual environment to stress the user with a simulated
height. To perform the test in the virtual space the user is first
required to take a virtual elevator riding upward for a long time.
This is to give the feeling that an extremely high floor has been
reached. When the elevator doors open an altitude view of a mod-
ern cityscape is presented. The doors open on nothing but for a
small plank protruding in the void for around one meter (see Fig. 1).
The user is supposed to walk in a real (and safe) environment to
reach the end of the plank. In order to add realism, we also place a
piece of wood on the floor for the user to walk on (see Fig. 2). The
experiment ends as soon as the user reaches the end of the plank.

Each experiment is composed by three steps:

• Preparation. During this step the user is required to sit and
see a soothing video in order to stabilize her physiological
data. The elevator phase during the simulation is supposed
to suffice to the same function. Unfortunately, we discovered
that it was not long enough for some users, so we decided to
reinforce this step with an additional video. While watching
the video, the user is also wearing the physiological sensor
and a calibration is performed.

• Simulation. In this step the user is equipped with the oculus
rift visor and the simulation is started. This step is taking
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Figure 1: The plank protruding out form the elevator door.

Figure 2: The physical plank setup in our lab.

one to four minutes to complete, depending on the user’s
immersion.

• Self evaluation. In this step the user, using an affect anno-
tation tool [4], is evaluating her experience.

During the experiment, the user is recorded on camera. This
video, merged with another video recorded in first person from
inside the virtual environment, is used to collect the affect measure-
ments.

The Experiment has been performed on 33 volunteer students; 28
males and 5 females in the age range between 22 and 30 years. All of
them reported to be in good health: no cardiovascular pathologies,
no anxiety disorders, and no neurological alterations. Moreover, in
order to be accepted as volunteer each student must not had used
the Richie’s Plank Experience application before.

3.1 Measuring Physiological Parameters
To collect physiological data we use the E4 sensor wristband from
Empatica. While walking on the virtual plank, the physiological
sensors will collect information about heart rate and Electro-Dermal
Activity (EDA). We focus on these two values because they are
strictly connected with the arousal, as demonstrated by Leyner et
al. in [16].

While the importance of heart rate can be quite straightforward,
some more explanation is required for EDA. EDA is measuring
the skin conductance variation caused by sweating. It is possible
to identify two kinds of EDA: tonic and phasic. The tonic EDA,
measuring the skin electrical resistance, is an indicator of changes
in the nervous system activation while the phasic EDA is detecting
sharp signal changes linked to emotional stimuli as outlined in [12].

The sensor collects data from the user during all the simulation
step. When the simulation is over, all data is downloaded from the
wristband via bluetooth link for later processing.

In our case filtering the sensor output was not required because,
due to the excellent quality of the wristband and the very controlled
environment during the experiments, the collected data was already
clean enough for processing. Examples of collected values for EDA
and heart rate can be seen in Fig. 3.

Figure 3: Sample values for EDA and heart rate.
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3.2 Measuring Affect
In order to reconstruct the complete status of the user during the vir-
tual experience, collecting physiological parameters is not enough.
We also must collect the affective states. In our experiments, af-
fective states are detected through user’s self-evaluation. As we
said, in this experiment we use the PAD model proposed by Mehra-
bian et al. [19] (see Fig. 4). This model provides a way to map all

Figure 4: Pleasure (Valence) - Arousal - Dominance (PAD)
model of affect status.

possible states in a 3D space. The three dimensions of this space
are valence (pleasure), arousal, and dominance. Briefly, the model
augments the basic valence/arousal dimensions with a dominance-
submissiveness dimension. We collect intensity information with
SAM, already described in Sec. 2, using a grid (see Fig. 5).

Figure 5: SAM grid: first row is valence, second is arousal,
and last row is dominance.

After walking on the virtual plank, the user is required to provide
a self assessment about the levels of arousal and valence felt during

the experiment. To provide the assessment, we ask the user to
annotate the video recorded during the experiment with an online
tool named Dimensional ANnotation Tool for Emotions (DANTE) [4]
(see Fig. 6). While replaying the video, the user can input in real

Figure 6: Valence assessment using SAM.

time the levels of arousal and valence. The video timestamps allow
us to map each affect state to the right position in the data sequence
collected by the sensor.

4 ANALYSIS
To analyze data collected during the experiments, we use a unsu-
pervised machine learning approach to classify test subjects based
solely on available information. This approach has been required
because we want to keep the proposed solution as general as possi-
ble. Using a supervised approach could have been more efficient
both in term of computational time and accuracy but, at the same
time, it would be binded to a specific training method or philoso-
phy. Moreover, using an unsupervised approach allows to easily
adapt the methodology to other attitudinal evaluations where, most
important, different groupings/clusters might emerge.

The analysis activity has been divided into three steps: selection,
clustering, and statistical evaluation.

4.1 Selection
In the first step, we select descriptors for EDA and heart rate. What
we are looking for is a set of functions to describe the collected data
as a vector. To select these descriptors we have to devise a set of
general features for both data series. After a long and detailed anal-
ysis of the current literature, we selected a total of 30 descriptors.
Unfortunately, the detailed discussion of each descriptor do not fall
into the goal of the current paper and would not fit in the allowed
space. For this reason, we will limit ourselves to provide a list here.

With respect to EDA, we selected Shannon’s Entropy and other
14 descriptors leveraging on [22] from Shukla et al. These descrip-
tors are: mean, standard deviation, kurtosis ([7]), asymmetry, peaks
number, total and mean amplitude, total and mean signal raise
time, subtended area, the three Hjiorth parameters, and the spectral
density.

On the other hand, when dealing with heart rate, we define
other 15 descriptors based on heart rate variability (HRV), which
is a recognized as an indicator of physiological stress. Four of the
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15 descriptors are based on statistics: mean, standard deviation,
minimum and maximum HRV. Seven are based on the inter-beat
interval: IBI, N-N median and range, SDNN, SDSN, RMSSD, and
NN50. Three indicators are in the frequency domain: spectral den-
sity, hi-frequency variance (in HRV), and low-frequency variance
(in HRV). The last indicator is a geometric one: the triangular index.

On this sets we must apply a selection technique to identify the
best features to be used in the clustering step. This is a standard
approach in Machine Learning to avoid the learning model to suffer
from overfitting. Overfitting means that the we adopt a number of
parameters too large with respect to the collected samples; thus,
reducing performances and accuracy.

To select themost relevant descriptors we use the Spectral Feature
Selection (SPEC) algorithm. SPEC estimates a descriptor relevance
based on its consistency with the spectrum of a similarity matrix
calculated using the Radial Basis Function (RBF) [5]. In simpler
words, the more relevant descriptors are those exposing a uniform
behavior between clusters.

In our case, using SPEC, we are able to reduce the number of
descriptors from 30 to ten. The ten selected descriptors are: Kurtosis,
mean signal raise time, standard deviation of HRV, SDNN, N-N
range, RMSSD, NN50, low-frequency variance, spectral density, and
the triangular index.

As a final remark, it is important to remember that different
selections may lead to a different set of clusters in the next step.

4.2 Clustering
In this stage, the goal is to identify similar users and classify them
in groups named clusters.

As already said, we are using an unsupervised approach, pre-
cisely we infer clusters from unlabeled information [14]. At the
most general level, a clustering procedure to group 𝑁 data points
into𝐾 clusters relies upon (𝑖) a model for representing each point as
a vector of informative descriptors, or features, in a 𝐷-dimensional
space, (𝑖𝑖) a metric to calculate the similarity between pairs of ele-
ments, (𝑖𝑖𝑖) the actual clustering algorithm, (𝑖𝑣) a set of parameters
summarising cluster information and (𝑣) eventually a validation
step. The features selected to represent the original data should
be maximally informative so to obtain clusters that are suitable to
unveil the hidden structure of observable data. As to the metric,
this can be often shaped in the form of a distance defined over the
𝐷-dimensional vector space.

In particular, the clustering algorithm is in charge to identify
groups of points that are close together in the feature𝐷-dimensional
space (clusters), while maximising the distance between clusters.
Once the clusters have been identified, a concise description can
be provided for each cluster; in what follows, we exploit clustering
techniques that can be framed in probabilistic terms (e.g., mixture
of gaussians); thus, one such description can be given via the model
parameters (e.g, the gaussian mean) so far inferred. Clearly, the
clustering output needs to be evaluated against a set of quality
indexes. Eventually, if such comparison raises critical issues, then a
model revision should be taken into account, which can lead to an
iterative refinement of cluster computation.

In our specific case, to identify clusters, we apply techniques well
known in literature such as K-means and Expectation Maximization.

K-means is an iterative method: it refines the clusters at each itera-
tion using the concept of centroid as the center of mass for each
cluster. This method tries to find a stable configuration for a preset
number of centroids such as that each centroid is the closest one for
all points belonging to its cluster. The clustering process terminates
when the centroids movement after the iteration is lower than a
given threshold. Expectation Maximization, instead, is designed to
tune the parameters of a mixture of gaussian distributions. With
this method, we look for the gaussian parameters that are maximiz-
ing the probability to generate all the points in the 𝐷-dimensional
space.

4.3 Statistical Evaluation
In this third step the clustering is evaluated from a statistical stand-
point; i.e., we have to check if the clusters are distinct enough in
the 𝐷-dimensional space to bring us enough information.

Usually, in statistics, to test whether the null hypothesis of equal
test statistic of two or more measurements can be rejected, an anal-
ysis of the variance is performed; this is called the ANOVA [13] test.
The ANOVA test is typically conducted via p-values, namely the
probability of obtaining test results at least as extreme as the results
actually observed, under the assumption that the null hypothesis is
correct; if 𝑝 < .05, the result is deemed statistically significant and
the null hypothesis is rejected; otherwise, the the null hypothesis
is retained.

In our experiment, to identify statistical differences between
clusters, we consider each cluster as a set of (𝐷-dimensional) points
and use MANOVA, a multivariate extension of ANOVA, to perform
the analysis. MANOVA adopts a linear multivariate regression
model that can be used to measure the correlation between groups
of one or more independent variables. We can use MANOVA to
evaluate the output of the clustering step by means of four test
statistics which are quite common in literature: Wilks’ lambda,
Pillai’s trace, Hotelling-Lawley trace, and Roy’s greatest root.

TheMANOVA test is applied on the clusters obtained from all the
combinations described so far: with all the descriptors or just one
of the selections, with K-mean or Expectation Maximization, and
requiring to evaluate from 2, 3, or 4 clusters. Among all the results,
the most promising proved to be the combination of 2 clusters using
K-means and the descriptors selection for EDA. As a matter of fact,
this was the only combination for which the MANOVA test rejected
the null hypothesis of the clusters being similar in terms of test
statistic equality, with any test statistic (𝑝 < 0.05, always).

5 RESULTS
As already mentioned, the best combination to classify the users
seems to be by using only the descriptors for EDA, to assume two
clusters, and to perform clustering using K-mean.

First of all, the division in two clusters seems to be confirming
the goal of this research: it is actually feasible to divide the test
subjects into two categories: suited and unsuited to work at height.
Second, the electro-dermal activity seems to be a better indicator
compared to heart rate, which is in contrast with the usual belief
that heart rate is the primary indicator for physiological stress in
every situation.

107



GoodIT ’21, September 9–11, 2021, Roma, Italy Boccignone et al.

To draw some more practical conclusions, we have to compare
the users belonging to each cluster with the video (annotated with
SAM) recorded during the experiment and the data collected by the
sensor. Among the 33 test subject, 26 provided valid data for the
experiments; the other 7 were not able to complete the simulation
due to being too scared from the virtual environment. With respect
to the 26 valid tests, 8 users has been assigned to cluster 1 (unsuited
for working at height) and 18 to cluster 2 (suited for working at
height). All users in cluster 2 reported amedium-low level of arousal
and quite steady physiological data; for this reason, here we will
focus on cluster 1.

By examining the videos of users belonging to cluster 1, we could
observe a lot of similarities such as the way they moved on the
plank and how they looked around in the virtual environment. In
particular, two of them exposed visible traits of fear and confusion
during the simulation. Moreover, all users of cluster 1 reported a
very high level of arousal (> 0.8 in the range [0, 1]).

Considering now the physiological data collected by the sensor,
the EDA values have been steadily increasing during the simulation
for all users of cluster 1. On the contrary, for the heart rate, we
can observe two distinct behaviors: for some users the heart rate
raised sharply and stood there for the whole time, for the others it
decreased smoothly during the simulation. Our best hypothesis is
that these behaviors are the result of how each individual is dealing
with fear. Anyway, this can be the reason why the HRV indicators
have not been so relevant for the clustering. As a matter of fact, the
users reporting a sharp increase in the heart rate presented also a
bit more clearly their fear in the recording.

Finally, to analyze the effectiveness of each indicator, it is pos-
sible to use a scatter plot matrix. A scatter plot matrix is a matrix
of scatter plots used to visualize bivariate relationships between
combinations of variables. Each plot in the matrix provides a graph-
ical representation of the relationship between a pair of variables.
In our case, by means of a matrix with scatter plots of clusters
distribution for the EDA indicators, it is possible to observe that
the best indicators are peaks number, total signal raise time, and
the Hjiorth parameters for activity and complexity. Basing on this
observation, it could be possible to re-run the analysis using just
these four indicators and obtain similar results. Of course, this will
be subject for future research.

6 CONCLUSION AND FUTUREWORK
In this paper we proposed a methodology to predict fear of heights
by means of a virtual reality environment. Data has been collected
with real experiments and then processed using an unsupervised
machine learning approach for clustering.We demonstrate that a 3D
virtual environment is actually feasible for the early prediction of
fear of heights. Our methodology could actually split the users into
two groups: suited and unsuited to work at elevations. Moreover, we
discovered that, for the detection, electro-dermal activity is a better
indicator rather then heart rate. Our analysis is also hinting to the
fact that four features of the Electro-Dermal Activity (peaks number,
total signal raise time, and the Hjiorth parameters for activity and
complexity) could be enough to identify the two groups.

In the future we plan to extend this research by using more phys-
iological information such as body temperature or blood pressure

and by applying the same methodology to early detection for other
kinds of irrational fears such as arachnophobia, autophobia, or try-
pophobia. Moreover, it could be also possible to apply this same
methodology for early diagnosis of learning disorders [10, 11].
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