
1

Fine-Grained Network Analysis for Modern
Software Ecosystems

PAOLO BOLDI, Dipartimento di Informatica, Università degli Studi di Milano, Italy

GEORGIOS GOUSIOS, Department of Software Technology, Delft University of Technology,

The Netherlands

Modern software development is increasingly dependent on components, libraries, and frameworks coming

from third-party vendors or open-source suppliers and made available through a number of platforms (or

forges). This way of writing software puts an emphasis on reuse and on composition, commoditizing the

services that modern applications require. On the other hand, bugs and vulnerabilities in a single library living

in one such ecosystem can affect, directly or by transitivity, a huge number of other libraries and applications.

Currently, only product-level information on library dependencies is used to contain this kind of danger,

but this knowledge often reveals itself too imprecise to lead to effective (and possibly automated) handling

policies. We will discuss how fine-grained function-level dependencies can greatly improve reliability and

reduce the impact of vulnerabilities on the whole software ecosystem.
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1 INTRODUCTION

Software engineers reuse code to reduce development and maintenance costs. A popular form of
software reuse is the employment of Open-Source Software (OSS) libraries, hosted on centralized
code repositories, such as Maven [21] or npm [22]. In such settings, developers specify dependen-

cies to external library releases in a textual file, which is then committed to the repository of the
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client program. Automated programs, usually referred to as package managers, resolve the depen-
dency descriptions and connect to the central repositories to download the specific library releases
that are required to build the client program. Critically, dependencies can have dependencies of
their own (transitive dependencies); thus, package managers need to resolve the transitive closure
of the dependency graph in order to build client applications. Dependency versions are usually
declared in a hierarchical versioning format, which is, in most but not all cases, a derivative of
semantic versioning [15]. The co-evolving network of dependencies and end-user applications is
referred to as an ecosystem.

The convenience of declarative specification for package reuse has led to the massive adoption
of package managers and package repositories. While the start-up costs seem low for projects,
reuse does not come for free. The software engineering literature has thoroughly documented
the hidden maintenance costs around dependency reuse. From the perspective of a library user,
it is hard to keep track of dependency updates especially for transitive dependencies [10], and
assess their impact on the client code base [2]; the semantic versioning API evolution provisions
are rarely respected in practice by library maintainers [16]; and entrusting precious data on code
that the package manager automatically downloads is often not a wise choice [10]. On the other
hand, from the perspective of the library maintainer, it is difficult to evolve Application Program-
ming Interfaces (APIs), for example, by removing methods [18], without breaking clients [2], while
incentives for professional maintenance of library code are lacking [13]. In addition, as libraries
may also depend on other libraries, the library maintainers face the same issues as library users
face. Finally, the very nature of dependency networks and the uncoordinated nature of their evo-
lution burdens library users; recent studies have shown that the average Javascript program has
an estimated mean of 80 transitive dependencies [20] (up from 54 in 2017 [8]), while 50% of the
dependency sets change every 6 months in the Rust ecosystem [6].

As a result, in recent years, we have witnessed several spectacular failures of package manage-
ment networks, with severe implications on client programs, end users, and the further adoption
of OSS:

(1) A dispute over a library name in the npm ecosystem led to the removal of a library
called leftpad, which consisted of just 11 lines of code. The package removal led to the
collapse of thousands of libraries, which directly or transitively depended on leftpad and,
hence, a major disruption for client programs.

(2) A company named Equifax leaked over 100,000 credit card records due to a dependency
that was not updated. The compromised systems included a vulnerable version of the
Apache Struts library, whose update was postponed as the Equifax security team erro-
neously underestimated the impact of the bug on their codebase.

(3) Malicious developers uploaded to the Python package manager repository Python Pack-
age Index (PyPI) libraries whose name was deliberately misspelled, being almost identical
to the original libraries (e.g., urllib instead of urllib3). The intention was to steal infor-
mation from client applications of developers who had accidentally mistyped the library
name in the dependency file.

In this work, we argue that the main reason for such failures is that current tools work at
the wrong level of abstraction: while developers release and keep track of packages, actual reuse
happens at the code level. What we propose is to use fine-grained network analysis, as a more precise
instrument for the analysis of package ecosystems. We can obtain precise, code-based reuse in-
formation by statically or dynamically analyzing the code at the function/method call level. Static
analysis comprises a set of well-established techniques in the field of program analysis. While it
can derive sound(y) [11] code reuse relationships, its precision is obstructed by the dynamic nature
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Fine-Grained Network Analysis for Modern Software Ecosystems 1:3

of modern programming languages. On the other hand, dynamic analysis can derive fully precise
call relationships by instrumenting programs while they are running, but its soundness is limited
by factors such as the availability of extensive test suites or representative workloads. Nonethe-
less, over-imposing call relationships on top of a package dependency network can lead to more
precise analyses, effectively augmenting the soundness properties of the package dependency net-
work with precision.

2 FORGES, PRODUCT, AND DEPENDENCIES

At the dawn of the computer era, software development was mainly a solitary heroic activity of sin-
gle men facing the complexity of problems with their bare hands in the darkness of their caves; but
those days have gone: modern software development relies more and more on existing third-party
libraries, giving programmers the freedom to focus on the core of what they have to do, delegating
tedious or routine chores to reliable, specialized libraries they can download from the Internet.

In a way, this is just the industrial revolution arriving at the harbor of software production. In
the words of Immanuel Kant: “All trades, arts, and handiworks have gained by division of labour,
namely, when, instead of one man doing everything, each confines himself to a certain kind of
work distinct from others in the treatment it requires, so as to be able to perform it with greater
facility and in the greatest perfection. Where the different kinds of work are not distinguished
and divided, where everyone is a jack-of-all-trades, there manufactures remain still in the greatest
barbarism.” [7].

In free and open-source software, people share their work in the form of libraries, hosted
on centralized code repositories, such as Maven [23], npm, RubyGems, but also GitHub [24] or
SourceForge [25]; some of these repositories are language-specific, whereas others are not. We
will broadly refer to such repositories as forges. Forges use different approaches in organizing
the libraries or projects they host; in fact, they refer to such libraries in a variety of ways: for
example, npm uses a flat organization of “packages,” and RubyGems does the same with what
they call “gems,” whereas Maven organizes what they call “artifacts” into groups. To avoid am-
biguity, we shall prefer the abstract name product to refer to all of them: a product is a coherent
piece of software that can be used alone or as a library to develop something else. We let P be
the set of all products,1 and we shall typically refer to a product p ∈P with a name, such as
org.apache.maven.plugins or org.slf4j.

Every product in every forge exists typically in a number of revisions: a new revision of a prod-
uct is published to correct bugs or vulnerabilities found in previous releases, or to introduce new
functionalities. Every revision is identified in some way (e.g., by a version number or by a hash-
code); the granularity (hence, the frequency) of releases changes from one repository to another
(for example, in GitHub releases may actually be identified with commits and are extremely fre-
quent). We use the term version to refer to the identifier (whatever it is) that specifies what revision
of a specific product we are talking about (e.g., 1.0.1-RC1). We let R be the set of all revisions,
and we shall typically refer to a revision r ∈ R with a name combining the product name and the
version, such as org.apache.maven.plugins-34 or org.slf4j-2.0.0-alpha1. We also let

product : R →P

be the function that returns the product corresponding to a given revision. For instance,

product(org.slf4j-2.0.0-alpha1) = org.slf4j

1This set continuously evolves (typically, expands) in time; this fact will be ignored in this article, as if we are taking a

single snapshot of the state of things at a certain moment in time.
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Any given revision (i.e., version of a product on a forge) is available in the form of a number
of artifacts (e.g., jar files, textual documents, zipped archives). Some of them contain the actual
source code of the library, whereas others contain metadata of various kind (makefiles, installation
instructions, documentation, etc.). For the purposes of the current article, we only consider the
source code and the so-called dependency specification. The latter metadata contains a description
of the other products that are needed for this product to be compiled and/or executed: the syntax
used in dependency specification depends on the forge. The dependency specification of revision
r ∈ R is denoted by dep(r ).

A number of tools called package managers are available that allow developers to specify which
products their code depends on. For maximum flexibility,2 the dependency specification is ex-
pressed by a Conjunctive Normal Form (CNF) logical formula [12]; more precisely, the dependency
specification is a set (interpreted as a logical conjunction) of dependency clauses, where each clause
is itself a set (interpreted as a logical disjunction) of dependencies. A dependency is interpreted as
a set of revisions of a product.

Here is an example of how a dependency is defined in Maven:

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-compiler-plugin</artifactId>

<version>34</version>

</plugin>

and here is another one for Ivy:

<dependency org="org.slf4j"

name="slf4j-api" rev="[1.7,)"/>

In these examples, you see that dependencies can point to a specific revision (in the first case, we
are asking for version 34 of org.apache.maven.plugins) or to a set of revisions (in the second
case, anything starting from version 1.7 of the org.slf4j library will fit).

3 PACKAGE MANAGERS AND DEPENDENCY RESOLUTION

Not only do package managers allow to specify which products a piece of code depends on, but
also they automatize the process of downloading recursively the dependencies of a given project
and using them to build it. In order to describe how package managers work, let us first provide
some definitions.

The global source dependency graph is a directed graph whose node set is R and with an arc
from r to r ′ whenever r ′ satisfies at least one of the dependencies in one of the clauses of r . The
out-neighbors of a revision r in the global source dependency graph are called the (direct) depen-
dants of r .

The source dependency graph of revision r0 ∈ R is the smallest subgraph of the global source
dependency graph that includes r0 and all the revisions that are reachable from r0 in the global
source dependency graph. We show an example of source dependency graph in Figure 1.

A given set of revisions R ⊆ R is said to satisfy a given dependency if it includes at least one
element satisfying the dependency; R satisfies a given dependency clause if it satisfies at least one

2Not all package managers allow for this level of flexibility. In most cases, only one-element clauses are accepted.
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Fig. 1. An example: the source dependency graph of revision D-1.0. In this example, we have only 13 revisions

of five products (A, B, C, D, E). Each node is a revision—in the upper part, we write the name of the revision

(product and version); in the lower part, its dependency specification (each rectangle is a dependency clause,

represented as a set of dependencies). For example, revision C-1.0 depends on revision 1.1 of A and on any

revision of B with version ≤1.0 or ≥1.3. As another example, C-1.4 requires either revision 1.1 of A or any

revision of B with version ≥1.3. Finally, D-1.0 depends on revision ≥1.1 of B, on any revision of E with

version ≥1.0 and then either on any revision of C or revision 1.0 of A.

element of the clause;R satisfies a given dependency specification if it satisfies all of its dependency
clauses.

We say that R is dependency-closed iff it satisfies dep(r ) for all r ∈ R. It is easy to see that the
set of nodes of the source dependency graph of r0 is dependency-closed, but not necessarily the
smallest dependency-closed set of revisions including r0. Moreover, it includes several revisions of
the same product, which is, in general, undesirable.

A package manager, given a revision r0 ∈ R, finds a subset R ⊆ R that satisfies the following
properties:

—r0 ∈ R
—R is dependency-closed
—it does not contain different revisions of the same product; that is, if r , r ′ ∈ R and

product(r ) = product(r ′), then r = r ′

—no proper subset of R satisfies the above three conditions.

In other words, the package manager should cherry-pick a subgraph of the source dependency
graph of r0 so that no more than one revision of the same product is chosen but, at the same time,
the resulting set is dependency-closed.3 This subgraph is called resolved dependency graph of r0.
Figure 2 shows a possible resolved dependency graph for the example of Figure 1.

Resolution is a process that can produce different (incomparable) sets of revisions: for example,
Figure 3 is an alternative resolved dependency graph for the same revision. Not only, different
package managers use different resolution strategies and may thus end up with different resolved
dependency graphs; but even the same package manager may produce different resolutions de-
pending on some contextual information (e.g., a timestamp).

In the following, we assume that we have a single package manager and let resolved(r0, c ) ⊆ R
be the (node set of the) resolved dependency graph of r0 obtained by the package manager in the
context c .

3It should be noted that real-world package managers are more complex than this; we refer the interested reader to [1] for

details. Nonetheless, we think that the definition we are using contains the core of what a package manager is supposed

to achieve.
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Fig. 2. A resolved dependency graph of D-1.0 obtained from the source dependency graph of Figure 1. The

dotted revisions are not included in the resolved dependency graph. As one can easily see, all dependencies

are satisfied: for instance, D-1.0 requires a version of B that is 1.1 or newer (and B-1.3 is such), a version of

E that is 1.0 or newer (E-1.0 is such), and then either a revision of C or version 1.0 of A (and the former is

provided, because the graph includes C-1.4).

Fig. 3. An alternative resolved dependency graph of D-1.0 obtained from the source dependency graph of

Figure 1. Once more, all dependencies are satisfied: for instance D-1.0 requires a version of B that is 1.1
or newer (and B-1.3 is such) and then either a revision of C or version 1.0 of A (and the latter is provided

because the graph includes A-1.0).

4 THE PRICE OF REUSE

Public software forges, package managers, and the resulting ecosystems made the dream of code
reuse a reality, but this reality comes at a price. These ecosystems are extremely fragile: according
to Ref. [8], in 2017, JavaScript products used to have an average of 54.6 products they depended
upon (directly or transitively), with a steady growth of more than 60% every year; there are prod-
ucts in RubyGems that are in the transitive dependency of more than 400,00 other products (mean-
ing that if you remove one of them, about 40% of all the products in the ecosystem will cease to
work).

Package users gain great value from reusing code, but they need to invest significant resources
into shielding themselves from software security, legal compliance, and source code incompatibil-
ity issues.

According to Snyk’s annual 2019 report on the state of open-source security [25], the number of
security issues found in software almost doubles every two years (+44% every year), and about 78%
of them are found in indirect dependencies. This observation hints at how complicated sofware
maintenance actually is: when a new vulnerability alert is found, for example, it is essentially
impossible to know whether the issue impacts on a specific product. Of course, the dependency
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Fig. 4. A fragment of the global source dependency graph, corresponding to the resolution of Figure 2.

Fig. 5. If a vulnerability is found in B-1.3 (red in the picture), some other revisions in this picture may be at

risk (light red in the picture).

graph can be used to know if the impact is possible, but it is not enough to know if the specific
piece of code that was broken is ever actually invoked (directly or indirectly) in the product we
are looking at; and, in the positive case, what are the functions that are put at risk and how can
the problem be circumvented.

Even worse, 69% of the developers are totally unaware of vulnerabilities existing in the products
they depend upon, and 81.5% of the systems simply don’t update their dependencies [10]. This is
probably because, on one hand, few tools are available to warn those developers in an automated
way; it is true, for example, that GitHub has recently launched an automated service notifying
repository owners that they depend on packages affected by known security vulnerabilities, but
even so, it is like crying wolf—in most cases, vulnerabilities found in dependencies would not affect
their software anyway.

As a concrete example, consider in Figure 4 the resolved dependency graph (the same as in
Figure 2 but where we dropped the products that were not used in the resolution). This is, in fact,
a fragment of the source dependency graph of Figure 1.

Suppose that a security alert is issued about revision B-1.3; then, by transitivity, two other
products involved are potentially infected (as shown in Figure 5). But is this really the case?

From a different viewpoint, also legal and licensing issues are made quite complex by depen-
dencies. The complexity of licensing contracts and their effects on dependencies is often underes-
timated by software developers. While several companies offer license compliance checking ser-
vices (e.g., BlackDuck software, WhiteSource, FOSSA), a project’s source code cannot be checked
in isolation from its dependency graph, and a project’s dependency graph can extend to more
components than what is specified in the package manager (e.g., implicit dependencies on system
libraries).
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Fig. 6. A function-level view of Figure 4.

On the other hand, package providers have no reasonable means of evolving what they offer in
a systematic way because they are not sure of the impact a change in their products, or in their
licensing, can have on their clients.

The issues we just highlighted are related to the relatively naive design of package managers:
they only resolve dependencies based on package versions. As such, they cannot assess the risk of
using dependencies, they cannot notify developers of critical (e.g., security) updates, nor can they
assist them to evaluate the ecosystem impact of API evolution tasks (e.g., removing a deprecated
method). Even if they were able to implement such functionalities, they could do so only at the
bulk level of products, but not at the level of function/method.

5 NETWORK ANALYSIS AS A SOFTWARE ENGINEERING TOOL

While package-based dependency networks capture dependencies at the product level, actual soft-
ware reuse happens at the code level. For example, Figure 6 shows the same scenario depicted in
Figure 4, but this time, we can see the functions within each revision, along with their calls. What
we can observe is that a call from E/f4 to A/f1 does not reach A/f2. However, A/f2 is reachable
from C/f3. In this setting, a potential vulnerability in A/f2 would render C potentially vulnerable as
well, whereas it would not affect E. If we were able to identify exact function calling relationships
between packages, our whole analysis would become more precise.

Fortunately, the field of program analysis has been working a long time to automatically extract
calling relationships in source code, in the form of call graphs. Call graphs can be generated either
statically, by analyzing the source code, or dynamically, by instrumenting the code and tracing
program executions. Static call graphs are neither complete (e.g., because they miss calls by reflec-
tion or by dynamic dispatch), nor sound (some identified execution paths may never materialize
in real executions). Dynamic call graphs, on the other hand, are strongly dependent on the test
cases used to generate the traces. Despite those shortcomings, call graphs are used in a variety of
use cases, notably, change impact analysis [17] and dead code elimination [9].

What we propose is to represent dependency relationships with call graphs. Concretely, every
(revision of a) product can be seen as a set of functions, each calling other functions either be-
longing to the same product or to some of its dependants: it can be abstractly represented as a
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Fig. 7. This picture shows the call graphs of C-1.0 and its dependants (from Figure 1). External nodes are

diamond-shaped, and the dotted arrows represent σ .

directed graph with two types of nodes, internal and external. While internal nodes represent an
actual function within the same revision, external nodes are somehow less precisely identified—
they represent a function in some revision of some other product, but which revision is not known,
because it depends on the dependency-resolution process.

The whole dependency-resolution process depends on the choice of a resolution strategy
adopted by the package manager, whose behavior is determined on the specific revision of a spe-
cific product we aim at using as a starting point. At the end of this process, we can actually identify
external nodes of each single revision involved with internal nodes of other revisions, obtaining
the actual global call graph.

6 (STITCHED) CALL GRAPHS

Let us formalize the notion of call graph we have outlined. Every revision r ∈ R is associated with a
directed graphGr = (Vr ,Er ), the call graph of r , whose node setVr is bipartiteVr = V

int
r ∪V ext

r into
a set of internal nodes (V int

r ) and a set of external nodes (V ext
r ); the latter nodes have no outgoing

arcs. Hence, Er ⊆ V int
r ×Vr (i.e., all arcs start from an internal node); the arcs themselves can be

classified as being internal (if they end up into an internal node) or external (if they end up into
an external node).

External nodes (i.e., functions that exist in some dependant) carry sufficient metadata to allow
one to identify them with some internal node of a dependant regardless of how the resolution
process was performed. Formally, we can say that there is a function

σr : V ext
r → 2

⋃
V int

r
′ ,

where 2X denotes the set of subsets ofX , and the union ranges over all the out-neighbors r ′ of r in
the global source dependency graph. This function serves the purpose of mapping external nodes
(i.e., calls to some library function) to internal nodes of dependants.

As an example, Figure 7 shows the call graphs of C-1.0 and its dependants (from Figure 1); ex-
ternal nodes are diamond-shaped. The dotted arrows represent σ . We can see that C-1.0 contains
two external calls: C/f1 and C/f2 both call some external function. Remember that, according to
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Fig. 8. This picture shows the call graphs of the revisions involved in Figure 2: within each graph, external

nodes are diamond-shaped. The dotted arcs correspond to the map σ (the function will map each external

nodes to possibly many internal nodes in many dependants; but, here, we are looking at a resolved graph).

The graph obtained after stitching is that of Figure 6.

Figure 1, C-1.0 depends on A-1.1 and on any version of B excluding those larger than 1.0 and
smaller than 1.3: we have only two revisions of B satisfying the constraint. The yellow external
nodes are mapped to the two internal nodes B/f1 (of revision B-1.3) and B/f3 (of revision B-1.0)—
which one will be used depends on whether the resolution process chooses B-1.3 or B-1.0. The
blue external node corresponds to a call to a function of product A, and, here, only A-1.1 matches,
with A/f3 corresponding to the external call.

Using this function, we can define the notion of stitched call graph of revision r0 and a con-
text c , written G (r0, c ): consider the graph obtained as a union of all Gr with r ∈ resolved(r0, c ),
and quotient its node set with respect to the smallest equivalence relation4x ∼ y such that x ∼ y
whenevery ∈ σr (x ) for some r ∈ resolved(r0, c ). This graph contains only internal nodes (because
each external node is mapped to one or more internal nodes by σr ), and it is the function-level
equivalent of resolved(r0, c ).

We call this graph “stitched” because it is obtained by stitching together the call graphs of a
resolved dependency graph identifying every external node with a set of internal nodes of depen-
dants. Figure 8 shows how the stitched call graph construction works.

7 OPPORTUNITIES AND CHALLENGES

We present examples on how the availability of stitched call graphs can improve the reliability of
software development practices, and improve the robustness of the whole ecosystem:

4Given a graph G = (V , E ) and an equivalence relation ≈ between its nodes, the quotient graph G/ ≈ has the set of

equivalence classes V / ≈ as node set and an arc from [x ] to [y] if and only if there is some x ′ ≈ x and some y′ ≈ y such

that (x ′, y′) ∈ E .
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Fig. 9. The function-level analysis shows that if the vulnerability in B-1.3 is because of function B/f2, then

only C/f1 is at risk. In particular, none of the functions within library D-1.0 is involved.

—Every time a bug or a security breach is found in a library, developers will be able to precisely
analyze whether their applications are calling into vulnerable code and decide whether
dependency updates are necessary; the ecosystem itself will be able to notify the developers
of vulnerable applications in real time, after a security issue has been disclosed. This type
of functionality would have been beneficial in preventing the Equifax breach. By analyzing
security alerts at a function level, you can get much more precise information and know
exactly which parts of your code need to be fixed—Figure 9 shows that, in our example,
revision D-1.0 is not at all impacted by a bug found in function B/f2. Similarly, only a
portion of the functions of C-1.4 are impacted.

—Using the call graph, one can precisely identify the ecosystem-wide impact (direct and tran-
sitive) that any API change can have. This kind of change impact analysis can thus become
a first-class tool for software developers (much like a debugger or a profiler is). Developers
will be able to get quantitative answers to questions such as “How many packages are affected

if I remove a certain method/interface?” and will be able to make decisions and proactively
notify downstream packages for breaking changes when an upstream API has changed. The
availability of this functionality would have prevented the left-pad incident, for example.

—The fact that licensing is usually only evaluated at the library level and not at the function
level introduces (at least conceptually) a rigidity that is not desirable for organizations re-
leasing open-source software components. For example, a library may include subroutines
with different licensing contracts. Using the call graph, we can check that function-level
licenses of our own software are consistent with one another, and that they are consistent
with the licenses attached to the libraries our software depends on.

More generally, the call graph contains a big deal of information about software that could
not be obtained otherwise. In particular, the notion of centrality [4] applied to the call graph can
determine which parts of the software ecosystem are more relevant; this information can be used
to target critical or risky functions, or to better concentrate maintenance efforts of large software
repositories. This path can be thought of as moving one step beyond the traditional approach to
profiling, using network analysis methods as the weapon of choice.

Despite the obvious advantages, analyzing whole ecosystems at the function level is not trivial.
We foresee the following challenges:
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Scale. The unified call graph Hejderup et al. [6] built for Rust contained 6 million nodes and
16 million edges. However, Rust as an ecosystem featuring 250k revisions is an order of magnitude

smaller than that of Java (2.5M) or Python (1.2M). Even assuming a prudent estimate of about
100 functions per revision, we are talking of graphs with about 1011 nodes, and thousands of billions
of arcs!

These graphs are bound to challenge the current state-of-art in graph processing systems, es-
pecially considering that those graphs change frequently and that they materialize dynamically
based on the dependency-resolution strategy. In addition, such graphs will need to be queried (e.g.,
traversed and sliced) in real time by clients.

This challenge calls for new, aggressive, dynamic compression techniques, specially tailored
around the structure and topology of call graphs, which can go beyond the state-of-art in graph
compression [5]. For deeper analysis and ranking, it might be necessary to store, in compact form,
some metadata about the actual calls. For example, the users might contribute profiling data mak-
ing it possible to decorate arcs of the graph with the estimated number of times a particular func-
tion is called at a specific location in the code—such information would be invaluable in the ranking
process, but it would require further storage and new as yet unknown compression techniques.

Call graph soundness. Soundness is an important property of static analyses. Unsound analyses
lead to reporting false positives to developers (e.g., a piece of code is labeled as having a bug, but in
reality, it does not), which in turn makes developers not trust the analyses. Unfortunately, creating
sound static analyses is known to be an undecidable problem (Rice’s theorem). For the proposed
system to be successful, the right balance between soundness and usefulness should be reached.

The problem of unsoundness translates to either under- or over-approximation of a program’s
behavior. In practical terms, and since nodes (functions) can always be fully recovered, the ecosys-
tem call graph may contain more or less edges than what we could obtain from a program execution
trace. To mitigate this problem, we can employ two strategies: crowdsourcing the call graph aug-
mentation and machine learning on graphs. In the first case, users of the system can be asked to
instrument their test runs or actual deployments with dynamic call graph extraction tools. A cen-
tralized location keeping track of the call graphs can compare the uploaded traces and create edges
in case they are missing; full trust can be given to such traces, as dynamic call graphs are de facto

precise. Finally, network analysis can play an important role here. Specifically, one could envisage
methods that exploit the structural and evolutionary properties of the graph to employ algorithms,
such as friend recommendation, in order to augment or prune the ecosystem call graph.

Bringing value to developers. What we have just described is only the backbone behind a set of
tools and services that should integrate with the final developer’s programming environment (e.g.,
in the form of plugins for the programmers’ favorite Integrated Development Environment) as well
as with continuous integration tools. To make the call graphs available and to enable additional
analyses (e.g., change impact analysis, security/bug propagation), the Fine-Grained Analysis of
Software Ecosystems as Networks (FASTEN) project [26] develops a continuously updated service
that will act as a hub for ecosystem-scale analysis for the Java, Python, C, and Rust programming
communities.

The ongoing FASTEN EU Project proposes an innovative approach to solve the above chal-
lenges; FASTEN design is based on the streaming toolchain sketched in Figure 10: data coming
from different sources are streamed to a centralized server that extracts call graphs, stores them in
compressed form and prepares efficient data structures (indices) to query them efficiently. Front-
end tools are provided for developers to interrogate the call-graph database.

The preliminary results, especially for what concerns call-graph compression and analysis, are
very promising. The first nontrivial problem related to call graphs is about their compressibility:
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Fig. 10. The FASTEN EU Project toolchain.

call graphs are a relatively new object, and it is unclear whether standard compression tech-
niques [5] can be fruitfully applied. It turns out that call graphs can be indeed compressed very
well, for instance, using variants of Layered Label Propagation (LLP) [3], a technique initially de-
veloped to extend webgraph compression techniques to more general types of graphs (e.g., social
networks).

A second important preliminary observation is that, despite their size, call graphs exhibit
relatively short call chains, allowing for efficient resolution of reachability and co-reachability
queries [19], which are the fundamental ingredient of most change-impact studies.

These early findings suggest that the challenges we envision can be won, leading to a new,
efficient, safer, and more productive software-writing environment.

8 CONCLUSIONS

Since the introduction of software modularization [14], software engineers have long been trying
to make software reusable. Technologies such as object-oriented programming, components,
commercial off-the-shelf libraries and aspects have all touted the reuse horn, to various degrees
of success. During the last 15 years, package managers and the open-source software movement
have succeeded in making the dream of software reuse a tangible reality. However, this reality
is not without problems. The current state of practice and the frequent, spectacular failures of
modern software ecosystems point toward the limits of what comprises the first generation of
package management technology.

In this vision article, we presented a new design for package management systems that can, in a
large degree, overcome the fallacies of current ones and pave the way to new, exciting reuse possi-
bilities. What we need to do is change our unit of reuse from the package to the function/method
and embrace network analysis as first-class citizen in future software engineering tools.
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