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Highlights 29 

 Cancer vaccines have been characterized by positive safety and immunogenicity 30 

profiles but low levels of clinical efficacy 31 

 Novel cancer vaccines strategies entail personalized formulations and effective 32 

combinatorial regimens  33 

 Positive momentum from the COVID-19 vaccination campaign can in turn accelerate 34 

cancer vaccine clinical testing 35 

  36 
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Abstract (171) 37 

Cancer vaccines (CVs) represent a long-sought therapeutic and prophylactic immunotherapy 38 

strategy to obtain antigen-specific T-cell responses, and potentially achieve long-term clinical 39 

benefit. However, historically, most CV clinical trials have resulted in disappointing outcomes, 40 

despite promising signs of immunogenicity across most formulations.   41 

In the past decade, technologic advances regarding vaccine delivery platforms, tools for 42 

immunogenomic profiling and antigen/epitope selection have occurred. Consequently, the 43 

ability of CVs to induce tumor-specific and, in some cases, remarkable clinical responses have 44 

been observed in early-phase clinical trials. It is notable that the record-breaking speed of 45 

vaccine development in response to the coronavirus disease (COVID-19) pandemic mainly 46 

relied on manufacturing infrastructures and technological platforms already developed for 47 

CVs. In turn, research, clinical data, and infrastructures put in place for the SARS-CoV2 48 

pandemic can further speed CV development processes. 49 

This review outlines the main technological advancements as well as major issues to tackle 50 

in the development of CVs. Possible applications for unmet clinical needs will be described, 51 

putting into perspective the future of cancer vaccinology. 52 

 53 
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Introduction 65 

Cancer immunotherapies (CIs) represent one of the most promising fields in oncology (1). 66 

They aim to enhance immune system recognition of tumor cells, possibly leading to disease 67 

control or survival benefit.  68 

CIs include cell therapies, antibodies, cytokines, oncolytic viruses (OVs) and cancer vaccines 69 

(CVs) (2) (3). Historically, early CIs attempts had exploited the use of systemic cytokines, 70 

which were associated with unfavorable toxicity profiles, limiting clinical applications (4). Over 71 

the years, growing knowledge in molecular biology, genomics and cancer immunology has 72 

prompted the discovery of novel targets and therapeutic approaches (2) (5) (6). Notable 73 

examples are Chimeric Antigen Receptor (CAR) T Cells and Immune Checkpoint Blockade 74 

(ICB). Both strategies provided clinical benefits in different malignancies (7) (8) (9) (10), 75 

leading to their approval by regulatory agencies as well as to the 2018 Nobel Prize in Medicine 76 

(7) (11) (12) (13) (14). Regardless, different CIs are burdened by various escape mechanisms, 77 

including antigen-/HLA-loss, metastatic seeding of immunological sanctuaries and 78 

unpredictable all-or-none or dissociated responses (15) (16) (17).  79 

CVs have also been tested with the aim of unleashing cancer-specific responses and 80 

establishing long-term immunological memory. However, results have been relatively 81 

disappointing, with most formulations failing to show clinical benefit and only one CV, 82 

Sipuleucel-T (Provenge), being approved by the Food and Drug Administration (FDA) in 2010 83 

(18) (19) (20).  84 

In the past year, the record-breaking speed of vaccine development in response to the 85 

coronavirus disease (COVID-19) pandemic relied on manufacturing infrastructure and 86 

platforms previously built for CVs (21). New vaccine delivery systems, such as gene-based 87 

platforms, have been introduced for the first time into large-scale vaccination campaigns. Their 88 

favorable safety, immunogenicity and efficacy profiles have been highlighted by the record-89 

time approval of BNT162b2 and mRNA-1273, the first two FDA-approved vaccines against 90 

COVID-19 (22) (23) (24) (25).  91 
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This work will focus on the major unresolved issues in cancer vaccinology, providing insights 92 

concerning technological improvements of different platforms, addressing open areas for 93 

clinical translation.  94 

 95 

Biological and clinical issues to tackle 96 

CVs platforms are classically divided into four types: viral/bacterial-, gene-, peptide-, and cell-97 

based, as depicted in Figure 1. 98 

Most CV clinical trials so far have utilized cellular-, viral- or peptide-based platforms, thanks to 99 

pre-existing knowledge regarding safety, immunogenicity and manufacture (18) (28). Until late 100 

2014, 451 CV clinical trials had been conducted, with gene-based formulations representing 101 

less than 5% (29). Remarkably, the ratio of phase III to II CV clinical trials was as low as 1-to-102 

21, highlighting a tight bottleneck in drug development processes (30). In addition, most phase 103 

III trials ultimately failed to demonstrate efficacy data (29). For example, the MAGRIT trial 104 

failed to show increased disease-free survival (DFS) in patients with surgically-resected non-105 

small cell lung cancer (NSCLC) receiving a recombinant anti-MAGE-A3 protein vaccine 106 

compared to placebo (31). Similarly, the TeloVac trial did not show improved overall survival 107 

(OS) in locally-advanced/metastatic pancreatic patients by adding GV1001, a peptide-based 108 

vaccine against telomerase, compared to standard-of-care chemotherapy (32). Altogether, 109 

these results possibly originated from non-optimized vaccination strategies, non-ideal antigen 110 

selection or greatly unexplored combinatorial strategies.  111 

Nonetheless, despite numerous other CVs failing to prove efficacy in phase III trials, the entire 112 

field never came to a halt (33). Indeed, strong evidence originating from virtually all trials 113 

across different platforms supported favorable toxicity profiles and immunogenicity (30). 114 

These were the two foundational pillars onto which cancer vaccinology resumed, envisioning 115 

novel platforms and trial designs to eventually attain positive efficacy results (29) (34). After 116 

widespread disenchantments, a rejuvenation of the entire field has been witnessed, driven by 117 

key aspects warranting optimization to meet expectations (35).  118 

 119 
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Antigen choice. There are two classes of antigens (Ag) to target: tumor-associated (TAAs) 120 

and tumor-specific. The former are non-mutated proteins, being either overexpressed (i.e. 121 

human epidermal growth factor receptor 2, HER2, or telomerase), part of tissue differentiation 122 

(i.e. tyrosinase, Melan-A) or cancer-germline (i.e. MAGEs, NY-ESO), and not necessarily 123 

tumor specific. In contrast, the latter, comprised of oncoviral antigens and neoantigens 124 

(NeoAg), are tumor-specific, as shown in Figure 2. NeoAg arise from nonsynonymous 125 

mutations, which can be functionally relevant. Indeed, “driver” mutations confer cell-growth 126 

advantages and are clonally selected, as opposed to “passenger” mutations, which do not 127 

affect the replication rate, hence are less susceptible to clonal selection (36) (37). Past CV 128 

trials preferentially targeted TAAs over NeoAg since TAAs were harder to identify (33). 129 

However, since TAAs are non-mutated proteins, immune responses tap into T cell repertoires 130 

that are subject to central-/peripheral-tolerance (22).  131 

In contrast, phase I/II clinical trials have shown that immune responses against NeoAg are not 132 

subjected to central or peripheral tolerance, alongside favorable toxicity profiles (38) (39) (40) 133 

(41). In the past years, faster and cheaper availability of Next Generation Sequencing (NGS) 134 

technology and more refined bioinformatic prediction tools enabled clinical testing of 135 

personalized CVs targeting tumor-specific NeoAg, yielding promising early clinical data (42).  136 

 137 

Tumor heterogeneity. Tumors are not single biological entities, as they evolve under diverse 138 

intrinsic and extrinsic pressures mainly imposed by treatment, immunity, metabolism and the 139 

tumor microenvironment (TME) (43) (44). Importantly, tumors with a high degree of intratumor 140 

heterogeneity (ITH) have been linked to worse prognosis (45) (46) (47) (48) (49) (50). Genetic 141 

and/or non-genetic mechanisms feed different types of ITH: spatial-, temporal-, 142 

immunological- and behavioral- ITH (43). As a major determinant of therapy resistance, ITH 143 

should be a fundamental aspect to consider to better guide therapeutic strategies (44) (51). 144 

Theoretically, one approach to reduce ITH would be to conduct CV trials in patients with low-145 

tumor burden and in front line settings (52). Similarly to Immune Checkpoint Blockers (ICBs), 146 

CVs may elicit more robust immune responses in treatment-naïve patients (53) (54). 147 
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Moreover, a bolder and promising proposal is to use CVs for immunoprevention of cancer, 148 

particularly in individuals with preneoplastic lesions (55) (56) (57). 149 

Importantly, gene-based vaccines have the potential to better target ITH compared to the other 150 

platforms by eliciting Ag-specific immune responses against different epitopes (58). This could 151 

be achieved by inserting sequences encoding for different NeoAg within each vaccination shot 152 

(59). In addition, gene-based platforms potentially allow for indefinite rounds of vaccinations, 153 

following tumor evolution over time (60). In this setting, the emergence of immunodominance, 154 

whereby immune responses preferentially focus on a fraction of the possible epitopes of an 155 

unknown protein, could probably blunt the effect of chasing ITH by inserting multiple 156 

sequences for diverse NeoAg, and the eventual emergence of such phenomenon shall be 157 

precisely assessed (56) (57).  158 

 159 

Immunomodulation: from “cold” to “hot” TME. A major hurdle undermining therapeutic CV 160 

efficacy are immune-evasive mechanisms, particularly in solid tumors (63). Recognized 161 

mechanisms are T cell exhaustion in inflamed tumors, lack of T cell infiltration in immune 162 

excluded tumors and defective antigen presentation processes in immune desert tumors (64). 163 

Recently, novel technologies to unravel TME complexity and heterogeneity have been 164 

developed, such as mass cytometry and single-cell -omics (i.e. epigenomics, transcriptomics, 165 

metabolomics, proteomics) (59). However, in this context, spatial localization of a given cell 166 

within the TME is often lost during sample preparation and sequencing procedure (67). Thus, 167 

development of novel systems-based approaches of simultaneous single-cell analyses 168 

combined with spatial microarchitectural information remains a primary technological 169 

challenge (68) (69) (70). Potential strategies to heat up the TME and improve antitumor 170 

immunity are summarized in Figure 3. 171 

Of note, interactions between tumor cells and their TME can destroy normal tissue 172 

homeostasis and shift the TME towards the metastasis-promoting state. In addition, metastatic 173 

tumors growing in different organs may consist of significantly different immune infiltrates as 174 

compared with the primary tumor site, triggering differential responses to immunotherapies 175 
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(75). For example, comparing the immune infiltrates of patient-matched primary versus 176 

metastatic breast cancers (BCs) evidenced a higher content of Tumor Associated 177 

Macrophages (TAMs) across in metastatic sites, suggesting TAMs as a potential therapeutic 178 

target for metastatic BCs (76).  179 

In addition, many studies have focused on how tumor metabolism imposes an 180 

immunosuppressive TME status (77). Recognized TME metabolic derangements are, for 181 

example, low pH, hypoxia, aerobic glycolysis, fatty acid biosynthesis, accumulation of lactate 182 

and kynurenines as well as deprivation of glucose, glutamine and tryptophan (78). Targeting 183 

such metabolic alterations has been explored in preclinical models, while human translation 184 

studies have mainly investigated the role indoleamine-2,3-dioxygenase (IDO) inhibition (79). 185 

IDO is a rate-limiting enzyme upregulated in response to IFN-gamma that catabolizes 186 

tryptophan, blunting T cell responses (80). IDO inhibitors have shown limited efficacy when 187 

utilized as single agents, thereby numerous clinical trials are ongoing investigating 188 

combinations with ICBs or CVs (81) (82).    189 

Another key determinant of cancer-immune interactions is the concomitant use of drugs with 190 

intrinsic TME-modulator (TMEm) functions (83). One example are cyclin-dependent kinase 191 

inhibitors, which have been linked with improved antigen presenting processes and pro-192 

inflammatory cytokine secretion, ultimately favoring immune escape via PD-L1 upregulation 193 

(84). In order to fully uncover immunological aftermaths of diverse drugs, their TMEm functions 194 

need to be tested and validated in disease-specific pre-clinical models (85). For example, the 195 

CD73-adenosine axis has recently been recognized as a key druggable immunomodulatory 196 

pathway activated in glioblastoma and pancreatic ductal adenocarcinoma murine models, 197 

paving the way for clinical testing (i.e. ARC-8, NCT04104672) (77) (78). 198 

Ultimately, recent studies suggest that the gut microbiome plays a critical role in modulating 199 

immune responses, also affecting response to ICB therapies. For example, commensal 200 

Prevotella heparinolytica has been shown to promote IL17-producing cells, accelerating 201 

myeloma progression in a preclinical model (88). Moreover, gut colonization with Firmicutes 202 

and Faecalibacterium genus was associated with improved clinical response rates and colitis 203 
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in ICB-treated melanoma patients (89). Similarly, the microbiota composition was shown to 204 

influence anti-tumor efficacy of neoantigen CVs (90). In the field of pharmacobiotics, 205 

Bifidobacterium longum supplementation on anti-PD1 therapy was recently suggested to curb 206 

tumor growth in a BC murine model (91). Importantly, the impact of the microbiome needs to 207 

be assessed across various tumor subtypes, as its effects are likely to differ.  208 

 209 

Technology advancements and pitfalls 210 

Platform-related Improvements. Substantial technological improvements have affected 211 

mainly gene- and viral-based platforms. Gene-based vaccines have historically lagged behind, 212 

mainly due to scarce safety data, large-scale manufacturing experience, reduced 213 

immunogenicity of early formulations, their instability and poor uptake/specificity (92). 214 

However, their use has blossomed in recent years, mainly due to three major areas of 215 

technological advancements: structure optimization, novel delivery systems and refined 216 

epitope prediction tools (93) (94) (95) (96). mRNA production has been standardized, with 217 

simpler manufacture processes obviating the need for cell culture or viral vector production 218 

(97). Additionally, mRNA-based platforms in the pipeline allow for quick sequence adaptations 219 

in response to emerging resistance mutations (92). Lastly, another advantage of gene-based 220 

platforms is that they do not need exogenous, immunogenic cargos, potentially allowing for 221 

indefinite dosing/booster shots (92). Concerning RNA-structural optimization, recent 222 

technological advances aim at avoiding detrimental immune activation as well as increasing 223 

safety, biodistribution and immunogenicity profiles (98). Major breakthroughs have been 224 

sequence optimization, allowing for enhanced transcription and in vivo stability, Good 225 

Manufacturing Practice grade purification systems to avoid toxic leftovers, and the insertion of 226 

modified nucleotides with higher translation capacity and lower immunogenicity (via TLR7 227 

avoidance), such as N1-methyl-pseudouridine (1mΨ) (98). Such modifications may expand 228 

the clinical indications of RNA-based vaccines: for example, a non-inflammatory, m1Ψ-based, 229 

vaccine structure design recently showed disease protection in a pre-clinical model of 230 

experimental autoimmune encephalitis (99).  231 
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In addition, mRNA sequences can be utilized not only to encode for tumor-specific antigens, 232 

but also immunomodulators (i.e. cytokines, ligands), monoclonal/bispecific antibodies, small 233 

interfering RNA, CART constructs, or combinations (93). Indeed, several phase I/II trials are 234 

currently testing such approaches (54) (87). For example, mRNA-2752, a lipid nanoparticle 235 

(LNP)-loaded with OX40 ligand (OX40L, also known as tumor necrosis factor superfamily, 236 

member 4 ligand), IL23 and IL36γ, is being tested against several malignancies in combination 237 

with durvalumab, demonstrating an acceptable safety profile, pro-inflammatory cytokine 238 

release, together with some cases of tumor shrinkage (NCT03739931) (100).  239 

In parallel, improvements have recently been made also in the field of viral-vector vaccines 240 

(101), which typically utilize either live or non-replicating vectors (102). Major innovations 241 

include the introduction of different viral vectors, such as adenoviruses (Ad) (i.e. non-human 242 

primate, NHP), parvoviruses (i.e. adeno-associated viruses, AAV) and poxviruses (i.e. 243 

Modified vaccinia Ankara) (103). Such platforms allow for remarkable versatility, carrying the 244 

genetic information for antigen expression and induce potent T-cell responses (104) (105). A 245 

major limitation is the high prevalence of pre-existing immunity against the vector itself, 246 

possibly reducing overall efficacy by limiting multiple vaccinations (102). To overcome this, 247 

prime/boost approaches based on two different viruses immunologically non-cross-reacting 248 

(“heterologous prime/boost”) have shown promising results in humans (106) (107) (108). 249 

Alternatively, use of serotypes with low-prevalence is also advised (109). Moreover, complex 250 

manufacturing pipelines based on cell-culture systems and the possibility of residual viral 251 

replication also remain open areas of research and technological development (110).  252 

Moreover, viral-based approaches also pertain OVs (72). Historically, they have been used as 253 

in situ vaccination agents to elicit immune responses against multiple, unpredicted epitopes, 254 

given their natural ability to replicate within cancer cells (72). Notably, the only OV being 255 

granted regulatory approval has been Talimogene laherparepvec (T-VEC) (111). 256 

Subsequently, efforts have been made to arm OVs with immunomodulating agents, to couple 257 

them with immune-stimulating agents  and/or to elicit Ag-specific responses (112). 258 

Remarkable responses and tumor immune infiltration have been recently documented with 259 
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HSV-1 G207 in pediatric high-grade gliomas (113). Moreover, the use of a genetically-modified 260 

Maraba Virus (MR1) has been validated in pre-clinical models to boost immune responses 261 

when administered after Ad-based vaccination, posing the rationale to test Ad:MR1 prime-262 

boost combinations in humans (NCT02285816) (NCT02879760) (114). Ultimately, strategies 263 

aiming at eliciting Ag-specific responses via OVs exploit virion-coating with peptides of 264 

interest, exploiting either electrostatic forces (i.e. negatively charged virions and positively 265 

charged poly-lysine peptides) or membrane-anchoring (98) (99). 266 

 267 

Novel delivery vehicles. Innovative compounds have been introduced in clinical trials, 268 

especially for RNA-based platforms, such as protamine combined, lipoplexes (LPX), or LNPs 269 

(58) (117). Among them, LNPs stand out as a major nanomedicine advancement, as 270 

witnessed by their implementation in the development of COVID-19 vaccines (65) (73). In 271 

particular, BNT162b2 and mRNA-1273 exploit LNPs as vectors for spike protein-encoding 272 

mRNAs and are currently being administered in worldwide vaccination campaigns (22) (23). 273 

For the first time, such gene-based vaccines have been linked with remarkable safety profiles 274 

in the general population, as well as in special sub-groups such as cancer patients, pregnant 275 

women, and the elderly (26) (119) (120). Remarkably, antibody persistence was also detected 276 

up to six months after the completion of the second vaccination boost (25) (86) (87). Briefly, 277 

LNPs protect RNA-sequence from degradation and allow for stringent spatial-temporal control. 278 

In addition, their lipid/moiety composition could be further modified to promote cell/organ-279 

specific targeting and adjuvant properties, further expanding the potential use of gene-based 280 

vaccines (97) (123).  281 

 282 

Bioinformatics and novel antigen prediction tools. NeoAg may be exploited not only to 283 

indirectly estimate the likelihood of response to ICBs in certain tumors, but also to design 284 

personalized therapeutic CVs (124) (125). To do so, standardized bioinformatic tools able to 285 

identify and prioritize possible tumor-specific mutations have been developed (125). However, 286 

not all mutations result in neoepitopes that are recognized by the immune system, owing to 287 
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human leukocyte antigen (HLA) restriction/immunodominance (68) (69). Therefore, HLA 288 

typing is also required to foresee potentially immunogenic epitopes (42). HLA class I-binding 289 

epitopes are predicted through algorithms and computational approaches trained on peptide-290 

binding affinity data (42) (128). Such algorithms have also been tested on mass spectrometry 291 

(MS) data of peptides presented on specific mono-allelic HLA-expressing cell lines to increase 292 

accuracy (125) (129) (130). Besides MS, methods for high-throughput detection of mutation-293 

associated epitopes, such as mass cytometry and T-cell receptor clonotyping, are also being 294 

successfully implemented (42). Additionally, recent advances in big data analysis and artificial 295 

intelligence are contributing to improve neoepitope prediction (131) (132). In particular, deep 296 

learning approaches have been applied to large HLA peptide and genomic datasets from 297 

various human tumors (e.g. NetMHCpan, NetMHCIIpan) to create a computational model of 298 

antigen presentation (71) (72) (95) (131).  Moreover, large-scale cancer proteomic data 299 

sharing efforts such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC), the 300 

Tumor Neoantigen Selection Alliance (TESLA) and the HLA Ligand Atlas of healthy human 301 

tissues will facilitate the enumeration of targetable tumor NeoAg (135) (136).  302 

Several obstacles currently make the design of therapies targeting NeoAg difficult. For 303 

example, among the vast number of putative NeoAg, only a small fraction is ultimately 304 

validated, efficiently presented or shown to be immunogenic (137). In fact, prediction tools are 305 

more specific for MHC-I compared to MHC-II molecules, possibly due to a longer sequence 306 

and open ends of the latter (42). Also, additional evidence suggests that many tumor-specific 307 

epitopes may arise from non-translated sequences, for which most in silico tools have not yet 308 

been optimized (138). Lastly, further studies to improve understanding of the factors that can 309 

affect NeoAg expression, presentation and immunogenicity are necessary (42).  310 

 311 

Getting Cancer Vaccines to The Clinic 312 

Gene-based CVs. Clinical results regarding nucleoside-based CVs have been 313 

heterogeneous, due to the large number of phase I/II trials enrolling a limited number of 314 

patients, diverse primary endpoints and fast-emerging technological advancements (92).  315 
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In general, gene-based vaccines comprise about 22% of vaccines in preclinical development 316 

(37/166) and about 37% of those in clinical development (10/27). Importantly, two of them 317 

received FDA-licensing for COVID-19 (139) (140). In this context, two landmark clinical trials 318 

targeting TAAs and NeoAg, provided first evidence of efficacy as therapeutic approaches for 319 

cancer (40) (137). Indeed, in the phase I Lipo-MERIT trial (NCT02410733), 89 advanced, ICB-320 

treated, melanoma patients received mRNA-based CV against up to four TAAs (141). 321 

Remarkably, Th1-skewed, polyclonal T cell responses following vaccination were observed, 322 

along with synergy with anti-PD-1 in ICB-experienced patients, ultimately resulting in durable 323 

responses rates (35% in the combination group). Notably, the RNA was optimized to achieve 324 

highest expression in immature dendritic cells (96) and the liposomal delivery system elicited 325 

TLR-7-mediated type-I interferon responses, easing T-cell expansion (142). The phase I 326 

Individualized Cancer Immunotherapies (IVAC) MUTANOME trial (NCT02035956), testing an 327 

RNA-based platform targeting two TAAs and up to ten NeoAg in thirteen advanced melanoma 328 

patients, showed the emergence of T-cell responses in vaccinated patients, with a reduction 329 

in the cumulative rate of metastatic events (40). Of note, polyclonal T-cell responses were 330 

detected in all patients in both CD4 and CD8 compartments, and evidence of synergy with 331 

ICB (40). 332 

Altogether, these trials provided evidence about heavily pre-treated, high-tumor burden, 333 

patient populations, highlighting the potential of gene-based platforms and their synergism 334 

with traditional immunotherapies. 335 

 336 

Viral-vector CVs. Several viral vectors have been evaluated in CV clinical studies (143). For 337 

example, a Gorilla Adenovirus (GAd)-derived, NeoAg-based CV was recently shown to 338 

synergize with ICB in preclinical tumor models, leading up to disease eradication (144) (145).  339 

Importantly, viral vectors can be armed with multiple antigens of interest, such as PSA/MUC-340 

1/brachyury in metastatic castration-resistant prostate cancer patients (NCT03481816), or 341 

with regulated immunomodulator expression, such as gene-switches for IL-12 delivery in a 342 

preclinical model of glioma (146) (147). In addition, two NHP Ad vectors are in clinical 343 
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development for the delivery of NeoAg CVs: Chimpanzee (ChAd68) and GAd20. Preliminary 344 

results in patients with advanced tumors have demonstrated robust and consistent induction 345 

of CD8 T cells against multiple NeoAg upon vaccination with ChAd68 (Granite, NCT03639714, 346 

NCT03953235).  347 

The above-mentioned induction of anti-vector immunity has been overcome by heterologous 348 

prime/boost. Such trials elicited higher immune responses than repeated vaccination with an 349 

individual viral vector (148). Both self-amplifying RNA and Modified Vaccinia Ankara (MVA) 350 

technologies are currently being used to boost NHP Ad vectors in clinical trials 351 

(NCT03639714). In this regard, the NHP/MVA prime/boost regimen with two vectors (GAd20 352 

and MVA) is currently evaluated with a NeoAg-based vaccine for high microsatellite instable 353 

(MSI-H) tumors (NCT04041310). Instead, the Nous-209 vaccine is based on concomitant 354 

administration of four viral vectors encoding for 209 shared NeoAg peptides among patients 355 

with MSI-H tumors (145).  356 

Adenovirus-vectored vaccines are also being tested to elicit responses in the central nervous 357 

system. In this context, a phase I, dose-escalation study was conducted with DNX-2401 358 

(Delta-24-RGD) in 37 patients with recurrent high-grade glioma, resulting in 20% survival at 359 

more than three years (149). Overall, the entire field of viral-based CV is advancing thanks to 360 

the exploitation of novel viral species and innovative strategies with other vaccination 361 

approaches, prompting their application in the oncologic setting.  362 

 363 

Peptide-based CVs. Historically, most peptide-based CVs tested so far in the clinic showed 364 

variable signs of immunogenicity and clinical activity (150). Two major improvements in this 365 

field have been the introduction of novel adjuvants as well as the use of synthetic long peptides 366 

(SLP) (151) (152) (153).  As opposed to short peptides, SLPs do not directly bind to MHC 367 

class I molecules; indeed they require antigen presenting processing for presentation to 368 

cytotoxic T lymphocytes with proper immune-stimulatory co-receptors (154). Moreover, SLPs 369 

also allow for multi-epitope targeting, as shown for TAS0314, a peptide containing four TAAs 370 

from SART2 and SART3 proteins, in a pre-clinical model of SART293–101-expressing 371 
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melanoma (155). Other formulations of this approach are currently undergoing evaluation 372 

(156).  373 

In addition, peptide-based CV formulations can also target patient-specific NeoAg. In this 374 

scenario, one of the most advanced CV products is represented by NeoVax, comprised of up 375 

to 20 different SLPs with the immunostimulatory adjuvant poly-ICLC (a synthetic dsRNA viral 376 

mimic that acts as a TLR3 agonist) (38). Clinical trials in advanced melanoma and 377 

glioblastoma have both demonstrated the emergence of polyfunctional, specific, Th1-skewed 378 

responses post-vaccination (NCT01970358) (NCT02287428) (37) (134). In the melanoma 379 

trial, four patients out of six had no recurrence up to 25 months after vaccination; while the 380 

two relapsing patients showed complete tumor regression after ICB therapy (38). These 381 

studies highlighted the potential of such peptide-based CV formulations, which are currently 382 

being tested also in combination with other immunotherapies (NCT02950766) 383 

(NCT03929029) (42).  Moreover, another promising trial is represented by the Phase Ib NT-384 

002, assessing a personalized NeoAg CV, NEO-PV-01, targeting up to 20 NeoAg predicted 385 

by bioinformatic analysis, as a first line therapy for advanced non-squamous NSCLC with 386 

carboplatin, pemetrexed and pembrolizumab (NCT03380871) (158) (159) (160). Authors 387 

reported Ag-specific and durable (up to 1 year) immune responses, with approximately 55% 388 

of vaccine peptides eliciting measurable immune responses. Remarkably, overall response 389 

rates in the intention-to-treat and the vaccination populations were 37% and 57%, respectively 390 

(159). 391 

Overall, concerning peptide-based CV formulations, research in the field of adjuvants as well 392 

as in the discovery of ideal antigenic targets is still needed to further improve immunogenicity 393 

and, ultimately, clinical efficacy.   394 

 395 

Biotech and industrial perspectives.  A key aspect of CV development efforts is the capacity 396 

of making early and objective treatment choices in order to select ideal candidates, a specific 397 

platform, eventual combinatorial agents and vaccination schedules (161).  398 
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For RNA-based CVs, different aspects still need to be thoroughly assessed to boost their 399 

efficacy. One is their design, as LNP:mRNA mass ratio can be adjusted (from 10:1 to 30:1), 400 

implying; for example, a significant amount of LNP for multi-Ag candidates in a given dose 401 

(42) (98). Moreover, differences in safety and immunogenicity profiles between non-replicating 402 

mRNA and self-amplifying mRNA vaccine sequences are largely unknown, and may have 403 

implications to improve sequence optimizations upon iterative development schemes (97). In 404 

addition early-phase clinical trials need to precisely capture the inflammatory components of 405 

the different mRNA vaccine formulations, given that several intracellular immune sensors are 406 

activated by RNA, in order to optimize the benefit (immunogenicity, efficacy) while reducing 407 

the risk (safety) profiles (162). In this regard, safety and tolerability may limit multi-antigen 408 

approaches, and here pre-clinical studies will be crucial for development. Lastly, limited data 409 

exist on repeated administrations of mRNA vaccines in humans (161). As the entire field 410 

accrues more data from human studies and current COVID-19 vaccination programs, potential 411 

long-term safety and immunogenicity issues will need to be accurately collected and critically 412 

discussed (86) (118) (140). 413 

Considering biotech and industrial implications, viral-based CVs face different issues. 414 

Importantly, manufacturing pipelines are more complex and require laborious cell-culture 415 

methods imposing complex purification and microbiological constraints (164). Moreover, 416 

replication-defective viruses need thorough (pre-)clinical validation regarding their replication 417 

capacity and the absence of systemic disease manifestations in frail sub-populations, such as 418 

immunocompromised individuals (165). In addition, vaccine-related disease enhancement has 419 

been described in some pre-clinical models for SARS-CoV or respiratory syncytial virus 420 

vaccines, and must be always considered (166) (167). Moreover, punctual reports concerning 421 

toxicities as novel viruses are introduced in clinical practice must be thoroughly monitored by 422 

regulatory agencies (168).  423 

Key aspects to consider in the development of a vaccination strategy, given a certain kind of 424 

mutation obtained from sequencing studies are summarized in Figure 4 (41) (118). For 425 

example, tumor mutational burden (TMB) high tumors should benefit more from multiple, 426 
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personalized rounds of vaccinations against different predicted neo-epitopes, possibly in 427 

combination with ICBs or TME-altering drugs (83). Instead, off-the-shelf vaccination strategies 428 

should be envisioned in TMB-low tumors both prophylactically, against viral-associated 429 

epitopes or mutations conferring resistance to chronic concomitant therapies, or 430 

therapeutically, against known driver mutations. In general, these considerations must be 431 

continuously updated and re-evaluated considering the fast-changing technologic advances 432 

and data procurement. 433 

 434 

Future Perspectives 435 

Since most CV clinical trials are small scale, data originating from them will need to be 436 

standardized in order to allow comparability and build large-scale reference datasets 437 

regarding immunogenicity, biomarkers and efficacy readouts (18). In this way, patient 438 

stratification could identify subgroups potentially gaining benefit from CV programs (170). In 439 

parallel, attempts to translate predictive biomarkers identified from ongoing research in ICB-440 

treated patients may also help identifying patients most likely to respond to CVs. For example, 441 

a recent meta-analysis of transcriptomic and clinical data from >1000 ICB-treated patients 442 

across various malignancies, identified clonal TMB, CXCL9/CXCL13 expression, CCND1 443 

amplification and TRAF2 loss being predictive of ICB-response (171).   444 

Another concern is to match vaccination strategies with tumor biology/genetics. In fact, CVs 445 

can either be utilized as ready-to-use, off-the-shelf drugs, or as personalized products based 446 

on sequencing data (18). Cancer biology and data originating from large longitudinal 447 

sequencing studies in multiple malignancies must instruct different vaccination strategies in 448 

different clinical settings (169). For example, vaccination strategies relying on products 449 

tailored on sequencing data should be most suited for patients carrying biomarkers predicting 450 

positive response to ICBs (171). Conversely, tumors showing high oncogene addiction are 451 

characterized by driver mutations, which fall in specific loci and harbour few recurrent genetic 452 

alterations (18). Theoretically, these tumors could benefit from vaccination strategies aimed 453 

at targeting such recurrent driver mutations, possibly in the (neo)adjuvant setting, by means 454 
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of ready-to-use, off-the-shelf CV products released on histologic information. In this regard, in 455 

2019 Moderna & Merck opened a phase I clinical trial with the aim of targeting the four most 456 

common KRAS alterations in NSCLC, pancreatic and CRC patients by means of a mRNA-457 

based vaccine with or without pembrolizumab (NCT03948763). Importantly, the use of off-the-458 

shelf CV products can also be applied in the prophylactic setting in patients under chronic 459 

treatment with targeted or endocrine therapies, to avoid recurrent mutations causing loss of 460 

response, as well as in patients with genetic cancer syndromes (i.e. FAP, Lynch Syndrome) 461 

(172) (173) (174). Moreover, driver mutations, and their therapy-resistance mutation, may not 462 

be the solely targets in oncogene-driven tumors. In fact, oncogenic pathways often co-operate 463 

with other mutant proteins to promote disease progression (175) (176). For example, KRAS 464 

exploits mutant TP53 in fostering disease growth in a pre-clinical model of pancreatic ductal 465 

adenocarcinoma (87).  466 

The choice of combinatorial agents must consider tumor biology and TME-specific 467 

derangements, as previously discussed, together with the clinical setting in which these are 468 

introduced. This is because any combinatorial drug comes at the cost of possible added side 469 

effects, and the toxicity/benefit ratio varies from patient to patient and from early to advanced 470 

settings. For example, in early stages, combinatorial regimens should aim at increasing CV 471 

immunogenicity and foster the formation and persistence memory T cell subsets. In the 472 

metastatic setting, instead, combinatorial drugs should achieve disease control in the short to 473 

medium term, allowing CVs to stimulate T-cell specific immunity and/or re-invigorate ICB-474 

driven responses.  475 

Of note, growing evidence suggests a higher benefit of ICB-therapies in circulating tumor DNA 476 

(ctDNA)-positive patients in several malignancies, with a favorable prognostic role of ctDNA 477 

seroconversion rates (177) (178). Consolidated data concerning eventual 478 

prognostic/predictive roles of this biomarker could possibly instruct for the use of ctDNA 479 

seroconversion rate as a primary endpoint of (neo)adjuvant CV clinical trials, alongside long-480 

term survival data (i.e. PFS, OS) supporting eventual regulatory approvals.  481 
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Finally, in order to build positive momentum in the cancer vaccination field, four aspects should 482 

be strengthened: research & technology, clinical scenario, trial comparability and global 483 

preparedness (Figure 5).  484 

 485 

Conclusions 486 

Suboptimal clinical trial designs, the use of CVs as single agents, sometimes with weak 487 

antigens, as well as the enrolment of advanced, heavily pre-treated patients, have been just 488 

some of the reasons that led to poor clinical trial results so far (179). Nonetheless, enormous 489 

progress has been made in both oncology and vaccinology (53) (65) (71).  490 

First, unprecedented in-depth, running, characterization of cancer genetics, including genetic 491 

determinants of therapy resistance, and the introduction of novel immunotherapies or TME-492 

altering drug to combine CVs with in future clinical trials, have broadened the spectrum of both 493 

TAA or NeoAg targets (180). Moreover, bioinformatic prediction tools are becoming more 494 

refined with the growing availability of tumor mutations alongside HLA sequencing population 495 

libraries (i.e. IPD-IMGT/HLA Database) (181) (182) (183). Second, technological advances in 496 

the vaccinology field are occurring, especially regarding formulations (gene-, viral-, peptide- 497 

based) and delivery systems, contributing to the time-record introduction of effective vaccines 498 

in the COVID-19 pandemic  (21). In this scenario, research and innovation efforts to address 499 

COVID-19 provided large-scale evidence about the favorable safety and immunogenicity 500 

profiles of these vaccine platform technologies and point to the need to accompany CVs with 501 

interventions at the level of the suppressive TME. This momentum could, in turn, speed up 502 

the development of CVs employing novel technologies, which are showing promising, 503 

although immature, signs of efficacy in early Phase I trials (37) (39) (131). 504 

Importantly, the choice of ideal endpoints to allow for a hypothetical regulatory approval of 505 

such agents remains a matter of debate, as whether safety profiles should be considered 506 

according to a platform-based approach or to the single vaccine product. For these reasons, 507 

testing as per classical phase I-III schedule is still to be addressed.  508 
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Overall, there is rising optimism that technological advancements, data accumulating from 509 

worldwide vaccination campaigns, strengthened production processes and, importantly, 510 

clinical results from ongoing phase II/III trials will clarify the ultimate role of CVs in cancer 511 

treatment in the ensuing years.  512 
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Figure 1. Main vaccines formulations developed for cancer therapy. Four types of vaccine 1050 

platforms have been developed for therapeutic purposes: viral/bacterial-based, gene-based, 1051 

peptide-based and cell-based vaccines (27). Examples of each different strategies are 1052 

depicted. Abbreviations: T-VEC, Talimogene laherparepvec; HSV-1, Herpes simplex virus 1; 1053 

DC, dendritic cell; DNA, Deoxyribonucleic acid; mRNA, messenger ribonucleic acid; APC, 1054 

antigen-presenting cell; IL-2, Interleukin-2; TNF, Tumor necrosis factor; IFNγ, Interferon 1055 

gamma.  1056 
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Figure 2. Targets for tumor vaccines fall into two general classes: tumor-associated 1058 

antigens (TAAs) and tumor-specific antigens (TSAs). TAAs are self-antigens that are 1059 

either preferentially or abnormally expressed in tumor cells but may be expressed at some 1060 

level in normal cells, as well. T cells that bind with high affinity to TAAs are typically deleted 1061 

from the immune repertoire by central and peripheral tolerance mechanisms. TSAs, 1062 

comprised of oncoviral antigens and neoantigens, are tumor-specific. Consequently, they are 1063 

generally highly immunogenic, due to lack of central tolerance. TSAs associated to oncogenic 1064 

viruses have been identified in virus-induced cancers such as human papillomavirus (HPV)-1065 

associated cervical cancer, hepatitis B virus-associated hepatocellular carcinoma and human 1066 

herpesvirus 8‑associated Kaposi sarcoma. Tumor neoantigens are products of somatic 1067 

mutations acquired during carcinogenesis. NeoAg encoded by oncogenic driver mutations 1068 

may be prevalent across patients and tumor types, so they are referred to as shared 1069 

neoantigens. However, the majority of NeoAg are unique to individual patients’ tumors (private 1070 

neoantigens). To date, through integration of tumor sequencing with the prediction of MHC-1071 

binding epitopes, it is possible to tailor tumor NeoAg selection on the single patient level (27). 1072 

Tumor specificity “optimal” (antigen present only in cancer cells) “good” (antigen preferentially 1073 

expressed in cancer cells) or “variable” (antigen overexpressed/shared with healthy tissues). 1074 

Central tolerance “high” (antigen physiologically expressed in healthy tissues), “low” (central 1075 

tolerance present but antigens restricted to immune-privileged sites) or “none” (no evidence 1076 

of immunological tolerance) (18) (22).  1077 
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Figure 3. Potential Strategies to heat up the TME. (A) Targeting cellular metabolism and 1079 

certain metabolites within the TME to reduce immunosuppressive regulatory T cells (Tregs), 1080 

myeloid derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), or to 1081 

generate metabolically fit T cells with better mitochondrial activity to protect against the tumor. 1082 

Image captions: °, immune cell; ^ stroma cell; * cancer cell.  (B) Targeting epigenetic 1083 

modulators to either promote immunogenicity of tumor cells or to re-educate TAMs, MDSCs, 1084 

or Tregs for the support of T-cell effector functions (71). (C) Induced activation of the innate 1085 

immune sensing system with stimulator of STING agonists or boosting cross presenting DCs 1086 

to promote tumor Ag-specific T-cell trafficking or function within the TME. (D) Creating an 1087 

inflamed TME via OVs or nanoparticle delivery of key immunomodulatory factors (71). In this 1088 

regard, OVs deserve a special mention, as they are capable of tumor-specific replication, 1089 

which can provide a therapeutic opportunity (72). Briefly, OVs are naturally occurring or 1090 

genetically engineered viral species, able to selectively kill cancer cells without damaging 1091 

healthy tissue (72). Their mechanism of action is multimodal, as the injection of OVs in 1092 

primary/accessible tumors induces immunogenic cell death (ICD) of tumor cells, promoting 1093 

the build-up of an inflamed TME (71). In fact, OVs support Natural Killer (NK)-cell and T-cell 1094 

immune responses, ultimately improving the lysis of OV-infected cancer cells. Moreover, the 1095 

activation of antiviral innate immunity, such as type I IFNs and IFN-stimulated genes (ISGs), 1096 

promotes the release of damage- and pathogen-associated molecular patterns (DAMPs and 1097 

PAMPs), the exposure of viral/tumor Ag as well as the polarization of TAMs towards anti-tumor 1098 

M1 phenotype within the TME (73) (74). The consequent OVs-mediated upregulation of 1099 

immune checkpoints (i.e. Programmed death-ligand 1 and Programmed death-ligand 2, PD-1100 

L1 and PD-L2, respectively), provides a rationale for combination immunotherapy of OVs plus 1101 

ICB. Abbreviations: STING, stimulator of interferon genes; RNA Pol II, RNA polymerase II; 1102 

TNF, tumor necrosis factor; TF, transcription factor; lncRNA, long non-coding ribonucleic acid; 1103 

miRNA, microRNA; HAT, histone acetyltransferase; KDM, histone lysine demethylase; SAM, 1104 

S-adenosyl methionine; DC, dendritic cell; IFN, interferon; MDSC, myeloid-derived suppressor 1105 

cell; NK, natural killer; TAM, tumor-associated macrophage; M1, classically activated 1106 
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macrophages; M2, alternatively activated macrophages; ILC1/2, Innate Lymphoid Cells 1/2; 1107 

IL, interleukin; N1, antitumorigenic neutrophil; N2, pro-tumorigenic neutrophil; Treg, regulatory 1108 

T cell; Th, T helper cell; TGF- β, Transforming Growth Factor-β; OV, oncolytic virus; TLR, Toll-1109 

like receptor; LPS, Lipopolysaccharides; CCL28, Chemokine (C-C motif) ligand 28. 1110 
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Figure 4. Proposed Ag-based cancer vaccination strategies. Different mutations/biological 1113 

dependencies may instruct various vaccination strategies and combinatorial agents. 1114 

Abbreviations: NeoAg, neoantigens; TAA, tumor-associated antigens; NGS, Next-Generation 1115 

sequencing; #, multiple; TME, tumor microenvironment; TMB, tumor mutation burden. 1116 
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Figure 5. Key issues to boost applicability and improve clinical efficacy of future cancer 1118 

vaccines programs. Main areas of development for cancer vaccinology are the rapid 1119 

introduction of technological advancements, the identification of clear populations that could 1120 

benefit from CV programs, efforts to allow for comparability of different clinical trials and the 1121 

establishment of a global workforce able to sustain possible demand and supply-chain. 1122 

Abbreviations: COSMIC, Catalogue of Somatic Mutations In Cancer; LNP, lipid nanoparticle; 1123 

LPX, lipoplexes; TME, tumor microenvironment. 1124 
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