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We present the first results on the third order corrections to on-shell form factor (FF) of the Kon-
ishi operator in N = 4 supersymmetric Yang-Mills theory using Feynman diagrammatic approach
in modified dimensional reduction (DR) scheme. We show that it satisfies KG equation in DR

scheme while the result obtained in four dimensional helicity (FDH) scheme needs to be suitably
modified not only to satisfy the KG equation but also to get the correct ultraviolet (UV) anomalous
dimensions. We find that the cusp, soft and collinear anomalous dimensions obtained to third order
are same as those of the FF of the half-BPS operator confirming the universality of the infrared
(IR) structures of on-shell form factors. In addition, the highest transcendental terms of the FF
of Konishi operator are identical to those of half-BPS operator indicating the probable existence
of deeper structure of the on-shell FF. We also confirm the UV anomalous dimensions of Konishi
operator up to third order providing a consistency check on the both UV and universal IR structures
in N = 4.

PACS numbers: 12.38Bx

The ability to accomplish the challenging job of cal-
culating quantities is of fundamental importance in any
potential mathematical theory. In quantum field theory
(QFT), this manifests itself in the quest for computing
the multi-loop and multi-leg scattering amplitudes under
the glorious framework of age-old perturbation theory.
The fundamental quantities to be calculated in any gauge
theory are the scattering amplitudes or the correlation
functions. Recently, there have been surge of interest to
study form factors (FFs) as they connect fully on-shell
amplitudes and correlation functions. The FFs are a set
of quantities which are constructed out of the scattering
amplitudes involving on-shell states consisting of elemen-
tary fields and an off-shell state described through a com-
posite operator. These are operator matrix elements of
the form 〈pσ1

1 , · · · , pσl

l |O|0〉 where, O represents a gauge
invariant composite operator which generates a multi-
particle on-shell state |pσ1

1 , · · · , pσl

l 〉 upon operating on
the vacuum of the theory. pi are the momenta and σi en-
capsulate all the other quantum numbers of the particles.
More precisely, FFs are the amplitudes of the processes
where classical current or field, coupled through gauge in-
variant composite operator O, produces some quantum
state. Studying these quantities not only help to under-
stand the underlying ultraviolet and infrared structures
of the theory, but also enable us to calculate the anoma-
lous dimensions of the associated composite operator.
The Sudakov FFs (l = 2) in N = 4 maximally super-

symmetric Yang-Mills (SYM) theory [1, 2] were initially
considered by van Neerven in [3], almost three decades
back, where a half-BPS operator belonging to the stress-
energy supermultiplet, that contains the conserved cur-
rents of N = 4 SYM, was investigated to 2-loop order:

OBPS = φa
mφa

n −
1

3
δmnφ

a
sφ

a
s . (1)

Very recently, this was extended to 3-loop in [4]. We
will represent scalar and pseudo-scalar fields by φa

m and
χa
m, respectively. The symbol a ∈ [1, N2− 1] denotes the

SU(N) adjoint color index, whereas m,n stand for the
generation indices which run from [1, ng]. In d = 4 di-
mensions, we have ng = 3. The sum over repeated index
will be assumed throughout the letter unless otherwise
stated. One of the most salient features of this operator
is that, it is protected by the supersymmetry (SUSY) i.e.
the FFs exhibit no ultraviolet (UV) divergences but in-
frared (IR) ones to all orders in perturbation theory. In
this article, our goal is to investigate the Sudakov FFs
of another very sacred operator in the context of N = 4
SYM, called Konishi operator, which is not protected by
the SUSY and consequently, exhibits UV divergences be-
yond leading order:

OK = φa
mφa

m + χa
mχa

m . (2)

The existence of UV divergences is captured through the
presence of non-zero anomalous dimensions. This opera-
tor is one of the members of the Konishi supermultiplet
and all the members of the multiplet give rise to same
anomalous dimensions. The one and two loop Sudakov
FFs of Konishi operator were computed in [5] employing
the on-shell unitarity method. In addition, the IR poles
at 3-loop were also predicted in the same article using
the universal behaviour of those, though the finite part
was not computed. In this letter, we calculate the full
3-loop Sudakov FFs using the age-old Feynman diagram-
matic approach. In the same spirit of the FFs in quantum
chromodynamics (QCD), we examine the results in the
context of KG equation [6–9]. Quite remarkably, it has
been found that the logarithms of the FFs satisfy the
universal decomposition in terms of the cusp, collinear,
soft and UV anomalous dimensions, exactly similar to
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those of QCD [10, 11]! Except UV, which is a property
of the associated operator, all the remaining universal
anomalous dimensions match exactly with the leading
transcendental terms of the corresponding ones in QCD
upon putting CF = nfTf = CA. The quantities CF and
CA are the quadratic Casimirs of the SU(N) gauge group
in fundamental and adjoint representations, respectively.
nf is the number of active quark flavors and Tf = 1/2.

FRAMEWORK OF THE CALCULATION

The interacting Lagrangian encapsulating the interac-
tion between off-shell state (J) described by OBPS or OK

and the fields in N = 4 SYM are given by

LBPS
int = Jmn

BPSOBPS , LK

int = JKOK . (3)

We define the form factors at O(an) as

F
ρ,(n)
f ≡

〈M
ρ,(0)
f |M

ρ,(n)
f 〉

〈M
ρ,(0)
f |M

ρ,(0)
f 〉

(4)

where, n = 0, 1, 2, · · · and a is the ‘t Hooft coupling [12]:

a ≡
g2YMCA

(4π)2
(

4πe−γE

)−
ǫ

2 , (5)

that depends on the Yang-Mills coupling constant gYM,
the loop-counting parameter and CA. The quantity

|M
ρ,(n)
f 〉 is the transition matrix element of O(an) for

the production of a pair of on-shell particles f f̄ from the
off-shell state represented through ρ. For the case under
consideration, we take f = φa

m = f̄ , ρ = K and BPS for
JK and Jmn

BPS, respectively. The full form factor in terms
of the components (4) reads as

Fρ
f = 1 +

∞
∑

n=1

[

an
(

Q2

µ2

)n ǫ

2

F
ρ,(n)
f

]

. (6)

The transition matrix element also follows same expan-
sion. The quantity Q2 = −2p1.p2 and µ is introduced to
keep the coupling constant a dimensionless in d = 4 + ǫ
dimensions.

REGULARIZATION PRESCRIPTIONS

The calculation of the FFs in N = 4 SYM theory in-
volves a subtlety originating from the dependence of the
composite operators on space-time dimensions d. Unlike
the half-BPS operator OBPS, the Konishi operator OK

involves a sum over generation of the scalar and pseudo-
scalar fields and consequently, it does depend on d. The
problem arises while making the choice of regularization
scheme [5], which is necessary in order to regulate the

theory for identifying the nature of divergences present
in the FFs. Though the FFs of the protected operators
are free from UV divergences in 4-dimensions, these do
involve IR divergences arising from the soft and collinear
configurations of the loop momenta.
For performing the regularization, there exists several

schemes, the four dimensional helicity (FDH) [13, 14]
formalism is the most popular one where everything is
treated in 4-dimensions, except the loop integrals that
are evaluated in d-dimensions. In spite of its spectac-
ular applicability, this prescription may fail to produce
the correct result for the operators involving space-time
dimensions [5], such as Konishi! However, this can be
rectified and the rectification scenarios differ from one
operator to another. According to the prescription pre-
scribed in the article [5], in order to obtain the correct
result for the Konishi operator, one requires to multiply
a factor of ∆BPS

K
which is ∆BPS

K
= ng,ǫ/2ng with the dif-

ference between the FFs of the Konishi and those of BPS
i.e.

FK

f = FBPS
f + δFK

f , (7)

where, δFK

f = ∆BPS
K

(FK

f −FBPS
f ). The second subscript

of ng,ǫ represents the dependence of the number of gener-
ations of the scalar and pseudo-scalar fields on the space-
time dimensions: ng,ǫ = (2ng − ǫ). The prescription is
validated through the production of the correct anoma-
lous dimensions up to 2-loop. In this article, for the first
time, this formalism is applied to the case of 3-loop FFs
and is observed to produce the correct anomalous dimen-
sions for the Konishi.
On the other hand, there exists another very ele-

gant formalism, called modified dimensional reduction
(DR) [15, 16], which is very much similar to the ‘t Hooft
and Veltman prescription of the dimensional regulariza-
tion and quite remarkably, it is universally applicable to
all kinds of operators including the ones dependent on
the space-time dimensions. In this prescription, in addi-
tion to treating everything in d = 4 + ǫ dimensions, the
number of generations of the scalar and pseudo-scalar
fields is considered as ng,ǫ/2 instead of ng in order to
preserve the N = 4 SUSY throughout. The dependence
on ǫ preserves SUSY in a sense that the total number
of gauge, scalar (ng) and pseudo-scalar (ng) degrees of
freedom continues to remain 8. Within this framework,
we have calculated the Konishi FFs up to 3-loop level
and the results come out to be exactly same as the ones
obtained in Eq. (7). This, in turn, provides a direct check
on the earlier prescription. In the next section, we will
discuss the methodology of computing the FFs.

CALCULATION OF THE FORM FACTORS

The calculation of the FFs follows closely the steps
used in the derivation of the 3-loop spin-2 and pseudo-



3

scalar FFs in QCD [17, 18]. In contrast to the most
popular method of on-shell unitarity for computing the
scattering amplitudes in N = 4 SYM, we use the con-
ventional Feynman diagrammatic approach, which car-
ries its own advantages in light of following the regu-
larization scheme, to accomplish the job. The relevant
Feynman diagrams are generated using QGRAF [19]. In-
deed, very special care is taken to incorporate the Majo-
rana fermions present in the N = 4 SYM appropriately.
For Konishi as well as half-BPS operator, 1631 number
of Feynman diagrams appear at 3-loop order which in-
clude the scalar, pseudo-scalar, gauge boson as well as
Majorana fermions in the loops. The ghost loops are
also taken into account ensuring the inclusion of only the
physical degrees of freedom of the gauge bosons. The
raw output of the QGRAF is converted to a suitable for-
mat for further calculation. Employing a set of in-house
routines based on Python and the symbolic manipulating
program FORM [20], the simplification of the matrix ele-
ments involving the Lorentz, color, Dirac and generation
indices is performed. In the FDH regularization scheme,
except the loop integrals all the remaining algebra is per-
formed in d = 4, whereas in DR, everything is executed
in d = 4 + ǫ dimensions. While calculating within the
framework of DR, the factor of 1/3 in the second part of
OBPS, Eq. (1), should be replaced by 2/ng,ǫ to maintain
its traceless property in d-dimensions.

The expressions involve thousands of apparently dif-

ferent 3-loop Feynman scalar integrals. However, they
are expressible in terms of a much smaller set, called
master integrals (MIs), by employing the integration-by-
parts (IBP) [21, 22] and Lorentz invariance (LI) [23] iden-
tities. Though, the LI are not linearly independent of the
IBP [24], their inclusion however accelerates the proce-
dure of obtaining the solutions. All the scalar integrals
are reduced to the set of MIs using a Mathematica based
package LiteRed [25, 26]. In the literature, there ex-
ists similar packages to perform the reduction: AIR [27],
FIRE [28], Reduze2 [29, 30]. As a result, all the thou-
sands of scalar integrals can be expressed in terms of 22
topologically different MIs which were computed analyt-
ically as Laurent series in ǫ in the articles [31–37] and are
collected in the appendix of [38]. Using those, we obtain
the final expressions for the 3-loop FFs of the OBPS and
OK.

RESULTS OF THE FORM FACTORS

Employing the Feynman diagrammatic approach de-
scribed in the previous section, we have first confirmed
the form factor results for the OBPS up to 3-loop level
presented in [3, 4] and for OK up to 2-loop [5]. In the
present letter, we present only the ǫ expanded results for

the F
K,(i)
φ , i = 1, 2, 3 (see Eq. (6)). The exact results in

terms of d andMIs are too long to present here and can be
obtained from the authors. In order to demonstrate the
subtleties involved in the choice of regularization scheme,
we have expressed them in terms of δR which is unity in
DR scheme and zero in FDH scheme.

F
K,(1)
φ =

1

ǫ2

{

− 8

}

+
1

ǫ

{

12

}

− 12 + ζ2 + ǫ

{

12−
7

3
ζ3 −

3

2
ζ2

}

+ ǫ2

{

− 12 +
7

2
ζ3 +

3

2
ζ2 +

47

80
ζ22

}

+ ǫ3

{

12−
31

20
ζ5

−
7

2
ζ3 −

3

2
ζ2 +

7

24
ζ2ζ3 −

141

160
ζ22

}

+ ǫ4

{

− 12 +
93

40
ζ5 +

7

2
ζ3 −

49

144
ζ23 +

3

2
ζ2 −

7

16
ζ2ζ3 +

141

160
ζ22 +

949

4480
ζ32

}

+ δR

[

− 2 + 2 ǫ+ ǫ2

{

− 2 +
1

4
ζ2

}

+ ǫ3

{

2−
7

12
ζ3 −

1

4
ζ2

}

+ ǫ4

{

− 2 +
7

12
ζ3 +

1

4
ζ2 +

47

320
ζ22

}]

,

F
K,(2)
φ =

1

ǫ4

{

32

}

+
1

ǫ3

{

− 96

}

+
1

ǫ2

{

168− 4ζ2

}

+
1

ǫ

{

− 276 +
50

3
ζ3 + 24ζ2

}

+ 438− 56ζ3 − 66ζ2 −
21

5
ζ22

+ ǫ

{

− 681−
71

10
ζ5 + 128ζ3 + 141ζ2 −

23

6
ζ2ζ3 + 15ζ22

}

+ ǫ2

{

2091

2
+

84

5
ζ5 − 314ζ3 +

901

36
ζ23 −

519

2
ζ2

+ 26ζ2ζ3 −
741

20
ζ22 +

2313

280
ζ32

}

+ δR

[

1

ǫ2

{

16

}

+
1

ǫ

{

− 28

}

+ 46− 4ζ2 + ǫ

{

− 73 +
28

3
ζ3 + 11ζ2

}

+ ǫ2

{

227

2
−

64

3
ζ3 −

47

2
ζ2 −

5

2
ζ22

}]

,

F
K,(3)
φ =

1

ǫ6

{

−
256

3

}

+
1

ǫ5

{

384

}

+
1

ǫ4

{

− 960

}

+
1

ǫ3

{

2112−
176

3
ζ3 − 96ζ2

}

+
1

ǫ2

{

− 4368 + 312ζ3
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+ 504ζ2 +
494

45
ζ22

}

+
1

ǫ

{

8760 +
1756

15
ζ5 − 1056ζ3 − 1608ζ2 +

170

9
ζ2ζ3 −

459

5
ζ22

}

− 17316−
1014

5
ζ5

+ 3192ζ3 −
1766

9
ζ23 + 4158ζ2 − 195ζ2ζ3 +

3789

10
ζ22 −

22523

270
ζ32 + δR

[

1

ǫ4

{

− 64

}

+
1

ǫ3

{

160

}

+
1

ǫ2

{

− 352 + 16ζ2

}

+
1

ǫ

{

728− 52ζ3 − 84ζ2

}

− 1460 + 176ζ3 + 268ζ2 +
153

10
ζ22

]

, (8)

where ζ2 = π2/6, ζ3 ≈ 1.2020569, ζ5 ≈ 1.0369277, ζ7 ≈
1.0083492. The presence of the non-zero coefficients of
δR signifies the shortcoming of the FDH scheme in case
of Konishi operator. We observe that our results for

δF
K,(i)
φ , i = 1, 2, 3 expressed in terms of d and MIs con-

tain an overall factor (6−δRǫ)/6 explaining the necessity
of correcting the results computed in FDH scheme by this
factor advocated in [5].

OPERATOR RENORMALIZATION

Though the N = 4 SYM is UV finite i.e. neither
coupling constant nor wave function renormalization is
required, nevertheless the FFs of the composite unpro-
tected operators, like Konishi, do involve divergences of
the UV source which are captured by the presence of non-
zero UV anomalous dimensions, γρ. As a consequence,
to get rid of the UV divergences, the FFs are required to
undergo UV renormalization which is performed through
the multiplication of an overall operator renormalization,
Zρ (a, µ, ǫ):

d

d lnµ2
lnZρ = γρ =

∞
∑

i=1

aiγρ
i . (9)

Since âs = as(µ0/µ)
ǫ, the solution to the above equation

takes the simple form:

Zρ = exp
(

∞
∑

n=1

an
2γρ

n

nǫ

)

. (10)

The UV finite Konishi FFs is obtained as
[

FK

f

]

R
=

ZKFK

f , whereas
[

FBPS
f

]

R
= FBPS

f . Since, this is a prop-

erty of the associated composite operator, the γρ and so
Zρ are independent of the type as well as number of the
external on-shell states. In the next section, we will dis-
cuss the methodology to obtain the γρ for the Konishi
type of operators in addition to discussing the IR singu-
larities of the FFs.

UNIVERSALITY OF THE POLE STRUCTURES

The FFs in N = 4 SYM contain divergences arising
from the IR region which show up as poles in ǫ. The
associated pole structures can be revealed and studied
in an elegant way through the KG-equation [6–9] which
is obeyed by the FFs as a consequence of factorization,
gauge and renormalization group invariances:

d

d lnQ2
lnFρ

f =
1

2

[

Kρ
f +Gρ

f

]

. (11)

The Q2 independent Kρ
f (a, ǫ) contains all the poles in ǫ,

whereas Gρ
f

(

a,Q2/µ2, ǫ
)

involves only the finite terms in
ǫ → 0. Inspired from QCD [12, 39, 40], we propose the
general solution to be

lnFρ
f (a,Q

2, µ2, ǫ) =
∞
∑

j=1

aj
(

Q2

µ2

)j ǫ

2

Lρ
f,j(ǫ) (12)

with

Lρ
f,j(ǫ) =

1

ǫ2

{

−
2

j2
Aj

}

+
1

ǫ

{

1

j
Gρ

f,j(ǫ)

}

(13)

where, A =
∑∞

j=1 a
jAj are the cusp anomalous dimen-

sions in N = 4 SYM. The absence of the superscript ρ
and subscript f signifies the independence of these quan-
tities on the nature of composite operators as well as
external particles. These are determined by looking at
the highest poles of the lnF ρ

f which are found to be

A1 = 4 , A2 = −8ζ2 , A3 =
176

5
ζ22 (14)

up to 3-loops which are consistent with the results pre-
sented in [41, 42]. These are basically the highest tran-
scendental parts of those of QCD [11, 43–45]. The
other quantities in Eq. (13), Gρ

f,j are postulated, like
QCD [10, 11], to satisfy

Gρ
f,j(ǫ) = 2

(

Bj − γρ
j

)

+ fj +

∞
∑

k=1

ǫkgρ,kf,j (15)

where, B =
∑∞

j=1 a
jBj and f =

∑∞

j=1 a
jfj are the

collinear and soft anomalous dimensions in N = 4 SYM



5

which are independent of the operators as well as external
legs. For the OBPS and OK, we obtain

γBPS
j = 0 ,

γK

1 = −6 , γK

2 = 24 , γK

3 = −168 (16)

up to 3-loop. For the Konishi operator, the results up
to 2-loop are in agreement with the existing ones [46–48]
and the 3-loop result also matches with previous com-
putations [49, 50] . By subtracting out the γj , we can
only calculate the combination of (2Bj + fj). However,
by looking at the similarities between Aj of QCD and
N = 4, we propose

B1 = 0 , B2 = 12ζ3 , B3 = 16 (−ζ2ζ3 − 5ζ5) ,

f1 = 0 , f2 = −28ζ3 , f3 =

(

176

3
ζ2ζ3 + 192ζ5

)

(17)

which are essentially the highest transcendental parts of
those of QCD [10, 11, 44]. The other process dependent

constants, that are relevant up to 3-loop, in Eq. (̃15) are
obtained as

gBPS,1
φ,1 = ζ2 , g

BPS,2
φ,1 = −

7

3
ζ3 , g

BPS,3
φ,1 =

47

80
ζ22 ,

gBPS,4
φ,1 =

7

24
ζ2ζ3 −

31

20
ζ5 , g

BPS,5
φ,1 =

949

4480
ζ32 −

49

144
ζ23 ,

gBPS,1
φ,2 = 0 , gBPS,2

φ,2 =
5

3
ζ2ζ3 − 39ζ5 , g

BPS,3
φ,2 =

2623

140
ζ32

+
235

6
ζ23 , g

BPS,1
φ,3 = −

12352

315
ζ32 −

104

3
ζ23 (18)

for OBPS. Similarly for the OK, we get

gK,1
φ,1 = gBPS,1

φ,1 − 14 , gK,2
φ,1 = gBPS,2

φ,1 + 14−
3

2
ζ2 ,

gK,3
φ,1 = gBPS,3

φ,1 − 14 +
7

4
ζ2 +

7

2
ζ3 , g

K,4
φ,1 = gBPS,4

φ,1 + 14

−
7

4
ζ2 −

141

160
ζ22 −

49

12
ζ3 , g

K,5
φ,1 = gBPS,5

φ,1 − 14 +
7

4
ζ2

+
329

320
ζ22 +

49

12
ζ3 −

7

16
ζ2ζ3 +

93

40
ζ5 ,

gK,1
φ,2 = gBPS,1

φ,2 + 212− 48ζ2 , g
K,2
φ,2 = gBPS,2

φ,2 − 556 + 164ζ2

+
24

5
ζ22 + 60ζ3 , g

K,3
φ,2 = gBPS,3

φ,2 + 1170− 377ζ2

−
154

5
ζ22 − 344ζ3 + 24ζ2ζ3 + 108ζ5 , g

K,1
φ,3 = gBPS,1

φ,3

− 2936 + 504ζ2 +
1224

5
ζ22 − 648ζ3 + 720ζ5 . (19)

In a clear contrast to that of QCD, due to absence of
the non-zero β-functions in N = 4 SYM, all the higher
poles vanish in Eq. (13). We observe that the leading
transcendental terms in the operator dependent parts of
the FFs of OK and OBPS, namely gρ,kφ,j , coincide. This is
indeed the case with QCD form factors when the color
factors are chosen suitably.

FORM FACTORS BEYOND THREE LOOP

The KG equation (11) enables us to predict all the
poles but constant term of the FFs at 4-loop. Expanding
the results of the FFs of previous orders sufficiently high,
using the A4 [12, 51–54], (2B4 + f4) [54–56] denoted by

α from [57] and γK
4 from [58–61] we obtain F

K,(4)
φ |poles:

F
K,(4)
φ |poles =

1

ǫ8

{

512

3

}

+
1

ǫ7

{

− 1024

}

+
1

ǫ6

{

10496

3
+

128

3
ζ2

}

+
1

ǫ5

{

−
28928

3
+

1216

9
ζ3 + 128ζ2

}

+
1

ǫ4

{

72992

3

−
3008

3
ζ3 −

5344

3
ζ2 +

40

9
ζ22

}

+
1

ǫ3

{

−
176192

3
−

8656

15
ζ5 +

42064

9
ζ3 +

25024

3
ζ2 −

184

3
ζ2ζ3 +

4256

15
ζ22

}

+
1

ǫ2

{

416096

3
+

5072

5
ζ5 −

151648

9
ζ3 +

21706

27
ζ23 −

85408

3
ζ2 + 736ζ2ζ3 −

18488

9
ζ22 +

381908

945
ζ32

}

+
1

ǫ

{

−
973136

3
− 4α−

536894

63
ζ7 +

160412

15
ζ5 +

409192

9
ζ3 −

18680

9
ζ23 +

254536

3
ζ2 +

33938

45
ζ2ζ5

−
14336

3
ζ2ζ3 +

67664

9
ζ22 −

14590

27
ζ22ζ3 −

333712

315
ζ32

}

, (20)

where α = −(77.56± 0.02). Explicit computation is re-
quired to get the constant terms. The exact matching
of the highest transcendental terms of OK and OBPS at
4-loop holds true, similar to the previous orders.
To summarize, we have presented for the first time the

third order corrections to the on-shell form factor of the

Konishi operator employing the standard Feynman dia-
grammatic approach. The computation is performed in
the DR and FDH schemes in order to demonstrate the
subtleties involved with the latter one when applied to
composite operators that depend on the space-time di-
mension d. We have shown up to third order, the results
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for d-independent operators are insensitive to the regu-
larization schemes, while for the d-dependent operators,
results in FDH scheme need to be corrected by suitable
d dependent terms in order to preserve the SUSY. It is
also demonstrated that the FFs of Konishi operator com-
puted only in DR satisfies KG equation and also can be
described in terms of universal cusp, collinear and soft
anomalous dimensions. This implies that infrared factor-
ization of FFs in N = 4 SYM theory can be established
only if the supersymmetric preserving regularisation is
used when computing higher order effects. Up to third
order, we find that the anomalous dimensions resulting
from IR region are related to those of QCD when the
color factors are adjusted suitably. In addition, we con-
firm the UV anomalous dimensions of the Konishi op-
erator up to third order, whose extraction depends on
the universal IR structure of the FFs. This provides
a consistency check of both the UV and IR structure
of FFs in N = 4. Agreements of our 3-loop result for
the FFs of OBPS and 2-loop result for the FFs of OK

computed using Feynman diagrammatic techniques with
those obtained using on-shell methods in [3, 4] and [5],
respectively, establish the power and reliability of vari-
ous state-of-the-arts approaches to deal with higher order
corrections in QFT. Finally, we use KG equation to pre-
dict four loop results for both BPS and Konishi operators
up to ǫ−1.
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A. Sen for carefully going over the manuscript and pro-
viding useful suggestions.

[1] L. Brink, J. H. Schwarz, and J. Scherk,
Nucl. Phys. B121, 77 (1977).

[2] F. Gliozzi, J. Scherk, and D. I. Olive,
Nucl. Phys. B122, 253 (1977).

[3] W. L. van Neerven, Z. Phys. C30, 595 (1986).
[4] T. Gehrmann, J. M. Henn, and T. Huber,

JHEP 03, 101 (2012).
[5] D. Nandan, C. Sieg, M. Wilhelm, and G. Yang,

JHEP 06, 156 (2015).
[6] V. V. Sudakov, Sov. Phys. JETP 3, 65 (1956), [Zh. Eksp.

Teor. Fiz.30,87(1956)].
[7] A. H. Mueller, Phys. Rev. D20, 2037 (1979).
[8] J. C. Collins, Phys. Rev. D22, 1478 (1980).
[9] A. Sen, Phys. Rev. D24, 3281 (1981).

[10] V. Ravindran, J. Smith, and W. L. van Neerven,
Nucl. Phys. B704, 332 (2005).

[11] S. Moch, J. A. M. Vermaseren, and A. Vogt,
Phys. Lett. B625, 245 (2005).

[12] Z. Bern, L. J. Dixon, and V. A. Smirnov,
Phys. Rev. D72, 085001 (2005).

[13] Z. Bern and D. A. Kosower,
Nucl. Phys. B379, 451 (1992).

[14] Z. Bern, A. De Freitas, L. J. Dixon, and H. L. Wong,
Phys. Rev. D66, 085002 (2002).

[15] W. Siegel, Phys. Lett. B84, 193 (1979).
[16] D. M. Capper, D. R. T. Jones, and P. van Nieuwen-

huizen, Nucl. Phys. B167, 479 (1980).
[17] T. Ahmed, G. Das, P. Mathews, N. Rana, and V. Ravin-

dran, JHEP 12, 084 (2015).
[18] T. Ahmed, T. Gehrmann, P. Mathews, N. Rana, and

V. Ravindran, JHEP 11, 169 (2015).
[19] P. Nogueira, J. Comput. Phys. 105, 279 (1993).
[20] J. A. M. Vermaseren, (2000),

arXiv:math-ph/0010025 [math-ph].
[21] F. Tkachov, Phys.Lett. B100, 65 (1981).
[22] K. Chetyrkin and F. Tkachov,

Nucl.Phys. B192, 159 (1981).
[23] T. Gehrmann and E. Remiddi,

Nucl.Phys. B580, 485 (2000).
[24] R. N. Lee, JHEP 07, 031 (2008).
[25] R. Lee, (2012), arXiv:1212.2685 [hep-ph].
[26] R. N. Lee, J.Phys.Conf.Ser. 523, 012059 (2014).
[27] C. Anastasiou and A. Lazopoulos, JHEP 07, 046 (2004).
[28] A. V. Smirnov, JHEP 10, 107 (2008).
[29] A. von Manteuffel and C. Studerus, (2012),

arXiv:1201.4330 [hep-ph].
[30] C. Studerus, Comput. Phys. Commun. 181, 1293 (2010).
[31] T. Gehrmann, T. Huber, and D. Maitre,

Phys. Lett. B622, 295 (2005).
[32] T. Gehrmann, G. Heinrich, T. Huber, and C. Studerus,

Phys. Lett. B640, 252 (2006).
[33] G. Heinrich, T. Huber, and D. Maitre,

Phys. Lett. B662, 344 (2008).
[34] G. Heinrich, T. Huber, D. A. Kosower, and V. A.

Smirnov, Phys. Lett. B678, 359 (2009).
[35] R. N. Lee, A. V. Smirnov, and V. A. Smirnov,

JHEP 04, 020 (2010).
[36] R. N. Lee and V. A. Smirnov, JHEP 02, 102 (2011).
[37] R. N. Lee, A. V. Smirnov, and V. A. Smirnov,

Nucl. Phys. Proc. Suppl. 205-206, 308 (2010).
[38] T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli,

and C. Studerus, JHEP 06, 094 (2010).
[39] V. Ravindran, Nucl.Phys. B746, 58 (2006).
[40] V. Ravindran, Nucl. Phys. B752, 173 (2006).
[41] G. P. Korchemsky and A. V. Radyushkin,

Nucl. Phys. B283, 342 (1987).
[42] D. Correa, J. Henn, J. Maldacena, and A. Sever,

JHEP 05, 098 (2012).
[43] S. Moch, J. Vermaseren, and A. Vogt,

Nucl.Phys. B688, 101 (2004).
[44] A. Vogt, S. Moch, and J. Vermaseren,

Nucl.Phys. B691, 129 (2004).
[45] A. Vogt, Phys.Lett. B497, 228 (2001).
[46] D. Anselmi, M. T. Grisaru, and A. Johansen,

Nucl. Phys. B491, 221 (1997).
[47] B. Eden, C. Schubert, and E. Sokatchev,

Phys. Lett. B482, 309 (2000).
[48] M. Bianchi, S. Kovacs, G. Rossi, and Y. S. Stanev,

Nucl. Phys. B584, 216 (2000).
[49] A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko, and

V. N. Velizhanin, Phys. Lett. B595, 521 (2004), [Erra-
tum: Phys. Lett.B632,754(2006)].

[50] B. Eden, C. Jarczak, and E. Sokatchev,
Nucl. Phys. B712, 157 (2005).

[51] Z. Bern, M. Czakon, L. J. Dixon, D. A. Kosower, and
V. A. Smirnov, Phys. Rev. D75, 085010 (2007).

http://dx.doi.org/10.1016/0550-3213(77)90328-5
http://dx.doi.org/10.1016/0550-3213(77)90206-1
http://dx.doi.org/10.1007/BF01571808
http://dx.doi.org/10.1007/JHEP03(2012)101
http://dx.doi.org/ 10.1007/JHEP06(2015)156
http://dx.doi.org/10.1103/PhysRevD.20.2037
http://dx.doi.org/10.1103/PhysRevD.22.1478
http://dx.doi.org/10.1103/PhysRevD.24.3281
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.039
http://dx.doi.org/10.1016/j.physletb.2005.08.067
http://dx.doi.org/10.1103/PhysRevD.72.085001
http://dx.doi.org/10.1016/0550-3213(92)90134-W
http://dx.doi.org/10.1103/PhysRevD.66.085002
http://dx.doi.org/10.1016/0370-2693(79)90282-X
http://dx.doi.org/10.1016/0550-3213(80)90244-8
http://dx.doi.org/ 10.1007/JHEP12(2015)084
http://dx.doi.org/ 10.1007/JHEP11(2015)169
http://dx.doi.org/10.1006/jcph.1993.1074
http://arxiv.org/abs/math-ph/0010025
http://dx.doi.org/10.1016/0370-2693(81)90288-4
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1016/S0550-3213(00)00223-6
http://dx.doi.org/10.1088/1126-6708/2008/07/031
http://arxiv.org/abs/1212.2685
http://dx.doi.org/10.1088/1742-6596/523/1/012059
http://dx.doi.org/10.1088/1126-6708/2004/07/046
http://dx.doi.org/10.1088/1126-6708/2008/10/107
http://arxiv.org/abs/1201.4330
http://dx.doi.org/10.1016/j.cpc.2010.03.012
http://dx.doi.org/10.1016/j.physletb.2005.07.019
http://dx.doi.org/ 10.1016/j.physletb.2006.08.008
http://dx.doi.org/10.1016/j.physletb.2008.03.028
http://dx.doi.org/10.1016/j.physletb.2009.06.038
http://dx.doi.org/10.1007/JHEP04(2010)020
http://dx.doi.org/10.1007/JHEP02(2011)102
http://dx.doi.org/10.1016/j.nuclphysbps.2010.09.011
http://dx.doi.org/10.1007/JHEP06(2010)094
http://dx.doi.org/10.1016/j.nuclphysb.2006.04.008
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.025
http://dx.doi.org/10.1016/0550-3213(87)90277-X
http://dx.doi.org/10.1007/JHEP05(2012)098
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.030
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.024
http://dx.doi.org/10.1016/S0370-2693(00)01344-7
http://dx.doi.org/10.1016/S0550-3213(97)00108-9
http://dx.doi.org/10.1016/S0370-2693(00)00515-3
http://dx.doi.org/ 10.1016/S0550-3213(00)00312-6
http://dx.doi.org/10.1016/j.physletb.2004.05.078, 10.1016/j.physletb.2005.11.002
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.036
http://dx.doi.org/ 10.1103/PhysRevD.75.085010


7

[52] F. Cachazo, M. Spradlin, and A. Volovich,
Phys. Rev. D75, 105011 (2007).

[53] J. M. Henn, S. G. Naculich, H. J. Schnitzer, and
M. Spradlin, JHEP 08, 002 (2010).

[54] J. M. Henn and T. Huber, JHEP 09, 147 (2013).
[55] N. Beisert, B. Eden, and M. Staudacher,

J. Stat. Mech. 0701, P01021 (2007).
[56] F. Cachazo, M. Spradlin, and A. Volovich,

Phys. Rev. D76, 106004 (2007).
[57] Z. Bern, L. J. Dixon, D. A. Kosower, R. Roiban,

M. Spradlin, C. Vergu, and A. Volovich,

Phys. Rev. D78, 045007 (2008).
[58] F. Fiamberti, A. Santambrogio, C. Sieg, and D. Zanon,

Phys. Lett. B666, 100 (2008).
[59] F. Fiamberti, A. Santambrogio, C. Sieg, and D. Zanon,

Nucl. Phys. B805, 231 (2008).
[60] V. N. Velizhanin, JETP Lett. 89, 6 (2009).
[61] V. N. Velizhanin, JETP Lett. 89, 593 (2009).

http://dx.doi.org/10.1103/PhysRevD.75.105011
http://dx.doi.org/10.1007/JHEP08(2010)002
http://dx.doi.org/10.1007/JHEP09(2013)147
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://dx.doi.org/10.1103/PhysRevD.76.106004
http://dx.doi.org/ 10.1103/PhysRevD.78.045007
http://dx.doi.org/10.1016/j.physletb.2008.06.061
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.014
http://dx.doi.org/10.1134/S0021364009010020
http://dx.doi.org/10.1134/S0021364009120017

