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Abstract 12 

Cortisol (C) and dehydroepiandrosterone (DHEA) are recognized as the main fetal steroids, and they 13 

are likely to influence fetal development and have long-term effects on newborn hypothalamic-14 

pituitary-adrenal axis (HPA) function. DHEA is often measured as its sulfates and expressed as 15 

DHEA-S. Hair analysis represents a promising methodological approach for the non-invasive 16 

measurement of steroids, allowing for a retrospective analysis of the total exposure to steroids over 17 

time, and avoiding the influence of acute events or circadian fluctuations. Hair cortisol and DHEA 18 

concentrations have been investigated in cows, but no studies have been performed on calves. The 19 

object of this study was to evaluate hair cortisol (HC) and hair DHEA-S (HDHEA-S) concentrations 20 

in beef calves from birth to six months of age. Hair samples of 12 beef calves (seven males, five 21 

females) were firstly collected at birth (T1) and then every three weeks up to six months of age (T2-22 

T10), collecting only the re-growth hair. HC and HDHEA-S were analyzed by radioimmunoassay 23 

(RIA). Calves sex, weight and APGAR score were registered immediately after birth. Statistical 24 

analysis revealed that both HC and HDHEA-S were influenced by sampling time (P<0.001). HC 25 

concentrations were higher at T1 compared to all subsequent samplings (T2-T10, P<0.01); HC 26 
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concentrations were higher at T2 compared to T4-T10 (P<0.01), while no further changes were 27 

detected from T3 onward. Higher HDHEA-S concentrations were registered at T1, T2 and T3 28 

compared to all the other samplings (P<0.01). No correlation was found between hair concentrations 29 

of both steroids and calf sex or birthweight. APGAR score was negatively correlated only with HC 30 

at birth (P<0.05). These data demonstrate that C and DHEA-S are quantifiable in the hair of calves 31 

and are influenced by their age. The higher HC detected at birth (T1) probably reflects the high serum 32 

C concentrations present late in pregnancy and increased by the fetal HPA axis, by which parturition 33 

is initiated in cows. The highest HDHEA-S at birth (T1) in calves indicates that the largest amounts 34 

of DHEA and its sulfates are produced during fetal development. Moreover, the findings of higher 35 

HC at three weeks after birth and of higher HDHEA-S until six weeks after birth, suggest that C and 36 

DHEA secretion continues also beyond birth, and that these steroids could be involved in the events 37 

occurring during the challenging first weeks of age in the calf. 38 

 39 

Key words: bovine; calves; cortisol; dehydroepiandrosterone sulfate; hair. 40 

 41 

1. Introduction 42 

Although steroidogenesis in maternal, placental, and fetal compartments is interdependent, the 43 

maternal and fetal hypothalamic-pituitary-adrenal (HPA) axes represent separate biological systems. 44 

Among all the hormones involved in the parturition phases, cortisol (C) and dehydroepiandrosterone 45 

(DHEA) play a pivotal role. Cortisol is essential for final intrauterine fetal development and 46 

maturation [1], as well as to trigger the process of parturition in species like ruminants [2], but also 47 

to drive the transition to the extrauterine life [3] which consists in structural and physiological changes 48 

from the last intrauterine stage of development until the end of the neonatal period. DHEA is a natural 49 

steroid prohormone, and it is a key intermediate in the biosynthesis of biologically potent androgens 50 

and estrogens [4]; it is known to exert neuroprotective effects and to play a balancing role against a 51 

wide range of C effects [5-6].  52 
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In human species, it is becoming increasingly evident that the perinatal period may have a role in 53 

defining the healthy outcomes during the adulthood [7]. Long-term consequences of increased fetal 54 

exposure to maternal C include increased HPA axis reactivity and susceptibility to 55 

neurodevelopmental problems [8], besides a decreased fetal growth [9]. While circulating C levels 56 

can result by both the fetal and maternal HPA axis and, in some species, also by the placenta [10], 57 

the concentrations of DHEA and its sulfates are higher in the umbilical artery than in the umbilical 58 

vein, indicating that these steroids are produced mainly in the fetal compartment [11]. It is clear, 59 

therefore, that the study of these hormones might offer a view on HPA axis activity.  60 

Hair analysis represents a consolidated methodological approach for the non-invasive 61 

measurement of steroids, allowing for a retrospective analysis of the total exposure to steroids over 62 

time, and avoiding the influence of acute events or circadian fluctuations [12]. As a cumulative 63 

matrix, hair incorporates hormones and other circulating substances during its growth period [13-15]. 64 

The mechanisms by which C incorporates itself into shaved and growing hair were proposed by 65 

Henderson [16] using a multiple pool model that included diffusion from blood to the growing 66 

follicle, diffusion from the apocrine and sebaceous gland after shaft formation, and absorption from 67 

the external environment. Several studies have examined the usefulness of hair cortisol (HC) 68 

concentrations for the evaluation of chronic stress in cattle [17-23], and it was concluded that HC 69 

concentrations increase in stress situation caused by clinical diseases and are also correlated with 70 

pregnancy status. Studies on HC concentrations in calves were conducted to measure the stress levels 71 

of calves reared under welfare standards compared to calves reared conventionally [24], and to 72 

demonstrate that HC concentrations are not masked by short and non-recurrent moments of stress 73 

[25]. However, no studies investigated HC concentrations in the healthy newborn calf immediately 74 

after birth. Hair DHEA concentrations have been assessed in adult cows [26-27] but, to the best of 75 

the authors’ knowledge, not in newborn calves. In cattle, it has been reported that cortisol/DHEA 76 

ratio increases in lame dairy cows [26] and following transportation of young bulls [28], but decreases 77 

in cows with metritis and leucopenia [29], thus revealing conflicting results when evaluating different 78 

Jo
urn

al 
Pre-

pro
of



stress conditions. Recently, DHEA has been suspected for growth promoting abuse in cattle, and the 79 

measurement of DHEA metabolites have been investigated in calf urine [4], in view of the monitoring 80 

programs on hormone residues. The assessment of hair DHEA sulfate (HDHEA-S) concentrations in 81 

healthy calves may allow not only to investigate possible alteration due to pregnancy disturbances or 82 

to poor welfare conditions, but it may represent also a useful tool in the screening strategy to trace 83 

abuses with steroids in this species, especially in beef breeds. The detection of endogenous steroids 84 

in fact remains challenging, as concentration-based urinary thresholds may not provide conclusive 85 

results due to large inter-individual variations [30-31], so that the use of new biological matrices is 86 

under investigation [32-33]. 87 

The aim of this study was therefore to assess the concentrations of C and of the main sulfate ester 88 

of DHEA (DHEA-S) in the hair of healthy beef calves from birth to six months of age. 89 

 90 

2. Materials and methods 91 

Although hair sampling is a non-invasive procedure, the trial was carried out in accordance with 92 

EU Directive 2010/63/EU, and it was approved by the Ethical Committee of the University of Milan 93 

(OPBA_146_2019). 94 

 95 

2.1. Animals  96 

A total of 12 crossbreed beef calves born by spontaneous delivery were enrolled. Calves sex, 97 

birthweight, and APGAR score [34] were assessed immediately after birth. All animals belonged to 98 

a single herd in northern Italy. For the first two months after birth calves were housed in individually 99 

slatted pens with open partitions that allowed visual, olfactory, and a limited physical contact, and 100 

subsequently allocated to group pens. Immediately after birth, calves received colostrum twice a day 101 

for the first three days, while from the 4th day after birth they were fed with milk substitute 102 

reconstituted at 125 g powder/L. During the study, animals also received a commercial fodder, 103 

formulated according to the National Research Council recommendations [35] and wheat straw. Fresh 104 
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water was available at automatic drinkers at all time. Feeding management and hygiene was under 105 

technician supervision.  106 

2.2. Hair samples collection 107 

In the first hair collection at birth (T1), only white hair was taken at the level of the skin with a 108 

razor from the animal's forehead, after careful washing and drying of hair coat to remove eventual 109 

amniotic and allantoic fluids residuals. At this time, an area of about 10 cm2 was shaved to allow 110 

further hair collections. All the subsequent samplings, accomplished every three weeks (T2-T10) until 111 

six months of age, were in fact performed collecting only the re-growth hair. At each sampling time 112 

individual hair samples were coded and stored in dry tubes at room temperature until analysis. 113 

2.3. Hair hormone analysis 114 

The hair strands were placed in polypropylene tubes, covered with isopropanol (Merck KGaA, 115 

Darmstadt, Germany) (5 mL), and gently mixed for 3 min at room temperature. The sample was again 116 

washed with isopropanol and air dried. This washing procedure minimized the risk of extracting 117 

hormones from outside the hair, and it also ensured the removal of dust and any steroids on the surface 118 

of the hair sample due to sweat and sebum. Subsequently, 60 mg of trimmed hair was extracted in a 119 

glass vial with 3 mL of methanol (Merck KGaA, Darmstadt, Germany) at 37 °C for 16 h. As reviewed 120 

by Gao and colleagues [36], methanol is considered the preferential extract as it is able to dissolve 121 

neutral, hydrophilic and moderately lipophilic compounds and, given its hydrophilic nature, can 122 

penetrate into hair cells and produce swelling of the matrix, thus liberating the enclosed steroids. A 123 

downside of extraction by methanol is that it often incorporates interfering substances. While aqueous 124 

acids and buffered solutions may yield cleaner extracts than methanol, they may induce hydrolysis 125 

thus leading to unwanted loss/decomposition of analytes. Next, in our study, the liquid in the vial was 126 

evaporated to dryness at 37 °C under an airstream suction hood. The remaining residue was dissolved 127 

in 0.6 mL of phosphate-buffered saline (PBS), 0.05 M, pH 7.5, 0.1% BSA. The concentrations of hair 128 

cortisol (HC) [21] and dehydroepiandrosterone sulfate (HDHEA-S) were measured using a solid-129 

phase microtiter radioimmunoassay (RIA) assay. In brief, a 96-well microtiter plate (Optiplate, 130 
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Perkin-Elmer Life Science, Boston, MA, USA) was coated with goat anti-rabbit γ-globulin serum 131 

diluted 1:1,000 in 0.15 mM sodium acetate buffer, pH 9, and the plate was incubated overnight at 4 132 

°C. The plate was then washed twice with RIA buffer, pH 7.5, and incubated overnight at 4 °C with 133 

200 μL of the anti-hormone serum diluted to 1:20,000 for cortisol and 1:800 for DHEA-S. The cross-134 

reactivities of the rabbit anti-cortisol antibody (Analytical Antibodies, Bologna, Italy) with other 135 

steroids were as follows: cortisol 100%; cortisone 4.3%; corticosterone 2.8%; 11-deoxycorticosterone 136 

0.7%; 17-hydroxyprogesterone 0.6%; dexamethasone 0.1%; progesterone, <0.01%; 17-137 

hydroxypregnenolone, <0.01%; DHEAS, <0.01%; androsterone sulphate, <0.01%; pregnenolone, 138 

<0.01%. DHEA-S was analyzed using a commercial anti-dehydroepiandrosterone sulfate-7ß-CM-139 

BSA (Spi Bio, Montigny Le Bretonneux, France), demonstrating the following cross-reactions: 140 

DHEA-S, 100%; 4-androstenedione, 0,2%; testosterone, <0.01%; DHEA, <0.01%. After washing the 141 

plate with RIA buffer, standards (5–200 pg/well), a quality control extract, the test extracts, and tracer 142 

(cortisol, Perkin-Elmer Life Science, specific activity: 72.4 Ci/mmol, 23 pg/well; DHEA-S, Perkin-143 

Elmer Life Science, specific activity: 55.3 Ci/mmol, 20.3 pg/well) were added in duplicate, and the 144 

plate was incubated overnight at 4 °C. The bound hormone was separated from the free hormone by 145 

decanting and washing the wells in RIA buffer. After the addition of 200 μL of scintillation cocktail, 146 

the plate was counted on a β-counter (Top-Count, Perkin-Elmer Life Science, Boston, MA, USA). 147 

For cortisol, the intra- and inter-assay coefficients of variation (CV) were 3.6 and 9.8% 148 

respectively. The detection limit of the assay, as calculated by the software Riasmart (Perkin-Elmer 149 

Life Science, Boston, MA, USA), was 24.6 pg/ml. 150 

For DHEA-S, the intra- and inter-assay CV were 3.6 and 12.7%, respectively. The detection limit 151 

of the assay, as calculated by the software Riasmart (Perkin-Elmer Life Science, Boston, MA, USA), 152 

was 15.8 pg/ml. 153 

To determine the parallelism between DHEA-S standards and endogenous DHEA-S in bovine, 154 

hair samples containing high concentrations of endogenous DHEA-S were serially diluted in 0.05 M 155 

PBS, pH 7.5. The parallelism between the hair dilution curve and the standard curve indicated that 156 
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hair DHEA-S and standard DHEA-S reacted identically with the antibody because a high correlation 157 

(r = 0.99) was observed between the concentrations obtained and those expected. The relationship 158 

between hair DHEA-S concentrations and the standard DHEA-S curve was given by the equation y 159 

= 1,005 x - 0,46. 160 

The recovery test was conducted to evaluate the system response to an increasing amount of 161 

DHEA-S standard added to a hair extract with low DHEA-S. The percentage of recovery was 162 

determined as follows: [(measured DHEA-S in spiked sample)/(measured DHEA-S in non-spiked 163 

sample + DHEA-S added) x 100]. The recovery test revealed a recovery rate of 95.6 ± 6.0% (mean ± 164 

SD).  165 

 166 

2.4. Statistical analysis 167 

Firstly, data were checked for normal distribution by Shapiro-Wilk test, and then statistically 168 

analyzed by analysis of covariance (ANCOVA). The effects of the sampling time as fixed factor, and 169 

of covariates such as newborn sex (male or female), birth weight and Apgar score on cortisol and 170 

DHEA-S hair concentrations were assessed. The Tukey test was used to investigate the effect of each 171 

sampling time on hair hormone concentrations. Significance was set at P<0.05 (JASP, ver 9 for 172 

Windows platform). Both hormone concentrations were expressed as pg/mg of hair. 173 

 174 

3. Results 175 

All the 12 calves (seven males and five females) were born at a physiologic term of pregnancy 176 

and were viable with an APGAR score ≥7 (range 8-10), considered as normal for healthy calves [34]. 177 

Birthweight ranged from 40 to 68 kg. The clinical monitoring from birth to six months of age did not 178 

record diseases or managerial troubles.  179 

The collection of the hair was easily performed without disturbance in all the animals at all 180 

sampling times, and in all cases the collected amount of hair (20-65 mg) was enough to allow the 181 

analyses of both hormones. 182 
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The profiles of HC and HDHEA-S concentrations in the first six months of age in the 12 calves 183 

are reported in Figs. 1 and 2, respectively. 184 

The statistical analysis revealed that both HC and HDHEA-S concentrations were influenced by 185 

sampling time (P<0.001 for both analytes). Higher HC concentrations were found at T1 compared to 186 

T2 and to all the subsequent sampling times (P<0.01), and HC concentrations at T2 were higher 187 

compared to T4-T10 (P<0.01), while no further significative changes were detected from T3 onward. 188 

Regarding HDHEA-S, higher concentrations were registered at T1-T3 compared to the subsequent 189 

samples (T4-T10) (P<0.01). No correlation was found between both HC concentrations and HDHEA-190 

S concentrations, and newborn sex or birthweight. A negative correlation was found between HC 191 

concentrations at birth and Apgar score (P<0.05).  192 

 193 

4. Discussion 194 

The collection of hair from calves in the present study allowed to consolidate hair sample as a 195 

valuable matrix for the non-invasive investigation of hormones in the bovine species. This procedure 196 

can be recommended also in newborns calves since it is easily-performed and with minimum restrain. 197 

Furthermore, this procedure allows to investigate hormonal variations with a limited number of 198 

samplings compared to blood or salivary analyses.  199 

A recent study on cattle fetuses reported that hair first appears around 160 days of gestation and 200 

progresses onwards over the entire body surface [37]; therefore, the hair samples collected from 201 

calves at birth reflect hormones accumulation starting from fetal hair appearance [38], and they thus 202 

express C and DHEA-S hair incorporation from the 6th month of pregnancy until birth. The choice of 203 

sampling hair every three weeks after birth was based on the presumed adequate time necessary for 204 

hair re-growth, on the will of limiting calf manipulation, and on a reasonable time-interval for 205 

hormones measurement. The growth rate of hair in Holstein cows depends on the area of the body, 206 

and it is estimated 0.30 mm/day at the shoulder and 0.40 mm/day at the hip [22]. Consequently, three 207 

weeks represents a reasonable timespan to collect the amount of hair necessary for RIA analyses.  208 
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Hair cortisol concentrations registered at birth in the present study (mean 23.7 ± 7.65 pg/mg) were 209 

the highest of all the investigated period, although much lower than those detected in 15-days-old 210 

female calves (114.5 ± 14.43 pg/mg) [17]; more similar HC concentrations were found in newborn 211 

healthy horse foals (mean 56 pg/mg) [39]. The higher values found immediately after birth could be 212 

explained by the high serum C concentrations present late in pregnancy in the maternal circulation 213 

[40], that are stimulated by the fetal HPA axis, the route by which parturition is initiated in cows [41]. 214 

Recent data in human species suggest that neonatal hair glucocorticoids (GCs) concentrations are 215 

influenced by the third trimester increase in HPA fetal axis activity [42], but evidence is lacking 216 

concerning which part of intrauterine regulation is reflected in neonatal hair. With this regard, it has 217 

been hypothesized that neonatal hair GCs concentrations reflect or the amniotic-fluid levels [43] or 218 

the fetal HPA axis activity [44], but it is conceivable that neonatal hair GCs at birth may reflect a 219 

combination of both maternal and fetal GCs [45]. Whatever the origin, HC concentrations in the 220 

newborn calves at birth (T1) and at 3 weeks after birth (T2) were greater than in all subsequent 221 

samplings, and higher than those found in 3 months old calves [24] and in adult cows [18,22], 222 

highlighting the fetal role in steroids production. The finding of lower HC concentrations at 3 weeks 223 

of age (T2) compared to birth suggests that during the first three weeks after birth the activity of the 224 

HPA axis of the calf is decreased compared to the intrauterine life, and that preparation for birth is a 225 

stronger stimulus for the HPA axis than parturition and neonatal adaptation. Nevertheless, it must be 226 

remembered that HC concentrations at birth may partially reflect also the C produced by the placenta, 227 

while HC concentrations from T2 to T10 merely result from the calf production itself. Although with 228 

decreasing values, the higher HC concentrations at 3 weeks of age compared to the subsequent 229 

samplings is probably due to the process of birth and to the multi-organ final maturation and neonatal 230 

adaptation. 231 

In the present study, the mean HC concentrations in calves from 6 weeks to the 6th month after 232 

birth, that ranged from 5.8 to 2.0 pg/mg, were comparable with the HC concentrations recently found 233 

by Braun et al. [24] in veal calves of the same ages. Other authors previously reported mean 234 
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concentrations of 2.5 pg/mg [18] and of 5.7 pg/mg [22] in adult dairy cows, and of 2.3 pg/mg in adult 235 

beef cows [46], while others found higher HC concentrations in 2-years-old cows (12.15 pg/mg) [17]. 236 

Differences in the color of collected hair [22] or in methodology for HC concentrations analysis [24] 237 

can most likely account for some discrepancies between studies; black hair in fact was reported to 238 

contain approximately half the concentration of C than white hair in dairy cows [24]. For this reason, 239 

only white hair was collected in the present study. Nevertheless, in view of the present results, it is 240 

possible to state that the HC concentrations of calves older than 6 weeks of age are mostly comparable 241 

to those of adult cows.  242 

No relationship, nor positive neither negative, was found in the study between HC concentrations 243 

and birthweight. In humans, no conclusive results have been reported concerning the relationship 244 

between maternal C and neonatal outcome at birth, but high HC concentrations during pregnancy 245 

have been associated with an increased risk of miscarriage, premature birth, and low weight at birth 246 

[47-49]. The lack of correlation in the present study may be due to the fact that all calves enrolled in 247 

the study showed a normal birthweight for the species, and no premature calvings were included. 248 

Regarding sex differences, HC concentrations in male and female calves did not differ in the present 249 

study, consistently with results obtained in other animal species such as lynx [50], grizzly bears [51], 250 

caribou and reindeer [52], horse foals [39], and dogs [53]. Some studies on humans reported no sex 251 

differences [15, 54], while other studies carried out in older adults found higher HC concentrations 252 

in males compared to females [55-56], suggesting that sex difference in HC concentrations may 253 

become more pronounced later in life.  254 

Low Apgar scores have been associated with exaggerated cortisol responses after birth and higher 255 

serum concentrations [57], so that the negative relationship between HC concentrations at birth and 256 

Apgar score found in this study is not surprising.  257 

To the best of the author’s knowledge, this study is the first to report the measurement of hair 258 

DHEAS concentrations in calves, since only one study has validated DHEAS analysis by RIA in 259 

livestock, namely in boars and gilts [58]. HDHEA-S concentrations at birth (T1) were the highest of 260 
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the study period, in agreement with a research on humans revealing that the largest amounts of DHEA 261 

and its sulfates are produced during fetal development [59], and that this production falls sharply after 262 

birth and remains low for several years. In the present study, HDHEA-S remained high until six weeks 263 

after birth (T3); it has also been reported a lag time of approximately two weeks for the C deposition 264 

in hair, because of its initial deposition in the beneath skin [60], and the same could be hypothesized 265 

for DHEA-S. Moreover, during human gestation, DHEA represents the major precursor for oestriol 266 

production in the feto–placental unit [61-62], so that the placental conversion represents the major 267 

clearance mechanism for DHEA removal in fetus [63]; this conversion is obviously no more possible 268 

after birth. Furtherly, results from human studies have shown a persistence of DHEA production by 269 

the fetal zone of adrenal cortex also during the postnatal period [64]. Similarly, studies on rhesus 270 

monkey showed that, due to the persistence of this fetal zone in adrenal glands in the absence of 271 

placental conversion, DHEA levels in the infant are even increased compared to the fetus [63,65-66]. 272 

Considering all the aforementioned mechanisms, the finding of high HDHEA-S still six weeks after 273 

birth (T3) in calves indicates that parturition and the first weeks of the newborn extrauterine life are 274 

characterized by the highest levels of DHEA-S, mostly due to the fact that this steroid is still produced 275 

by the adrenal glands of the calf, but no more removed by placenta. Starting from the third month 276 

after birth (T4), HDHEA-S in calves decreases and maintains lower stable values until the end of the 277 

study (mean range 19.2-33.9 pg/mg).  278 

In the present study, the lack of correlation between HDHEA-S and birthweight and APGAR 279 

score, is consistent with data from Fusi et al. [67] on newborn dog puppies. On the contrary, in 280 

humans, a negative association between birthweight and serum DHEA-S levels in later childhood has 281 

been found [68-70], but this has been linked to genetic or early epigenetic factors that have an impact 282 

on adrenal androgen secretion [70]. A study on rhesus monkey found that DHEA is the only hair 283 

steroid hormone that clearly differentiated male and female infants [71], with almost double 284 

concentrations in female infants. Shen et al. [72] found that the human hair DHEA had a wide range 285 

of variation (from 5 to 428 pg/mg) in relation to gender, age and environmental changes. Specifically, 286 
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hair DHEA were higher in adult males compared to females and to children. The lack of differences 287 

in HDHEA-S between male and female calves in this study may rely on the fact that HDHEA-S was 288 

measured from birth forward, thus reflecting the hormones incorporated in the hair towards the last 289 

trimester of gestation, whereas sexual differentiation is known to take place even earlier than Day 60 290 

of gestation in cattle [73], far away from the first hair sampling performed in this study, at birth. The 291 

lack of sex-related differences in HDHEA-S concentrations agrees with recent data on DHEA-S 292 

concentrations in coat and claws of newborn dog puppies [67]. 293 

The present results are related only to healthy calves born by spontaneous parturition, and therefore 294 

provide information about the normal conditions in newborn calves and young calves. New insights 295 

are added about HC concentrations in the calf, while data on HDHEA-S concentrations are, to the 296 

best of the author’s knowledge, completely new. These results may represent the benchmark for 297 

further investigation in calves born by different type of delivery or affected by clinical diseases. 298 

 299 

5. Conclusions 300 

In conclusion, the present study provides evidence of the usefulness of hair as a valuable and non-301 

invasive matrix for studies on hormonal changes in calves. HC concentrations showed a trend of 302 

decrease from birth, reaching stable values after the 6 weeks after birth; HDHEA-S concentrations 303 

were higher at birth and at three and six weeks after birth compared to all subsequent samples. These 304 

results suggest that C and DHEA-S secretion in the calf continues also beyond birth, and that these 305 

steroids could be involved in the events occurring during the first weeks of age.  306 
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Highlights 

 The utility of hair matrix for retrospective hormonal changes was assessed in calves 

 Cortisol and DHEA-S hair concentrations were investigated from birth to 6 months of age  

 A significant effect of age was found on both hormones hair concentrations  

 Stable hair C and DEHA-S concentrations were reached 3 and 6 weeks after birth respectively 

 Both steroids could be involved in the events occurring in the first weeks of age in calves 

 

Jo
urn

al 
Pre-

pro
of


