Noname manuscript No.
(will be inserted by the editor)

Model Completeness, Uniform Interpolants and
Superposition Calculus

(with Applications to Verification of Data-Aware Processes)

Diego Calvanese - Silvio Ghilardi -
Alessandro Gianola - Marco Montali -
Andrey Rivkin

Received: date / Accepted: date

Abstract Uniform interpolants have been largely studied in non-classical propo-
sitional logics since the nineties; a successive research line within the automated
reasoning community investigated uniform quantifier-free interpolants (sometimes
referred to as “covers”) in first-order theories. This further research line is mo-
tivated by the fact that uniform interpolants offer an effective solution to tackle
quantifier elimination and symbol elimination problems, which are central in model
checking infinite state systems. This was first pointed out in ESOP 2008 by Gul-
wani and Musuvathi, and then by the authors of the present contribution in the
context of recent applications to the verification of data-aware processes. In this
paper, we show how covers are strictly related to model completions, a well-known
topic in model theory. We also investigate the computation of covers within the
Superposition Calculus, by adopting a constrained version of the calculus and by
defining appropriate settings and reduction strategies. In addition, we show that
computing covers is computationally tractable for the fragment of the language
used when tackling the verification of data-aware processes. This observation is
confirmed by analyzing the preliminary results obtained using the MCMT tool to
verify relevant examples of data-aware process. These examples can be found in
the last version of the tool distribution.

D. Calvanese
Faculty of Computer Science, Free University of Bozen-Bolzano (Italy)
E-mail: calvanese@inf.unibz.it

S. Ghilardi

Dipartimento di Matematica, Universita degli Studi di Milano (Italy)
E-mail: silvio.ghilardi@unimi.it

A. Gianola

Faculty of Computer Science, Free University of Bozen-Bolzano (Italy)
E-mail: gianola@inf.unibz.it

M. Montali
Faculty of Computer Science, Free University of Bozen-Bolzano (Italy)
E-mail: montali@inf.unibz.it

A. Rivkin
Faculty of Computer Science, Free University of Bozen-Bolzano (Italy)
E-mail: rivkin@inf.unibz.it

Keywords Covers - Uniform Interpolation - Model Completeness - Superposition
Calculus - Verification of Data-Aware Processes

1 Introduction

Uniform interpolants were originally studied in the context of non-classical log-
ics, starting from the pioneering work by Pitts [56]. We briefly recall what uni-
form interpolants are. We fix a logic or a theory T and a suitable fragment L
(propositional, first-order quantifier-free, etc.) of its language. Given an L-formula
¢(x,y) (where z,y are the variables occurring free in ¢), a uniform interpolant
of ¢ (w.r.t. y) is an L-formula ¢'(z) where only variables z occur free, and that
satisfies the following two properties: (i) ¢(z,y) Fr ¢ (x); (ii) for any further L-
formula 1 (z, z) such that ¢(z,y) Fr ¢ (z,), we have ¢'(z) Fr ¢(z, z). Whenever
uniform interpolants exist, one can compute an interpolant for an entailment like
¢(z,y) Fr ¥(z, 2) in such a way that this interpolant is independent of .

The existence of uniform interpolants is an exceptional phenomenon, which is
however not so infrequent; it has been extensively studied in non-classical logics
starting from the nineties, as witnessed by a large literature, including for instance
[59L63133L B85, [B34L221[7[37,[44]). The main results from the above papers are that
uniform interpolants exist for intuitionistic logic and for some modal systems (like
the Godel-Lob system and the S4.Grz system); they do not exist for instance in S4
and K4, whereas for the basic modal system K they exist for the local consequence
relation but not for the global consequence relation.

In the last decade, also the automated reasoning community developed an
increasing interest in uniform interpolants, with particular focus on quantifier-free
fragments of first-order theories. This is witnessed by various talks and drafts by
Kapur presented in many conferences and workshops (FloC 2010, ISCAS 2013-
14, SCS 2017 [42]), as well as by the paper presented in ESOP 2008 authored by
Gulwani and Musuvathi [38]. In this last paper uniform interpolants were renamed
as covers, a terminology we shall adopt in this paper too. In these contributions,
examples of cover computations were supplied and also some algorithms were
sketched. The first formal proof about the existence of covers in EUF was however
published only in [I4] by the present authors; such a proof was equipped with
powerful semantic tools (see the Cover-by-Extensions Lemma below) obtained
thanks to interesting connections with model completeness [57], and came with
an algorithm for computing covers that is based on a constrained variant of the
Superposition Calculus [55]. Both the model-theoretic tools and the algorithm are
detailed in the present paper. Two simple additional algorithms, which exploit
DAG representations of terms, are studied in [26]27].

The usefulness of covers in model checking was already stressed in [38] and
further motivated by our recent line of research on the verification of data-aware
processes [I3|[I2|[I715]. Notably, this is also operationally mirrored in the MCMT
model checker [32] starting from version 2.8. The need for incorporating this al-
gorithm within MCMT is due to the following reason. Declarative approaches to
infinite state model checking [58] need to manipulate logical formulae in order
to represent sets of reachable states. To prevent divergence, various abstraction
strategies have been adopted, ranging from interpolation-based [48] to sophisti-
cated search via counterexample elimination [39]. Precise computations of the set

of reachable states require some form of quantifier elimination and hence are sub-
ject to two problems, namely that quantifier elimination might not be available at
all and that, when available, it is computationally very expensive. To cope with
the first problem, Gulwani and Musuvathi [38] introduced the notion of cover and
showed that covers can be used as an alternative to quantifier elimination and
yield a precise computation of reachable states. Concerning the second problem,
again in [38] it was observed (as a side remark) that computing the cover of a con-
junction of literals becomes tractable when only free unary function symbols occur
in the signature. We show here (see Section |§| below) that the same observation
applies when also free relational symbols occur.

In [ITL13] we propose a new formalism for representing read-only database
schemas towards the verification of integrated models of processes and data [10]
(called data-aware processes henceforth), in particular so-called artifact systems [62),
20,45.[8]; this formalism (briefly recalled in Section below) precisely uses sig-
natures comprising unary function symbols and free n-ary relations. In [TTLI3}17]
we apply model completeness techniques for verifying transition systems based on
read-only databases, in a framework where such systems employ both individual
and higher order variables.

In this paper we show (see Section [3| below) that covers (alias uniform in-
terpolants) are strictly related to model completions, thus creating a bridge that
links different research areas. In particular, we prove that computing covers for
a theory is equivalent to eliminating quantifiers in its model completion. This
connection reproduces, in a first-order setting, an analogous well-known connec-
tion for propositional logics: the connection between propositional uniform inter-
polants and model completions of equational theories axiomatizing the varieties
corresponding to propositional logics, which was first stated in [36] and further
developed in [33,37l[44]. Interestingly, model completeness has other well-known
applications in computer science. It has been applied: (%) to reveal interesting con-
nections between temporal logic and monadic second order logic [291[30]; (%) in
automated reasoning to design complete algorithms for constraint satisfiability
in combined theories over non-disjoint signatures [23L[ILBTLH2LE0LET]; (27) again
in automated reasoning in relationship with interpolation and symbol elimina-
tion [60.61I]; (iv) in modal logic and in software verification theories [24L25], to
obtain combined interpolation results.

This paper is organized as follows. After some preliminaries in Section [2] we
first state the formal connection between uniform quantifier-free interpolation and
model completions in Section |3} Then, in Section [4] we report our applications
(mostly taken from [17]) concerning verification of data-aware processes. We be-
gin the second part of the paper by proving (Section [5| below) that covers for
EUF can be computed through a constrained version of the Superposition Calcu-
lus [55] equipped with appropriate settings and reduction strategies; the related
completeness proof requires a careful analysis of the constrained literals gener-
ated during the saturation process. Complexity bounds for the fragment used in
data-aware processes verification are investigated in Section [0} an extension of
our constrained Superposition Calculus that handles a schema of additional con-
straints (useful for our applications) is provided in Section [7} in Section |8 we give
some details about our first implementation in our tool MCMT. This paper is the
extended version of [I4]: apart from containing more basic preliminary material,
a thorough account of model-checking applications, full proofs and detailed exam-

ples, in Sections |§| and [7| this paper covers additional new results on complexity
analysis and extensions.

2 Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom, (ground)
formula, and so on; our signatures are multi-sorted and include equality for every
sort. This implies that variables are sorted as well. For simplicity, most basic
definitions in this section will be supplied for single-sorted languages only. However,
the adaptation to multi-sorted languages is straightforward: for example, a multi-
sorted signature X must contain not only constant, function and relation symbols,
but also sorts. We compactly represent a tuple (z1,...,zy) of variables as z. The
notation t(z), ¢(x) means that the term ¢, the formula ¢ has free variables included
in the tuple x. Our tuples are assumed to be formed by distinct variables, thus
we underline that, writing e.g. ¢(z,y), we mean that the tuples z,y are made of
distinct variables that are also disjoint from each other. B

We assume that a function arity can be deduced from the context. Whenever
we build terms and formulae, we always assume that they are well-typed, in the
sense that the sorts of variables, constants, and function sources/targets match. A
formula is said to be universal (resp., existential) if it has the form Vz(4(z)) (resp.,
Jz(¢p(x))), where ¢ is a quantifier-free formula. Formulae with no free variables
are called sentences.

From the semantic side, we use the standard notion of a X-structure M and of
truth of a formula in a X-structure under a free variables assignment. The support
of a structure M is the disjoint union of the interpretations of the X-sorts in M
and is indicated with |M].

A X-theory T is a set of Y-sentences; a model of T is a X-structure M where
all sentences in T are true. We use the standard notation T' |= ¢ to say that ¢ is
true in all the models of T for every assignment to the variables occurring free in
¢. We say that ¢ is T-satisfiable iff there is a model M of T and an assignment
to the variables occurring free in ¢ making ¢ true in M.

A Y-formula ¢ is a X-constraint (or just a constraint) iff it is a conjunction
of literals, i.e. of atomic formulae and their negations. The constraint satisfiability
problem for T is the following: we are given a constraint (equivalently, a quantifier-
free formula) ¢(z) and we are asked whether there exist a model M of T" and an
assignment Z to the free variables such that M,Z = ¢(z).

A theory T has quantifier elimination iff for every formula ¢(z) in the signature
of T there is a quantifier-free formula ¢'(z) such that T |= ¢(z) <+ ¢'(x). It is well-
known (and easily seen) that quantifier elimination holds in case we can eliminate
quantifiers from primitive formulae, i.e. from formulae of the kind Jy ¢(x, y), where
¢ is a constraint. Since we are interested in effective computability, we assume that
when we talk about quantifier elimination, an effective procedure for eliminating
quantifiers is given.

We recall also some basic definitions and notions from model theory. Let X
be a first-order signature. The signature obtained from X by adding to it a set
a of new constants (i.e., 0-ary function symbols) is denoted by X*. Analogously,
given a XY-structure M, the signature X can be expanded to a new signature
SMI= 2 U{a | a € |M|} by adding a set of new constants @ (the name for a),
one for each element a in M, with the convention that two distinct elements are

denoted by different “name” constants. M can be expanded to a X IMl_structure

just interpreting the additional constants over the corresponding elements. From
now on, we confuse M and this expanded structure and we do not distinguish
from an element of | M| and its name. Thus we employ notations like M = ¢(a)
to mean that the sentence ¢(a) (obtained by replacing the free variables z of ¢(x)
by the names of some tuple a from |[M]) is true in M, once M is canonically
expanded to a X IMI_structure as explained above. Notice that this is the same as
saying that ¢(z) is true in M under the assignment mapping the z to the a.

A Y-embedding [18] (or, simply, an embedding) between two X-structures M
and A is a map p : |M| — |N| among the support sets |[M]| of M and |[N] of
N satisfying the condition (M = ¢ = N = ¢) for all XMl literals ¢ (M is
regarded as a X ‘M‘—structure, by interpreting each additional constant a € |M|
into itself and N is regarded as a XMl structure by interpreting each additional
constant a € |[M| into u(a)). If 4 : M — N is an embedding that is just the
identity inclusion |[M| C |N]|, we say that M is a substructure of N or that N is
an extension of M. We recall that a substructure preserves and reflects validity
of ground formulae, in the following sense: given a X-substructure M; of a X-
structure Mas, a ground X'™|_sentence 6 is true in M iff 0 is true in Ma.

Let M be a Y-structure. The diagram of M, written Ax (M) (or just A(M)),
is the set of ground X!™l-literals that are true in M. An easy but important
result, called Robinson Diagram Lemma [18], says that, given any X-structure N,
the embeddings p : M — N are in bijective correspondence with expansions
of N to XMl structures which are models of Ax(M). The expansions and the
embeddings are related in the obvious way: @ is interpreted as u(a). The typical use
of the Robinson Diagram Lemma is the following: suppose we want to show that
some structure M can be embedded into a structure N in such a way that some
set of sentences © are true. Then, by the Lemma, this turns out to be equivalent
to the fact that the set of sentences A(M) U O is consistent: thus, the Diagram
Lemma can be used to transform an embeddability problem into a consistency
problem (the latter is a problem of a logical nature, to be solved for instance by
appealing to the compactness theorem for first-order logic).

Amalgamation is a classical algebraic concept. We give the formal definition:
Definition 2.1 (Amalgamation). A theoryT has the amalgamation property if
for every couple of embeddings 1 : Mo — M, p2 : Mg — Mo among models
of T', there exists a model M of T' endowed with embeddings v1 : M1 — M and
v2 : Mo — M such that vi o p1 = v2 o . 4

3 Covers, Uniform Interpolation and Model Completions

We report the notion of cover taken from [38]. Fix a theory T" and an existential
formula Je ¢(e, y); call a residue of e (e, y) any quantifier-free formula belonging
to the set of quantifier-free formulae

Res(Jep) ={0(y,2) | T = 3edle,y) = 0y, 2)} = {0(y,2) [T = (e, y) = 0(y, 2)}-
A quantifier-free formula (y) is said to be a T-cover (or, simply, a cover) of
Je p(e,y) iff ¥(y) € Res(3e¢) and ¥(y) implies (modulo T') all the other formulae
in Res(Je ¢). Notice that the cover is unique, modulo T-equivalence. Alternatively,
¥(y) is also said to be a T-uniform (quantifier-free) interpolant of ¢(e,y). The
following Lemma (to be widely used throughout the paper) supplies a semantic
counterpart to the notion of a cover:

Lemma 3.1 (Cover-by-Extensions). A formula ¢(y) is a T-cover of Je ¢(e,y)
iff it satisfies the following two conditions: (i) T |= Yy 3e ¢(e,y) = ¥(y)); (ii) for
every model M of T, for every tuple of elements a from the support of M such
that M = v(a) it is possible to find another model N of T such that M embeds
into N and N = Je p(e, a). 4

Proof. Suppose that ¥(y) satisfies conditions (i) and (ii) above. Condition (i) says
that ¥ (y) € Res(3e @) , so ¢ is a residue. In order to show that 1 is also a cover,
we have to prove that T' = Vy, z(¥(y) — 6(y, z)), for every 0(y, z) that is a residue
for Je ¢(e,y). Given a model M of T, take a pair of tuples a,b of elements from
|M| and suppose that M |= ¢(a). By condition (ii), there is a model A of T such
that M embeds into N and N |= e ¢(e, a). Using the definition of Res(Te @), we
have N = 6(a,b), since 0(y, z) € Res(3x ¢). Since M is a substructure of N and
0 is quantifier-free, M |= 0(a, b) as well, as required.

Suppose that 1 (y) is a cover. The definition of residue implies condition (i). To
show condition (ii) we have to prove that, given a model M of T, for every tuple
a of elements from | M|, if M = v(a), then there exists a model N of T such that
M embeds into A" and N = 3z ¢(z, a). Using Robinson Diagram Lemma, we can
reformulate the latter embeddability statement into a consistency statement: so
what we need to prove is that A(M) U {3z ¢(z,a)} is a T-consistent X™M|-set of
sentences (X is the signature of T'). By reduction to absurdity, suppose that this is
not the case: by compactness, there is a finite number of literals £ (a, b), ..., ém (a, b)
(for some tuple b of elements from |M]|) such that M [¥¢;(a,b) (for all i =
1,...,m) and

(*) T E3Jedle,a) = ~(li(a,b) A+ Alm(a,b)) .

Now, the constants a,b do not occur in the axioms of 7" and do not belong to X,
hence we can replace them by variables y, z in the T-proof witnessing (x): indeed,
since they do not occur in the axioms of T', they are generic from the point of view
of T. As a consequence, we then get

T 3edley) = (~h(y,z) V-V lm(y, 2))
By definition of residue, clearly (=¢1(y,2) V ---V = (y,2)) € Res(3x ¢); then,
since 9(y) is a cover, T |= ¥(y) — (=€1(y,2) V --- V =l (y, 2)). Replacing back
the variables y, z by the constants a, b and recalling that M = ¢(a), this implies
that M |= —/;(a,b) for some j = 1,...,m, which is a contradiction. Thus, ()
satisfies conditions (ii) too. E

We say that a theory T has uniform quantifier-free interpolation iff every ex-
istential formula Je ¢(e,y) (equivalently, every primitive formula Je ¢(e,y)) has
a T-cover. It is clear that if T has uniform quantifier-free interpolation, then it
has ordinary quantifier-free interpolation [9], in the sense that if we have T =
o(e,y) — ¢'(y, z) (for quantifier-free formulae ¢, ¢'), then there is a quantifier-free
formula 6(y) such that T = é(e,y) — 6(y) and T = 0(y) — ¢'(y,z). In fact,
if T has uniform quantifier-free interpolation, then the interpolant @ is indepen-
dent on ¢’: indeed, the same 6(y) can be used as interpolant for all entailments
T |= ¢le,y) — ¢'(y, 2), varying ¢'.

We say that a universal theory T has a model completion iff there is a stronger
theory T DO T (still within the same signature X of T') such that (i) every X-
constraint that is satisfiable in a model of T is satisfiable in a model of T™; (ii) T*
eliminates quantifiers. Other equivalent definitions are possible [I8]: for instance,

(1) is equivalent to the fact that 7" and T prove the same quantifier-free formulae
or again to the fact that every model of T' can be embedded into a model of T™*.
We recall that the model completion, if it exists, is unique and that its existence
implies the amalgamation property for T' [I8]. The relationship between uniform
interpolation in a propositional logic and the model completion of the equational
theory of the variety algebraizing it was extensively studied in [33]. In the context
of first order theories, we prove an even more direct connection:

Theorem 3.2. Suppose that T is a universal theory. Then T has a model com-
pletion T iff T has uniform quantifier-free interpolation. If this happens, T is
azriomatized by the infinitely many sentences

Vy ((y) — e d(e,y)) (1)
where Je ¢(e, g) is a primitive formula and v is a cover of it. <
Proof. Suppose first that there is a model completion T of T" and let e ¢(e, y) be a
primitive formula. Since T eliminates quantifiers, we have T* |= e é(e, y) < ¥(y)
for some quantifier-free formula 1 (y). Since T' and T™* prove the same quantifier-
free formulae, from the left-to-right side T* = ¢(e, y) — ¥ (y) we have that 1 (y) €
Res(3e¢). If O(y, z) € Res(3e¢), then we have T = ¢(e,y) — 0(y, 2); the same
entailment holds in T* too, where we have T* = ¥(y) — 6(y, z). Since ¥ (y) —
0(y,z) is quantifier-free, we have also T = 9 (y) — 0(y, z), showing that 1 is a
cover of Je ¢(e,y). Thus T has uniform interpolation, because we found a cover
for every primitive formula.

Suppose vice versa that T has uniform interpolation. Let T be the theory
axiomatized by all the formulae (1)) above. From (i) of Lemma and above,
we clearly get that 7™ admits quantifier elimination: in fact, in order to prove that
a theory enjoys quantifier elimination, it is sufficient to eliminate quantifiers from
primitive formulae (then the quantifier elimination for all formulae can be easily
shown by an induction over their complexity). This is exactly what is guaranteed
by (i) of Lemma [3.1] and ().

Let M be a model of T'. By using a chain argument [I7] (see [I§], Lemma 3.5.7
for an almost identical construction), we show that there exists a model M’ of T*
such that M embeds into M’. Consider the set of all pairs (a,Je ¢(e,a)) where
a is a tuple from |[M|, Je ¢(e,y) is a primitive formula and M |= 9(a) (here 9 is
a cover of ¢). By Zermelo’s Theorem, the set of such pairs (a, e ¢(e,a)) can be
well-ordered: let {(a;,Je; ¢i(e;,a;))}ier be such a well-ordered set of pairs, where
I is some ordinalﬁ_-l By transfinite induction on this well-order, we define Mg := M
and, for each 7 € I, M; as an extension of |J;_; M; such that M; |= Je; ¢i(e;, a;),
which exists for (ii) of Lemma3.1|since (J,; ; M; & ¥i(a;) (remember that validity
of ground formulae is preserved passing through substructures and superstructures,
and Mo k= vi(a,)).

Now we take the chain union M' := UieI M;: since T is universal, M?!
is again a model of T. Thanks to this construction, we added, for every pair
(a;,3e; dile;,a;)) (with a, € M and M = ¢;(a;)), a corresponding tuple b, such
that M* |= ¢;(b;, a;); however, this only guarantees that such a tuple b, exists for
every pair (a;, Je, ¢i(e;, a;)) such that the tuple a; is from | M|, whereas nothing
is said for the pairs where the tuple a is in |M*|\ | M|. Then, we iteratively repeat
the chain construction above for these new a. Indeed, it is possible to construct,

1 I is possibly different from w (there can be uncountably many tuples a;).

by an analogous chain argument, a model M? as done above, starting from M*
instead of M. Clearly, we get Mg := M C M' C M? by construction.

At this point, we iterate the same argument countably many times, so as to
define a new chain of models of T"

Mo:=MCM C..CM"C..

Defining M’ := |J,, M", we trivially get that M’ is a model of T such that
M C M’ and satisfies all the sentences of type (1): the last fact is immediate,
recalling that truth of ground formulae (in expanded languages with names from
support sets) is preserved by substructures and extensions. After w steps we are
done, because every tuple a € |[M’| occurs after finitely many steps, and its cor-
responding b in the construction are added at the immediately subsequent step.—

To sum up, Theorem states that, thanks to Formulae , the T-uniform
interpolant (or cover) v of the formula Je¢(e,y) is exactly the T*-equivalent
quantifier-free formula that eliminates the quantified variables e from Je ¢(e, y):
this means that computing covers in T is equivalent to eliminating quantifiers in
its model completion T™.

4 Model-Checking Applications

In this section we supply old and new motivations for investigating covers and
model completions in view of model-checking applications. We first report the
considerations from [38[ITL13l[17] on symbolic model-checking via model comple-
tions (or, equivalently, via covers) in the basic case where system variables are
represented as individual variables; for more advanced applications where system
variables are both individual and higher order variables, see [IILI3L[I7]. Similar
ideas (i.e., ‘to use quantifier elimination in the model completion even if T does
not allow quantifier elimination’) were used in [60] for interpolation and symbol
elimination.

Definition 4.1. A (quantifier-free) transition system is a tuple

S = (X,T,z,u(z),7(z,2'))

where: (i) X is a signature and T is a X-theory; (ii) x = x1,...,Tn are individual
variables; (iii) 1(z) is a quantifier-free formula; () T(x,x’) is a quantifier-free
formula (here the ' are renamed copies of the x). N

A safety formula for a transition system S is a further quantifier-free formula v(z)
describing undesired states of S. We say that S is safe with respect to v if the
system has no finite run leading from ¢ to v, i.e. (formally) if there is no model M
of T and no k > 0 such that the formula

W) ATzt A AT) Ao(®) (2)
is satisfiable in M (here z'’s are renamed copies of z). The safety problem for S
is the following: given v, decide whether S is safe with respect to v.

Suppose now that the theory 7" mentioned in Definition (i) is univer-
sal, has decidable constraint satisfability problem and admits a model comple-
tion T*. Algorithm [I| describes the backward reachability algorithm for handling
the safety problem for S (the dual algorithm working via forward search is de-
scribed in equivalent terms in [38]). An integral part of the algorithm is to com-
pute preimages. For that purpose, for any 1 (z,2’) and @2(z) (where z’ are re-
named copies of x), we define Pre(¢1, ¢2) to be the formula 3z’ (p1(z, ') Ap2(z")).

The preimage of the set of states de- Algorithm 1: Backward

scribed by a state formula ¢(z) is the reachability algorithm
set of states described by Pre(r, ¢). The Function BReach(v)
subprocedure QE(T™, ¢) in Line 6 applies 1 ¢ —v; Be— L 4
the quantifier elimination algorithm of 2 W;‘lle ¢ A =B is T-satisfiable
« . . . o

T to the e?<1st?nt1al fo.rrnula ¢. With- s i LA is T-satisfiable.
out the application of this subprocedure, then
the existential prefix generated by the L return unsafe
computation of preimages would grow in 4 B+— ¢V B;

.. . . 5 ¢ «— Pre(t,9);
an unlimited way and some decidabil- o 6 «— QE(T*,d);
ity results (see, e.g., the locally finite | return (safe, B);

case mentioned below) would be compro-
mized. Algorithm [1] computes iterated preimages of v (storing their disjunction
into the variable B) and applies to them quantifier elimination, until a fixpoint
is reached or until a set intersecting the initial states (i.e., satisfying ¢) is found.
Inclusion (Line 2) and disjointness (Line 3) tests produce proof obligations that
can be discharged because T has decidable constraint satisfiability problem.

The proof of Proposition (which is a slight variant of a similar result for
Simple Artifact Systems (SASs) in [I7]) consists just in the observation that the
formulae are quantifier-free and that a quantifier-free formula is satisfiable in a
model of T iff so is it in a model of T"*: thus, if an unsafe trace exists at all, it arises
in a model of T™, so that the subprocedure QE(T™, ¢) in Line 6 does not introduce
overapproximations and consequently no spurious trace can be produced during
the search performed by our algorithm.

Proposition 4.2. Suppose that the universal X-theory T has decidable constraint
satisfiability problem and admits a model completion T™. For every transition sys-
tem S = (X, T,z,t,7), the backward search algorithm is effective and partially
correct for solving safety problems for SE| N

Despite its simplicity, Proposition [£.2]is a crucial fact. Notice that it implies
decidability of the safety problems in some interesting cases: this happens, for
instance, when in 7" there are only finitely many quantifier-free formulae in which
x occur, as in case T has a purely relational signature or, more generally, T is
locally ﬁm’tﬁ Since a theory is universal iff it is closed under substructures [I8]
and since a universal locally finite theory has a model completion iff it has the
amalgamation property [64,[46], it follows that Propositioncan be used to cover
the decidability result stated in Theorem 5 of [§] (once restricted to transition
systems over a first-order definable class of Y-structures).

4.1 Database Schemas

In this subsection, we provide a new application for the above explained model-
checking techniques [I3}[I7]. The application relates to the verification of integrated
models of business processes and data [10], referred to as artifact systems [62],
where the behavior of the process is influenced by data stored in a relational

2 Partial correctness means that, when the algorithm terminates, it gives a correct answer.
Effectiveness means that all subprocedures in the algorithm can be effectively executed.

3 For our purposes, it is convenient to define a theory T to be locally finite iff for every finite
tuple of variables z there are only finitely many T-equivalence classes of atoms A(z) involving
only the variables x.

database (DB) with constraints. The data contained therein are read-only: they
can be queried by the process and stored in a working memory, which in the context
of this paper is constituted by a set of system variables. In this context, safety
amounts to checking whether the system never reaches an undesired property,
irrespectively of what is contained in the read-only DB.

We define next the two key notions of (read-only) DB schema and instance, by
relying on an algebraic, functional characterization.
Definition 4.3. A DB schema is a pair (X, T), where: (1) X is a DB signature,
that is, a finite multi-sorted signature whose function symbols are all unary; (ii) T
is a DB theory, that is, a set of universal X'-sentences. N
Given a DB signature X', we denote by X the set of sorts, by X, the set of
functions in X and by X,; the set of relations in Y. We associate to a DB signature
XY a characteristic (directed) graph G(X) capturing the dependencies induced by
functions over sorts. Specifically, G(X) is an edge-labeled graph whose set of nodes

is Xsr¢, and with a labeled edge S 14§ for each f:8— S in Xp,. We say that
X is acyclic if G(X) is so. The leaves of X are the nodes of G(X) without outgoing
edges. These terminal sorts are divided in two subsets, respectively representing
unary relations and value sorts. Non-value sorts (i.e., unary relations and non-leaf
sorts) are called id sorts, and are conceptually used to represent (identifiers of)
different kinds of objects. Value sorts, instead, represent datatypes such as strings,
numbers, clock values, etc. We denote the set of id sorts in X by X4, and that
of value sorts by X4, hence Yo = Xigs W X

Before giving the formal definition of DB instance, we show an interesting
example of DB signature inspired by concrete business processes.
Example 4.1 ([17]). The human resource (HR) branch of a company stores the
following information inside a relational database: (i) users registered to the com-
pany website, who are potentially interested in job positions offered by the com-
pany; (i) the different, available job categories; (i4i) employees belonging to HR,
together with the job categories they are competent in (in turn indicating which
job applicants they could interview). To formalize these different aspects, we make
use of a DB signature X, consisting of: (i) four id sorts, used to respectively
identify users, employees, job categories, and the competence relationship con-
necting employees to job categories; (i) one value sort containing strings used
to name users and employees, and describe job categories. In addition, X, con-
tains five function symbols mapping: (i) user identifiers to their corresponding
names; (i7) employee identifiers to their corresponding names; (iii) job category
identifiers to their corresponding descriptions; (iv) competence identifiers to their
corresponding employees and job categories. The characteristic graph of X}, is
shown in Figure [1] (left part). <

We now focus on extensional data conforming to a given DB schema.
Definition 4.4. A DB instance of DB schema (X, T) is a X-structure M such
that M is a model of TE| <

We respectively denote by SM, fM7 and ¢™ the interpretation in M of the
sort S (this is a set), of the function symbol f (this is a set-theoretic function),

4 One may restrict to models interpreting sorts as finite sets, as customary in database
theory. Since the theories we are dealing with usually have finite model property for constraint
satisfiability, assuming such restriction turns out to be irrelevant, as far as safety problems are
concerned (see [III3| for an accurate discussion).

10

JobCatld jobCatDescr JobCategory |ﬂ : JobCatld |jabCatDescr : Stringl

I |
who CompetentIn |@ : Complnld | who : Empld | what : JobCatIdl

e

Complnld

String)

N mem=-—- y
Empld empName Employee |ﬂ : Empld | empName : Stringl
userName User |ﬂ : Userld | userName : Stringl

Fig. 1 On the left: characteristic graph of the human resources DB signature from Exam-
ple On the right: relational view of the DB signature; each cell denotes an attribute with
its type, underlined attributes denote primary keys, and directed edges capture foreign keys.

and of the constant ¢ (this is an element of the interpretation of the corresponding
sort). Obviously, M and ¢™ must match the sorts declared in X. For instance,
if the source and the target of f are, respectively, S and U, then the function f™
has domain S™ and range UM.

One might be surprised by the fact that signatures in our DB schemas contain
unary function symbols, beside relational symbols. As shown in [III317], the
algebraic, functional characterization of DB schema and instance can be actually
reinterpreted in the classical, relational model so as to reconstruct the requirements
posed in [45]. In this last work, the schema of the read-only database must satisfy
the following conditions: (i) each relation schema has a single-attribute primary
key; (ii) attributes are typed; (74i) attributes may be foreign keys referencing other
relation schemas; (iv) the primary keys of different relation schemas are pairwise
disjoint. We now discuss why these requirements are matched by DB schemas.

Definition [4.3] naturally corresponds to the definition of relational database
schema with single-attribute primary and foreign keys. To see this, we adopt the
named perspective, where each relation schema is defined by a signature containing
a relation name and a set of typed attribute names. Let (3, T) be a DB schema.
Each sort S from X corresponds to a dedicated relation Rgs with the following
attributes: (i) one identifier attribute idg with type S; (i) one dedicated attribute
af with type S’ for every function symbol f from X of the form f:S — S'.

The fact that Rg is constructed starting from functions in X' naturally induces
corresponding functional dependencies within Rg, and inclusion dependencies from
Rgs to other relation schemas. In particular, for each non-id attribute ay of Rg,
we get a functional dependency from ids to ay. Altogether, such dependencies
witness that idg is the primary key of Rg. In addition, for each non-id attribute
ay of Rg whose corresponding function symbol f has id sort S” as image, we get an
inclusion dependency from ayf to the id attribute ids of Rss. This captures that
as is a foreign key referencing Rg/. This view is shown in the following example.
Example 4.2. The diagram on the right in Figure [1| graphically depicts the re-
lational view corresponding to the DB signature of Example <

Given a DB instance M of (X, T'), its corresponding relational instance R[M]
is the minimal set satisfying the following property: for every id sort S from X, let
f1,..., fn beall functions in X' with domain S™M: then, for every identifier o € SM.
R[M] contains a labeled fact of the form Rg(ids : 0™, ay, : fi(0)™, ... ay, : fn(0)™),
where attr: <™ means that the element ¢ corresponds to the attribute attr of

11

the relation Rg. In addition, R[M)] contains the tuples from M, for every re-
lational symbol r from X (these relational symbols represent plain relations, i.e.
those not possessing a key).

We close our discussion by focusing on DB theories. Notice that EUF suf-
fices to handle the sophisticated setting of artifact systems from [I3|[17] (e.g., key
dependencies). The role of a non-empty DB theory is to encode background ax-
ioms to express additional constraints. We illustrate a typical background axiom,
required to handle the possible presence of undefined identifiers/values in the dif-
ferent sorts. This, in turn, is essential to capture artifact systems whose working
memory is initially undefined, in the style of [2I}45]. To accommodate this, we
add to every sort S of X a constant undefs (written by abuse of notation just
undef from now on), used to specify an undefined value. Then, for each function
symbol f of X, we can impose additional constraints involving undef, for example
by adding the following axioms to the DB theory:

Vz (z = undef > f(x) = undef) (3)
This axiom states that the application of f to the undefined value produces an
undefined value, and it is the only situation for which f is undefined. A slightly
different approach may handle many undefined values for each sort; the reader is
referred to [III3l[I7] for examples of concrete database instances formalized in
our framework. We just point out that in most cases the kind of axioms that we
need for our DB theories T are just one-variable universal axioms (like Axioms|3)),
so that they fit the hypotheses of Proposition below.

We are interested in applying the algorithm of Proposition to a (non-
deterministic) version of Simple Artifact Systems (SASs) [I1T], i.e. transition sys-
tems S = (X, T,z,u(z),7(z,z')), where (X, T) is a DB schema in the sense of
Definition [£.3] To this aim, it is sufficient to identify a suitable class of DB theories
having a model completion and whose constraint satisfiability problem is decid-
able. A first result in this sense is given below. Given the characteristic graph
G(X) of a DB signature X, we recall that X is said to be acyclic if G(X) is so.
Proposition 4.5. [17] A DB theory T has decidable constraint satisfiability prob-
lem and admits a model completion in case it is axiomatized by finitely many
universal one-variable formulae and X is acyclic. N

We omit the proof of the above proposition, because the proposition does
not play a role in the following: the proof can be easily obtained by well-known
facts from the literature and is nevertheless reported in full detail in [I7]. We
only report here the algorithm for quantifier elimination in T suggested by that
proof: given a primitive formula Je ¢(e,y), the output ¢ (y) of the algorithm is
simply the conjunction of the set of all quantifier-free x(y)-formulae such that
éle,y) — x(y) is a logical consequences of T' (they are finitely many - up to
T-equivalence - because X is acyclic). We also notice that, since acyclicity of X
yields local finiteness, we immediately get as a Corollary the decidability of safety
problems for transitions systems based on DB schemas satisfying the hypotheses
of the above theorem.

5 Covers via Constrained Superposition

Of course, a model completion may not exist at all. Proposition [£.5] shows that
it exists in case T is a DB theory axiomatized by universal one-variable formulae

12

and X' is acyclic. The second hypothesis is unnecessarily restrictive and the algo-
rithm for quantifier elimination suggested by the proof of Proposition is highly
impractical: for this reason we are trying a different approach. In this section, we
drop the acyclicity hypothesis and examine the case where the theory T is empty
and the signature X may contain function symbols of any arity. Covers in this
context were shown to exist already in [38], using an algorithm that, very roughly
speaking, determines all the conditional equations that can be derived concerning
the nodes of the congruence closure graph. An algorithm for the generation of
interpolants, still relying on congruence closure [41], is sketched in [42].

We follow a different plan and we want to produce covers (and show that they
exist) using saturation-based theorem proving. The natural idea to proceed in this
sense is to take the matrix ¢(e,y) of the primitive formula Je ¢ (e, y) we want to
compute the cover of: this is a conjunction of literals, so we consider each variable
as a free constant, we saturate the corresponding set of ground literals and finally
we output the literals involving only the y. For saturation, one can use any version
of the superposition calculus [55]. However, this procedure for our problem is not
sufficient. As a trivial counterexample consider the primitive formula Je (R(e, y1) A
—R(e,y2)): the set of literals {R(e, y1), "R(e, y2)} is saturated (recall that we view
e,y1,y2 as constants), however the formula has a non-trivial cover y1 # y2 which
is mot produced by saturation. If we move to signatures with function symbols,
the situation is even worse: the set of literals {f(e,y1) = 1, f(e,y2) = v5} is
saturated but the formula Je (f(e,y1) = y1 A f(e,y2) = y3) has the conditional
equality y1 = ya — yi = yb as cover. Disjunctions of disequations might also arise:
the cover of e h(e, y1,v2) # h(e, y1,v5) (as well as the cover of Je f(f(e,y1), y2) #
F(f(e,yh), y5), see Example [5.5] below) is y1 # /i V y2 # 5. [

Notice that our problem is different from the problem of producing ordinary
quantifier-free interpolants via saturation based theorem proving [43]: for ordinary
Craig interpolants, we have as input two quantifier-free formulae ¢(e,), ¢’ (y, 2)
such that ¢(e, y) — ¢'(y,) is valid; here we have a single formula ¢(e,) as input
and we are asked to find an interpolant which is good for all possible ¢'(y, z) such
that ¢(e,y) — ¢(y,2) is valid. Ordinary interpolants can be extracted from a
refutation of o(e, QYA ﬂ(b/(g, z), whereas here we are not given any refutation at

all (and we are not even supposed to find one).

What we are going to show is that, nevertheless, saturation via superposition
can be used to produce covers, if suitably adjusted. In this section we consider
signatures with n-ary function symbols (for all n > 1). For simplicity, we omit
n-ary relation symbols (they can be easily handled by rewriting R(t1,...,tn) as
R(t1,...,tn) = true, as customary in the paramodulation literature [55]).

We are going to compute the cover of a primitive formula Je ¢ (e, y) to be fixed
for the remainder of this section. We call variables e ezistential and variables y
parameters. By applying abstraction steps, we can assume that ¢ is primitive ﬂag
i.e. that it is a conjunction of e-flat literals, defined below. [By an abstraction step
we mean replacing e ¢ with Je3Je’ (¢/ = u A ¢'), where €’ is a fresh variable and
¢’ is obtained from ¢ by replacing some occurrences of a term u(e, y) by e].

5 This example points out a problem that needs to be fixed in the algorithm presented in [38]:
that algorithm in fact outputs only equalities, conditional equalities and single disequalities,
so it cannot correctly handle this example.

13

A term or a formula are said to be e-free iff the existential variables do not
occur in it. An e-flat term is an e-free term t(g) or a variable from e or again it is

of the kind f(u1,...,un), where f is a function symbol and ui,...,u, are e-free
terms or variables from e. An e-flat literal is a literal of the form
t=a, a#b

where t is an e-flat term and a, b are either e-free terms or variables from e.

We assume the reader is familiar with standard conventions used in rewriting
and paramodulation literature: in particular s, denotes the subterm of s in posi-
tion p and s[u], denotes the term obtained from s by replacing s|, with u. We use
= to indicate coincidence of syntactic expressions (as strings) to avoid confusion
with equality symbol; when we write equalities like s = ¢ below, we may mean
both s =t or t = s (an equality is seen as a multiset of two terms). For information
on reduction orderings, see for instance [2].

We first replace variables e = e1,...,e, and y = y1, ..., ym by free constants -
we keep the names e, . .., en, y1,...,Ym for these constants. Let > be a reduction
ordering that is total for ground terms such that e-flat literals ¢t = a are always
oriented from left to right in the following two cases: (i) t is not e-free and a is
e-free; (ii) ¢ is not e-free, it is not equal to any of the e and a is a variable from e.
To obtain such properties, one may for instance choose a suitable Knuth-Bendix
ordering taking weights in some transfinite ordinal (see, e.g., [47]).

Given two e-flat terms ¢, u, we indicate with E(¢,u) the following procedure,
which intuitively is a unification algorithm for the terms ¢t and u where the e
variables are treated as constants; as shown by Lemma below, E(t,u) collects
‘the equalities that are needed in order to force ¢ = u’, whenever the e are assumed
to be free (i.e. not to satisfy any specific equational constraint):

e E(t,u) fails if ¢ is e-free and u is not e-free (or vice versa);

o E(t,u) fails if ¢t = e; and (either u = f(t1,...,tx) or u = e; for ¢ # j);

e E(t,u)=01if t = u;

e E(t,u) = {t = u} if t and u are different but both e-free;

e FE(t,u) fails if none of t,u is e-free, t = f(t1,...,tx) and u = g(ua,...,u;) for

f#9

E(t,u) = E(t1,u1) U--- U E(tg,ur) if none of t,u is e-free, t = f(t1,...,tk),
u= f(u1,...,ur) and none of the E(¢;,u;) fails.

Notice that, whenever E(t,u) succeeds, the formula A E(t,u) — t = u is univer-
sally valid. The definition of E(t,u) is motivated by the next lemma.

Lemma 5.1. Let R be a convergent (i.e. terminating and confluent) ground rewrit-
ing system, whose rules consist of e-free terms. Suppose that t and u are e-flat
terms with the same R-normal form. Then E(t,u) does not fail and all pairs from
E(t,u) have the same R-normal form as well. <
Proof. This is due to the fact that if ¢ is not e-free, no R-rewriting is possible at
root position because rules from R are e-free. a

In the following, we handle constrained ground flat literals of the form L || C
where L is a ground flat literal and C' is a conjunction of ground equalities among
e-free terms. The logical meaning of L || C' is the Horn clause A C — L.

In the literature, various calculi with constrained clauses were considered, start-
ing, e.g., from the non-ground constrained versions of the Superposition Calculus
of [4[54]. The calculus we propose here is inspired by such versions and it has close
similarities with a subcase of hierarchic superposition calculus [5], or rather to its

14

“weak abstraction” variant from [6] (we thank an anonymous referee of our CADE
2019 submission for pointing out this connection).

The rules of our Constrained Superposition Calculus follow; each rule applies
provided the F subprocedure called by it does not fail. The symbol L indicates
the empty clause. Further explanations and restrictions to the calculus are given
in the Remarks below.

Superposition Right l=r|C s=t| D .
(Constrained) slrlp =t || CUDUE(s,l) if1>rands >t
Superposition Left l=r|C s#t| D .
(Constrained) slrlp Zt || CUDU E(s,1) ifl>7ands>1
Reflection t#ul| C
(Constrained) L] CUE(t, u)
Demodulation L C, l=r|D if I>r Lp=1
(Constrained) Lirlp || C and C 2 D

Remark 5.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness
of the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation). <«
Remark 5.2. The Demodulation rule is a simplification rule: its application not
only adds the conclusion to the current set of constrained literals, but it also
removes the first premise. It is easy to see (e.g., representing literals as multisets
of terms and extending the total reduction ordering to multisets), that one cannot
have an infinite sequence of consecutive applications of Demodulation rules. N
Remark 5.3. The calculus takes {L||} | L is a flat literal from the matrix of ¢}
as the initial set of constrained literals. It terminates when a saturated set of con-
strained literals is reached. We say that S is saturated iff every constrained literal
that can be produced by an inference rule, after being exhaustively simplified via
Demodulation, is already in S (there are more sophisticated notions of ‘saturation
up to redundancy’ in the literature, but we do not need them). When it reaches
a saturated set S, the algorithm outputs the conjunction of the clauses A C' — L,
varying L || C' among the e-free constrained literals from S. N
We need some rule application policy to ensure termination: without any such
policy, a set like

{e=yll0, f(e) =e| 0} (4)
may produce by Right Superposition the infinitely many literals (all oriented from
right to left) f(y) = ell0, f(f(y)) = ell0, F(f(f(y))) = el D, etc. The next remark

explains the policy we follow.

Remark 5.4. [Policy Remark] We apply Demodulation only in case the sec-
ond premise is of the kind e; = t(y)||D, where t is e-free. Demodulation rule is
applied with higher priority with respect to the inference rulesﬂ Inside all possible
applications of Demodulation rule, we give priority to the applications where both

6 Thus we cannot apply Superposition to {e = y|| 0, f(e) = e||@} until Demodulation is
exhaustively applied (the latter causes the deletion of f(e) = e||@ and its replacement with
f(y) = y|| 0, thus blocking the above generation of infinitely many clauses).

15

premises have the form e; = t(y) ||D (for the same e; but with possibly different
D’s - the D from the second premise being included in the D of the first). In
case we have two constrained literals of the kind e; = t1(y) [|D, e¢; = t2(y) ||D
inside our current set of constrained literals (notice that the e;’s and the D’s here
are the same), among the two possible applications of the Demodulation rule, we
apply the rule that keeps the smallest ¢;. Notice that in this way two different
constrained literals cannot simplify each other. N

We say that a constrained literal L |C belonging to a set of constrained literals
S is simplifiable in S iff it is possible to apply (according to the above policy) a
Demodulation rule removing it. A first effect of our policy is:

Lemma 5.2. If a constrained literal L || C is simplifiable in S, then after applying
to S any sequence of rules, it remains simplifiable until it gets removed. After being
removed, if it is regenerated, it is still simplifiable and so it is eventually removed
again. N
Proof. Suppose that L || C' can be simplified by e = t|| D and suppose that a rule
is applied to the current set of constrained literals. Since there are simplifiable
constrained literals, that rule cannot be an inference rule by the priority stated
in Remark For simplification rules, keep in mind again Remark IfL|C
is simplified, it is removed; if none of L||C and e = t| D get simplified, the
situation does not change; if e = t|| D gets simplified, this can be done by some
e=1t'|| D', but then L|| C is still simplifiable - although in a different way - using
e = t'|| D’ (we have that D’ is included in D, which is in turn included in C).
Similar observations apply if L || C' is removed and re-generated. -

Due to Lemma if we show that a derivation (i.e., a sequence of applications
of rules) can produce terms only from a finite set, it is clear that when no new
constrained literal is produced, saturation is reached. First notice that:

Lemma 5.3. Every constrained literal L ||C produced during the run of the algo-
rithm is e-flat. <
Proof. The constrained literals from initialization are e-flat. The Demodulation
rule, applied according to Remark produces an e-flat literal out of an e-flat
literal. The same happens for the Superposition rules: in fact, since both the terms
s and [from these rules are e-flat, a Superposition may take place at root position
or may rewrite some | = e; with r = e; or with r = t(y)m o

There are in principle infinitely many e-flat terms that can be generated out
of the e-flat terms occurring in ¢ (see the above counterexample (4)). We show
however that only finitely many e-flat terms can in fact occur during saturation
and that one can determine in advance the finite set they are taken from.

To formalize this idea, let us introduce a hierarchy of e-flat terms (this hierarchy
concerns terms, not clauses or constraints - although it will be used to delimit the
kind of clauses or constraints that might occur in a saturation process). Let Do
be the e-flat terms occurring in ¢ and let Dy be the set of e-flat terms obtained

7 Notice that Superposition Left is considerably restricted in our calculus: recall in fact that
e-flat negative literals must be of the kind s # t where s,t are either variables from e or e-free
terms. Since rules do not apply to e-free literals, the only possibility is that the term s from the
literal s # t of the right premise of Superposition Left is a variable from e and that the term
! from the left premise concides with it. Thus Superposition Left looks like a Demodulation,
however it is not a Demodulation because the constraint of its left premise may not be included
into the constraint of its right premise. It would be harmless to allow a more liberal version of
Superposition Left, but we do not need it.

16

by simultaneous rewriting of an e-flat term from (J,., D; via rewriting rules of
the kind e; — t;(y) where the t; are e-free terms from |J,., D;. The degree of an
e-flat term is the minimum & such that it belongs to set Dy, (it is necessary to take
the minimum because the same term can be obtained at different stages and via
different rewritings).

Lemma 5.4. Let the e-flat term t' be obtained by a rewriting e; — u(y) from the
e-flat term t; then, if t has degree k > 1 and u has degree at most k — 1, we have
that t' has degree at most k. <
Proof. This is clear, because at the k-stage one can directly produce ¢’ instead of
just t: in fact, all rewriting producing directly ¢’ replace an occurrence of some
e; by an e-free term, so they are all done in parallel positions. [We illustrate
the phenomenon via an example: suppose that ¢ is f(e1, g(g(c))) and that t' is
obtained from ¢ by rewriting e1 to g(c). Now it might well be that ¢ has degree 2,
being obtained from f(e1,e2) via e2 — g(g(c))) (the latter having been previously
obtained from g(es) via es — g(c)). Now ¢’ still has degree 2 because it can
be directly obtained from f(e1,e2) via the parallel rewritings e1 — g(c), ez —
9(g(c)))-] .
Proposition 5.5. The saturation of the initial set of e-flat constrained literals
always terminates after finitely many steps. <

Proof. We show that all e-flat terms that may occur during saturation have at
most degree n (where n is the cardinality of e). This shows that the saturation
must terminate, because only finitely many terms may occur in a derivation (see
the above observations). Let the algorithm during saturation reach the state S
we say that a constraint C' allows the explicit definition of e; in S iff S contains a
constrained literal of the kind e; = ¢(y) ||D with D C C. Now we show by mutual
induction two facts concerning a constrained literal L || C € S:

(1) if an e-flat term wu of degree k occurs in L, then C allows the explicit definition

of k different e; in S
(2) if L is of the kind e; = t(y), for an e-free term t of degree k, then either

e; = t||C can be simplified in S or C allows the explicit definition of k + 1

different e; in S (e; itself is of course included among these e;).

Notice that (1) is sufficient to exclude that any e-flat term of degree bigger than
n can occur in a constrained literal arising during the saturation process.

We prove (1) and (2) by induction on the length of the derivation leading
to L||C € S. Notice that it is sufficient to check that (1) and (2) hold for the
first time where L ||C € S because if C allows the explicit definition of a certain
variable in S, it will continue to do so in any S’ obtained from S by continuing
the derivation (the definition may be changed by the Demodulation rule, but the
fact that e; is explicitly defined is forever). Also, by Lemma a literal cannot
become non simplifiable if it is simplifiable.

(1) and (2) are evident if S is the initial status. To show (1), suppose that u
occurs for the first time in L || C as the effect of the application of a certain rule:
we can freely assume that v does not occur in the literals from the premisses of the
rule (otherwise induction trivially applies) and that u of degree k is obtained by
rewriting in a non-root position some u’ occurring in a constrained literal L’ || D’
via some e; — ¢ || D. This might be the effect of a Demodulation or Superposition
in a non-root position (Superpositions in root position do not produce new terms).
If u’ has degree k, then by induction D’ contains the required k explicit definitions,

17

and we are done because D’ is included in C. If v’ has lower degree, then ¢ must
have degree at least k — 1 (otherwise u does not reach degree k by Lemma .
Then by induction on (2), the constraint D (also included in C') has (k—1)+1 =k
explicit definitions (when a constraint e; — ¢ || D is selected for Superposition or for
making Demodulations in a non-root position, it is itself not simplifiable according
to the procedure explained in Remark .

To show (2), we analyze the reasons why the non simplifiable constrained literal
e; = t(y) || C is produced (let k be the degree of t). Suppose it is produced from
e; = u/||C via Demodulation with e; = u(y)|| D (with D C C) in a non-root
position; if u' has degree at least k, we apply induction for (1) to e; = u' || C:
by such induction hypotheses, we get k explicit definitions in C' and we can add
to them the further explicit definition e; = ¢(y) (the explicit definitions from C
cannot concern e; because e; = t(y) | C is not simplifiable). Otherwise, u’ has
degree less than k and u has degree at least £ — 1 by Lemma (recall that ¢
has degree k): by induction, e; = u || D is not simplifiable (it is used as the active
part of a Demodulation in a non-root position, see Remark and supplies k
explicit definitions, inherited by C' O D. Note that e; cannot have a definition in
D, otherwise e; = t(y) || C would be simplifiable, so with e; = t(y) || C we get the
required k + 1 definitions. a

The remaining case is when e; = ¢(y) || C' is produced via Superposition Right.
Such a Superposition might be at root or at a non-root position. We first analyse
the case of a root position. This might be via e; = ¢; || C1 and e; = t(y) || C2
(with e; > e; and C' = C1 U Ca because E(ej,e;) = 0), but in such a case one
can easily apply induction. Otherwise, we have a different kind of Superposition
at root position: e; = t(y) || C is obtained from s = e;||C1 and s = t(y) || C2,
with C = C1 U C2 U E(s,s’). In this case, by induction for (1), C2 supplies k
explicit definitions, to be inherited by C. Among such definitions, there cannot be
an explicit definition of e; otherwise e; = ¢(y) || C would be simplifiable, so again
we get the required k 4 1 definitions. B

In case of a Superposition at a non root-position, we have that e; = t(y) || C
is obtained from v’ = e; ||C1 and e; = wu(y) || C2, with C' = C1 U O2; here ¢ is
obtained from v’ by rewriting e; to u. This case is handled similarly to the case
where e; = t(y) || C is obtained via Demodulation rule. o

Having established termination, we now prove that our calculus computes cov-
ers. To this aim, we rely on refutational completeness of unconstrained Superpo-
sition Calculus: thus, our technique resembles the technique used [51[6] in order to
prove refutational completeness of hierarchic superposition, although it is not clear
whether Theorem below can be derived from the results concerning hierarchic
superpositiorﬁ We state the following theorem:

Theorem 5.6. Let T be the theory EUF. Suppose that the above algorithm, taking
as input the primitive e-flat formula e (e, y), gives as output the quantifier-free
formula 1 (y). Then the latter is a T-cover of Je ¢(e, y). <
Proof. Let S be the saturated set of constrained literals produced upon termina-
tion of the algorithm; let S = S1 U S2, where S1 contains the constrained literals

8 An important difference between our proof and the proof of completeness for hierarchic
superposition is that we must build an expansion of a superstructure of the model M below
(expanding M to a larger signature without enlarging its domain might not be possible in
principle).

18

in which the e do not occur and S> is its complement. Clearly 3e ¢(e,y) turns out
to be logically equivalent to

N (ANC—-L)r3e A (ANC—1L)
L Cces,; L|CeS:
so, as a consequence, in view of Lemma it is sufficient to show that every
model M satisfying Ar | ces, (AC — L) via an assignment Z to the variables y
can be embedded into a model M’ such that for a suitable extension I’ of T to
the variables e we have that (M, Z’) satisfies also /\, |ces,(NC = L).

Fix M,Z as above. The diagram A(M) of M is obtained as follows. We take
one free constant for each element of the support of M (by Léwenheim-Skolem
theorem one can keep M at most countable, if you like) and we put in A(M) all
the literals of the kind f(c1,...,ck) = ck+1 and ¢1 # c2 which are true in M (here
the ¢; are names for the elements of the support of M). Let R be the set of ground
equalities of the form y; = ¢;, where ¢; is the name of Z(y;). Extend our reduction

ordering in the natural way (so that y; = ¢; and f(c1,...,ck) = ck4+1 are oriented
from left to right). Consider now the set of clauses
AM) U RU{N\C—L|(L|C)eS} (5)

(below, we distinguish the positive and the negative literals of A(M) so that
A(M) = AT (M) U A7 (M)). We want to saturate the above set in the standard
Superposition Calculus. Clearly the rewriting rules in R, used as reduction rules,
replace everywhere y; by ¢; inside the clauses of the kind A C' — L. At this point,
the negative literals from the equality constraints all disappear: if they are true
in M, they AT (M)-normalize to trivial equalities ¢; = ¢; (to be eliminated by
standard reduction rules) and if they are false in M they become part of clauses
subsumed by true inequalities from A™(M). Similarly all the e-free literals not
coming from A(M)UR get removed. Let S be the set of survived literals involving
the e (they are not constrained anymore and they are AT (M)U R-normalized): we
show that they cannot produce new clauses. Let in fact (7) be an inference from
the Superposition Calculus [55] applying to them. Since no superposition with
A(M) U R is possible, this inference must involve only literals from S; suppose it
produces a literal L from the literals L1, L2 (coming via AT (M) U R-normalization
from L1 ||Cy € S and Lz ||C2 € S) as parent clauses. Then, by Lemma our
constrained inferences produce a constrained literal L ||C such that the clause
A C — L normalizes to L via AT(M) U R. Since S is saturated, the constrained
literal L || C, after simplification, belongs to S. Now simplifications via our Con-
strained Demodulation and A(M)" U R-normalization commute (they work at
parallel positions, see Remark [5.4), so the inference () is redundant because L
simplifies to a literal already in S U A(M).

Thus the set of clauses saturates without producing the empty clause. By
the completeness theorem of the Superposition Calculus [40,3,55] it has a model
M. This M’ by construction fits our requests by Robinson Diagram Lemma. -

Theorem [5.6] thanks to the relationship between model completions and covers
stated in Theorem proves also the existence of the model completion of EUF.

Example 5.5. We compute the cover of the primitive formula Je f(f (e, y1),y2) #
f(f(e,y1),y5). Flattening gives the set of literals

{f((f,yl) = €1, f(elayQ) 26/17 f(evyll) = €2, f(€27yé) :8/2, 6/1 #612 } .

19

Superposition Right produces the constrained literal e1 = ez || {y1 = ¥} }; suppos-
ing that we have e; > ez, Superposition Right gives first f(ez2,y2) = €] || {yv1 = y1}
and then also e] = €5 || {y1 = y1,y2 = y5}. Superposition Left and Reflection now
produce L || {y1 = y1,y2 = y5}. Thus the clause y1 = yi Ay2 = y5 — L will be
part of the output (actually, this will be the only clause in the output). <

We apply our algorithm to an additional example, taken from [38].

Example 5.6. We compute the cover of the primitive formula Je (s1 = f(y3,e) A
s2 = f(ys,e) ANt = f(f(y1,e), f(y2,e))), where s1,s2,t are terms in y. Flattening
gives the set of literals

{ f(ys,e) = s1, f(ya,e) =52, f(y1,e) =e1, f(y2,e) =e2, f(e1,e2) =1} .

Suppose that we have e > e1 > e2 >t > s1 > s2 > y1 > y2 > Y3 > ya.
Superposition Right between the 3rd and the 4th clauses produces the constrained
6th clause e1 = ez ||{y1 = y2}. From now on, we denote the application of a
Superposition Right to the ith and jth clauses with R(7,j). We list a derivation
performed by our calculus:

R(3,4) = e1 =e2||{y1 =y2} (6th clause)
R(1,2) = s1 =s2||{ys =wa} (7th clause)
R(5,6) = f(e2,e2) =t| {y1 =y2} (8th clause)
R(1,3) = e1 =s1]|{y1 =y3} (9th clause)
R(1,4) = e2=s1|{y2 =y3} (10th clause)
R(2,3) = e1 =s2||{y1 =ya} (11th clause)
R(2,4) = e2=s2||[{y2 =ya} (12th clause)

R(5,9) = f(s1,e2) =t|[{y1 =y3} (13th clause)
R(5,11) = f(s2,e2) =t|/{y1 = w4} (14th clause)
R(6,9) = e2 =s1|[{y1 =y3,y1 =y2} (15th clause)
R(6,11) = e2 =s2||{y1 = y2,y1 =ya} (16th clause)
R(8,10) = f(s1,51) =t|[{y1 =ys,y2 =ys} (17th clause)
R(8,12) = f(s2,s2) =t|[{y1 = ya,y2 =ya} (18th clause)
R(13,12) = f(s1,s2) =t||{y1 =y3,y2 =ya} (19th clause)
R(14,10) = f(s2,51) =t||{y1 = ya,y2 = y3} (20th clause)
R(9,11) = s1=s2][{y1 =y3,y1 =ya} (21th clause)

The set of clauses above is saturated. The 7th, 17th, 18th, 19th and 20th clauses are
exactly the output clauses of [38]. The non-simplified clauses that do not appear
as output in [38] are redundant and they could be simplified by introducing a
Subsumption rule as an additional simplification rule of our calculus.

20

6 Complexity analysis of the fragment for database driven applications

The saturation procedure of Theorem can in principle produce double expo-
nentially many clauses, because there are exponentially many terms of degree n
(if n is the cardinality of the variables to be eliminated); it is not clear whether
we can improve this bound to a simple exponential one, by limiting the kind of
terms that can be produced. An estimation of the complexity costs of computing
uniform interpolants in EUF is better performed within approaches making use
of compressed DAG-representations of terms [26]. In this paper, however, we are
especially interested (for our applications to verification of data-aware processes)
to the special case where the signature X' contains only unary function symbols
and relations of arbitrary arity (cf. Subsection . In this special case, important
remarks apply. In fact, we shall see below that if the signature 3 contains only
unary function symbols, only empty constraints can be generated; in case X' con-
tains also relation symbols of arity n > 1, the only constrained clauses that can
be generated have the form L ||[{t1 =#},...,tn—1 = t,_1}. Also, it is not difficult
to see that in a derivation at most one explicit definition e; = #(y)||(can occur for
every e;: as soon as this definition is produced, all occurrences of e; are rewritten
to t. This implies that Constrained Superposition computes covers in polynomial
time for the empty theory, whenever the signature 3’ matches the restrictions of
Definition [£:3] for DB schemas. We give here a finer complexity analysis, in order
to obtain a quadratic bound.

In this section, we assume that our signature X contains only unary function
and m-ary relation symbols. In order to attain the optimized quadratic complexity
bound, we need to follow a different strategy in applying the rules of our constrained
superposition calculus (this different strategy would not be correct for the general
case). Thanks to this different strategy, we can make our procedure close to the
algorithm of [38]: in fact, such algorithm is correct for the case of unary functions
and requires only a minor adjustment for the case of unary functions and m-ary
relations. Since relations play a special role in the present restricted context, we
prefer to treat them as such, i.e. not to rewrite R(t1,...,tn) as R(t1,...,tn) =
true; the consequence is that we need an additional Constrained Resolution Rul
We preliminarily notice that when function symbols are all unary, the constraints
remain all empty during the run of the saturation procedure, except for the case of
the newly introduced Resolution Rule below. This fact follows from the observation
that given two terms w1 and ug, procedure E(u1,u2) does not fail iff:

(1) either u1 and ug are both terms containing only variables from y, or

(2) w1 and u2 are terms that syntactically coincide. a

In case (1), E(u1,u2) is {ur = u2} and in case (2), E(u1,u2) is 0. In case (1),
Superposition Rules are not applicable. To show this, suppose that u1 = s), and
ug = l; then, terms [and r use only variables from y, and consequently cannot
be fed into Superposition Rules, since Superposition Rules are only applied when
variables from e occur in both premises. Reflection Rule does not apply too in case
(1), because this rule (like any other rule) cannot be applied to an e-free literal.

Thus, in the particular case of m-ary relations and unary functions, the rules
of the calculus are the following:

9 We extend the definition of an e-flat literal so as to include also the literals of the kind
R(t1,..,tn) and = R(t1,..,tn) where the terms t; are either e-free terms or variables from e.

21

Superposition I, it (1) >
"lp ({i)if L=s=tor
L =s#t, then

s>t and p € Pos(s);
(iii) E(s|p,!) does not fail.

R(tl, .. .,tn) ﬁR(Sl, .. .,Sn) i

Resolution —- E(si,t;) does not fail
LU, E(sis ta) foralli=1,....n
Reflection t ;ju if E(t,u) does not fail
. L l=r . _
Demodulation W if I>randLj,=1

We still restrict the use of our rules to the case where all premises are not
e-free literals; again Demodulation is applied only in the case where [= r is of
the kind e; = t(y). For the order of applications of the Rules, Lemma below
show that we can apply (restricted) Superpositions, Demodulations, Reflections
and Resolutions in this order and then stop.

An important preliminary observation to obtain such a result is that we do not
need to apply Superposition Rules whose left premise Il = r is of the kind e; = t(y):
this is because constraints are always empty (unless the constrained clause is the
empty clause), so that a Superposition Rule with the left premise e; = t(y) can
be replaced by a Demodulation Rule. E If the left premise of Superposition is not
of the kind e; = t(y), then since our literals are e-flat, it can be either of the kind
e; = e; (with e; > ;) or of the kind f(e;) = t. In the latter case t is either e, € e
or it is an e-free term; for Superposition Left (i.e. for Superposition applied to a
negative literal), the left premise can only be e; = e;, because our literals are e-flat
and so negative literals I cannot have a position p such that L, = f(e;).

Let S be a set of e-flat literals with empty constraints; we say that S is RS-
closed iff it is closed under Restricted Superposition Rules, i.e under Superposition
Rules whose left premise is not of the kind e; = #(y). In equivalent terms, as a
consequence of the above discussion, S is RS-closed iff it satisfies the following two
conditions:

—if {f(e;) =t, f(e;) =v} C S, thent =v € S;

— if {e; = e;, L} C S and e; > e;j and L, = e;, then Lej], € S.

Since Restricted Superpositions do not introduce essentially new terms (newly
introduced terms are just rewritings of variables with variables), it is clear that
we can make a finite set S of e-free literals RS-closed in finitely many steps. This
can be naively done in time quadratic in the size of the formula. As an alternative,
we can apply a congruence closure algorithm to S and produce a set of e-free
constraints S’ which is RS-closed and logically equivalent to S: the latter can be
done in O(n - log(n))-time, as it is well-known from the literature [49,[53\/41].

Lemma 6.1. Let S be a RS-closed set of empty-constrained e-flat literals. Then,
to saturate S it is sufficient to first exhaustively apply the Demodulation Rule, and
then Reflection and Resolution Rules. <

10 This is not true in the general case where constraints are not empty, because the Demod-
ulation Rule does not merge incomparable constraints.

22

Proof. Let S be the set obtained from S after having exhaustively applied Demod-
ulation. Notice that the final effect of the reiterated application of Demodulation
can be synthetically described by saying that literals in S are rewritten by using
some explicit definitions

€iy :tl(g)a'“aeik :tk(g) . (6)
These definitions are either in S, or are generated through the Demodulations
themselves (we can freely assume that Demodulations are done in appropriate
order: first all occurrences of e;, are rewritten to ¢1, then all occurrences of e;, are
rewritten to t2, etc.)

Suppose now that a pair L,l = r € S can generate a new literal L[r], by
Superposition. We know from above that we can limit ourselves to Restricted
Superposition, so [is either of the form e; or of the form f(e;), where moreover ¢;
is not among the set {e;,,...,e; } from @ The literals L and l =7 € S happen
to have been obtained from literals L’ and | = r’ belonging to S by applying
the rewriting rules (6) (notice that ! cannot have been rewritten). Since such
rewritings must have occurred in positions parallel to p and since S was closed
under Restricted Superposition, we must have that S contained the literal L'[r'],
that rewrites to L[r], by the rewriting rules (6). This shows that L[r], is already in
S (thus, in particular, Demodulation does not destroy RS-closedness) and proves
the lemma, because Reflection and Resolution can only produce the empty clause
and no rule applies to the empty clause. -

Thus the strategy of applying (in this order)

‘ Restricted Superposition+Demodulation+Reflection+Resolution ‘

always saturates.

To produce an output in optimized format, it is convenient to get it in a DAG-
like form. This can be simulated via explicit acyclic definitions as follows. When
we write Def(e,y) (where e,y are tuples of distinct variables), we mean any flat

formula of the kind (let e:=-e1...,en) Ai_; €; = t;, where in the term ¢; only the
variables e1,...,e;—1,y can occur. We shall supply the output in the form
3¢’ (Def (e, y) NY(esy)) (7)

where the ¢ is a subset of the e and v is quantifier-free. The DAG-format is

not quantifier-free but can be converted to a quantifier-free formula by unravelling

the acyclic definitions of the ¢’.

Thus our procedure for computing a cover in DAG-format of a primitive for-
mula Je ¢(e,y) (in case the function symbols of the signature X' are all unary) runs
by performing the following steps, one after the other. Let OUT be a quantifier-free
formula (initially OUT is T).

(1) We preprocess ¢ in order to produce a RS-closed set S of empty-constrained
e-flat literals.

(2) We mark the variables e in the following way (initially, all variables are un-
marked): we scan S and, as soon as we find an equality of the kind e; = ¢
where all variables from e occurring in ¢ are marked, we mark e;. This loop is
repeated until no more variable gets marked.

(3) If Reflection is applicable, we output L and exit.

11 In addition, if we happen to have, say, two different explicit definitions of ej, as e;; =
t1,e;;, = t}, we decide to use just one of them (and always the same one, until the other one
is eventually removed by Demodulation).

23

(4) We conjoin OUT with all literals where, besides the y, only marked variables
occur. B
(5) For every literal R(t1,...,e,...,tm») that contains at least an unmarked e, we
scan S until a literal of the type —R(t1,...,¢e,...,tm) is found: then, we try
to apply Resolution and if we succeed getting L || {u1 = u},...,um = ul,},
we conjoin \/; u; # uj to OUT.
(6) We prefix to OUT a string of existential quantifiers binding all marked vari-
ables and output the result.
One remark is in order: when running the subprocedures E(s;,t;) required by the
Resolution Rule in (5) above, all marked variables must be considered as part of
the y (thus, e.g. R(e,t),~R(e,v) produces L | {t = u} if both ¢ and w contain,
besides the y, only marked variables).
Proposition 6.2. Let T be the theory EUF in a signature with unary functions
and m-ary relation symbols. Consider a primitive formula 3e¢(e,y); then, the
above algorithm returns a T-cover of Je¢(e,y) in DAG-format in time O(n?),
where n is the size of Ie (e, y). B <
Proof. The preprocessing step (1) requires an abstraction phase for producing e-
flat literals and a second phase in order to get a RS-closed set: the first phase
requires linear time, whereas the second one requires O(n - log(n)) time (via con-
gruence closure). All the remaining steps require linear time, except steps (2) and
(5) that requires quadratic time. This is the dominating cost, thus the entire pro-
cedure requires O(n?) time. =
Although we do not deeply investigate the problem here, we conjecture that it
might be possible to further lower down the above complexity to O(n - log(n)).

7 An extension of the Constrained Superposition Calculus

We consider an extension of our Constrained Superposition Calculus which is
useful for our applications to verification of data-aware processes. Let us assume
that we have a theory whose axioms are (3)), namely, for every function symbol f:

Vz (r = undef <> f(x) = undef)

One direction of the above equivalence is equivalent to the ground literal
f(undef) = undef and as such it does not interfere with the completion process
(we just add it to our constraints from the very beginning).

To handle the other direction, we need to modify our Calculus. First, we add
to the Constrained Superposition Calculus of Section [5|the following extra Rule

Inference Rule Ext(undef) flej) =u(y) || D
(Constrained) ej = undef || D U {u(y) = undef}

The Rule is sound because u(y) = undef A f(e;) = u(y) — e; = undef follows from
the axioms ‘ For cover computation with our new axioms, we need a restricted
version of Paramodulation Rule:

Paramodulation e;=r|C L|D
(Constrained) Llr]p||CUD

(ifej >r& L|p = ej)

24

Notice that we can have e; > 7 only in case r is either some existential variable e;
or it is an e-free term u(y). Paramodulation Rule (if it is not a Superposition) can
only apply to a right member of an equality and such a right member must be e;
itself (because our literals are flat). Thus the rule cannot introduce new terms and
consequently it does not compromize the termination argument of Proposition 5.5
Theorem 7.1. Let T be the theory ;e {Vz (z = undef <+ f(z) = undef)}.
Suppose that the algorithm from Section [3, taking as input the primitive e-flat
formula e (e, y), gives as output the quantifier-free formula ¢ (y). Then the latter
is a T-cover of Je (e, y). B <
Proof. The proof of Theorem [5.6| can be easily adjusted as follows. We proceed
as in the proof of Theorem so as to obtain the set A(M) U R U S which
is saturated in the standard (unconstrained) Superposition Calculus. Below, we
refer to the general refutational completeness proof of the Superposition Calculus
given in [55]. Since we only have unit literals here, in order to produce a model of
AM)URU S, we can just consider the convergent ground rewriting system —
consisting of the oriented equalities in AT (M) URUS: the support of such model is
formed by the —-normal forms of our ground terms with the obvious interpretation
for the function and constant symbols. For simplicity, we assume that undef is in
normal form. EWe need to check that whenever we haveiﬂ f(t) =™ undef then we
have also t —* undef: we prove this by induction on the reduction ordering for our
ground terms. Let ¢ be a term such that f(¢) —* undef: if ¢ is e-free then the claim
is trivial (because the axioms are supposed to hold in M). Suppose also that
induction hypothesis applies to all terms smaller than ¢. If ¢ is not in normal form,
then let £ be its normal form; then we have f(t) —T f(f) —* undef, by the fact that
— is convergent. By induction hypothesis, ¢ — undef, hence t -1 { —* undef, as
desired. Finally, let us consider the case in which ¢ is in normal form; since f(¢) is
reducible in root position by some rule I — r, our rules I — r are e-flat and ¢ is not
e-free, we have that ¢t = e; for some existential variable e;. Then, we must have that
S contains an equality of the kind f(e;) = u(y) || D or of the kind f(e;) = e; || D
(the constraint D being true in M under the given assignment to the y). The
latter case is reduced to the former, since e; —* undef (by the convergence of
—*) and since S is closed under Paramodulation. In the former case, by the rule
Ext(undef), we must have that S contains e; = undef || DU{u(y) = undef}. Now,
since f(ej) = u(y) || D belongs to S and D is true in M, we have that the normal
forms of f(e;) and of u(y) are the same; since the normal form of f(e;) is undef,
the normal form of u(y) is undef too, which means that u(y) = undef is true in
M. But e; = undef || DU {u(y) = undef} belongs to S, hence e; = undef belongs

to S, which implies e; —* undef, as desired. -

8 Remarks on MCMT implementation

As evident from Subsection [£-I], our main motivation for investigating covers orig-
inated from the verification of data-aware processes. Such applications require
database (DB) signatures to contain only unary function symbols (besides rela-

12 To be pedantic, according to the definition of AT (M), there should be an equality undef =
co in AT (M) so that cg is the normal form of undef.

13 We use —* for the reflexive-transitive closure of — and —% for the transitive closure of
—.

25

tions of every arity). We observed that computing covers of primitive formulae
in such signatures requires only polynomial time. In addition, if relation symbols
are at most binary, the cover of a primitive formula is a conjunction of literals
(this is due to the fact that the constrained literals produced during saturation
either have empty constraints or are of the kind L | t; = t2): this is crucial in
applications, because model checkers like MCMT [32] and CUBICLE [I9] represent
sets of reachable states as primitive formulae. This makes cover computations a
quite attractive technique in verification of data-aware processes.

Our cover algorithm for DB signatures has been implemented in the model
checker MCMT. The implementation is however still partial, nevertheless the tool
is able to compute covers for the EUF-fragment with unary function symbols,
unary relations and binary relations. The optimized procedure of Section [6] has not
yet been implemented, instead MCMT uses a customary Knuth-Bendix completion
(in fact, for the above mentioned fragments the constraints are always trivial and
our constrained Superposition Calculus essentially boils down to Knuth-Bendix
completion for ground literals in EUF).

Axioms are also covered in the following way. We assume that constraints
of which we want to compute the cover always contain either the literal e; = undef
or the literal e; # undef for every existential variable e;. Whenever a constraint
contains the literal e; # undef, the completion procedure adds the literal u(y;) #
undef whenever it had produced a literal of the kind f(e;) = u(yz)E

We wonder whether we are justified in assuming that all constraints of which
we want to compute the cover always contain either the literal e; = undef or
the literal e; # undef for every existential variable e;. The answer is affirmative:
according to the backward search algorithm implemented in array-based systems
tools, the variable e; to be eliminated always comes from the guard of a transition
and we can assume that such a guard contains the literal e; # undef (if we need
a transition with e; = undef - for an existentially quantified variable e; - it is
possible to write trivially this condition without using a quantified variable). The
MCMT User Manual (available from the distribution) contains precise instructions
on how to write specifications following the above prescriptions.

A first experimental evaluation (based on the existing benchmark provided in
[45], which samples 32 real-world BPMN workflows taken from the BPMN offi-
cial website http://www.bpmn.org/) is described in [I1LI7]. The benchmark set is
available as part of the last distribution 3.0 of MCMT http://users.mat.unimi.
it/users/ghilardi/mcmt/| (see the subdirectory /examples/dbdriven of the dis-
tribution). The User Manual, also included in the distribution, contains a dedicated
section giving essential information on how to encode relational artifact systems
(comprising both first order and second order variables) in MCMT specifications
and how to produce user-defined examples in the database driven framework. The
first experiments were very encouraging: the tool was able to solve in few seconds
all the proposed benchmarks and the cover computations generated automatically
during the model-checking search were discharged instantaneously: see [II[I7] for
more information about our experiments.

™ This is sound because e # undef implies f(e) # undef according to , so u(y;) # undef
follows from f(e;) = u(y;) and e # undef.

26

http://www.bpmn.org/
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/

9 Conclusions and Future Work

The above experimental setup motivates new research to extend Proposition
to further theories axiomatizing integrity constraints used in DB applications.
Practical algorithms for the computation of covers in the theories falling under
the hypotheses of Proposition need to be designed: as a little first example,
in Subsection m above we showed how to handle Axiom by light modifications
to our techniques. Symbol elimination of function and predicate variables should
also be combined with cover computations. Combined cover algorithms (along the
perspectives in [38]) could be crucial also in this setting: a first attempt to attack
this problem, regarding the disjoint signatures combination, can be found in [I6].

We consider the present work, together with [I7}[I3[12,[28], as the starting point
for a full line of research dedicated to SMT-based techniques for the effective verifi-
cation of data-aware processes [15], addressing richer forms of verification beyond
safety (such as liveness, fairness, or full LTL-FO) and richer classes of artifact
systems, (e.g., with concrete data types and arithmetics), while identifying novel
decidable classes (e.g., by restricting the structure of the DB and of transition
and state formulae) beyond the ones presented in [I7[13]. Concerning implemen-
tation, we plan to further develop our tool to incorporate in it the plethora of opti-
mizations and sophisticated search strategies available in infinite-state SMT-based
model checking. Finally, in [12] we tackle more conventional process modeling no-
tations, concerning data-aware extensions of the de-facto standard BPM we
plan to provide a full-automated translator from the data-aware BPMN model
presented in [I2] to the artifact systems setting of [I3[I7].

References

1. Baader, F., Ghilardi, S., Tinelli, C.: A new combination procedure for the word problem
that generalizes fusion decidability results in modal logics. Inform. and Comput. pp.
1413-1452 (2006)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, United
Kingdom (1998)

3. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection
and simplification. J. Log. Comput. 4(3), 217-247 (1994)

4. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inform. and
Comput. 121(2), 172-192 (1995)

5. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic
first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193-212 (1994)

6. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In:
Proc. of CADE, LNCS (LNAI), vol. 7898, pp. 39-57. Springer (2013)

7. Bilkova, M.: Uniform interpolation and propositional quantifiers in modal logics. Studia
Logica 85(1), 1-31 (2007)

8. Bojanczyk, M., Segoufin, L., Torunczyk, S.: Verification of database-driven systems via
amalgamation. In: Proc. of PODS, pp. 63-74 (2013)

9. Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-free interpolation in combinations of
equality interpolating theories. ACM Trans. Comput. Log. 15(1), 5:1-5:34 (2014)

10. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process analysis:
A database theory perspective. In: Proc. of PODS (2013)

11. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Verification of data-aware
processes via array-based systems (extended version). Technical Report arXiv:1806.11459,
arXiv.org (2018)

15 http://www.bpmn.org/

27

http://www.bpmn.org/

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Formal modeling and
SMT-based parameterized verification of data-aware BPMN. In: Proc. of BPM, LNCS,
vol. 11675, pp. 157-175. Springer (2019)

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: From model completeness
to verification of data aware processes. In: Description Logic, Theory Combination, and
All That, LNCS, vol. 11560, pp. 212-239. Springer (2019)

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Model completeness,
covers and superposition. In: Proc. of CADE, LNCS (LNAI), vol. 11716, pp. 142-160.
Springer (2019)

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Verification of data-
aware processes: Challenges and opportunities for automated reasoning. In: Proceedings
of the 2nd International Workshop on Automated Reasoning: Challenges, Applications,
Directions, Exemplary Achievements (ARCADE), vol. 311. EPTCS (2019)

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Combined Covers and
Beth Definability. In: Proc. of IICAR, LNCS (LNAI), vol. 12166, pp. 181-200. Springer
(2020)

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: SMT-based verification
of data-aware processes: a model-theoretic approach. Math. Struct. Comput. Sci. 30(3),
271-313 (2020)

Chang, C.C., Keisler, J.H.: Model Theory, third edn. North-Holland Publishing Co.,
Amsterdam-London (1990)

Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zaidi, F.: Cubicle: A parallel SMT-based
model checker for parameterized systems - tool paper. In: Proc. of CAV, pp. 718-724
(2012)

Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of ICDT, pp. 252-267 (2009)

Deutsch, A., Li, Y., Vianu, V.: Verification of hierarchical artifact systems. In: Proc. of
PODS, pp. 179-194. ACM Press (2016)

Ghilardi, S.: An algebraic theory of normal forms. Ann. Pure Appl. Logic 71(3), 189-245
(1995)

Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. J. Autom.
Reasoning 33(3-4), 221-249 (2004)

Ghilardi, S., Gianola, A.: Interpolation, amalgamation and combination (the non-disjoint
signatures case). In: Proc. of FroCoS, LNCS (LNAI), vol. 10483, pp. 316-332. Springer
(2017)

Ghilardi, S., Gianola, A.: Modularity results for interpolation, amalgamation and supera-
malgamation. Annals of Pure and Applied Logic 169(8), 731-754 (2018)

Ghilardi, S., Gianola, A., Kapur, D.: Compactly representing uniform interpolants for EUF
using (conditional) DAGS. Technical Report arXiv:2002.09784, arXiv.org (2020)
Ghilardi, S., Gianola, A., Kapur, D.: Computing uniform interpolants for EUF via (con-
ditional) DAG-based compact representations. In: Proc. of CILC, CEUR Workshop Pro-
ceedings, vol. 2710, pp. 67-81. CEUR-WS.org (2020)

Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Petri nets with parameterised data
- modelling and verification. In: Proc. of BPM, LNCS, vol. 12168, pp. 55-74. Springer
(2020)

Ghilardi, S., van Gool, S.J.: Monadic second order logic as the model companion of tem-
poral logic. In: Proc. of LICS, pp. 417-426 (2016)

Ghilardi, S., van Gool, S.J.: A model-theoretic characterization of monadic second order
logic on infinite words. J. Symb. Log. 82(1), 62-76 (2017)

Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive framework for combined decision
procedures. ACM Trans. Comput. Log. pp. 1-54 (2008)

Ghilardi, S., Ranise, S.: MCMT: A model checker modulo theories. In: Proc. of IJCAR,
LNCS (LNAI), vol. 6173, pp. 22-29. Springer (2010)

Ghilardi, S., Zawadowski, M.: Sheaves, games, and model completions, Trends in Logic—
Studia Logica Library, vol. 14. Kluwer Academic Publishers, Dordrecht (2002). A cate-
gorical approach to nonclassical propositional logics

Ghilardi, S., Zawadowski, M.W.: A sheaf representation and duality for finitely presenting
heyting algebras. J. Symb. Log. 60(3), 911-939 (1995)

Ghilardi, S., Zawadowski, M.W.: Undefinability of propositional quantifiers in the modal
system S4. Studia Logica 55(2), 259-271 (1995)

28

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Ghilardi, S., Zawadowski, M.W.: Model completions, r-Heyting categories. Ann. Pure
Appl. Logic 88(1), 27-46 (1997)

van Gool, S.J., Metcalfe, G., Tsinakis, C.: Uniform interpolation and compact congruences.
Ann. Pure Appl. Logic 168(10), 1927-1948 (2017)

Gulwani, S., Musuvathi, M.: Cover algorithms and their combination. In: Proc. of ESOP,
Held as Part of ETAPS, pp. 193-207 (2008)

Hoder, K., Bjgrner, N.: Generalized property directed reachability. In: Proc. of SAT, pp.
157-171 (2012)

Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem-proving strate-
gies: The transfinite semantic tree method. J. ACM 38(3), 559-587 (1991)

Kapur, D.: Shostak’s congruence closure as completion. In: Proc. of RTA, pp. 23-37 (1997)
Kapur, D.: Nonlinear polynomials, interpolants and invariant generation for system anal-
ysis. In: Proc. of the 2nd International Workshop on Satisfiability Checking and Symbolic
Computation co-located with ISSAC (2017)

Kovégcs, L., Voronkov, A.: Interpolation and symbol elimination. In: Proc. of CADE, LNCS
(LNAI), vol. 5663, pp. 199-213. Springer (2009)

Kowalski, T., Metcalfe, G.: Uniform interpolation and coherence. Ann. Pure Appl. Logic
170(7), 825-841 (2019)

Li, Y., Deutsch, A., Vianu, V.: VERIFAS: A practical verifier for artifact systems. PVLDB
11(3), 283-296 (2017)

Lipparini, P.: Locally finite theories with model companion. In: Atti della Accademia
Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie
8, vol. 72. Accademia Nazionale dei Lincei (1982)

Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with lpo-like
properties. In: Proc. of LPAR, pp. 348-362 (2007)

McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. of CAV, pp. 123-136 (2006)
Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM
27(2), 356-364 (1980)

Nicolini, E., Ringeissen, C., Rusinowitch, M.: Data structures with arithmetic constraints:
a non-disjoint combination. In: Proc. of FroCoS, LNCS (LNAI), vol. 5749, pp. 319-334.
Springer (2009)

Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability procedures for combination
of theories sharing integer offsets. In: Proc. of TACAS, LNCS, vol. 5505, pp. 428-442.
Springer (2009)

Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures for
unions of theories with a shared counting operator. Fund. Inform. pp. 163-187 (2010)
Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions. Inf. Comput.
205(4), 557-580 (2007)

Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering and equality constrained
clauses. J. Symb. Comput. 19(4), 321-351 (1995)

Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook of
Automated Reasoning (in 2 volumes), pp. 371-443. MIT Press (2001)

Pitts, A.M.: On an interpretation of second order quantification in first order intuitionistic
propositional logic. J. Symb. Log. 57(1), 33-52 (1992)

Robinson, A.: On the metamathematics of algebra. Studies in Logic and the Foundations
of Mathematics. North-Holland Publishing Co., Amsterdam (1951)

Rybina, T., Voronkov, A.: A logical reconstruction of reachability. In: Perspectives of
Systems Informatics, 5th International Andrei Ershov Memorial Conference, PSI 2003,
Revised Papers, pp. 222-237 (2003)

Shavrukov, V.: Subalgebras of diagonalizable algebras of theories containing arithmetic.
Dissertationes Mathematicae CCCXXIII (1993)

Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory extensions.
In: Proc. of IJCAR, LNCS (LNAI), vol. 9706, pp. 273-289. Springer (2016)
Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory extensions.
Log. Methods Comput. Sci. 14(3) (2018)

Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: Proc. of
ICDT, pp. 1-13 (2009)

Visser, A.: Uniform interpolation and layered bisimulation. In: P. Héjek (ed.) Godel 96:
Logical foundations on mathematics, computer science and physics — Kurt Godel’s legacy.
Springer Verlag (1996)

Wheeler, W.H.: Model-companions and definability in existentially complete structures.
Israel J. Math. 25(3-4), 305-330 (1976)

29

	Introduction
	Preliminaries
	Covers, Uniform Interpolation and Model Completions
	Model-Checking Applications
	Covers via Constrained Superposition
	Complexity analysis of the fragment for database driven applications
	An extension of the Constrained Superposition Calculus
	Remarks on MCMT implementation
	Conclusions and Future Work

