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Abstract
In recent years, several estimation strategies have been formulated to determine the value of an
unknown parameter in themost precise way, taking into account the presence of noise. These
strategies typically rely on the use of quantum entanglement between the sensing probes and they have
been shown to be optimal in the asymptotic limit in the number of probes, as long as one performs
measurements on shorter and shorter time scales. Here, we present a different approach to frequency
estimation, which exploits quantum coherence in the state of each sensing particle in the long time
limit and is obtained by properly engineering the environment. Bymeans of a commonly usedmaster
equation, we show that our strategy can overcome the precision achievable with entanglement-based
strategies for afinite number of probes.We discuss a possible implementation of the scheme in a
realistic setup that uses trapped ions as quantum sensors.

1. Introduction

Howprecisely canwe estimate the value of an unknown parameter? The answer to this question provides uswith
a paradigmatic example of howquantum features can lead to a significant advantage over any classical strategy.
In classical experiments withN sensing particles, i.e.N probes, the central limit theorem sets themean-squared-
error scaling of the best estimation strategies toN−1, according to the standard quantum limit (SQL). Instead,
the ultimate quantum limit, orHeisenberg limit, achieves a -N 2 scaling of the error, which can be in principle
reached via the preparation of entangled probes [1–3].

The advantage due to quantum estimation strategies is jeopardized by the interaction of the probing systems
with the surrounding environment, potentially reducing the improvement to a constant factor [3–6]. To
overcome this limitation, in recent years several approaches have been put forward, relying on non-negligible
spatial [7–9] or temporal [10–18] correlations in the environment, as well on a particular geometry of the
system-environment coupling [19], possibly allowing for error correction techniques [20–28] or fault tolerant
strategies [29]. These approaches aremostly focused on achieving the best asymptotic scaling of the estimation
precisionwith respect to the number of probes, especially aiming at surpassing the SQL, thus also providing a
clearfingerprint of the quantumorigin of the obtained enhancement. For example, the preparation of initially
entangled states can increase the estimation precision in the presence of time-correlated noise as long as the
system is interrogated at times short enough tominimize the impact of decoherence.Measurements at shorter
and shorter time intervals with increasingN guarantee the optimal estimation strategy in the asymptotic regime

 ¥N , achieving a scaling of the error asN−αwith values ofα strictly greater than 1 [30].
On the other hand, the preparation of a high number of entangled probes and the access to short

interrogation times is certainly too demanding in several situations of interest [31–33]. For this reason, it is
important to obtain a deeper understanding of estimation strategies which take into account the finite resources
at hand in amore realistic way and, in particular, thefinite (and possibly small)number of probes, as well as a
minimumduration time of each experimental run [34, 35]. In this paper, we show that one can design a simple
and effective frequency estimation strategy, which does not call for the preparation of entangled probes and
relies onmeasurements in the long-time regime of the probes’ evolution.Most importantly, forfinite values ofN
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this strategy can lead to an enhanced precisionwith respect to the entanglement-based one; indeed, the latter will
still be the optimal strategy in the asymptotic limit ofN [12–14].

Our approach exploits a coherent effect in the dynamics of the probes, which is known in the literature as
coherence trapping (CT). As suggested by the name, CT ismanifest by the presence of a non-negligible amount
of coherence in the stationary state of a system, despite its interactionwith the surrounding environment. CT is
characteristic of some specific spectral densities, such as the super-ohmic spectral formwithin a pure dephasing
model [36–39], but it can also be induced by engineering a part of the environmental degrees of freedom [40], or
due to initial system-environment correlations [41]. Quite remarkably, recently the presence of non-zero
asymptotic quantum coherence has been shown for the spin-bosonmodel in the presence of a generic (neither
parallel nor transversal) coupling [42]. Note that the emergence of CT is different from the generation of a so-
called decoherence free subspace [43, 44], since the coherences of the systemneed not to be invariant under the
dynamics, but simply to converge to afinite value. CThas been already studied extensively in the literature, but,
to our knowledge, this is the first investigation of its possible use for enhancedmetrology.Here, we focus on the
dynamics of a qubit coupled to a damped harmonic oscillator, which provides uswith the simplest conceptual
framework for the demonstration of our proposal and, indeed, describesmany physical systems of interest [45],
which can be realizedwith different technologies in typically controllable setups, such as atoms confined in
optical cavities or trapped ion arquitectures.

After illustrating howCT can emerge by engineering the environment of themodel at hand and how this can
be used to improve estimation precision for finite values ofN, wewill show that these ideas can be implemented
in current setups that employ trapped ions as quantum sensors, also proving the robustness of our estimation
scheme against uncontrolled sources of noise.

2. Standardmetrological bounds

2.1. General framework for frequency estimation
Weconsider the task of estimating a frequencyω, within the so-called frequentist (or Fisher-information)
approach [3].N probes are prepared in a possibly entangled state ρ(N)(0). Thereafter, the frequency to be
estimated is encoded into the state of the probes; however, during the encoding procedure, which lasts for a time
t, the probes experience the action of some external noise so that they have to be treated as an open quantum
system [46, 47]. The state after the encoding isfixed by a completely positive trace preserving linearmapΛ(N)(t),
via

r r= L( ) ( )[ ( )] ( )( ) ( ) ( )t t 0 . 1N N N

We focus on independent and identical noise,Λ(N)(t)=Λ(t)⊗K⊗Λ(t), which yields a good approximation
inmany circumstances and is commonly considered in parameter estimation [3]. After the encoding procedure,
ameasurement on theN probes is performed to extract asmuch information aboutω as possible. Thewhole
preparation-encoding-measurement protocol is repeated ν=T/t times, whereT is the total available time and
we neglect the preparation andmeasurement duration.

Based on the experimental data, one defines an estimator, which is the randomvariable giving the estimated
value ofω. By virtue of the (quantum)Cramer–Rao bound (CRB) [48], the estimation error, as quantified by the
mean squared error of the estimator, is lower bounded by

w rD w

Î

-( ) ( [ ( )] ) ( )
[ ]

( )N TF t tmin , 2
t T

Q
N2

0,

1

for any initial state, evolution,measurement procedure and estimator, if the latter is consistent and unbiased.
The quantity rw [ ( )]( )F tQ

N is the quantumFisher information (QFI) of the probes’ state with respect toω after the
encoding and, indeed, itfixes the ultimate achievable precision; the CRB can be saturated in the limit of an
infinite number of repetitions, n  ¥. For high dimensional systems, it is in general very hard to compute the
QFI, even numerically, but powerful analytical techniques [5, 6] allow us to get some tight upper bound.

2.2. Interactionwith a dampedharmonic oscillator
In the basicmodel we exploit here each probe is described as a two-level system and the noise acting on it is
modeled via a damped harmonicmode coupled to a zero temperature reservoir. The latter provides, for
example, the effective description of an environment consisting in a cavity, in turn coupled to a continuous set of
harmonic oscillators in the vacuum state [46]. In section 4, wewill see how thismodel can be actually realized in
an ion-trap setup, also taking into account the corrections due to thermal effects and to possible further sources
of noise.
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Hence, consider the evolution of the qubit-mode state ρqm(t) given by the Lindblad equation (ÿ=1)

r
w
s w l r
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with s s= Ä + Ä- +†H a aI . Here,ω is the frequency to be determined, s = ñá+ ∣ ∣1 0 (s = ñá- ∣ ∣0 1 ) is the
raising (lowering) operator of the qubit and s = ñá - ñá∣ ∣ ∣ ∣1 1 0 0 ;z moreover,ωm, a and †a are the frequency, the
annihilation operator and the creation operator of themode,λ is the qubit-oscillator coupling strength andΓ is
the oscillator’s damping rate. This system can also be understood as an instance of a spin-bosonmodel forfinite
T [49]. Finally, we assume that the initial qubit-mode state is a product state with themode in the vacuum state.
The dissipative dynamics of the qubit state r r r= = L( ) { ( )} ( )[ ( )]t t tTr 0m qm induced by equation (3) is then
an amplitude damping, where the excited-state population evolves as r r r= ( ) ∣ ( )∣t f t11 11

2
11, while the

coherence evolves as r r r= ( ) ( )t f t10 10 10, where

c
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W
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⎝
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2
sinh 2 4ti 4

withΔ=ω−ωm,χ=Γ−2iΔ and c lW = -4 42 2 [50, 51]. Since ∣ ( )∣f t 0 for  ¥t , there is no
CT: the interaction progressively destroys all the probes’ coherences.

Upper bounding theQFI via the technique developed in [6], alongwith theCRB,we can lower bound the
estimation error under amplitude dampingwith [52]

wD
+ -
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From the previous relation, one can directly see that the SQL can be overcome asymptotically only if we perform
measurements on the short-time scale (or in the presence of a full-revival in the dynamics: only in these cases

( )f t 1, so that the second term in the numeratorwill not dominate, and the SQLwill not be enforced, for
 ¥N [14]). Hence, expanding f (t) in time and exploiting its quadratic decay for short times, one sees that the

optimal estimation time,minimizing the right hand side (rhs) of equation (5), for  ¥N is
l= +( ) ( )t N O N2 1opt , fromwhich

w
l

D ( ) ( )N
TN

. 62
ent 3 2

Indeed, the estimation strategy saturating this limit, i.e. yielding the asymptotically optimalN−3/2 scaling,
requires initially entangled probes [12–14].We have thus shown for themodel at hand how the limits in the
estimation precision due to the presence of noise [4–6] can be at least partially avoided [14]. Besides preparing
entangled probes, one needs to access the (Zeno [53, 54]) short-time region of the dynamics, where the temporal
correlations of the noise induce deviations from a Lindblad evolution of the probes [46], so that the survival
probabilities decay slower than exponentially; evenmore, since t 0opt for  ¥N (asN−1/2), measurements
at a shorter and shorter times have to be performedwhen increasingN.

3. CT and enhancement of the estimation precision

Now, let us see how bymodifying the probes’ dynamics we can devise a strategy, which not only allows us to
interrogate the probes in the long-time regime, but can also lead to an enhancement of the estimation precision
forfinite values ofN.

For any qubit used as a probe, we couple a further ancillary qubit to the damped harmonic oscillator. The
auxiliary qubit can be understood as a subset of the environmental degrees of freedom,which are being
manipulated to change the evolution of the probes (at variancewith the ancilla-based schemes formetrology as
those, e.g. in [55], where the dynamics isfixed and the ancillas do not interact with the environment). Denoting
as  ( )t the two-qubit plus onemode state, we describe the global evolutionwith the Lindblad equation:

 

 

w
s
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where the tilde is used for parameters and operators referred to the ancilla qubit, so that s sº Ä˜ z z (σ z is used
for s Äz ), while s s= Ä + Ä- +˜ ˜ ˜†H a a;I moreover, we consider an initial product state, with atmost one
excitation overall. The validity of this description indeed depends on several conditions involving the probe and
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ancilla interactionwith the surrounding environment; in the next section, wewill see how equation (7) does
provide a satisfactory characterization for a relevant scenario in ion traps.

The solution of themodel can be directly obtained along the same line as [50, 56, 57] and is detailed in
appendix A. The reduced dynamics of the probe qubit is still given by an amplitude damping, where the
dissipative function f (t) has to be replaced by a different function ˜( )f t , see appendix A for its expression. Under
the resonant condition w w=˜ wedo have the occurrence of CT: in this case

l
l
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The probes’ coherences will thus (partially) survive the dynamics: r r ¥∣ ( )∣ ∣ ∣t C10 10 for  ¥t , where
>¥C 0 for non-zero l̃.
The basic idea to exploit CT formetrological purposes is now very simple. If we can access the long-time

region, where the coherence has practically stabilized to its asymptotic value, the best estimation strategy will be
towait as long as possible: due toCT, the effect of decoherence has been essentially turned off, while the phase
carrying information aboutω keeps accumulating in the probes’ state. For now, let us assume that wemeasure at
a time t̄ , where the coherence can be approximatedwith its asymptotic value. In addition, we still assume

¯T t 1, so thatwe have a high number of independent repetitions of the experiment, justifying the statistical
analysis wemake here. For the sake of concreteness, consider the Ramsey scheme.One prepares the probes in an
initial product state of identical balanced superpositions of the ground and excited state, via afirstπ/2 pulse.
After the evolution, which lasts for a time t̄ , a secondπ/2 pulse is applied and then the excited state population is
measured. The resulting signal is given by º = +¯ (¯) ( [ ˜(¯)])P P t f t1 Re 2, which, using » w-

¥
˜(¯) ¯f t Ce ti , can

be approximated as w» + ¥¯ ( ( ¯))P C t1 cos 2. The frequency uncertainty is [4]

w
w
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which isminimized for w p=t̄ r 2, for any odd r, so that theminimumerror for theCT-based estimation
strategy is
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NTt
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2

Remarkably, the uncertainty in equation (11) can be smaller than that in equation (6). To get amore
quantitative idea about the improvement due toCTwith respect to the entangled-probe strategy, consider the
ratio

w
w

l ll
l l

=
D
D

= =
+

¥( ) ( )
( )

¯ ˜ ¯
( ˜ )

( )G N
N

N

tC

N

t

N

2

8 8
. 12

2
ent

2
ct

2 4

2 2 2

Crucially, to ensure a fair comparison between the two strategies, we took into account that CT requires one
auxiliary qubit for any probe qubit, so that forN probes in theCT scheme, we use 2N probes in the
entanglement-based scheme. As expected, the gain due toCTwill be the higher the bigger the asymptotic
coherence, as well as the longer t̄ , while the entangled-probe strategywill always bemore precise for sufficiently
large values ofN. Actually, for finite (and small) values ofN, the lowest error in the entanglement-based strategy
may be smaller than that at the rhs of equation (6); because of that, we also considered the lower bound to the
errorwhich is given directly by the rhs of equation (5). The latter bounds the smallest estimation errorwith the
entangled-probe strategy, for any value ofN andmeasurement procedure (butwithoutmodifying the probes’
evolution), since it is derived using theQFI. The results are reported infigure 1, where one can still clearly
observe the transition between the regimeswhere, respectively, CT and entangled probes yield themore accurate
estimation strategy.

As a side remark, CT can occur for bothmonotonic and oscillating decays of ∣ ˜( )∣f t to its asymptotic value.
For the amplitude damping, the (non-)monotonicity of ∣ ˜( )∣f t is equivalent to the (non-)Markovianity of the
dynamics [51] (see [58, 59] for recent reviews on quantumMarkovianity): we conclude that non-Markovianity is
not necessary to trigger the enhancement in the estimation precision pointed out in this paper.
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4. Ion-trap realization

In the following, we showhow theCT estimation strategy for enhanced precision in frequency estimation can be
realized in an ion-trap setup, under realistic conditions.

We consider a trapped-ion qubit with an optical transition as a probe. In order to implement the dynamics of
equation (7), we need to couple the internal degrees of freedom to themotional degrees of freedom. This type of
coupling is sometimes referred to as spin-motion coupling and is routinely implementedwith optical
transitions [60].

Let us further consider an ancilla ion of the same species such that w w= ˜ and that the two ions form a
Coulomb crystal [61].We assume that the ions are cold enough such that theirmotion can be described in terms
of a set of normalmodes in each spatial direction [62]. One of themotionalmodes of the crystal can then be used
to realize the dissipativemode. Damping on themode can be implemented by laser cooling. Since laser cooling is
an incoherent process, it would compromise the desired internal state evolution if implemented via the probe or
ancilla ions.Hence, we need at least three ions to implement the schemewhere the third ion provides cooling.
Ideally, the cooling ion has amass very similar to the probe and ancilla species to provide effective cooling. At the
same time, the cooling transitions should be separated energetically as far as possible from the probe transition
in order to avoid scattering of photons from the cooling lasers by the probes andminimizing their ac-Stark shift
on the probe transition.

For concreteness, we consider +Ca40 as the probe and +Mg24 as the coolant ion. There is a possible ‘clock’
transition near 729 nm in +Ca40 between two states ñ∣0 and ñ∣1 from the S2

1 2 and D2
5 2 manifolds [63]. +Mg24 ,

on the other hand, has been used for sympathetic cooling ofmixed-species crystals before, with cooling
transitions near 280 nm [64]. Due to the large difference between the two transition frequencies, we neglect the
influence of the cooling lasers on the qubit levels.

In the following, we assume that the ions form aCoulomb crystal along the trap axis of a linear Paul trapwith
harmonic confining potential and that they are sufficiently cold such that theirmotion is described in terms of
normalmodes.We consider an arrangement - -+ + +Ca Ca Mg40 40 24 of the ions and focus on the axialmotion.
The axial normalmodes arewell separated in frequency.Hence, we can use one of the normalmodes to realize
the dissipativemode.We choose the highest frequencymode, where neighboring ionsmove in counterphase, as
the dissipativemode. For an axial trap potential where a single +Ca40 ion has a center-of-mass frequency of
ωz/2π=1MHz, the dissipativemode has a frequency ofω3/2π=2.59 MHz.

Let us now analyze the time evolution of the ions in the trap.We assume that themotional degrees of
freedomare cooled close the ground state and that the +Ca40 ions are initialized in the ñ∣0 state before the Ramsey

sequence starts. Then, the probe ion is excited to the state y ñ = ñ + ñ∣ (∣ ∣ )0 i 11
1

2
by thefirst Ramsey pulse from

the probe laser. Note thatwe assume that the state of the ancilla qubit remains ñ∣0 . During the subsequent free
evolution, the systemof probe and ancilla ions plus dissipativemode should evolve according to equation (7).
The coherent part of this time evolution can be realized by illuminating the ionswith a laser tuned to the first
red-sideband transition of the +Ca40 ions and the dissipativemode, see appendix B. The dissipative part of the
evolution is realized by sympathetically cooling the chosenmode through the +Mg24 ion.Here, we assume that
EIT cooling [65] is realized as it allows for high cooling rates at relatively small laser powers [64].

Figure 1.Comparison of the two estimation strategies for a zero-temperature bath. Lower bound to any estimation error for the
entanglement-based strategy obtained byminimizing the rhs of equation (5) for N2 probes (red, dashed line) and the estimation error
in the Ramsey scheme for the CT-based strategywithN probes (blue, solid line), see equation (11). The parameters are

l l= G D = G = = G-¯ ˜t 80 , 0.05 , 2 0.31 .
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However, laser cooling is not described completely by the dissipator in equation (7) because it does not
perfectly realize coupling to a zero temperature reservoir. The dissipator for laser cooling reads [66, 65]

     = G + - + G -
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ¯ ) ( ) { ( )} ¯ ( ) { ( )} ( )† † † †t n a t a a a t n a t a aa t1

1

2
,

1

2
, , 13lc

whereΓ is the cooling rate and ‘lc’ stands for ‘laser cooling’. n̄ is thefinal occupation number of the thermal state
of the dissipativemode if subject to the above dissipator. For a realistic assessment of the protocol, we also have
to include thefinite linewidth of the transition in the probe and ancilla ions. To this end, we have to complement
lc with

     s s s s s s s s= G - + G -- + + - - + + -⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ) { ( )} ˜ ( ) ˜ {˜ ˜ ( )} ( )t t t t t

1

2
,

1

2
, . 14se se se

Hence, in a trapped ion experiment the system evolves according to equation (7)with the dissipator replaced by
 +lc se during the free evolution period.Wewill see in the following that the CTprotocol still provides an
advantage over the best entangled strategy under these non-ideal, realistic conditions. Finally, the experimental
cycle is completed by a secondπ/2-pulse and ameasurement ofσ z on the probe qubit.

Let us nowproceed to show that we can indeed obtain an advantage in precision over the best entangled
strategy, i.e.G(N)>1, in an ion trap experiment. To this end, we simulate trapped-ion experiments with
realistic parameters.We show that the advantage of theCT estimation strategy for appropriate parameters
persists taking into account experimental imperfections, such asfinite-temperature and finite-linewidth effects.

In the simulations, we assume an initial product state of qubits andmodewith the probe and ancilla qubits in
state ñ∣0 and themode in a thermal statewith variablemean occupation number n̄.We truncate themotional
Hilbert space at nmax=7 excitations. The spontaneous emission rate of the considered transition in +Ca40 is

pG =2 0.14se Hz [63]. In this setting we compute the evolution of the full systemup to afinal time G =t̄ 180
forNω=100 equally spaced values ofωä [−0.1, 0.1] kHzwith

p l p l pG = = = -˜2 1 kHz, 2 0.1 kHz, 2 0.29 kHz andωm=0fixed.Note that we can setωm=0
without loss of generality, see appendix B. Finally, we compute the uncertainty in the estimated frequency
according to equation (10).

Note that we take the first +Ca40 ion to be the probe ion and themiddle +Ca40 ion as the ancilla. The ratio of
the spin-motion coupling amplitudes of the dissipativemode at these positions is about−2.9. Thismeans that
we assume that the ions are illuminatedwith equal intensity.

Infigure 2we show the results of our simulations. Part (a) of thefigure depicts theminimal uncertaintyΔ2ω

of theCT strategymultiplied by the total timeT as a function of the free evolution time. For every value of t, we
show theminimal uncertainty forωä [−0.1, 0.1] kHz. The plot depicts the results of the CT strategy forfinite
temperature reservoirs with =n̄ 0.02 and =n̄ 0.05 aswell as the zero temperature limit, equation (11). For
comparison, thefigure also shows theminimumof equation (5), i.e. theminimumuncertainty for the entangled
strategy, for the considered parameters. For times > G »t̄ 100 15.9 ms theCT strategy outperforms the
entangled strategy. Clock laser coherence times of≈300 ms have been reported [67] so that one should be able to
reach this time scale in practice. Note that for the entanglement-based strategywe have considered the best
possible achievable precision, using the lower bound in equation (5)not including any additional experimental
noise (e.g. due to thermal effects). Thefigure illustrates that an increasing temperature reduces the gain in
precision by theCT strategy forfixedλ and l̃.We note that increasing the ratio l l˜ it is also possible to obtain a
gain in precision for higher temperatures.

Figure 2.Numerical simulation of the frequency uncertainty withCTparameter estimation for a ion-trap configuration. (a)The
figure shows theminimal uncertaintyΔω2T for theCT strategy for environments with different temperatures. In the case of zero
temperature, we obtain the uncertainty of(11). The figure also shows theminimal uncertainty for the entangled strategy. For times
t>Γ/100 theCT strategy outperforms the entangled strategy. Part (b) shows the uncertainty as a function ofω for »t̄ 19.1 ms. The
point is indicated by the arrow in part (a).
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In part (b) of the figure, we show the uncertainty as a function of the probe frequency for afixed
= G »t̄ 120 19.1 ms. Accordingly, the condition w p=t̄ r 2, where r is odd, cannot be satisfied for allω and,

in particular, for someω division by small numbers occurs in equation (10). Thefigure clearly illustrates the
advantage of theCT estimation strategy over the best entanglement-based strategy.

Besides showing the possibility to implement our estimation strategy in current ion-trap setups, the previous
analysis supports the versatility and robustness of our scheme under realistic conditions. In fact, the finite-
temperature effects described in equation (13), as well as the spontaneous emission directly affecting the two-
level system in equation (14), will prevent a full trapping of the coherences in the asymptotic state of the probe.
The coherencewill eventually decay to 0, for  ¥t , but, this is the crucial point, it will decay slowly enough for
making our estimation strategymore effective than those based on short-timemeasurements. Infigure 3, we
report the evolution of the absolute value of the coherence as a function of time for, respectively, themodel
described section 3, see equation (7), and for themodel considered in this section, with a finite-temperature bath
andfinite linewidth, see equations (13) and (14). Clearly, a fully CToccurs only in the former case, while for
finite temperature and linewidth the coherence will eventually decay to 0.However, as seen infigure 2, also in
these latter cases waiting for longer timeswill provide amore advantageous estimation strategy. The basic reason
behind this can be understood directly from expression of the frequency uncertaintyΔ2ω associatedwith the
Rasmey scheme in equation (10) (and similar considerations could bemade for a genericmeasurement from the
expression of theQFI in equation (2)). Because of the factor eiωtwithin ρ10(t) due to theHamiltonian part of the
evolution, w( ( ) )P td d 2 will yield a t2 term in the denominator ofΔ2ω, which combinedwith the factor t in the
numeratorwill giveΔ2ω≈1/ (tg(t)), where g(t) includes the further contributions due toP(t) and

w( ( ) )P td d 2. Thus, if g(t)decays slower than linearly in time,Δ2ωwill also decaywith time, so thatwaiting for
long timewill provide an effective estimation strategy, evenwithout a full CT.

5. Conclusions

Wehave described a strategy to estimate the value of an unknown frequency based onCT, that is, on the
presence of quantum coherence in the state of the sensing particles on long time scales, despite the presence of
noise. CT frequency estimation does not require entanglement between the probes ormeasurements on short-
time scales while it can outperform the best entanglement-based strategywhen dealingwith a small number of
probes. This was shown by taking into account a qubit interacting with a damped harmonic oscillator, as well as
an ion trap configuration under realistic conditions for current technology. Our approach thus paves theway for
a deeper investigation of parameter estimation relying on a realistic description and full exploitation of the finite
resources at disposal.
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Figure 3.Evolution of coherence for the ideal and realistic bath. Absolute value of the coherence r∣ ( )∣t10 as a function of time for a
zero-temperature bath and for twodifferent finite temperatures; note that for a zero-temperature bath the dynamics can be solved
analytically and, as shown in section 3, r =∣ ( )∣ ∣ ˜( )∣t f t10 , with ˜( )f t as in equation (8), while in the case of finite-temperature bathswe
also considered the effect offinite linewidth;ω/2π=0.1 kHz andΓse/ 2π=0.14 Hz.
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Note added

During the completion of this paper, the relatedworks [68, 69] appeared, in which an asymptotic non-zero value
of theQFI has been shown to occur for different open-systemdynamics.

AppendixA. Explicit solution of themodel with an auxiliary qubit

Given themaster equation (7), if the total initial state ñ(0)has atmost one excitation, the resulting dynamics is
formally equivalent to the evolution of a two-level system interactingwith a dampedmode, in turn coupled to an
undampedmode (both the couplings being in the Jaynes–Cummings form andwith atmost one initial
excitation). The lattermodel was shown to describe properly the dynamics induced by a band-gap spectral
density [50] and it is known that the resulting dynamics of the (two-level) probe state, r =( ) { ( )}˜t tTrmq

(where {·}˜Trmq denotes the partial trace over themode and the auxiliary qubit), exhibits both population
[50, 56] and coherence [40] trapping, under specific resonance conditions.We report here the solution of the
model, for the sake of self-consistency.

If we start from a state with atmost one excitation, given that the consideredHamiltonians preserve the
excitation number andwe neglect any absorption process, we canmake the ansatz that the state at time t is of the
form [50]

 y y= P ñá + ñá( ) ( )∣ ∣ ∣ ( ) ( )∣ ( )t t t t000 000 , A.1

for a certain functionΠ(t) andwhere y ñ∣ ( )t is the non-normalized vector given by

y k kñ = ñ + ñ + ñ + ñ∣ ( ) ( )∣ ( )∣ ˜ ( )∣ ∣ ( )t t a t t w100 010 001 000 , A.2

where now ñ ñ∣ ∣100 , 010 and ñ∣001 denote the pure state with one excitation in, respectively, the probe-qubit, the
mode and the ancilla-qubit; indeed ñ∣000 is the vacuum state. Replacing equations (A.1) and (A.2) in themaster
equation (7), one obtains that the dynamics is equivalently described by the following systemof equations for the
probability amplitudes of qubit, ancilla andmode excitation, respectively:

k wk l
k wk l

w lk lk

= +
= +

= -
G

+ +⎜ ⎟⎛
⎝

⎞
⎠

˙ ( ) ( ) ( )
˜̇ ( ) ˜ ˜ ( ) ˜ ( )

˙ ( ) ( ) ( ) ˜ ˜ ( ) ( )

t t a t

t t a t

a t a t t t

i

i

i i
2

. A.3m

This can be formally solvedmoving to the frequency domain: for the initial conditions

k k
k

=
= =

( )
˜ ( ) ( ) ( )a

0
0 0 0 A.4

0

and denoting as [ ( )]( )g z t the inverse Laplace transformof the function g(z) evaluated in t, onefinds


k
k

l w
w w l l w w ww l w l w ww

=
+ + +

+ + + + + - + - + + -

⎡
⎣⎢

⎤
⎦⎥

( ) ˜ ( ¯)( ˜ )
( ¯ ˜ ) ( ˜ ¯ ( ˜ ) ˜ ) ( ˜ ˜ ¯ ˜ )

( ) ( )t z z z

z z z z z z
t

i i

i i
, A.5

0

2

3 2 2 2 2 2

where

w= -
G¯ ( )z i
2

. A.6m

Given the global state in equation (A.1), one can easily see that the corresponding reduced dynamics of the
probe-qubit is an amplitude damping dynamics, fixed by the function k k=˜( ) ( )f t t 0. In particular, for
w w= ˜ , the inverse Laplace transform in equation (A.5) can be performed explicitly, getting equation (8).

Appendix B.Derivation of Liouvillian of CTdynamics in an ion trap

Here, wewill showhowwe can obtain a system that evolves according to equation (7) in an ion trap setup. In the
main text, we consider a three-ionCoulomb crystal along the trap axis of a linear Paul trapwith harmonic
confining potential.We choose our coordinate system such that the z-axis coincides with the trap axis and
consider an arrangement - -+ + +Ca Ca Mg40 40 24 of the ions. Furthermore, we consider that the ions are
sufficiently cold that theirmotion can be described in terms of a set ofNm=3 normalmodes in each
direction [62, 70].
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Let us now focus on themotion in the axial direction. Themotional Hamiltonian in z reads

å w=
=

( )†H a a , B.1
n

N

n n nm
1

m

where an ( †an ) andωn are the annihilation (creation) operator and the frequency ofmode n, respectively. For an
axial trap potential where a single +Ca40 ion has a center-of-mass frequencyωz/2π=1MHz, the axial normal
mode frequencies are (ω1,ω2,ω3)=2π(1.06, 1.95, 2.59)MHz.Hence, the normalmodes are indeedwell
separated in frequency. Recall that we choose the highest frequencymode =( )n 3 as the dissipativemode.

The internal levels of the +Ca40 ions are described by theHamiltonian

å w
s=

=

( )H
2

, B.2
j

j
z

int
1,2

while those of +Mg24 are adiabatically eliminated in the description of EIT cooling [65].
Let us now see howwe can achieve the time evolution of equation (7) during the free time evolutions. EIT

cooling on the dissipativemode through +Mg24 leads to the dissipator in equation (13) of themain text [66, 65]

     = G + - + G -
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ¯ ) ( ) { ( )} ¯ ( ) { ( )} ( )† † † †t n a t a a a t n a t a a a t1

1

2
,

1

2
, , B.3lc 3 3 3 3 3 3 3 3

whereΓ is the cooling rate and n̄ is asymptotic occupation number of the thermal state that the dissipator takes
themode into. The interaction of the +Ca40 ions and the laser that is tuned to the first red-sideband transition of
the dissipativemode is described by the interactionHamiltonian

å s=
W

+f w

=

+ - ( )·H
2

e e e h.c ., B.4
j

j
j

tk r
I

1,2

i i ij jL L

whereΩj (fj) is the laser Rabi frequency (phase) at ion j located at rj.ωL and kL are the laser frequency andwave
vector, respectively. Note that we have performed a rotatingwave approximation usingΩj=ωL here.

The laser frequency can bewritten asωL=ω−ω3+δ, where δ=ω3. Assuming the Lamb-Dicke regime
[71], we can expand the exponentials ·e k ri j in theHamiltonian of equation (B.4) tofirst order in the Lamb-Dicke
factors h w= ( )k m2 1jn z j n , where kz is the z-component of k. ForΩj=ω3 and ηjnΩj=ω3−ω1/2, we
can neglect all terms inHI except for the coupling of the spin to the dissipativemode. In an interaction picture
with respect toH0=Hm+Hint, the interactionHamiltonian can then bewritten as

å l s= +d+ -( ) ( )H a e h.c. , B.5
j

j j
t

I 3
i

where l h= W f+˜ ( )Bi e 2j j j j
k z

3 3
i z j j

0
. Here, B̃j3 is the amplitude of the dissipativemodemode at ion j inmass-

weighted coordinates [70] and zj
0 is the equilibrium z-position of ion j in the crystal.

Now,moving to a second interaction picturewith respect to theHamiltonian
w s w= -å -˜ ( ˜ ) †H a a2j j

z
m0 0 3 3, where w w d- = -˜ m0 , and setting a3≡a for clarity, we obtain

å åw
s w l s= + + ++˜ ˜ ( ) ( )†H a a a

2
h.c. . B.6

j
j
z

m
j

j jI
0

Writing s s s s= = ˜, , ...z z z z
1 2 , this is exactly theHamiltonian in equation (7). Taking into account the laser

cooling, the system evolves according to

  = - +( ) [ ˜ ( )] ( ) ( )
t

t H t t
d

d
i , . B.7I lc

For =n̄ 0, equation (B.7) reduces to equation (7). Note that the frequencies w w˜ , m0 in equation (B.6) are in
principle arbitrary in the chosen picture. Therefore we can setωm=0without loss of generality aswe do in the
main text. w̃0 then corresponds to the detuning of the laser from resonance assuming that themotional
frequency is known.

Finally, if we include spontaneous emission from the probe transition, the dissipator in equation (B.7)
becomes     = +lc lc se, where

     s s s s s s s s= G - + G -- + + - - + + -⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ) { ( )} ˜ ( ) ˜ {˜ ˜ ( )} ( )t t t t t

1

2
,

1

2
, . B.8se se se
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