
1

Impedance and Noise Closed-Form Model of
Large-Area Integrated Resistors With High Stray
Capacitance to be Used as Feedback Discharge
Devices in Charge-Sensitive Preamplifiers for

Nuclear Spectroscopy
Stefano Capra

Abstract—In this work a theoretical study and experimental
measurements have been conducted in order to describe both the
impedance and the noise associated with resistors with appre-
ciable distributed stray capacitance. In particular the effects of
using such devices as feedback discharge for nuclear spectroscopy
charge-sensitive preamplifier have been analyzed. A closed-form
model shows that for frequencies higher than 1/(2π ·RC/2) the
generated noise is not white anymore and the power spectral
density of noise raises with the square root of frequency. The
experimental measurements confirm the model validity.

I. INTRODUCTION

The main focus of this work is an accurate impedance
and noise description of integrated, large-area, high-valued
resistors with strong stray capacitance to bulk. Their use as
feedback discharge devices for charge-sensitive preamplifiers
will be discussed, with particular emphasis on the effects of
the distributed stray capacitance on the power spectral density
of noise. Such effects, under certain realistic conditions of total
resistance and capacitance, can “colour” the noise even at low
frequencies, down to some hundreds of Hz.

When describing the most relevant noise sources in a
charge-sensitive preamplifier for nuclear spectroscopy, those
that are generally taken into account are the operational
amplifier’s input FET and the feedback resistor. The first one
is responsible for three contributions:
• Series Johnson noise 4kT γ/gm proportional to the FET

transconductance gm (γ is a non-dimensional parameter
between 2/3 and 2). This is the thermal noise of the
channel.

• Parallel shot noise 2qIG due to gate current IG, almost
absent in CMOS transistors

• Series 1/f pink noise k/( fCOXWL) inversely proportional
to the MOS channel dimensions W and L. This noise
is caused by trapping-detrapping phenomena of charge
carriers in stray energy levels on the interface between
channel and oxide. k is a device-specific parameter while
COX is the oxide dielectric coefficient.
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The feedback resistor is generally considered to be responsible
for a parallel white Johnson noise with physical spectral den-
sity equal to 4kT/R. To give a quantitative example, a 1 GΩ

and a 100 MΩ resistors generate respectively a power spectral
density of noise equal to 16.6×10−30 A2

Hz and 16.6×10−29 A2
Hz .

The feedback resistor’s value is obviously maximized in order
to obtain a better spectroscopic resolution, since its noise
sums up directly to the one generated by the detector. A 1 or
2 GΩ resistor is generally suitable for the requirements of γ

spectroscopy. In case of X-spectroscopy the required resistance
value can rise and even unconventional 1 TΩ resistors may
be used. In conventional discrete-type circuits these are thin-
film metal resistors, but the progressive integration of the
front-end circuits into ASICs requires, in most cases, the
integration of the feedback devices too. As will be pointed
out throughout this work, the integration of a 100 MΩ or
higher resistor is definitely not a trivial task. However in
some applications this may become a preferable solution.
For example, active transconductors generally aren’t compliant
with the requirements of high-resolution gamma spectroscopy
due to their low linearity: in order to achieve the highest
resolution possible, moving window deconvolution algorithms
require the preamplifier signals to have a pure exponential
shape that is not obtainable using, for example, a MOS
transistor in triode region [1]. Some solutions based on low-
noise CMOS structures that can substitute a real resistor are
under study [2].

SMD (Surface Mounting Devices) resistors are known to
have a relatively high density of radioactive contaminants in
their ceramic substrate. Those experiments looking for rare
decays and usually taking place in underground laboratories
require an ultra-low radiation background. In such experimen-
tal contexts high-value polysilicon resistors in bare-die format
are an interesting alternative to SMD resistors as feedback
devices for discrete-type charge-sensitive preamplifiers [3]. In
fact silicon wafers are known to be naturally radio-purer than
ceramic materials.

Contemporary technologies suitable for analog designs of-
ten include a high-resistivity module that allow for the re-
alization of polysilicon resistors. Such polysilicon layer has
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generally a resistivity in the order of 1 kΩ/�. Considering a
minimum polysilicon width of 1 µm, a 1 GΩ resistor would
occupy roughly 1 mm2, and this not considering the required
empty space to allow the resistance to fold without short-
circuiting its segments.

The huge area consumption of such devices, however, is not
their only drawback: they have a huge capacitance to bulk. For
example, a 100 MΩ resistor realized in AMS 350 nm [4] shows
a total stray capacitance to bulk in the order of 10 pF. This
capacitance turns the resistor into some sort of transmission
line that is far from the ideal resistor model both in terms of
impedance and noise. In the next sections a closed-form exact
calculation of both these quantities is reported. Experimental
measurements conducted with an integrated resistor and a low-
noise charge-sensitive preamplifier confirm the validity of the
proposed model.

II. IMPEDANCE CALCULATION OF A RESISTOR WITH
DISTRIBUTED CAPACITANCE

The closed-form impedance description of a resistor with
distributed capacitance (we will refer to this kind of device
throughout the text with the acronym “RWDC”) is not trivial.
Some works on the topic are available in literature [5] with
different degrees of approximation. In this section a closed-
form didactic approach to the description of such devices is
presented. Please notice that throughout the text s = iω . In the
same way the voltages V0, V1 and the currents I0, I1 should be
intended as functions of the complex frequency s.

In order to calculate its behaviour on the s-plane we start
from a simple lumped-parameter R-C cell (see Fig. 1).

V0

I0 R

C V1

I1

V0

I0 R

C V1

I1

Fig. 1. Left: simple lumped-parameter resistance with capacitive coupling to
bulk. Right: distributed-parameter resistance of value R with total capacitive
coupling C.

Such elementary circuit obeys to the following equation:[
V0
V1

]
=

[
R+ 1

sC − 1
sC

1
sC − 1

sC

]
·
[

I0
I1

]
. (1)

We now rewrite (1) in order to better suit our purposes.[
V0
I0

]
=

[
1+ sRC R

sC 1

]
·
[
V1
I1

]
(2)

We will use this formulation because it allows to study chains
of double bipoles with simple matrix multiplications. More
specifically, the output current I1 and voltage V1 of the previous
cell are equal to the input current I0 and voltage V0 of the
following one. We will now chain together n R-C cells as
seen in Fig. 1, each one with a resistance and capacitance
equal to R/n and C/n. In this way we obtain the circuit in
Fig. 2.

The equation that describes such system is the following:

V0

I0 R/n

C/n V1

I1R/n

C/n

R/n

C/n

R/n

C/n

Fig. 2. First-order approximation of a distributed resistance R with capacitive
coupling C made of a series of n R-C cells with resistance R

N and capacitance
C
N .

[
V0
I0

]
=

[
1+ s RC

n2
R
n

sC
n 1

]n

·
[
V1
I1

]
(3)

Most computer simulators implement nothing but this model
for integrated RWDCs. As we will calculate soon, this approx-
imation may be too coarse or acceptable depending on the
RWDC segmentation. In order to proceed with the calculus
we need to diagonalize the matrix in (3). The eigenvalues λ1,2
and eigenvectors v1,2 are reported respectively in (4) and (5).

λ1,2 =
∓
√

sRC (sRC+4n2)+ sRC+2n2

2n2 (4)

v1,2 =


R
√

sC∓
√

R(4n2 + sRC)

2n
√

sC

1

 (5)

We are now able to rewrite (3) in a more interesting form:[
V0
I0

]
=
[
B
]
·
[

λ n
1 0

0 λ n
2

]
·
[
B−1

]
·
[
V1
I1

]
(6)

where the two matrices B and B−1 are respectively

B =

R
√

sC−
√

R(4n2 + sRC)

2n
√

sC
R
√

sC+
√

R(4n2 + sRC)

2n
√

sC

1 1

 (7)

and

B−1 =


− n

√
sC√

R(4n2 + sRC)

R
√

sC+
√

R(4n2 + sRC)

2
√

R(4n2 + sRC)

n
√

sC√
R(4n2 + sRC)

−R
√

sC+
√

R(4n2 + sRC)

2
√

R(4n2 + sRC)

 . (8)

In order to switch from an approximated segmented RWDC
to a closed-form continuous model we should just evaluate (6)
in the limit for n→ ∞. We can evaluate the limit of B, B−1

and the eigenvalues separately: their analytical expressions
converge. The result is the following:

[
V0
I0

]
=

−√ R
sC

√
R
sC

1 1

 ·[e−
√

sRC 0

0 e
√

sRC

]
·

−
√

sC
2
√

R
1
2

√
sC

2
√

R
1
2

 ·[V1
I1

]
(9)
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Using trigonometric transformations, the final expression of
9 becomes:

[
V0
I0

]
=


cosh

(√
sRC

) √
R
sC

sinh
(√

sRC
)

√
sC
R

sinh
(√

sRC
)

cosh
(√

sRC
)
 ·
[
V1
I1

]
.

(10)
The impedance expression of the resistance with distributed
capacitance is implicitly contained in (10). The impedance
matrix can be obtained rearranging the terms so as to obtain
a voltage-only vector on the left and a current-only vector on
the right. The impedance Z matrix thus is equal to:

ZRWDC =

√
R
sC
·


coth

(√
sRC

)
− 1

sinh
(√

sRC
)

1
sinh

(√
sRC

) −coth
(√

sRC
)
 (11)

where [
V0
V1

]
=
[
ZRWDC

]
·
[

I0
I1

]
. (12)

It is straightforward to see that, for C→ 0, (10) assumes
the trivial expression in (13).[

V0
I0

]
=

[
1 R
0 1

]
·
[
V1
I1

]
(13)

This result guarantees the coherence of the proposed model in
the limit of no capacitive coupling with the behaviour of an
ideal resistor.

III. USING A RWDC AS FEEDBACK RESISTOR IN A
CHARGE-SENSITIVE PREAMPLIFIER

Given the results pointed out in the previous section let’s
now analyze the effects of the non-trivial RWDC impedance
when using it as feedback resistor of a Charge-Sensitive
Preamplifier (CSP) (see Fig. 3). Please notice that in this
section we refer to the feedback capacitance with CF and to
the RWDC stray capacitance with C.

R

RWDC

VOUT

CF

CSPIN

C

Fig. 3. Conceptual schematic of a CSP with an RWDC used as feedback
resistor.

The equation in (10) can be rewritten considering that V1 =
VOUT is the output voltage of the CSP and V0 = 0 because
the CSP input node is virtual ground. The feedback complex
impedance can be expressed as:

ZRWDC =−V1

I0
=

√
R
sC

sinh
(√

sRC
)
. (14)

From this equation we can derive

VOUT

iIN
(s) =−

(
1

sC

) √
sRC sinh

(√
sRC

)
1+
(

CF
C

)√
sRC sinh

(√
sRC

) (15)

that is the expression of the CSP’s transfer function between
input current iIN and output voltage. It is possible to perform
the Puiseux expansion [6], [7] of the hyperbolic sine in (15)
for s = 0 and truncate it after the second term, obtaining the
following result:

VOUT

iIN
(s) =−R

1+ s RC
6

1+ sCF R+ s2 R2CCF
6

. (16)

This expression has one zero in

sZERO =− 6
RC

(17)

and two poles in

sPOLES =−
3

RC

[
1±
√

1− 2C
3CF

]
. (18)

Despite this approximation comes from the truncation of
the Puiseux series of the hyperbolic sine around s=0, the
validity of the approximation extends way above the limit of
low frequencies. In fact for s� 1/RC both the original and
the approximated functions behave like 1/sRCF . In practice
the approximation effects are appreciable only around the
frequency of the zero in (17) where the functions show a
resonant behaviour. It should also be also pointed out that
if the second-order truncation is a good approximation of the
function, the fourth-order one is practically indistinguishable
from the original (see Fig. 4).

In order to study the behaviour of (16) we split the discus-
sion in two separate limit cases: C <<CF and C >>CF .

A. Low-parasitic-capacitance case: C <<CF

If the total RWDC stray capacitance is considerably lower
than the feedback one, we can expand the square root of the
expression in (18) in terms of C/CF . The formulas of the two
poles can now be written as:

sPOLE1 =−
1

RCF
(19)

and, with α =C/(6CF),

sPOLE2 =−
6

RC
(1−α) . (20)

When α goes to 0, i.e. it is negligible respect to the feedback
capacitance, the zero in (17) and the pole in (20) tend to cancel
out reciprocally, giving a conventional CSP transfer function
dominated by the pole in (19).

If the RWDC stray capacitance is not completely negligible
respect to the feedback capacitance, the second pole moves
away (on the real axis) from the zero. Using the expression of
the poles in (19) and (20) the CSP transfer function becomes:

VOUT

iIN
(s) =−R ·

1+ s RC
6

(1+ sRCF)
(

1+ s RC
6(1−α)

)
(1−α)

(21)
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Fig. 4. Comparison between the magnitude and phase of the preamplifier
response in (15) and the corresponding simplification in (16). For complete-
ness, a fourth-order approximation is also added. In this example R=100 MΩ,
C=10 pF, CF =1 pF.

where the term (1−α) is introduced to renormalize the high-
frequency limit of the denominator so that it coincides with
the one in (16). With no approximations (21) can be rewritten
as

VOUT

iIN
(s) =− R

1+ sRCF
− R

1+ sRCF
·

(
α

1−α

)
1+ sRCF

(
α

1−α

) . (22)

We can easily calculate the inverse Laplace transform of the
expression in (22) pointing out some considerations. The first
term represents the typical exponential decay of a charge-
sensitive preamplifier. The second term is a two-pole function
that corresponds in the time domain to the convolution of two
exponentials. The impulse-response function can be written as

VOUT =−θ (t)
CF

e−
t

RCF − θ (t)
CF

e−
t

RCF ∗ θ (t)
RCF

e
− t

( α
1−α )RCF . (23)

Calculating the convolution and writing β = α/(1−2α) we
obtain the unitary CSP impulse response function:

VOUT (t) =−
θ (t)
CF

e−
t

RCF

[
1+β

(
1− e−

t
βRCF

)]
. (24)

The derivative of this function is zero for t → 0+. A simple
interpretation of (24) is that the CSP impulse response function

is an exponential decay signal that starts with a flat tip. The
characteristic time of this deviation from ideality is βRCF .

B. High-parasitic-capacitance case: C >>CF

In case of high parasitic capacitance the argument of the
square root in the poles expression (18) is negative and this
creates two complex-conjugate splitted poles:

sPOLE(1,2) =−
3

RC

(
1± i

√
2C

3CF

)
=−3

1± i2
√

α

RC
. (25)

The CSP transfer function can thus be written like

VOUT

iIN
(s) =−R ·

1+ s RC
6(

s+3 1+i2
√

α

RC

)
·
(

s+3 1−i2
√

α

RC

)
R2CCF

6

(26)

where R2CCF/6 is again the high-frequency normalization.
Remembering that α = C/(6CF), the CSP impulse response
function thus becomes

VOUT (t) =− 1
CF

e−
t

2αRCF

[
cos
(

t√
αRCF

)
+

1
2
√

α
sin
(

t√
αRCF

)]
(27)

that still has a zero derivative for t → 0+ but has a damped
oscillating behaviour due to the pole splitting.

IV. APPROXIMATION OF AN IDEAL RESISTOR WITH AN
RWDC CHAIN

The RWDC non-idealities come from the resistor parasitic
coupling to the underlying surface. If we imagine to drive
the potential of such surface so that it is equal point-to-point
to the one of the overlying resistor we would completely
cancel out the capacitive effects and the RWDC would become
an ideal resistor again. This could be achieved realizing two
superimposed resistors with the same shape but very different
resistivity: the upper would be the high-value resistor and the
lower would act as a low-impedance guard. Unfortunately
this is not feasible due to common limitations of integrated
technologies: for example it is not generally possible to stack
two polysilicon layers with different resistivities.

On the other hand it is common to realize integrated
polysilicon resistors with a n-well acting as a guard. As was
previously pointed out in [8] and later in [9], despite the non-
idealities described in the previous section, it is possible to
obtain an approximated ideal-resistor behaviour from a chain
of RWDCs. The core of this idea is to separate the RWDC
in various segments, each one with its own underlying n-well
driven with appropriate voltages so as to cancel out, in first-
order approximation, the capacitive effects.

Let’s consider a RWDC realized on the top of a n-well and
imagine to control the well voltage with an external circuit.
Let’s put this voltage equal to the mean of the voltages at the
two resistor terminals. In order to do so, let’s rewrite V0 and
V1 in terms of VDM and VCM (see Fig. 5)

The equation in (10) can now be rewritten in terms of the
newly introduced variables.

[
VCM + VDM

2
I0

]
=

 cosh
(√

sRC
) √

R
sC

sinh
(√

sRC
)

√
sC
R

sinh
(√

sRC
)

cosh
(√

sRC
)
·[VCM− VDM

2
I1

]
.

(28)
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Fig. 5. Representation of the two different RWDC circuit descriptions using
the variable sets (V0, V1) and (VDM , VCM).

Let’s now put VCM = 0, since it doesn’t affect the circuit
anymore. From (10) and from symmetry considerations we
easily obtain that I0 = I1. The RWDC with auxiliary well-
driving circuit can be considered as a simple passive dipole
with complex impedance equal to

Zeq =
VDM

I0
= 2

√
R
sC

[
tanh

(
1
2

√
sRC

)]
. (29)

Let’s now imagine that we want to realize an integrated
resistor with total resistance RTOT . This device has a total stray
capacitance equal to CTOT . In order to minimize the capacitive
coupling effects we subdivide this device in n segments: each
one is a RWDC with resistance RTOT/n and capacitance
CTOT/n (see Fig. 6). Each of these is realized over a n-well.
If V1,m and V2,m are the voltages at the two terminals of the m-
th RWDC, the underlying m-th well is driven with a voltage
equal to (V1,m+V2,m)/2. Due to the simmetry of the system
the wells can be driven by a simple low-impedance resistive
voltage divider. Thanks to this solution the impedance of each
of the n segments is equal to

ZSEGMENT = 2
√

RTOT

sCTOT

[
tanh

(
1
2

√
s

RTOT

n
CTOT

n

)]
. (30)

A series of n such RWDC, that has the desired total resistance
equal to n ·RTOT/n = RTOT has thus an impedance equal to:

ZCHAIN = 2n
√

RTOT

sCTOT

[
tanh

(
1
2

√
s

RTOT

n
CTOT

n

)]
. (31)

This equation is telling us the following concept: given a total
resistance, the higher the number of segments, the better the
impedance approximation. In order to visualize the meaning of
(31) the impedance of a RWDC chain with different number
of segments is reported in Fig. 7.

Polysilicon Resistor
Oxide

N-well

well-driving resistive voltage divider

P-SUB

Poly
Oxide
N-well1 1

P-SUB

Fig. 6. Pictorial representation of the cross section of a of a polysilicon resistor
realized over a n-well. Top figure: the resistor is realized over a single n-well
guard. Bottom figure: the resistor is segmented into several parts, each one
with its own n-well guard. Since the n-wells voltages follow the ones of the
resistors, the capacitive effects are minimized.
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Fig. 7. Impedance (magnitude and phase) of a chain of RWDCs with the
well-driving circuit. The number of segments is varied from n=1 to n=100.
The total resistance is 100 MΩ and the total capacitance is 10 pF. The exact
expression in (31) is compared to the approximation in (32).

We can approximate (31) considering its asymptotic be-
haviour at low and high frequency:

ZCHAIN =
R

1+ 1
2n
√

sRTOTCTOT
. (32)

This result tells us that, in first approximation, the chain of
RWDCs with well-driving circuits behaves like a real resistor
up to a maximum frequency fMAX of:

fMAX =
4n2

2πRTOTCTOT
=

4n2

2πγR2 where γ =
CTOT

RTOT
. (33)

The latter expression gives a good indication about the
number of required segments to obtain a good ideal-resistor
emulation up to a specific frequency limit. Please notice that
for each technology the γ factor is fixed and describes the
specific RWDC capacitance for unit resistance and depends
on the polysilicon resistivity, the minimum resistor width, the
thickness of the silicon oxide between the resistor and bulk
and some geometrical layout parameters.
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When using a RWDC chain as feedback resistor in an
integrated charge-sensitive amplifier (see Fig. 8) the imple-
mentation of the aforementioned well-driving circuit can be
quite straightforward. Let the RWDC be segmented in an
appropriate number of segments (according to the desired
bandwidth). One node of the RWDC chain is to be connected
to the CSP’s input, i.e. virtual ground. The other terminal is
driven by the low-impedance op-amp output stage. A passive,
resistive voltage divider connected between the preamplifier
output and ground can be satisfactorily used to drive the series
of n-wells. This resistor chain must have a very low resistance
compared to the RWDC. In this way its physical size will be
much smaller than the main resistor and all the stray poles
and zeros it introduces will lay well above the bandwidth of
the circuit. As a rule of thumb we can ask that

1
2πRDIV IDERCTOT

>> fMAX . (34)

The lower limit for the resistance value is essentially deter-
mined by the maximum power that can be dissipated by the
CSP.

RF

Segment 1 Segment 2 Segment n

VOUT

CF

CSPIN

RDIVIDER

Fig. 8. Conceptual schematic of a charge-sensitive preamplifier with an
RWDC used as feedback resistor (RF ). In the picture are visible the feedback
capacitance CF , the high-resistivity polysilicon layer used as high-value
feedback resistor (RF ) and the low-resistivity passive voltage divider RDIV IDER
used to bias the n-wells underlying the RWDC.

In Fig. 9 the response function of a simple test-bench real-
ization of the circuit in Fig. 8 is pictured. A commercial dis-
crete op-amp was used together with an integrated polysilicon
resistor (see next section). The difference in response shape
is evident: when driving the n-wells with the voltage divider
(in the kΩ range) the signal has a clear exponential shape. On
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Fig. 9. Experimental impulse response of a CSP with RWDC feedback
network (see Fig. 8). The two signals are obtained respectively biasing the
n-wells with the resistive divider (solid line) or connecting them to ground
(dashed line). For this test a commercial LM6171 operational amplifier was
used.

the other hand, keeping the wells to ground induces a peculiar
transmission-line behaviour of the resistor as anticipated in
(27).

V. GENERAL NOISE MODEL OF A RWDC

In a RWDC the generation of the noise is uniformly dis-
tributed across the polysilicon volume. The interaction of the
noise sources with the distributed resistance and capacitance
causes the total noise at the terminals, as expected, to not
be white. In order to estimate the RWDC Power Spectral
Density (PSD) of noise we should make an approximation:
let’s consider the device to be constituted by a series of n
RWDC segments, each one with a voltage noise generator with
PSD equal to 4kT R/n (see Fig. 10). Each noise generator is
completely uncorrelated with the others and corresponds to the
noise produced by a resistor with value R/n. The higher the
number of segments, the better the approximation becomes.
The result obtainable with a number of segments approaching
infinite is the model of our continuous system.

V0

I0 R/n

C/n

v1

V1

I1R/n

C/n

v2 R/n

C/n

v3 R/n

C/n

vn

Fig. 10. Resistance with distributed capacitance modelled with a series of n
RWDC cells. Each one has resistance R

n and capacitance C
n . A voltage noise

generator vn with PSD of noise equal to 4kT R
n is associated with each resistor.

The total noise power at the terminals is the sum of the
power contributions from each noise generator. Let’s consider,
among a group of n segments, the generic m-th noise gener-
ator: it has an rms value of 2

√
kT R

n and is preceded by m
noisless RWDC cells and followed by n−m noisless RWDC
cells (see Fig. 11). At the moment let’s treat it like a simple
voltage generator. A series of identical RWDC segments is
indistinguishable from a single RWDC with resistance and
capacitance equal to the sum of the segments.

vNOISE,m,n

V0 V1

I0 I1R(m /n)

C(m /n)

R(n-m /n)

C(n-m /n)

Fig. 11. Pictorial view of the circuit represented in (35), where the m-th noise
generator is preceded by m segments and followed by n−m.

In order to correctly describe the circuit in Fig. 11, we need
to switch our formalism to an affine, 3-dimensional space [10].

V0
I0
1

=

 MZ,m
n

0
0

0 0 1

MNOISE

 MZ,n−m
n

0
0

0 0 1

V1
I1
1


(35)
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n

V0

I0
vEQ, m

iEQ, m V1

I1R/n

C/n

Fig. 12. Representation of the circuit in Fig. 11 substituting the voltage
generator vNOISE,m with the two equivalent generators vEQ,m and iEQ,m. These
generators are correlated and their respective sign is represented by the arrows.

where MZ,k is equal to

MZ,k =

 cosh
(
k
√

iωRC
) √

R
iωC sinh

(
k
√

iωRC
)√

iωC
R sinh

(
k
√

iωRC
)

cosh
(
k
√

iωRC
)


=

[
MZ,k,1,1 MZ,k,1,2
MZ,k,2,1 MZ,k,2,2

] (36)

and MNOISE is equal to

MNOISE =

1 0 vNOISE,m,n
0 1 0
0 0 1

 . (37)

Considering that

MZ,m
n
·MZ, n−m

n
= MZ,1 (38)

the equation in (35) can be rewritten asV0
I0
1

=

 MZ,1
vNOISE,m,n ·MZ,m

n ,1,1
vNOISE,m,n ·MZ,m

n ,2,1
0 0 1

 ·
V1

I1
1

 (39)

that is in turn equal to

V0
I0
1

=

 cosh(Ω)
√

R
iωC sinh(Ω) vNOISE,m,n · cosh

(m
n Ω
)√

iωC
R sinh(Ω) cosh(Ω) vNOISE,m,n ·

√
iωC

R sinh
(m

n Ω
)

0 0 1

 ·
V1

I1
1


(40)

where Ω =
√

iωRC.
If we continue to consider vNOISE,m,n like a voltage gener-

ator, making an equivalence between the scheme in Fig. 11
and the one in Fig. 12, it is straightforward to see that:

vEQ,m = vNOISE,m,n · cosh
(m

n
Ω

)
= vNOISE,m,n ·Hm

n
(ω)

iEQ,m = vNOISE,m,n ·
√

iωC
R

sinh
(m

n
Ω

)
= vNOISE,m,n ·Ym

n
(ω)

(41)

where Hm
n
(ω) and Ym

n
(ω) are the transfer functions to be

used to calculate the equivalent input series and parallel noise
generators starting from the m-th of n noise generators.

Let’s now call X (ω) the physical quantity (a voltage or a
current) on which we want to evaluate the noise contribution
Xm (ω) due to vNOISE,m,n. Let’s assume that A(ω) and B(ω)
are the transfer functions from the equivalent voltage and
current generators to the desired variable, i.e.

Xm (ω) = vEQ,m ·A(ω)+ iEQ,m ·B(ω) . (42)

It is trivial to demonstrate that the power spectral density of
noise PSDX (ω) affecting the quantity X (ω) due to all the
noise generators in the RWDC is

PSDX (ω) =
[
A(ω) B(ω)

]
·
[
S (ω)

]
·
[

A∗ (ω)
B∗ (ω)

]
. (43)

The self- and cross-power spectral density matrix S can be
calculated from 41 and 42:

S (ω)= lim
n→∞

n−1

∑
m=0

PSDm,n (ω)

Hm
n
(ω)H∗m

n
(ω) Hm

n
(ω)Y ∗m

n
(ω)

H∗m
n
(ω)Ym

n
(ω) Ym

n
(ω)Y ∗m

n
(ω)


(44)

where PSDm,n (ω) is the power spectral density of noise of
the m-th noise generator when subdividing the RWDC in n
segments. Since the RWDC is divided in segments of the
same lenght, all the generators vNOISE,m have the same PSD
equal to 4kT R/n. For this reason PSDm,n (ω) can be rewritten
PSDn (ω) and moved outside the sum. At the same time we
transform the sum in an integral, aware of the fact that the
error we are committing goes to zero as n→+∞.

S (ω) = lim
n→∞

4kT R
n

∫ n

0

Hm
n
(ω)H∗m

n
(ω) Hm

n
(ω)Y ∗m

n
(ω)

H∗m
n
(ω)Ym

n
(ω) Ym

n
(ω)Y ∗m

n
(ω)

dm

(45)
We choose α = m/n as independent variable for the integra-
tion, with dm = n ·dα . In this way (44) becomes

S (ω) = lim
n→∞

4kT R
∫ 1

0

Hα (ω)H∗α (ω) Hα (ω)Y ∗α (ω)

H∗α (ω)Yα (ω) Yα (ω)Y ∗α (ω)

dα

(46)
where the integral is to be considered element-wise and Hα

and Yα are obtained from (41) with the substitution α = m/n.
The limit now can collapse since doesn’t affect the calculation
anymore. These four integrals can be calculated in closed form
as follows.

S (ω) = 4kT R

Svv Svi

Siv Sii

 . (47)

The solution of these four integrals can be easily calculated
considering that

√
iωRC = (1+ i)

√
ωRC

2
(48)

and considering the equalities in appendix. The four terms in
(47) are:

Svv =
sin(φ)+ sinh(φ)

2φ
(49)

Svi =

√
ωC
2R

(1− i)
cosh(φ)+ icos(φ)− (1+ i)

2φ
(50)

Siv =

√
ωC
2R

(1+ i)
cosh(φ)− icos(φ)− (1− i)

2φ
(51)

Sii =
ωC
R

sinh(φ)− sin(φ)
2φ

. (52)
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The matrix in (47) contains the self-correlation and cross-
correlation between the two equivalent noise generators in Fig.
12 and can be used, together with (43) to calculate the noise
contribution of a RWDC in any circuit [11]. Please notice
that, in agreement with the laws reported in literature, the
two off-diagonal elements are one the complex conjugate of
the other. In the next section we will focus on a particular
application case: the usage of the RWDC as feedback resistor
in a charge-sensitive preamplifier.

VI. POWER SPECTRAL DENSITY OF NOISE WHEN AN
RWDC IS USED AS FEEDBACK RESISTOR OF A CSP

Let’s now focus on the specific case when a RWDC is
connected in the feedback network of a Charge-Sensitive
Preamplifier (CSP, see Fig. 3). Please refer to the definition of
I0, I1, V0 and V1 given in Fig. 12. The m-th contributes vEQ,m
and iEQ,m have been replaced by the total noise generators vEQ
and iEQ obtained from the integration on the whole RWDC.

Given the symmetry of the system, let’s consider the
terminal on the left to be connected to the output of the
preamplifier and the right terminal to the input. Being the
first a low-impedance voltage source and the second a virtual-
ground node, we can perform the noise propagation analysis
considering both RWDC terminals short-circuited to ground,
that means V0 =V1 = 0. The current I0 is the current flowing
to the preamplifier output, while the equivalent current noise
produced by the RWDC and referred to the preamplifier input
is I1. Being the preamplifier output a low impedance, we can
can assume that the current iEQ flows completely to ground
and cannot contribute to I1. Only vEQ gives a contribute to I1
with amplitude vEQ/ZRWDC where ZRWDC has been defined in
(14). The equation in (42) can thus be rewritten as follows to
obtain the transfer function between veq, ieq and the total input
noise current I1.

I1
∣∣
veq,ieq

(ω) =vEQ ·A(ω)+ iEQ ·B(ω)

I1
∣∣
veq,ieq

(ω) =vEQ ·−
√

iωC
R

1
sinh

(√
iωRC

) + iEQ ·0
(53)

From (53) and (43) we can easily derive the expression of the
current PSD of noise flowing from the right terminal of the
RWDC into the input node of the CSP.

PSDI1 (ω) = 4kT R
[
A(ω) 0

][
S (ω)

][A∗ (ω)
0

]
= 4kT R |A(ω)|2 Svv

(54)

With trivial calculations we can write the total current PSD of
noise insisting on the input node of the preamplifier.

PSDI1 (ω) =
4KT

R

√
ω

RC
2
·

 sin
(

2
√

ω
RC
2

)
+ sinh

(
2
√

ω
RC
2

)
cosh

(
2
√

ω
RC
2

)
− cos

(
2
√

ω
RC
2

)
 . (55)

Although (55) can appear to be quite unfamiliar to the reader,
its practical interpretation is definitely straightforward. Let’s
try to analyze its asymptotic behaviour in the low- and high-
frequency limits.

For ω → 0 the expression 55 clearly goes to

PSDI1

∣∣
ω→0 =

4kT
R

(56)

while the high-frequency behaviour is well represented by

PSDI1

∣∣
ω→+∞

=
4kT

R

√
ω

RC
2
. (57)

These two formulas demonstrate that the noise at low fre-
quencies, when the effects of the capacitive coupling to bulk
are negligible, is practically white. Above the noise corner
frequency, that can be found equating (56) and (57), the PSD
raises with the square root of frequency. The noise corner
frequency is

fCORNER =
1

2π
(RC

2

) . (58)

The fact that the expression in (55) in the limit for negligible
capacitive coupling (i.e. C → 0) tends to 4kT/R is a con-
firmation of the proposed model’s coherence with the noise
properties of an ideal resistor.

Let’s now compare the closed-form PSD expression with the
result obtainable with a circuit simulator. In the latter case the
RWDC is simply modeled as chain of n T-shaped cells, each
one made of two R/(2n) resistors in series with a capacitor
C/n to ground in the middle. As can be seen in Fig. 13 the low-
frequency behaviour is modeled correctly already with 4 cells
up to the noise corner frequency. Increasing the number of
cells doesn’t change substantially the low-frequency behaviour
but sets the maximum frequency validity of the simulation.
In the high-frequency limit, the first capacitor of the chain
shunts the resistor to ground, turning it into the only current
noise contributor respect to the nearby terminal. In general,
this resistor has a value of αR/n, with α being a parameter
between 0.5 and 1 depending on the elementary cell structure
(1/2 in the case of a T-shaped cell). Equating the expressions
of the PSD of the first resistor segment

PSDFS =
4kT n
Rα

(59)

with the simplified expression of the total PSD of a RWDC
for high frequencies (57) we can write the frequency limit of
the PSD calculated with a n-cell simulation.

fMAX ,n =
( n

α

)2
fCORNER (60)

VII. EXPERIMENTAL VERIFICATION OF THE PROPOSED
NOISE MODEL

A 100 MΩ integrated polysilicon resistor was realized in
AMS C35B4C3 technology [4]. Its dimensions are 350 µm by
400 µm. This resistance was realized with the minimum width
allowed by the technology Design Rule-Check (DRC): 0.8 µm.
Due to its geometry, the realized device has thus 10 pF of total
distributed capacitance to bulk. The resistor is made of ten
10 MΩ segments with 1 pF stray capacitance each. Under each
segment a n-well guard was realized. For the noise analysis
let’s just consider all the RWDC wells to be connected to
ground. It can be demonstrated that the solution proposed in
section IV is efficient for the impedance correction but doesn’t
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Fig. 13. Parallel current noise produced by an integrated 100 MΩ feedback
resistance with 10 pF of total parasitic capacitance to bulk. Noise SPICE sim-
ulations obtained with discrete R-C chain models with different segmentation
are compared to the closed-form noise model.

change the noise behaviour of the RWDC. In fact, as long as
the impedance of the well-driving circuit is sufficiently low,
each n-well can be considered connected to ground.

A low-noise CSP [12] was used to evaluate the total input
current PSD of noise generated by the polysilicon RWDC. For
the PSD measurements an Agilent 4395A Network Spectrum
Analyzer was connected to the CSP output. First of all the
intrinsic instrument noise was checked to be considerably
lower than the one coming from the CSP at all frequencies
in all the possible experimental conditions. The equivalent
input PSD was calculated dividing the output PSD by the
square modulus of the CSP transfer function. The latter was
measured with the same instrument. The measurement was
repeated connecting different capacitors (4 pF and 100 pF)
to the input of the CSP so as to simulate various detector
junction capacitances. The results are reported in Fig. 14.
The preamplifier used for this measurement was designed for
high-resolution spectroscopy. Its flicker noise contribution is
confirmed to be negligible under the experimental conditions
of this work.

We thus proceeded quantifying the coherence of the RWDC
noise model with the experimental data. The value of the
experimental preamplifier input stray capacitance is not known
a priori. In the simulation this value was chosen to best fit the
experimental data in the f 2-rise region (above 200 kHz for
the 4 pF case and above 40 kHz for the 100 pF case), where
the noise effects of the RWDC are not appreciable. In order
to make a meaningful comparison it is necessary to assign a
reasonable error bar to the experimental data. Unfortunately
this is not trivial due to the nature of the measurement and
the instrument used. To solve this issue and make a proper χ2

test, the error bars on the experimental data were calculated as
follows. The simulation models are clearly valid in the f 2-rise
frequency region. We can thus evaluate the error of the n-th
experimental point from the root mean square of the relative
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Fig. 14. Input referred current noise of a charge-sensitive preamplifier with
the integrated 100MΩ resistor as feedback. The input-referred capacitance is
4 pF in the top figure and 100 pF in the bottom figure. Some peaks at 150 Hz
and 200 Hz were removed from the dataset since generated by the harmonics
of the 50 Hz power supply.

deviation:

σn = x( fn) ·

√√√√√√√∑
m

(
x( fm)− exp( fm)

x( fm)

)2

∑
m

1
(61)

where the sum over m stands for a sum on the PSD points
above the second corner frequency, x( fm) is the experimental
point and exp( fm) is the expected value at frequency fm. The
standard relative deviation averaged between the two dataset
of Fig. 14 is equal to 25%. The reduced χ2 calculated on the
two experimental PSD up to the second noise corner frequency
is equal to 1.05 for 4 pF input capacitance and 1.12 for 100 pF.
The two associated P-values are respectively 31% and 18%,
both well above the commonly accepted threshold of 5%,
confirming the validity of the proposed model.

The two plots in Fig. 14 highlight the possible relevance of
the
√

f noise rise from a RWDC in some practical situations.
Depending on the series input noise of the CSP’s opamp and
the detector stray capacitance, the non-white component of
the RWDC noise can manifestly appear or be partially (or
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completely) masked by the f 2 (series white noise) and f
(series 1/f noise) opamp contributions.

VIII. FINAL CONSIDERATIONS

In this work the effects induced in high-value integrated
resistors by the distributed stray capacitance have been pointed
out, both in terms of impedance and noise.

When connecting an RWDC as feedback resistor of a
CSP without applying impedance corrections, the net effect
can range from distortion of the exponential signal to res-
onating behaviour. It is possible to perform an impedance
correction of an RWDC separating it into several segments
and driving the n-wells underlying each segment with proper
resistive voltage divider networks. The number of required
segments depends on the physical properties of the RWDC
and the desired impedance degree of approximation: higher
the number of segments, wider the approximation validity
bandwidth. Such device would be perfect for the realization
of compact, integrated charge-sensitive preamplifiers without
external components [13].

The distributed capacitance not only affects the impedance
of the RWDC but also its noise properties. When connecting a
RWDC to two low-impedance nodes it generates white noise
up to a specific corner frequency. Above this frequency the
power spectral density of noise rises with the square root of
frequency.

Although this work refers mainly to integrated polysilicon
resistors, the same considerations apply also to those discrete
resistors that have a considerable ratio between stray capac-
itance to ground and resistance. Even the channel of long
MOS transistors used in low-current active transconductors
(characterized by high gate-channel capacitance and medium-
to-high linear resistivity) may suffer from the same issues,
as long as the resistance-capacitance product brings the

√
f

noise corner frequency down into the operating bandwidth of
the circuit.

Further works will consider the effects of different types
of spectroscopic shaping filters on the

√
f noise. Resolution

degradation, optimal filtering and other practical aspects will
be pointed out.

IX. APPENDIX

The solution of (46) can be calculated considering the
following four equalities:

cosh

[
α (1+ i)

√
ωRC

2

]
· cosh

[
α (1− i)

√
ωRC

2

]
=

1
2

[
cos
(

α
√

2ωRC
)
+ cosh

(
α
√

2ωRC
)]

,

(62)

cosh

[
α (1+ i)

√
ωRC

2

]
· sinh

[
α (1− i)

√
ωRC

2

]
=

− i
2

[
sin
(

α
√

2ωRC
)
+ isinh

(
α
√

2ωRC
)]

,

(63)

cosh

[
α (1− i)

√
ωRC

2

]
· sinh

[
α (1+ i)

√
ωRC

2

]
=

i
2

[
sin
(

α
√

2ωRC
)
− isinh

(
α
√

2ωRC
)]

,

(64)

sinh

[
α (1+ i)

√
ωRC

2

]
· sinh

[
α (1− i)

√
ωRC

2

]
=

1
2

[
cosh

(
α
√

2ωRC
)
− cos

(
α
√

2ωRC
)]

.

(65)
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