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Abstract
Liquid biopsy recently gained widespread attention as a noninvasive alternative/complementary technique to tissue biopsy 
in patients with cancer. As technological advances have improved both feasibility and turnaround time, liquid biopsy has 
expanded tumor molecular analysis with acknowledgement of both spatial and temporal heterogeneity, overcoming many 
limitations of traditional tissue biopsy. Because of its diagnostic, prognostic, and predictive value, liquid biopsy has been 
extensively studied also in metastatic colorectal cancer. Indeed, as personalized medicine establishes its role in cancer treat‑
ment, genetic biomarkers unveiling the emergence of early resistance are needed. Among the wide variety of tumor analytes 
amenable to collection, circulating DNA and circulating tumor cells are the most adopted approaches, and both carry clini‑
cal relevance in colorectal cancer. However, few studies focused on comparing feasibility between these two approaches. In 
this review, we discuss the potential implications of liquid biopsy in metastatic colorectal cancer, assessing the advantages 
and drawbacks of circulating DNA and circulating tumor cells, and highlighting the most relevant trials for clinical practice.
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Key Points 

Circulating tumor cells and circulating tumor DNA have 
been extensively studied in metastatic colorectal cancer 
with regard to their diagnostic, prognostic, and predic‑
tive impact; however, data of direct comparison between 
these two techniques are lacking.

Circulating tumor DNA yields higher sensitivity and 
suitability than circulating tumor cells, thus being the 
main plasma biomarker employed in clinical trials and 
closer to reach clinical practice for metastatic colorectal 
cancer. However, circulating tumor cells boast the unique 
potential to serve as a platform for ex vivo culture and 
xenografting.

Randomized clinical trials are needed to establish how 
to integrate liquid biopsy to improve the prognosis of 
patients affected by metastatic colorectal cancer.

1 Introduction

Colorectal cancer (CRC) is one of the most common and 
most lethal cancers, representing 10.2% of new cases and 
9.2% of cancer‑related deaths, with a 5‑year relative over‑
all survival (OS) ranging from 90% in localized disease to 
14% in metastatic CRC (mCRC) [1, 2]. In current clinical 
practice, therapeutic choices are driven by tumor biopsy‑
derived molecular profiles, contemplating the status of RAS 
and BRAF genes, and the DNA mismatch repair (MMR) 
system. Implementation of next‑generation sequencing 
(NGS) broadened the molecular analysis with the aim of 
expanding targeted therapies also in mCRC [3, 4]. In this 
scenario, liquid biopsy (LB) gained widespread attention as 
a noninvasive alternative/complementary technique to tissue 
biopsy. The term LB refers to the analysis of tumor‑derived 
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biomarkers, most frequently in the blood, including circu‑
lating DNA and circulating tumor cells (CTCs) [5]. Liq‑
uid biopsy has been identified as a diagnostic, prognostic, 
and predictive biomarker, allowing early cancer detection, 
molecular profiling, estimation of relapse risk, selection of 
anticancer drugs, monitoring of treatment response, and 
identification of drug resistance mechanisms [6]. Advan‑
tages over tissue biopsy, including minimal invasiveness and 
fast turnaround, allow feasibility of close repeated testing 
and extensive molecular characterization by depicting both 
spatial heterogeneity (intra‑tumoral and between different 
tumor sites) and temporal heterogeneity (mainly caused 
by anticancer treatments over time) [7, 8]. In particular, 
mCRC was proven highly heterogenous, with continuous 
clonal evolution especially under the selective pressure of 
anti‑cancer agents. Thus, routine monitoring of real‑time 
tumor‑associated genomic changes may appoint LB as a 
mainstay for treatment selection for the continuum of care 
in mCRC; furthermore, spatial omni‑comprehensiveness of 
LB may overcome tissue biopsy as a more accurate tool for 
high‑burden tumors [9–11]. In this review, we discuss the 
potential implications of LB in mCRC focusing on compari‑
son between CTCs and circulating DNA.

2  Definition and Techniques Adopted for LB

2.1  CTCs

First discovered through LB in the late nineteenth century, 
CTCs are intact cancer cells originating from both the pri‑
mary tumor and metastases, allowing an understanding of 
cancer spreading and metastasis [12]. Circulating tumor 
cells present with different proportions in various tumors, 
usually with a low concentration due to a short half‑life 
(1–10 cells per 10 mL of blood as compared to  107–108 
leukocytes) [13]. Heterogeneity hampers the definition of 
both sensitive and specific markers for collection. Circu‑
lating tumor cells are mainly separated by means of cer‑
tain physical (i.e., filtration) and biological properties (i.e., 
cell surface expression), generally requiring an enrichment 
step (to maximize collection) and a detection step [14]. To 
date, the CellSearch system is the only US Food and Drug 
Administration‑approved platform for the clinical detection 
of CTCs in patients with cancer, demonstrating a reproduc‑
ible CTC count and prognostic value also in mCRC. It uses 
positive enrichment through epithelial cell adhesion mol‑
ecule antibodies and then detection by immunostaining for 
cytokeratins and DAPI as markers for intact epithelial cells, 
together with absent CD45 as an exclusion marker labeling 
leukocytes [15]. In CRC, CTCs were detectable through 
CellSearch with a 36.2% sensitivity, correlating with clinical 
staging (up to 60.7% in mCRC) [16]. As an alternative, the 

AdnaTest integrates epithelial cell adhesion molecule‑based 
enrichment with detection of cancer‑specific genes through 
polymerase chain reaction (PCR), overcoming the expres‑
sion loss of surface proteins due to epithelial‑mesenchymal 
transition [17, 18]. Moreover, the combination of the Cell‑
Search assay with the AdnaTest further improved the CTC 
detection rate in mCRC (CellSearch positivity rate 33%, 
AdnaTest 30%, combined 50%) [19]. The advent of micro‑
fluidic platforms such as the ‘CTC‑chip’ further increased 
detection rates, efficiently collecting viable CRC‑CTCs in 
microposts coated with a mixture of antibodies, under lami‑
nar flow [20]. When comparing CellSearch with IsoFlux, a 
microfluidic system with immunomagnetic implementation, 
the CRC‑CTC yield was eight times higher with the latter 
[21]. Enrichment through leukapheresis could also substan‑
tially increase the CRC‑CTC detection when combined with 
CellSearch [22]. The EPISPOT test and photoacoustic flow 
cytometry, the latter allowing in vivo CTC detection through 
the skin, are the most cutting‑edge technologies in devel‑
opment [23, 24]. Overall, technological advances have led 
to dozens of new platforms with implemented capture effi‑
ciency, throughput rates, purity, and capability of molecular 
analysis [25, 26].

2.2  Circulating DNA

Circulating free DNA (cfDNA) was first detected in the 
mid‑Twentieth century, consisting of fragments of non‑
encapsulated DNA in the bloodstream of healthy individuals 
[27]. In the late 1970s, comparable circulating tumor DNA 
(ctDNA) from malignant cells was discovered in patients 
with cancer [28]. As a result of increased cell turnover, 
patients with cancer usually have higher cfDNA levels than 
healthy subjects, with a variable ctDNA‑to‑cfDNA ratio of 
0.01–90% depending on the tumor type, biological behav‑
ior, and cancer stage [29]. Among various malignancies, 
mCRC harbors the highest ctDNA amount [30]. Apart 
from genetic alterations, epigenetic modifications can be 
captured on ctDNA, most commonly in the form of DNA 
methylation. Difficulties in ctDNA detection include low‑
frequency aberrations and non‑neoplastic age‑dependent 
alterations in common driver genes. Hence, ctDNA detection 
requires highly sensitive and specific approaches [31]. Tar‑
geted methods such as quantitative and digital PCR (dPCR) 
mainly differ in their limit of ctDNA detection, reaching 
rates of 0.1% and 0.005%, respectively [32, 33]. Further 
high‑resolution PCR‑based technologies such as BEAM‑
ing, ARMS, and UltraSEEK further enhance the sensitivity 
to 0.001% and allele specificity up to a single base differ‑
ence with the detection of multiple minor variants in a sin‑
gle reaction [34–36]. While PCR remains confined to the 
analysis of few loci, NGS provides simultaneous targeted 
characterization of multiple genomic alterations focusing 
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on regions of interest for mutations, but also copy num‑
ber variations and chromosomal rearrangements [37, 38]. 
Untargeted whole genome sequencing further expands the 
genomic analysis, with potential applicability to extensive 
clonal tracking due to tumor progression or treatments, at 
the expense of higher costs and lower sensitivity especially 
for low‑frequency ctDNA. However, fragment size analysis 
and selective sequencing of specific fragment sizes boosted 
ctDNA detection for whole genome sequencing in plasma 
samples from patients with mCRC [39]. Furthermore, a new 
whole genome sequencing method named Plasma‑Seq over‑
came this issue by providing sequencing in less than 48 h 
[40, 41]. Finally, circulating methylated DNA (cmDNA) is 
similarly evaluated through targeted or untargeted interroga‑
tion. Apart from conventional direct bisulfite sequencing or 
pyrosequencing, novel methods such as methylation‑specific 
PRC and methyl‑BEAMing were found capable of sensitive 
detection of cmDNA [42, 43]. A summary of circulating 
DNA and CTCs with regard to advantages and drawbacks of 
both methods is available in Fig. 1, while the main features 
with regard to mCRC are listed in Table 1. 

2.3  Exosomes

Exosomes are small extracellularly secreted vesicles (50–150 
nm), containing evaluable biomarkers such as nucleic acids 
[44]. Given the preservation of RNA from RNAase enzy‑
matic activity, exosomes may provide a source of messen‑
ger RNA and microRNA (miRNA), the latter being small 
non‑coding RNA molecules implied in RNA silencing and 
carcinogenesis [45, 46]. Exosomes can be isolated from 
peripheral blood using biophysical properties such as cen‑
trifugation or precipitation, and immunoaffinity capture. 
After extraction procedures, targeted or untargeted meth‑
ods are employed for RNA detection [47]. Despite limited 
research in this field for CRC, serum exosomal miRNA such 
as miRNA21, miRNA23, miRNA19a, and miRNA92a were 
identified as the most increased in this disease, some of them 
correlating with tumor prognosis, recurrence, and sensitivity 
to anti‑cancer agents [48–52]. However, an in‑depth analysis 
of exosomes in mCRC is beyond the scope of this review.

Fig. 1  Advantages and disadvantages of circulating tumor cells 
(CTCs) and circulating tumor DNA (ctDNA) in metastatic colorectal 
cancer (mCRC). Collection of CTCs is mainly impaired by their low 
abundance in plasma (median 2 CTCs/7.5 mL of peripheral blood in 
mCRC). Furthermore, high heterogeneity of cell surface expression 
and loss of epithelial markers (due to epithelial‑mesenchymal tran‑
sition [EMT]) also contribute to complexity in CTC isolation; their 
use allows cell culturing and xenografting, hence bridging the clinical 

and preclinical scenarios. On the contrary, ctDNA is easily detectable 
in peripheral blood and its feasibility allows intensive clonal track‑
ing and monitoring of emerging resistance mechanisms during active 
treatment in mCRC; however, a low frequency of certain genomic 
aberrations and interference of non‑neoplastic clonal expansion may 
compromise sensitivity and specificity. Created with smart.servier.
com
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3  Prognostic and Predictive Value of LB

As treatment options expanded in mCRC, imaging studies 
remain the main discriminating factor for progression to 
anticancer therapy. Blood biomarkers are needed to predict 
tumor response and determine a priori reliable prognostic 
groups of patients with mCRC.

3.1  CTCs

Several studies demonstrated that CTC levels are associ‑
ated with shorter survival in mCRC, as they positively cor‑
relate with tumor burden and aggressiveness. Cohen and 
colleagues proved feasibility of CTC isolation in 50 patients 
with mCRC, with 77% presenting with ≥ 1 CTC/7.5 mL 
of blood and a median yield of 2 CTCs/7.5 mL, dramati‑
cally less than other malignancies [53, 54]. In a following 
study on 430 patients with mCRC, ≥ 3 CTCs/7.5 mL was 
associated with shorter progression‑free survival (PFS) and 
OS (PFS 4.5 vs 7.9 months, p = 0.0002; OS 9.4 vs 18.5 
months, p < 0.0001). Conversion of baseline CTC count 
under cytotoxic chemotherapy from ≥ 3 to <3 within 5 
weeks of treatment was associated with longer PFS and OS 
(PFS 6.2 vs 1.6 months; p = 0.02; OS 11.0 vs 3.7 months, p 

= 0.0002) [55]. The combination of CTCs and carcinoem‑
bryonic antigen (CEA) was capable of finer stratification in 
patients with baseline CEA ≥ 25 ng/mL, as those with < 3 
baseline CTCs had longer OS (OS 20.8 vs 11.7 months, p 
= 0.001) and, among patients with a similar CEA reduc‑
tion after treatment, the three CTC cut‑off at 6–12 weeks 
distinguished two opposite prognostic groups (OS 19.8 vs 
5 months, p = 0.0001) [56]. These results were corrobo‑
rated by several studies, including ancillary studies of the 
CAIRO2 and the MACRO TTD trials, and a meta‑analysis 
of 2388 patients with CRC [57–59]. Association of the CTC 
count with poorer PFS and OS was also confirmed through 
a meta‑analysis of 264 patients with resectable colorectal 
liver metastases (CRLM) [OS hazard ratio (HR) 2.47, p < 
0.0001; PFS HR 2.07, p < 0.0001] [60]. High‑CTC levels 
were related with non‑resectability and impaired survival 
after metastasectomy, suggesting CTCs as a tool for deci‑
sion making before liver resection. Furthermore, patients 
with ≥ 2 CTCs/7.5 mL experienced reduced PFS and OS 
when analyzing all patients and resectable patients only (p < 
0.001) [61]. Given the proven prognostic value, some authors 
suggest that CTCs could help identify those patients benefit‑
ing the most from treatment intensification, avoiding high‑
toxicity regimens in low‑CTC mCRC [62]. High‑quality, 

Table 1  Main features of CTCs and ctDNA focusing on mCRC. Created with smart.servier.com

CTCs circulating tumor cells, ctDNA circulating tumor DNA, dPCR digital polymerase chain reaction, EMT epithelial‑mesenchymal transition, 
mCRC  metastatic colorectal cancer, MRD minimal residual disease, mRNA messenger RNA

CTCs
  

ctDNA
  

Origin Viable and apoptotic cells Mainly apoptotic cells
Components DNA, RNA, proteins, metabolites DNA
Suitable analyses Genomics (mutations, copy number alterations, 

epigenetic alterations, fusion genes); transcriptom‑
ics (mRNA, including splice variants); proteomics; 
single‑cell level analysis

Mutations, copy number alterations, epigenetic altera‑
tions, fusion genes

Culturing and xenografting Yes No
Sensitivity and specificity Low sensitivity due to low abundance in plasma 

(especially for mCRC), heterogeneity of biomarkers 
for identification and EMT; around 50% sensitivity 
when combining CellSearch assay and the AdnaT‑
est; variable specificity according to detection 
methods

High sensitivity due to large abundance in plasma 
(especially for mCRC); detection of mutant alleles 
with a fractional abundance up to 0.001% with 
dPCR; improved sensitivity and specificity with 
emerging tumor‑informed techniques; impaired spec‑
ificity due to background noise from non‑neoplastic 
age‑dependent alterations (i.e., clonal hematopoiesis)

Applications in the continuum 
of care for patients with 
mCRC 

Prognosis, prediction of treatment response, molecu‑
lar profiling, clonal evolution tracking and early 
identification of resistance mechanisms, treatment 
response monitoring, early detection of recurrence 
and MRD, in vivo tests of drug sensitivity

Prognosis, prediction of treatment response, molecular 
profiling, clonal evolution tracking and early identifi‑
cation of resistance mechanisms, treatment response 
monitoring, early detection of recurrence, and MRD
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well‑designed, large‑scale, multicenter prospective inter‑
ventional studies are needed to assess if CTC‑based thera‑
peutic decisions could improve prognosis in mCRC. To date, 
the main effort to employ CTCs as a prognostic tool for 
treatment intensification or de‑escalation in patients with 
mCRC comes from the VISNU‑1 and VISNU‑2 trials. In the 
phase III VISNU‑1 trial, patients with mCRC with three or 
more baseline CTCs/7.5 mL (poor prognostic factor) were 
randomized to receive first‑line bevacizumab with either 
FOLFOXIRI or FOLFOX, with superior PFS for the triplet 
arm [63]. Conversely, low‑risk (< 3 CTCs/7.5 mL) patients 
with RAS wild‑type (WT) mCRC were treated with doublet 
FOLFIRI with bevacizumab or cetuximab in the phase II 
VISNU‑2 trial, to assess the influence of BRAF and PI3K 
mutational status on treatment efficacy [64]. Because a high‑
CTC count was established as a negative prognostic factor, 
this non‑invasive biomarker may guide treatment selection 
in the mCRC first‑line setting [65].

3.2  Circulating DNA

As with CTCs, circulating DNA was found to be prognostic 
in mCRC. Spindler and colleagues measured cfDNA in 55 
patients with mCRC, achieving a wide range distribution 
(22–3922 ng/mL blood) and a mean value of 1157 ng/mL, 
with cfDNA levels > 1000 ng/mL correlating with shorter 
survival (p = 0.02) [29]. Similarly, a retrospective post hoc 
study of the NORDIC‑VII trial found that high cfDNA levels 
before chemotherapy were associated with an impaired out‑
come (OS HR 1.83, p < 0.001), then confirmed by a meta‑
analysis of 1076 patients with mCRC (OS HR = 2.39, p < 
0.0001) [66, 67]. A retrospective analysis of the CORRECT 
trial showed that clinical benefit from regorafenib was asso‑
ciated with KRAS and PIK3CA WT ctDNA status (KRAS 
WT vs mutant‑pinteraction 0.74; PIK3CA WT vs mutant‑
pinteraction 0.85) as well as low cfDNA concentration (low 
vs high cfDNA‑pinteraction 0.601) [68]. Furthermore, com‑
bined analysis of cfDNA and ctDNA added a supplemen‑
tary prognostic impact [69]. Early changes in ctDNA levels 
were suggested as a biomarker for treatment response and 
outcomes in patients with mCRC. In a study of 29 patients 
with mCRC assessing ctDNA levels at baseline and 8 weeks 
after chemotherapy, ctDNA halved the predicted radiologi‑
cal response and resulted in longer PFS and OS (PFS HR 
0.33, p = 0.04; OS HR 0.30, p = 0.08) [70]. Similarly, serial 
ctDNA analysis was able to identify a subsequent increase 
in ctDNA in initial responders to cytotoxic agents, effec‑
tively anticipating tumor progression as proven by shorter 
PFS and OS [71]. These results are consistent with those 
from the 82 patients with mCRC in the PLACOL study, 
monitoring ctDNA or hypermethylated alleles by dPCR 
[72]. The prognostic role of ctDNA was confirmed also in 
41 patients with CRLM, where a decreased ctDNA/b‑globin 

ratio after liver surgery predicted longer disease‑free sur‑
vival (366 vs 102 days, p < 0.001) [73]. In another cohort 
of 18 patients with CRLM, ctDNA was more sensitive than 
CEA in detecting minimal residual disease (ctDNA 100% vs 
CEA 56%, p = 0.008) and predicting postoperative recur‑
rence (p = 0.003) [74]. In the PREDATOR trial, sensitivity 
for minimal residual disease was improved by personalized 
tumor‑informed ctDNA detection, assessing plasma muta‑
tions according to erstwhile tumor tissue profiling in 113 oli‑
gometastatic patients with CRC (HR 4.59, p < 0.001) [75]. 
Finally, cmDNA due to epigenetic changes was employed 
to circumvent the absence of cancer‑specific mutations in 
cfDNA. In a study assessing five methylated loci, 87% of 
182 patients with mCRC showed positivity in one or more 
loci, dynamically correlating with overall response rate and 
PFS in those receiving anticancer therapy [76]. Amatu et al. 
confirmed baseline and dynamic cmDNA as prognostic and 
predictive in patients with mCRC treated with regorafenib 
[77]. Validation of circulating DNA in prospective clinical 
trials is warranted. The ongoing trial NCT03844620 is cur‑
rently evaluating ctDNA capability to serve as a guide for 
precocious interruption of regorafenib or TAS‑102 indepen‑
dently from radiological progression [78].

4  Molecular Profiling and Monitoring 
of Resistance Mechanisms Through LB

In the era of personalized medicine, the administration of 
targeted therapies is still relatively impeded by difficulties 
in tissue biopsy, which is not as feasible as necessary for 
extended molecular characterization and assessment of 
evolving molecular targets. LB is currently under investiga‑
tion as a tool for genomic profiling in mCRC. Figure 2 shows 
a potential algorithm for LB as a guide for treatment selec‑
tion and monitoring according to clonal tracking in patients 
with mCRC receiving active treatment.

4.1  CTCs

Cayrefourcq and colleagues were the first to report the suc‑
cessful establishment of a stable mCRC‑derived CTC line. 
However, only one long‑term CTC line was achieved from 
71 unique blood samples (1.4%). Noteworthy, this required 
a CTC count over 300/10 mL, available only for two sam‑
ples. Despite the low success rate of CTC line generation, 
culturing allowed NGS‑based genomic analysis, followed by 
single‑cell transcriptome, proteome, and secretome analysis, 
and xenotransplantation. Importantly, KRAS and BRAF con‑
cordance was proven between primary tumor, metastases, 
cell line, and xenografts [79]. Moreover, CTC genotyping 
allowed the identification of tissue‑undetected mutations 
and secondary mechanisms of resistance to anti‑epidermal 
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growth factor receptor (EGFR) drugs [80, 81]. Altogether, 
the rarity of CTCs and strain from CTC line establishment 
are the major drawbacks in this setting [82].

4.2  Circulating DNA

The tumor mutational landscape is reflected by ctDNA, and 
high concordance with tissue analysis (> 80%) has been 
reported regarding main genomic alterations in mCRC [10, 
30, 70]. The ongoing COLOMATE (NCT03765736) and 
TARGET trials are screening ctDNA genetic alterations 
in mCRC for enrolment onto targeted therapy‑based/early‑
phase clinical trials [83]. Here, follows the main fields of 
interest for ctDNA profiling in mCRC.

4.2.1  Resistance to Anti‑EGFR MoAb

Mutant status of RAS or BRAF is known to confer primary 
resistance to anti‑EGFR monoclonal antibodies (MoAb) [84, 
85]. With the advent of LB, many studies focused on the 
detection of RAS ctDNA in patients with mCRC, proving 
> 90% concordance with tissue analysis [10, 86–89]. The 
absence of liver metastases and primary tumor resection 
were the main clinical factors associated with unsuccessful 
ctDNA detection in the AGEO RASANC prospective study 
[89]. In the CAPRI‑GOIM trial, first‑line cetuximab‑based 
therapy yielded consistent PFS and OS dichotomy between 
patients with RAS MT and WT mCRC, when retrospectively 
assessed by both LB and tissue biopsy [90]. Discordant 

Fig. 2  Clonal tracking with liquid biopsy (LB) in patients with meta‑
static colorectal cancer (mCRC) receiving active treatment. After 
mCRC diagnosis (1), the collection of blood samples for LB (2,3) 
allows the detection of circulating tumor DNA (ctDNA) and circu‑
lating tumor cells (CTCs) (4). Their analysis provides useful infor‑
mation for molecular profiling and treatment selection; additionally, 

CTCs can be employed for culturing and xenografting, thus adding 
relevant data of tumor sensitivity to the selected treatment (5). Given 
the high feasibility of LB, new blood samples are then collected dur‑
ing active treatment, to monitor the emergence of resistance through 
clonal tracking (6). Created with BioRender.com
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cases were attributed to high spatial heterogeneity, as tis‑
sue biopsy cannot fully reflect clonality in mCRC. Indeed, 
a higher frequency of ctDNA KRAS, NRAS, and BRAF 
mutations were found as compared with tissue (59% vs 
44%, 11.8% vs 8.8%, and 14.4% vs 7.2%, respectively) [91]. 
Even if previously sensitive to an anti‑EGFR MoAb, most 
RAS WT mCRC eventually acquire secondary resistance. 
Siravegna et al. tracked clonal evolution through ctDNA dur‑
ing treatment with anti‑EGFR MoAb and found emerging 
alterations in RAS, ERBB2, FLT3, EGFR, and other genes 
[10]. A prospective LB‑based trial monitored patients with 
KRAS WT mCRC receiving first‑line FOLFIRI‑cetuximab 
and found that persistent RAS, BRAF, and PIK3CA WT cir‑
culating status correlated with prolonged response, while 
an increase in mutant cfDNA predicted acquired resistance 
[92]. Besides, LB drastically anticipated radiographic pro‑
gression as ctDNA KRAS MT alleles were detectable > 10 
months beforehand [11]. Siena et al. reported results from a 
prospective analysis in patients with mCRC, confirming that 
serial plasma biopsies are more inclusive than tissue biopsies 
for evaluating RAS acquired mutations under selective pres‑
sure of anti‑EGFR treatment. In a series of 15 patients with 
paired tumor tissue biopsy and plasma samples, BEAMing 
on LB showed a far higher RAS MT emergence rate than 
tissue analysis by BEAMing and NGS (57.1% vs 7.1% and 
9.5%, respectively, p = 0.008), though without an impact on 
PFS. However, only RAS mutations were investigated by LB 
in this study, leaving aside other known molecular mecha‑
nisms of resistance [93]. A similar prospective investigation 
expanded the analysis to ERBB2 and MET amplifications, 
with high heterogeneity [94]. Eventually, LB could help 
detect those preexisting tissue biopsy‑concealed resistant 
subclones proliferating and expanding under positive pres‑
sure of anti‑EGFR treatments, until conferring resistance to 
therapy [95].

4.2.2  Resistance to HER2‑Targeted Therapies

Several actionable genomic alterations are emerging as 
resistance mechanisms and potential therapeutic targets in 
mCRC. Approximately 5% of advanced KRAS WT mCRC 
were found harboring ERBB2 amplification/HER2 over‑
expression (HER2+). Recently, ERBB2 amplification was 
found responsible for both primary and secondary resist‑
ance to anti‑EGFR MoAb [96]. In this population of mCRC, 
anti‑HER2 dual blockade regimens were successfully tested 
in the HERACLES (trastuzumab‑lapatinib) and MyPath‑
way (trastuzumab‑pertuzumab) trials with a similar ORR 
of around 30%, and the most recent MOUNTAINEER 
(trastuzumab‑tucatinib) with a 55% ORR. Data from the 
DESTINY‑CRC01 trial using the antibody drug‑conjugate 
trastuzumab‑deruxtecan have been released at ASCO 2020 
with promising results also in anti‑HER2 pretreated mCRC 

[97–100]. Liquid biopsy was recently explored as a method 
of assessment for HER2 status in a cohort of 18 patients 
with cetuximab‑resistant mCRC, with 4/18 (22%) classi‑
fied as ctDNA HER2+, concordantly with tissue samples 
at re‑biopsy [101]. In a larger cohort of 344 patients with 
advanced gastrointestinal tumors (74% of which mCRC), 
ctDNA analysis found 5% had ctDNA HER2+ [102]. Sir‑
avegna and coworkers assessed concordance between LB 
and tissue analysis in a retrospective study from the HERA‑
CLES trial, with ctDNA correctly identifying 96.6% of sam‑
ples as HER2+ and predicting benefit from HER2‑targeted 
therapy [103]. Furthermore, an NGS analysis on ctDNA 
identified primary resistance mechanisms, undetectable with 
tissue biopsy, revealing that interventional LB could prevent 
ineffective employment of anti‑HER2 treatment in > 85% 
of cases [104].

4.2.3  Other Biomarkers for Targeted Therapy

Around 10% of CRC harbor BRAF mutations, mostly 
V600E, conferring poor prognosis and representing an 
unmet medical need. The BEACON trial recently estab‑
lished BRAF as a therapeutic target in mCRC [105]. In an 
earlier study of 85 tissue‑selected BRAF V600E MT mCRC, 
cfDNA BEAMing analysis revealed that 83.5% had detect‑
able‑BRAF mutations in plasma at baseline, dynamically 
predicting treatment response to anti‑BRAF therapy [106]. 
Immunotherapy is a well‑established therapeutic option for 
MMR‑deficient mCRC [3, 4]. While few studies reported 
>98% accuracy of ctDNA MMR‑deficient noninvasive iden‑
tification, an ongoing prospective trial (NCT03594448) is 
investigating serial LB as a detection method for MMR‑
deficient mCRC [107, 108].

5  LB‑Driven Retreatment Strategies 
with Anti‑EGFR MoAb

Within the continuum of care, retreatment with anti‑EGFR 
MoAb is a valid therapeutic strategy, especially in the way of 
a rechallenge after a wash‑out period from previous progres‑
sion [109, 110]. Liquid biopsy is the most suitable approach 
to determine restored sensitivity to anti‑EGFR MoAb before 
a rechallenge. The CRICKET trial, a proof‑of‑concept 
study of third‑line rechallenge with cetuximab‑irinotecan, 
prospectively collected ctDNA in 28 patients with tissue‑
proven RAS/BRAF WT mCRC, revealing that only patients 
with RAS WT ctDNA at the time of the rechallenge were 
achieving partial response and positive correlation with 
PFS (PFS 4.0 vs 1.9 months, p = 0.03) [111]. These results, 
together with the post‑hoc analyses of JACCRO CC‑08, 
JACCRO CC‑09, and E‑Rechallenge trials, suggest that 
ctDNA could guide the selection of patients benefiting from 
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an anti‑EGFR rechallenge, by excluding those with detect‑
able resistant clones [112, 113]. The ongoing biomarker‑
driven CHRONOS trial (NCT03227926) will strengthen 
these findings by adopting ctDNA analysis as an inclusion 
criterion. This proof‑of‑concept prospective study enrolls 
patients with RAS/BRAF WT mCRC and prior sensitivity 
to anti‑EGFR treatment, who then developed secondary 
resistance and were treated with one or more following lines 
of therapy. Candidates are only eligible for panitumumab 
rechallenge when absence/> 50% decrease in ctDNA RAS 
fractional mutation is proven after progression on first‑line 
anti‑EGFR, together with the absence of ctDNA EGFR ecto‑
domain mutations. Similarly, the phase II NCT03087071 
trial involves LB for RAS, BRAF, and EGFR ectodomains 
before rechallenge with panitumumab: patients without any 
RAS and BRAF mutations receive panitumumab as a sin‑
gle agent, whereas others receive a combination of panitu‑
mumab and trametinib. Martinelli and colleagues recently 
announced a proof‑of‑concept LB‑driven prospective study 
of sequential treatments in patients with RAS/BRAF WT 
mCRC (CAPRI 2‑GOIM trial), where treatment choices 
will be defined by ctDNA results. According to the study 
design, LB is collected after first‑line anti‑EGFR treatment 
to determine whether progression is on account of secondary 
resistance to anti‑EGFR or other independent mechanisms, 
offering two sequence strategies: a continuum treatment 
with cetuximab beyond first line with a chemotherapy regi‑
men switch in patients with ctDNA RAS WT; or a second‑
line treatment with FOLFOX‑bevacizumab in patients with 
ctDNA RAS MT mCRC and then, if the patient reverts back 
to ctDNA RAS WT, rechallenge with cetuximab‑irinotecan 
in the third line or, conversely, a standard‑of‑care third‑line 
treatment in the case of persistent ctDNA RAS MT [114]. 
Finally, ctDNA could guide the correct sequence of anti‑
EGFR MoAb. When secondary resistance is due to certain 
mutations of EGFR ectodomain identified as S492R, K467, 
or R451C mutants, the tumor ceases to be sensitive to cetux‑
imab but not to panitumumab, thus allowing switching of 
anti‑EGFR moAb [115]. According to a recent study, up to 
16% of S492R EGFR mutations were detected in 239 post‑
cetuximab plasma samples of patients with mCRC [116].

6  Direct Comparison between CTCs 
and Circulating DNA

Bettegowda and colleagues used dPCR to identify rear‑
rangements in CTC‑DNA and ctDNA of nine patients with 
CRC, of which five had mCRC. In 100% of cases, ctDNA 
could be measured, whereas CTC‑DNA was detectable 
in three out of five (60%), those with the most abundant 

ctDNA levels. The average number of ctDNA fragments 
was > 50‑fold higher than analogous levels of CTCs [30]. 
Similarly, Germano et al. performed a parallel evaluation of 
CTCs and ctDNA in a cohort of 20 patients with mCRC. A 
100% ctDNA detectability was assessed by droplet dPCR 
(ddPCR), whilst CTCs were isolated in 37% of patients, with 
>1 CTC/10 mL of blood in only two patients, again in those 
with a higher amount of ctDNA (p < 0.005). Tissue‑LB 
concordance for ctDNA RAS, BRAF, and ERBB2 was 85%, 
while CTCs were too limited for this analysis [117]. In the 
prospective PRODIGE‑14 trial, levels of CTCs and KRAS 
ctDNA were investigated in a cohort of 153 patients with 
potentially resectable CRLM treated with first‑line triplet 
(FOLFIRINOX) or doublet chemotherapy associated with 
targeted therapy. Assessment through CellSearch at inclu‑
sion showed ≥ 1 CTC/7.5 mL in 42% of patients, while 91% 
of 46 tissue‑genotyped KRAS MT patients were confirmed 
by ddPCR. The proportion of patients with ≥ 3/7.5 mL 
CTCs decreased during chemotherapy from 19% at baseline 
to 3% after 4 weeks and 0% before liver surgery; likewise, 
ctDNA lowered from 91 to 63% and then 19%. Detectable 
KRAS ctDNA after 4 weeks was associated with a lower R0/
R1 surgical outcome (p = 0.01) and, among patients with 
R0/R1 resection, detectable ctDNA levels before surgery 
conferred shorter OS (p < 0.001). In multivariate analysis, 
≥ 3 CTCs was an independent prognostic factor for OS both 
at baseline and after 4 weeks of therapy [118]. Onidani and 
coworkers improved CTC detection using an epithelial cell 
adhesion molecule‑independent approach in a cohort of 20 
patients with gastrointestinal cancer, among whom 11 had 
mCRC (55%), with a median 14.5 CTCs/mL. A combina‑
tion NGS analysis of genomic profiles obtained from CTCs 
and ctDNA showed low concordance, suggesting high tumor 

Table 2  Comparison of sensitivity for ctDNA and CTCs in mCRC 

CTCs circulating tumor cells, CTC-DNA DNA extracted from circu‑
lating tumor cells, ctDNA circulating tumor DNA, mCRC  metastatic 
colorectal cancer

Study Detectable ctDNA 
(%)

Detectable 
CTCs or CTC‑
DNA

Bettegowda et al. [30]
5 patients with mCRC 

100 60

Germano et al. [117]
20 patients with mCRC 

100 37

Bidard et al. [118]
46 patients with mCRC 

91 42

Onidani et al. [81]
7 patients with mCRC 

100 57
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heterogeneity. An additional cohort of seven patients with 
mCRC undergoing anti‑EGFR treatment was studied for the 
appearance of resistance genetic alterations at the time of 
progression, with 100% ctDNA and 57% CTC‑DNA detec‑
tion [81]. Table 2 summarizes and directly compares the 
sensitivity for ctDNA and CTCs (or CTC‑DNA) reported 
by these investigations of mCRC, showing higher detection 
rates for ctDNA.

7  Conclusions

Recent advances in terms of feasibility in the clinic and 
a faster turnaround time, together with molecular‑imple‑
mented assessment of both spatial and temporal cancer 
heterogeneity, made LB a valid noninvasive candidate to 
challenge traditional tissue biopsy. Circulating tumor cells 
and circulating DNA are the tumor components most widely 
studied with this approach, carrying diagnostic, prognostic, 
and predictive information also in mCRC. Ongoing trials 
assessing their role in mCRC are reported in Tables 3 and 4. 
Remarkable future applications of LB could be envisioned 
all along the continuum of care of patients with mCRC 
(Fig. 3). In the first‑line treatment setting, LB could expe‑
dite molecular profiling for the administration of targeted 
anticancer agents (i.e., anti‑EGFR drugs) [86, 119, 120]. 
Further, prognostically proven ctDNA and CTC levels could 
became additional decision criteria for de‑escalation/intensi‑
fication of upfront backbone chemotherapy and modulation 
of post‑operative treatment in the oligometastatic setting, 
even if the ideal cut‑off in this regard is missing [29, 55, 
60, 63, 75]. In later lines of therapy, ctDNA could inform 
treatment sequence and drug selection, by identification of 
the best timing for anti‑EGFR retreatment, based on RAS 
and EGFR clonal tracking, or identification of mechanisms 
of resistance for upfront or sequential enhanced targeting 
[112]. Molecular selection for clinical trials has already 
been taking advantage of LB owing to its increased feasi‑
bility and comprehensiveness for screening criteria [83, 120, 
121]. As a future prospective, “molecular” progression will 
complement radiological evaluation, while computational 
mathematics already proved capable of predicting time‑
to‑treatment failure in patients with mCRC through clonal 
tracking forecast [78, 122]. Finally, although not a focus of 
the present review, LB may have a role as a screening tool 
in CRC and is currently under intense investigation aiming 
to guide decisions about adjuvant treatment for patients with 
stage II–III surgically resected CRC [123, 124]. In conclu‑
sion, LB represents a major opportunity for better tailoring 
the whole patient care in mCRC, with ctDNA especially 
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demonstrating, from initial pioneering studies in this tumor 
type [11], an ever‑increasing acceleration toward multiple 
clinical applications.  
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