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Abstract: For any real number p ∈ [1, +∞), we characterise the operationsℝI → ℝ that preserve p-integrabi-
lity, i.e., the operations under which, for every measure μ, the set Lp(μ) is closed. We investigate the infini-
tary variety of algebras whose operations are exactly such functions. It turns out that this variety coincides
with the category of Dedekind σ-complete truncated Riesz spaces, where truncation is meant in the sense
of R. N. Ball. We also prove that ℝ generates this variety. From this, we exhibit a concrete model of the free
Dedekind σ-complete truncated Riesz spaces. Analogous results are obtained for operations that preserve
p-integrability over finite measure spaces: the corresponding variety is shown to coincide with the much
studied category of Dedekind σ-complete Riesz spaces with weak unit, ℝ is proved to generate this variety,
and a concrete model of the free Dedekind σ-complete Riesz spaces with weak unit is exhibited.
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1 Introduction

1.1 Operations that preserve integrability

In thisworkwe investigate the operationswhich are somehow implicit in the theory of integration by address-
ing the following question: which operations preserve integrability, in the sense that they return integrable
functions when applied to integrable functions?

Let us clarify the question by recalling some definitions.
For (Ω,F, μ) a measure space (with the range of μ in [0, +∞]) and p ∈ [1, +∞), we adopt the notation

Lp(μ) := {f : Ω → ℝ | f is F-measurable and ∫Ω|f|p dμ <∞}. It is well known that, for f, g ∈ Lp(μ), we have
f + g ∈ Lp(μ), that is, Lp(μ) is closed under the pointwise addition induced by addition of real numbers+ : ℝ2 → ℝ. More generally, consider a set I and a function τ : ℝI → ℝ, which we shall call an operation of
arity |I|. We sayLp(μ) is closed under τ if τ returns functions inLp(μ)when applied to functions inLp(μ), that
is, for every (fi)i∈I ⊆ Lp(μ), the function τ((fi)i∈I) : Ω → ℝ given by x ∈ Ω → τ((fi(x))i∈I) belongs to Lp(μ).
If Lp(μ) is closed under τ, we also say that τ preserves p-integrability over (Ω,F, μ). Finally, we say that τ
preserves p-integrability if τ preserves p-integrability over every measure space.

In Part I of this paper we characterise those operations that preserve integrability. Indeed, the first ques-
tion we address is the following.
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Question 1.1. Under which operations ℝI → ℝ are Lp spaces closed? Equivalently, which operations pre-
serve p-integrability?

Examples of such operations are the constant 0, the addition +, the binary supremum ∨ and infimum ∧, and,
for λ ∈ ℝ, the scalar multiplication λ( ⋅ ) by λ. A further example is the operation of countably infinite arity

b

defined as j(y, x0, x1, . . . ) := sup
n∈ω
{xn ∧ y}.

Yet another example is the unary operation ⋅ : ℝ→ ℝ,
x → x := x ∧ 1,

called truncation. Here, although the constant function1belongs toLp(μ) if, and only if, μ is finite, it is always
the case that f ∈ Lp(μ) implies f ∈ Lp(μ).

It turns out that, for any given p, the operations that preserve p-integrability are essentially just 0, +,∨, λ( ⋅ ) (for each λ ∈ ℝ), b
and ⋅ , in the sense that every operation that preserves p-integrability may be

obtained from these by composition. This we prove in Theorem 2.3.
We also have an explicit characterisation of the operations that preserve p-integrability. Denoting withℝ+ the set {λ ∈ ℝ | λ ⩾ 0}, for n ∈ ω and τ : ℝn → ℝ, we will prove that τ preserves p-integrability precisely

when τ is Borel measurable and there exist λ0, . . . , λn−1 ∈ ℝ+ such that, for every x ∈ ℝn, we have|τ(x)| ⩽ n−1∑
i=0
λi|xi|.

Theorem 2.1 tackles the general case of arbitrary arity, settling Question 1.1.
In Part I we also address a variation of Question 1.1 where we restrict attention to finite measures. Recall

that a measure μ on a measurable space (Ω,F) is finite if μ(Ω) <∞. The question becomes:

Question 1.2. Under which operations ℝI → ℝ are Lp spaces of finite measure closed? Equivalently, which
operations preserve p-integrability over finite measure spaces?

As mentioned, the function constantly equal to 1 belongs to Lp(μ) for every finite measure μ. We prove in
Theorem 2.4 that, for any given p, the operations that preserve p-integrability over finite measure spaces are
essentially just 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b and 1, in the same sense as in the above.

Theorem 2.2 provides an explicit characterisation of the operations that preserve p-integrability over
finite measure spaces. In particular, for n ∈ ω and τ : ℝn → ℝ, τ preserves p-integrability over finite measure
spaces precisely when τ is Borel measurable and there exist λ0, . . . , λn−1, k ∈ ℝ+ such that, for every x ∈ ℝn,
we have |τ(x)| ⩽ k + n−1∑

i=0
λi|xi|.

1.2 Truncated Riesz spaces and weak units

In Part II of this paper we investigate the equational laws satisfied by the operations that preserve p-integra-
bility. (As it is shown by Theorems 2.1 and 2.2, the fact that an operation preserves p-integrability – over
arbitrary and finitemeasure spaces, respectively – does not depend on the choice of p. Hence, we say that the
operation preserves integrability.) We therefore work in the setting of varieties of algebras [4]. In this paper,
under the term variety we include also infinitary varieties, i.e., varieties admitting primitive operations of
infinite arity. For background please see [16].

We assume familiarity with the basic theory of Riesz spaces, also known as vector lattices. All needed
background can be found, for example, in the standard reference [12]. As usual, for a Riesz space G, we
set G+ := {x ∈ G | x ⩾ 0}.
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A truncatedRiesz space is a Riesz spaceG endowedwith a function ⋅ : G+ → G+, called truncation, which
has the following properties for all f, g ∈ G+.
(B1) f ∧ g ⩽ f ⩽ f .
(B2) If f = 0, then f = 0.
(B3) If nf = nf for every n ∈ ω, then f = 0.
The notion of truncation is due to R. N. Ball [2], who introduced it in the context of lattice-ordered groups.
Please see Section 8 for further details.

Let us say that a partially ordered set B is Dedekind σ-complete if every nonempty countable subset
A ⊆ B that admits an upper bound admits a supremum. Theorem 10.2 proves that the category of Dedekind
σ-complete truncated Riesz spaces is a variety generated byℝ. This variety can be presented as having oper-
ations of finite arity only, together with the single operation

b
of countably infinite arity. Moreover, we prove

that the variety is finitely axiomatisable by equations over the theory of Riesz spaces. One consequence
(Corollary 10.4) is that the free Dedekind σ-complete truncated Riesz space over a set I (exists, and) is

Ft(I) := {f : ℝI → ℝ | f preserves integrability}.
We prove results analogous to the foregoing for operations that preserve integrability over finite measure

spaces. An element 1 of a Riesz space G is aweak (order) unit if 1 ⩾ 0 and, for all f ∈ G, f ∧ 1 = 0 implies f = 0.
Theorem 12.2 shows that the category of Dedekind σ-complete Riesz spaces with weak unit is a variety gen-
erated byℝ, again with primitive operations of countable arity. It, too, is finitely axiomatisable by equations
over the theory of Riesz spaces. By Corollary 12.4, the free Dedekind σ-complete Riesz space with weak unit
over a set I (exists, and) is

Fu(I) := {f : ℝI → ℝ | f preserves integrability over finite measure spaces}.
The varietal presentation of Dedekind σ-complete Riesz spaces with weak unit was already obtained

in [1]. Here we add the representation theorem for free algebras, and we establish the relationship between
Dedekind σ-complete Riesz spaces with weak unit and operations that preserve integrability. The proofs in
the present paper are independent of [1]. On the other hand, the results in this paper do depend on a version
of the Loomis–Sikorski Theorem for Riesz spaces, namely Theorem9.3 below. A proof can be found in [7], and
can also be recovered from the combination of [5] and [6]. The theorem and its variants have a long history:
for a fuller bibliographic account please see [5].

1.3 Outline

In Part I we characterise the operations that preserve integrability, and we provide a simple set of operations
that generate them. Specifically, we characterise the operations that preserve measurability, integrability,
and integrability over finite measure spaces, respectively in Sections 3, 4, and 5. In Section 6 we show that
the operations 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b

and ⋅ generate the operations that preserve integrability,
and that 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b and 1 generate the operations that preserve integrability over finite
measure spaces.

In Part II we prove that the categories of Dedekind σ-complete truncated Riesz spaces and Dedekind
σ-complete Riesz spaces with weak unit are varieties generated by ℝ. In more detail, in Section 7 we define
the operation

b
, in Section 8 we define truncated lattice-ordered abelian groups, in Section 9 we prove

a version of the Loomis–Sikorski Theorem for truncated ℓ-groups, in Section 10 we show the category of
Dedekind σ-complete truncated Riesz spaces to be generated by ℝ, in Section 11 we prove a version of the
Loomis–Sikorski Theorem for ℓ-groups with weak unit, in Section 12 we show the category of Dedekind
σ-complete Riesz spaces with weak unit to be generated byℝ.

Finally, as an additional result, in the Appendix we provide an explicit characterisation of the operations
that preserve∞-integrability.
Notation. We let ω denote the set {0, 1, 2, . . . }.



1490 | M. Abbadini, Operations that preserve integrability, and truncated Riesz spaces

Part I:
Operations that preserve integrability

2 Main results of Part I
In this section we state the main results of Part I, together with the needed definitions. The first two main
results (Theorems 2.1 and 2.2) are a characterisation of the operations that preserve p-integrability over arbi-
trary and finitemeasure spaces, respectively. The other twomain results (Theorems 2.3 and 2.4) provide a set
of generators for these operations. To state the theorems, we introduce a little piece of terminology.

For a set I, and i ∈ I, we denote by πi : ℝI → ℝ the projection onto the i-th coordinate. The cylin-
der σ-algebra on ℝI (notation: Cyl(ℝI)) is the smallest σ-algebra which makes each projection function
πi : ℝI→ℝ measurable. If |I| ⩽ |ω|, then the cylinder σ-algebra on ℝI coincides with the Borel σ-algebra
(see [10, Lemma 1.2]).

Theorem 2.1. Let I be a set, τ : ℝI → ℝ and p ∈ [1, +∞). The following conditions are equivalent.
(1) τ preserves p-integrability.
(2) τ is Cyl(ℝI)-measurable and there exist a finite subset of indices J ⊆ I and nonnegative real numbers (λj)j∈J

such that, for every v ∈ ℝI , we have |τ(v)| ⩽∑
j∈J
λj|vj|.

Theorem 2.2. Let I be a set, τ : ℝI → ℝ and p ∈ [1, +∞). The following conditions are equivalent.
(1) τ preserves p-integrability over every finite measure space.
(2) τ is Cyl(ℝI)-measurable and there exist a finite subset of indices J ⊆ I and nonnegative real numbers (λj)j∈J

and k such that, for every v ∈ ℝI , we have |τ(v)| ⩽ k +∑
j∈J
λj|vj|.

Theorems 2.1 and 2.2 show that the fact that an operation preserves p-integrability – over arbitrary and finite
measure spaces, respectively – does not depend on the choice of p. Hence, once Theorems 2.1 and 2.2 will
be settled, we will simply say that the operation preserves integrability.

Theother twomain results of Part I (Theorems2.3 and2.4below)provide a set of generators for the opera-
tions that preserve integrability over arbitrary and finite measure spaces, respectively. To state the theorems,
we start by defining, for any set C of operations τ : ℝJτ → ℝ, what we mean by operations generated by C.
Given two sets Ω and I, a subset S ⊆ ℝΩ, and a function τ : ℝI → ℝ, we say that S is closed under τ if, for
every family (fi)i∈I of elements of S, we have that τ((fi)i∈I) (which is the function from Ω to ℝ which maps x
to τ((fi(x))i∈I)) belongs to S. Consider a set C of functions τ : ℝJτ → ℝ, where the set Jτ depends on τ. We say
that a function f : ℝI → ℝ is generated by C if f belongs to the smallest subset ofℝℝI which contains, for each
i ∈ I, the projection function πi : ℝI → ℝ, and which is closed under each element of C.

Theorem 2.3. For every set I, the operationsℝI → ℝ that preserve integrability are exactly those generated by
the operations 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b, and ⋅ .
Theorem 2.4. For every set I, the operationsℝI → ℝ that preserve integrability over every finite measure space
are exactly those generated by the operations 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b, and 1.

The rest of Part I is devoted to a proof of Theorems 2.1–2.4.

3 Operations that preserve measurability
In this sectionwe studymeasurability, which is a necessary condition for integrability. In particular, we char-
acterise the operations that preserve measurability (Theorem 3.3). This result will be of use in the following



M. Abbadini, Operations that preserve integrability, and truncated Riesz spaces | 1491

sections as preservation of measurability is necessary to preservation of integrability (Lemma 4.2). Let us
start by defining precisely what we mean by “to preserve measurability”.

Definition 3.1. Let τ : ℝI → ℝ be a function. For (Ω,F) a measurable space, we say that the function τ pre-
serves measurability over (Ω,F) if, for every family (fi)i∈I ofF-measurable functions from Ω toℝ, the function
τ((fi)i∈I) : Ω → ℝ is alsoF-measurable.We say that τ preservesmeasurability if τ preservesmeasurability over
every measurable space.

Whenwe regardℝ as ameasurable space,we always do sowith respect to the Borel σ-algebra, denoted byBℝ.

Lemma 3.2. Let (Ω,F)beameasurable space, I a set and f : Ω→ℝI a function. Then f isF-Cyl(ℝI)-measurable
if, and only if, for every i ∈ I the function πi ∘ f : Ω → ℝ is F-Bℝ-measurable.
Proof. See [17, Theorem 3.1.29 (ii)].

Now we can obtain a characterisation of the operations that preserve measurability.

Theorem 3.3. Let I be a set and let τ : ℝI → ℝ be a function. The following are equivalent.
(1) τ preserves measurability.
(2) τ preserves measurability over (ℝI , Cyl(ℝI)).
(3) τ is Cyl(ℝI)-measurable.
Proof. (1)⇒ (2) Trivial.

(2)⇒ (3) For every i ∈ I, πi : ℝI → ℝ is Cyl(ℝI)-measurable. Since τ preserves measurability, τ((πi)i∈I) is
Cyl(ℝI)-measurable. Since (πi)i∈I : ℝI → ℝI is the identity, τ((πi)i∈I) = τ ∘ (πi)i∈I = τ is Cyl(ℝI)-measurable.

(3)⇒ (1) Let us consider ameasurable space (Ω,F)anda family (fi)i∈I ofmeasurable functions fi : Ω→ℝ.
Consider the function (fi)i∈I : Ω → ℝI , x → (fi(x))i∈I . We have πi ∘ (fi)i∈I = fi, therefore πi ∘ (fi)i∈I is measur-
able for every i ∈ I. Thus, by Lemma 3.2, (fi)i∈I is measurable. Thus τ((fi)i∈I) = τ ∘ (fi)i∈I is measurable,
because it is a composition of measurable functions.

3.1 The operations that preserve measurability depend on countably
many coordinates

A fact that will be of use in the following sections is that the operations that preserve measurability depend
on countably many coordinates. This we show in Corollary 3.6 below. Let us start by recalling what is meant
with “to depend on countably many coordinates”.

Definition 3.4. Given a set I.
(1) Let S ⊆ ℝI . For J ⊆ I, we say that S depends only on J if, given any x, y ∈ ℝI such that xj = yj for all j ∈ J,

we have x ∈ S ⇔ y ∈ S. We say that S depends on countably many coordinates if there exists a countable
subset J ⊆ I such that S depends only on J.

(2) Let τ : ℝI → ℝ be a function. For J ⊆ I, we say that τ depends only on J if, given any x, y ∈ ℝI such that
xj = yj for all j ∈ J, we have τ(x) = τ(y). We say that τ depends on countably many coordinates if there
exists a countable subset J ⊆ I such that τ depends only on J.

We believe that the following proposition is folklore, but we were not able to locate an appropriate reference.

Proposition 3.5. If τ : ℝI → ℝ is Cyl(ℝI)-measurable, then τ depends on countably many coordinates.
Proof. First, every element of Cyl(ℝI) depends on countably many coordinates: indeed, the set of elements
of Cyl(ℝI) which depend on countably many coordinates is a σ-subalgebra of Cyl(ℝI) which makes the pro-
jection functionsmeasurable (see also [9, 254M(c)]). Second, let τ : ℝI → ℝ be Cyl(ℝI)-measurable. The idea
that we will use is that τ is determined by the family (τ−1((a, +∞)))a∈ℚ. For every a ∈ ℚ, there exists a count-
able subset J ⊆ I such that the measurable set τ−1((a, +∞)) depends only on Ja. Then J := ⋃a∈ℚ Ja has the
property that, for each b ∈ ℚ, τ−1((b, +∞))depends only on J.We claim that τ depends only on J. Let x, y ∈ ℝI
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be such that xj = yj for every j ∈ J. We shall prove τ(x) = τ(y). Suppose τ(x) ̸= τ(y). Without loss of generality,
τ(x) < τ(y). Let a ∈ ℚ be such that τ(x) < a < τ(y). Then x ∉ τ−1((a, +∞)) and y ∈ τ−1((a, +∞)). This implies
that it is not true that τ−1((a, +∞)) depends only on J.
Corollary 3.6. Let I be a set and τ : ℝI → ℝ be a function. If τ preserves measurability, then τ depends on
countably many coordinates.

Proof. If τ preserves measurability, then τ is Cyl(ℝI)-measurable by Theorem 3.3. By Proposition 3.5, the
function τ depends on countably many coordinates.

3.2 The case of uncountable Polish spaces

The remaining results in this section are not used in the proofs of our main results.
One may think that, for an operation τ : ℝI → ℝ, the condition “τ preserve measurability over every

measurable space” is too strongbecausewemaynot be interested in allmeasurable spaces.However, Proposi-
tion 3.7 shows that this condition is equivalent to “τ preservemeasurability over (ℝ,Bℝ)” (if τ has countable
arity).

Proposition 3.7. For a set I such that |I| ⩽ |ω| and a function τ : ℝI → ℝ, τ preserves measurability if, and
only if, τ preserves measurability over (ℝ,Bℝ).
Proof. If I = 0, then τ is a constant function. Hence τ preserves measurability over every measurable space.
Let us consider the case I ̸= 0. By Theorem 3.3, τ preservesmeasurability if, and only if, τ preservesmeasura-
bility over (ℝ, Cyl(ℝI)). SinceℝI andℝ are uncountable Polish spaces with Borel σ-algebras Cyl(ℝI) andBℝ,
respectively, (ℝI , Cyl(ℝI)) and (ℝ,Bℝ) are isomorphic measurable spaces (see [17, Theorem 3.3.13]). (Recall
that an isomorphism of measurable spaces (Ω,F) and (Ω,F) is a bijective measurable function f : Ω → Ω

such that its inverse is measurable.)

Remark 3.8. In Proposition 3.7 above, one may replace the measurable space (ℝ,Bℝ) by any of its isomor-
phic copies. In particular, one may replace it with the measurable space given by any uncountable Polish
space endowed with its Borel σ-algebra (see [17, Chapter 3]).

4 Operations that preserve integrability
The goal of this section is to prove Theorem 2.1, i.e., to characterise the operations that preserve p-inte-
grability.

Remark 4.1. Let (Ω,F) be a measurable space, and let μ0 be the null-measure on (Ω,F): for each A ∈ F,
μ0(A) = 0. Then Lp(μ0) is the set of F-measurable functions from Ω to ℝ. Hence, preservation of p-integra-
bility over (Ω,F, μ0) is equivalent to preservation of measurability over (Ω,F).
An immediate consequence of Remark 4.1 is the following lemma.

Lemma 4.2. Let I be a set, τ : ℝI → ℝ and p ∈ [1, +∞). If τ preserves p-integrability, then τ preserves measur-
ability.

Lemma 4.3. Let (Ω,F, μ) be ameasure space, and let f, g : Ω → ℝ be functions, and let λ ∈ ℝ. Then the follow-
ing properties hold.
(1) If f ∈ Lp(μ), then |f| ∈ Lp(μ).
(2) If f ∈ Lp(μ), then λf ∈ Lp(μ).
(3) If f, g ∈ Lp(μ), then f + g ∈ Lp(μ).
(4) If g ∈ Lp(μ), |f| ⩽ |g| and f is F-measurable, then f ∈ Lp(μ).
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Proof. Statement (1) is immediate bydefinition ofLp(μ), (2) follows from linearity of the integration operator,
(4) follows from themonotonicity of the integration operator,while (3) follows from theMinkowski inequality
(see [14, Theorem 3.5]):(∫

Ω

|f + g|p dμ) 1
p ⩽ (∫

Ω

(|f| + |g|)p dμ) 1
p Mink.⩽ (∫

Ω

|f|p dμ) 1
p + (∫

Ω

|g|p dμ) 1
p

.

Thenext lemma settles the easiest direction of the characterisation of operations that preserve p-integrability,
i.e., the implication (2)⇒ (1) in Theorem 2.1.

Lemma 4.4. Let (Ω,F, μ) be a measure space, I a set, τ : ℝI → ℝ an operation that preserves measurability
over (Ω,F) and p ∈ [1, +∞). If there exist a finite subset of indices J ⊆ I and nonnegative real numbers (λj)j∈J
such that, for every v ∈ ℝI , we have |τ(v)| ⩽ ∑j∈J λj|vj|, then τ preserves p-integrability over (Ω,F, μ).
Proof. Let (fi)i∈I be a family in Lp(μ); since τ preserves measurability over (Ω,F), it follows that τ((fi)i∈I) is
F-measurable. For each x ∈Ω, |τ((fi(x))i∈I)| ⩽ ∑j∈J λj|fj(x)|. Thus |τ((fi)i∈I)| ⩽ ∑j∈J λj|fj|. Hence, byLemma4.3,
τ((fi)i∈I) ∈ Lp(μ).
This shows that the condition |τ(v)| ⩽ ∑j∈J λj|vj| is sufficient for preservation of p-integrability. We are left
to prove the converse direction: when τ does not satisfy this condition, there exists a measure space over
which τ does not preserve p-integrability. As we shall see, at least when the arity of τ is countable, this space
can always be taken to be (ℝ,Bℝ, Leb) where Leb is the restriction to Bℝ of the Lebesgue measure, and this
happens because (ℝ,Bℝ, Leb) is what we call a partitionable measure space.

Definition 4.5. A measure space (Ω,F, μ) is called partitionable if, for every sequence (an)n∈ω of elements
ofℝ+, there exists a sequence (An)n∈ω of disjoint elements of F such that μ(An) = an.
Remark 4.6. The measure space (ℝ,Bℝ, Leb) is partitionable.
The role of partitionable measure spaces is clarified by the following result.

Lemma 4.7. Let (Ω,F, μ) be a measure space, let p ∈ [1, +∞), let I be a set and let τ : ℝI → ℝ be a function.
Suppose |I| ⩽ |ω| and suppose (Ω,F, μ) is partitionable. If τ preserves p-integrability over (Ω,F, μ), then there
exist a finite subset of indices J ⊆ I and nonnegative real numbers (λj)j∈J such that, for every v ∈ ℝI , we have|τ(v)| ⩽∑

j∈J
λj|vj|.

Proof. We give the proof for I = ω. The case |I| < |ω| relies on an analogous argument.
We suppose, contrapositively, that, for every finite subset of indices J ⊆ I and every J-tuple (λj)j∈J of

nonnegative real numbers, there exists v ∈ ℝI such that |τ(v)| > ∑j∈J λj|vj|; we shall prove that τ does not
preserve p-integrability. For each n ∈ ω, we let vn be an element of ℝI such that |τ(vn)| > ∑n−1j=0 2

n
p |vnj |. Set

C := Ω \⋃n∈ω An. For each i ∈ ω, we set
fi : Ω → ℝ,

x → {{{vni if x ∈ An ,
0 if x ∈ C.

Let (An)n∈ω be a sequence of disjoint elements of F such that μ(An) = 1
|τ(vn)|p ; one such sequence exists

because (Ω,F, μ) is partitionable. Then∫
Ω

|τ((fi)i∈ω)|p dμ = ∫
C

|τ((fi)i∈ω)|p dμ + ∑
n∈ω
∫
An

|τ((fi)i∈ω)|p dμ⩾ ∑
n∈ω
|τ((vni )i∈ω)|pμ(An)= ∑

n∈ω
|τ(vn)|p 1|τ(vn)|p = ∑n∈ω 1 =∞. (4.1)
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The following chain of inequalities holds:∫
Ω

|fi|p dμ = ∑
n∈ω
|vni |pμ(An) = ∑

n∈ω
|vni |p 1|τ(vn)|p⩽ M + ∑

n>i,vni ̸=0
|vni |p 1|τ(vn)|p (for some M ∈ ℝ+)

⩽ M + ∑
n>i,vni ̸=0
|vni |p 1(∑n−1j=0 2

n
p |vnj |)p ⩽ M + ∑n>i,vni ̸=0|vni |p 1(2 n

p |vni |)p≤ M + ∑
n>i,vni ̸=0

1
2n <∞. (4.2)

The first inequality holds for some M ∈ ℝ+ because with the condition n > i we ignore finitely many terms
of the series, while with the condition vni ̸= 0 we ignore some null terms. The third inequality holds because
n > i ⇒ i ∈ {0, . . . , n − 1}.

From equations (4.1) and (4.2) we conclude that τ does not preserve p-integrability.

Lemma 4.8. If I is a set, τ : ℝI → ℝ a function, p ∈ [1, +∞) and (Ω,F, μ) a partitionable measure space, then
the following conditions are equivalent.
(1) τ preserves p-integrability.
(2) τ preserves measurability, and τ preserves p-integrability over (Ω,F, μ).
(3) τ is Cyl(ℝI)-measurable and there exist a finite subset of indices J ⊆ I and nonnegative real numbers (λj)j∈J

such that, for every v ∈ ℝI , we have |τ(v)| ⩽ ∑j∈J λj|vj|.
Proof. (1)⇒ (2) If τ preserves p-integrability, then, by Lemma 4.2, τ preserves measurability. Trivially, τ
preserves p-integrability over (Ω,F, μ).

(2)⇒ (3) If τ preservesmeasurability, then, by Theorem3.3, τ is Cyl(ℝI)-measurable. By Proposition 3.5,
τ depends on countably many coordinates, hence Lemma 4.7 applies and the proof of the implication is
complete.

(3)⇒ (1) By Theorem 3.3, τ preserves measurability. By Lemma 4.4, the thesis is proved.

Proof of Theorem 2.1. There exist partitionable measure spaces, see, e.g., Remark 4.6. Theorem 2.1 is the
equivalence (1)⇔ (3) in Lemma 4.8.

4.1 Examples

Example 4.9. Let n ∈ ω and τ : ℝn → ℝ. Then τ preserves p-integrability if, and only if, τ is Borelmeasurable
and there exist λ0, . . . , λn−1 ∈ ℝ+ such that, for every x ∈ ℝn, we have|τ(x)| ⩽ n−1∑

j=0
λi|xi|.

Example 4.10. A function τ : ℝω → ℝpreserves p-integrability if, andonly if, τ is Borelmeasurable and there
exist a finite subset of indices J ⊆ ω and nonnegative real numbers (λj)j∈J and k such that, for every v ∈ ℝI ,
we have |τ(v)| ⩽ k +∑

j∈J
λj|vj|.

4.2 The case of (ℝ,Bℝ, Leb) and the discrete case

The remaining results in this section are not used in the proofs of our main results.
One may think that, for an operation τ : ℝI → ℝ, the condition “τ preserve p-integrability over every

measure space” is too strong because we may not be interested in all measure spaces. However, Proposi-
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tion 4.11 shows that this condition is equivalent to “τ preserve p-integrability over (ℝ,Bℝ, Leb)” (if τ has
countable arity), and Proposition 4.13 provides an analogous result for a discrete measure space.

Proposition 4.11. Let I be a set, τ : ℝI → ℝ, with |I| ⩽ |ω|, and p ∈ [1, +∞). Then τ preserves p-integrability
if, and only if, τ preserves p-integrability over (ℝ,Bℝ, Leb).
Proof. Trivially, if τ preserves p-integrability, then τ preserves p-integrability over (ℝ,Bℝ, Leb). For the con-
verse, by Proposition 3.7, if τ preserves p-integrability over (ℝ,Bℝ, Leb) then τ preserves measurability. By
Remark 4.6, (ℝ,Bℝ, Leb) is partitionable. An application of (2)⇒ (1) in Lemma 4.8 concludes the proof.

We next provide an analogue of Proposition 4.11 for a discrete measure space. We denote by P(X) the power
set of a set X.

Lemma 4.12. There exists a measure μ on (ω,P(ω)) such that (ω,P(ω), μ) is partitionable.
Proof. We define a measure μ on (ω ×ℤ,P(ω ×ℤ)), by setting μ({(n, z)}) = 2z. For every n ∈ ω, there exists
Kn ⊆ ℤ such that an = ∑z∈Kn 2z. Set An := {(n, z) | z ∈ Kn}. Then μ(An) = ∑z∈Kn μ({(n, z)}) = ∑z∈Kn 2z = an.
Moreover, for any pair of distinct n,m ∈ ω, the sets An and Am are disjoint. The setω ×ℤ is countably infinite,
hence (ω ×ℤ,P(ω ×ℤ)) and (ω,P(ω)) are isomorphic measurable spaces, which concludes the proof.

Proposition 4.13. There exists a measure μ on (ω,P(ω)) such that, for every set I, every function τ : ℝI → ℝ
and every p ∈ [1, +∞), τ preserves p-integrability if, and only if, τ preserves measurability and τ preserves
p-integrability over (ω,P(ω), μ).
Proof. By Lemma 4.12, there exists a measure μ on (ω,P(ω)) such that (ω,P(ω), μ) is partitionable. The
thesis follows from (1)⇔ (2) in Lemma 4.8.

5 Operations that preserve integrability over finite measure spaces
The goal of this section is to prove Theorem 2.2, i.e., to characterise the operations that preserve p-integrabil-
ity over finite measure spaces. We follow the same strategy of Section 4, with the appropriate adjustments.

Lemma 5.1. Let I be a set, τ : ℝI → ℝ and p ∈ [1, +∞). If τ preserves p-integrability over every finite measure
space, then τ preserves measurability.

Proof. By Remark 4.1.

Lemma 5.2. Let (Ω,F, μ) be a finitemeasure space, I a set, τ : ℝI → ℝ an operation that preservesmeasurabil-
ity over (Ω,F) and p ∈ [1, +∞). If there exist a finite subset of indices J ⊆ I and nonnegative real numbers (λj)j∈J
and k such that, for every v ∈ ℝI , we have |τ(v)| ⩽ k +∑j∈J λj|vj|, then τ preserves p-integrability over (Ω,F, μ).
Proof. Let (fi)i∈I be a family in Lp(μ); since τ preserves measurability over (Ω,F), we have that τ((fi)i∈I) is
F-measurable. For each x ∈ Ω, |τ((fi(x))i∈I)| ⩽ k +∑j∈J λj|fj(x)|. Thus |τ((fi)i∈I)| ⩽ k +∑j∈J λj|fj|. Note that the
function k : Ω → ℝ, x → k belongs toLp(μ), because μ is finite. Hence, by Lemma 4.3, τ((fi)i∈I) ∈ Lp(μ).
It is not difficult to see that no finite measure space is partitionable: thus we replace the concept of partition-
ability with a slightly different one.

Definition 5.3. A measure space (Ω,F, μ) is called conditionally partitionable if there exists a sequence(bn)n∈ω of strictly positive real numbers such that, for every sequence (an)n∈ω of elements of ℝ+ satisfying
an ⩽ bn for every n ∈ ω, there exists a sequence (An)n∈ω of disjoint elements of F such that μ(An) = an.
Remark 5.4. The measure space ([0, 1],B[0,1], Leb), where Leb is the Lebesgue measure, is conditionally
partitionable (take bn = 1

2n+1 ).

Lemma 5.5. Let (Ω,F, μ) be a measure space, let p ∈ [1, +∞), let I be a set and let τ : ℝI → ℝ be a func-
tion. Suppose that |I| ⩽ |ω| and that (Ω,F, μ) is conditionally partitionable. If τ preserves p-integrability
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over (Ω,F, μ), then there exist a finite subset of indices J ⊆ I and nonnegative real numbers (λj)j∈J and k such
that, for every v ∈ ℝI , we have |τ(v)| ⩽ k +∑

j∈J
λj|vj|.

Proof. We give the proof for I = ω. The case |I| < |ω| relies on an analogous argument.
We suppose, contrapositively, that, for every finite subset of indices J ⊆ I, every J-tuple (λj)j∈J of non-

negative real numbers and every k ∈ ℝ+, there exists v ∈ ℝI such that |τ(v)| > k +∑j∈J λj|vj|; we shall prove
that τ does not preserve p-integrability. Since (Ω,F, μ) is conditionally partitionable, there exists a sequence(bn)n∈ω of strictly positive real numbers such that, for every sequence (an)n∈ω of elements of ℝ+ satisfying
an ⩽ bn for every n ∈ ω, there exists a sequence (An)n∈ω of disjoint elements of F such that μ(An) = an.

For each n ∈ ω, we let vn be an element ofℝI such that|τ(vn)| > ( 1bn ) 1p + n−1∑j=0 2 n
p |vnj |.

Then we have 1|τ(vn)|p < 1(( 1bn ) 1p +∑n−1j=0 2
n
p |vnj |)p ⩽ 1(( 1bn ) 1p )p = bn .

Therefore, there exists a sequence (An)n∈ω of disjoint elements of F such that μ(An) = 1
|τ(vn)|p . Since|τ(vn)| > ( 1bn ) 1p + n−1∑j=0 2 n

p |vnj | > n−1∑
j=0

2
n
p |vnj |,

the remaining part of the proof runs as for Lemma 4.8.

Lemma 5.6. Let I be a set, τ : ℝI → ℝ a function, p ∈ [1, +∞) and (Ω,F, μ) a conditionally partitionable finite
measure space. The following conditions are equivalent.
(1) τ preserves p-integrability over every finite measure space.
(2) τ preserves measurability, and τ preserves p-integrability over (Ω,F, μ).
(3) τ is Cyl(ℝI)-measurable and there exist a finite subset of indices J ⊆ I and nonnegative real numbers (λj)j∈J

and k such that, for every v ∈ ℝI , we have |τ(v)| ⩽ k +∑j∈J λj|vj|.
Proof. (1)⇒ (2) If τ preserves p-integrability over everyfinitemeasure space, then, byLemma5.1, τ preserves
measurability. Trivially, τ preserves p-integrability over (Ω,F, μ).

(2)⇒ (3) If τ preservesmeasurability, then, by Theorem3.3, τ is Cyl(ℝI)-measurable. By Proposition 3.5,
τ depends on countably many coordinates, hence Lemma 5.5 applies and the proof of the implication is
complete.

(3)⇒ (1) By Theorem 3.3, τ preserves measurability. By Lemma 5.2, the thesis is proved.

Proof of Theorem 2.2. There exist conditionally partitionable finite measure spaces, see, e.g., Remark 5.4.
Theorem 2.2 is the equivalence (1)⇔ (3) in Lemma 5.6.

5.1 Examples

Example 5.7. Let n ∈ ω and τ : ℝn → ℝ. Then τ preserves p-integrability over every finite measure space if,
and only if, τ is Borel measurable and there exist λ0, . . . , λn−1, k ∈ ℝ+ such that, for every x ∈ ℝn, we have|τ(x)| ⩽ k + n−1∑

j=0
λj|xj|.

Example 5.8. A function τ : ℝω → ℝ preserves p-integrability over every finite measure space if, and only if,
τ is Borelmeasurable and there exist a finite subset of indices J ⊆ ω and nonnegative real numbers (λj)j∈J and
k such that, for every v ∈ ℝI , we have |τ(v)| ⩽ k +∑

j∈J
λj|vj|.
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5.2 The case of ([0, 1],B[0,1], Leb) and the discrete case

The remaining results in this section are not used in the proofs of our main results.
One may think that, for an operation τ : ℝI → ℝ, the condition “τ preserve p-integrability over every

finite measure space” is too strong because we may not be interested in all finite measure spaces. However,
Proposition 5.9 shows that this condition is equivalent to “τ preserve p-integrability over ([0, 1],B[0,1], Leb)”
(at least when τ has countable arity), and Proposition 5.11 provides an analogous result for a discrete finite
measure space.

Proposition 5.9. Let I be a set, τ : ℝI → ℝ, with |I| ⩽ |ω|, and p ∈ [1, +∞). Then τ preserves p-integrability
over every finite measure space if, and only if, τ preserves p-integrability over ([0, 1],B[0,1], Leb).
Proof. Trivially, if τ preserves p-integrability, then τ preserves p-integrability over ([0, 1],B[0,1], Leb). For
the converse, by Proposition 3.7 and Remark 3.8, if τ preserves p-integrability over ([0, 1],B[0,1], Leb), then
τ preserves measurability. By Remark 5.4, ([0, 1],B[0,1], Leb) is conditionally partitionable. An application
of (2)⇒ (1) in Lemma 5.6 concludes the proof.

Similarly to the case of arbitrary measure, we next provide an analogue of Proposition 5.9 for a discrete finite
measure space.

Lemma 5.10. There exists a probability measure μ on (ω,P(ω)) such that the measure space (ω,P(ω), μ) is
conditionally partitionable.

Proof. Let X := {(n,m) ∈ ω × ω | m ⩾ n}. We let ν be the unique measure on (X,P(X)) such that, for every(n,m) ∈ X, we have ν({(n,m)}) = 1
2m . Then,∑

(n,m)∈X
ν({(n,m)}) = ∑

n∈ω
∑

m∈ω,m⩾n
ν({(n,m)}) = ∑

n∈ω
∑

m∈ω,m⩾n

1
2m= ∑

n∈ω

2
2n = 4.

Hence, ν is a finite measure.
We prove that (X,P(X), ν) is conditionally partitionable. For n ∈ ω, let bn := 1

2n−1 . Further, let (an)n∈ω be
a sequence of elements of ℝ+ satisfying an ⩽ bn for every n ∈ ω. For every n ∈ ℕ, since 0 ⩽ an ⩽ 1

2n−1 , there
exists a subset Kn of {k ∈ ω | k ⩾ n} such that an = ∑k∈Kn 1

2k . Set An := {(n,m) | m ∈ Kn}. Note that An ⊆ X.
Then μ(An) = ∑m∈Kn μ({(n,m)}) = ∑m∈Kn 1

2m = an. Moreover, for any pair of distinct n,m ∈ ω, the sets An and
Am are disjoint. This proves that (X,P(X), ν) is conditionally partitionable.

Define themeasure ν
4 on (X,P(X)) by setting ν

4 (A) = ν(A)4 . Using the fact that (X,P(X), ν) is a conditionally
partitionablemeasure space, it is not difficult to see that (X,P(X), ν4 ) is a conditionally partitionablemeasure
space, too. We have ν

4 (X) = ν(X)4 = 4
4 ; thus

ν
4 is a probability measure.

The set X is countably infinite, hence (X,P(X)) and (ω,P(ω)) are isomorphic measurable spaces, which
concludes the proof.

Proposition 5.11. There exists a probability measure μ on (ω,P(ω)) such that, for every set I, every function
τ : ℝI → ℝ and every p ∈ [1, +∞), τ preserves p-integrability over every finite measure space if, and only if, τ
preserves measurability and τ preserves p-integrability over (ω,P(ω), μ).
Proof. By Lemma 5.10, there exists a probability measure μ on (ω,P(ω)) such that (ω,P(ω), μ) is condition-
ally partitionable. The thesis follows from (1)⇔ (2) in Lemma 5.6.

6 Generation
The goal of this section is to prove Theorems 2.3 and 2.4, which exhibit a generating set for the class of
operations that preserve integrability over arbitrary and finite measure spaces, respectively.
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As it is shown by Theorems 2.1 and 2.2, the fact that an operation preserves p-integrability – over arbi-
trary and finite measure spaces, respectively – does not depend on the choice of p. Hence, we say that the
operation preserves integrability.

Recall from the introduction the operation
j(y, x0, x1, . . . ) := sup

n∈ω
{xn ∧ y}.

We adopt the notation
yj

n∈ω
xn :=j(y, x0, x1, . . . ).

From the operations 0, +, ∨ and λ( ⋅ ) (for each λ ∈ ℝ) we generate the operations
f ∧ g := −((−f) ∨ (−g)),
f+ := f ∨ 0,
f− := −(f ∧ 0),|f| := f+ − f−.

Additionally, using
b
, we generate

gk

n∈ω
fn := infn∈ω

{fn ∨ g} = − −gj

n∈ω
−fn .

Let Ω be a set and let S ⊆ ℝΩ. We let σ(S) denote the smallest σ-algebraF of subsets of Ω such that every s ∈ S
is F-measurable.

Lemma 6.1. Let Ω be a set and let S ⊆ ℝΩ. Then σ(S) is the σ-algebra of subsets of Ω generated by the set{g−1((λ, +∞)) | g ∈ S, λ ∈ ℝ}.
Proof. See [8, Proposition 2.3].

Lemma 6.2. Let Ω be a set, let A ⊆ P(Ω), let K be an element of the σ-algebra of subsets of Ω generated by A,
and let K ⊆ Y ⊆ Ω. Then K belongs to any σ-algebra G of subsets of Y such that A ∩ Y ∈ G for each A ∈ A.
Proof. Let Σ := {S ⊆ Ω | S ∩ Y ∈ G}. A straightforward verification shows that Σ is a σ-algebra of subsets of Ω.
Moreover,A ⊆ Σ. Therefore, by definition of F, F ⊆ Σ. Hence, K ∈ Σ, which means K = K ∩ Y ∈ G.
Given S ⊆ ℝΩ, we denote by ⟨S⟩ the closure of S under 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b

and ⋅ . Given A ⊆ Ω,
we write 𝟙A for the characteristic function of A in Ω.

Lemma 6.3. Let Ω be a set, let S ⊆ ℝΩ, let K ∈ σ(S) and let K ⊆ Y ⊆ Ω be such that 𝟙Y ∈ ⟨S⟩. Then 𝟙K ∈ ⟨S⟩.
Proof. Set G := {C ⊆ Y | 𝟙C ∈ ⟨S⟩}. Note that G is a σ-algebra of subsets of Y. Indeed, 𝟙Y ∈ ⟨S⟩, and, for
C0, C1 ⊆ Y, we have 𝟙C0∩C1 = 𝟙C0 ∧ 𝟙C1 and 𝟙Y\C0 = 𝟙Y − 𝟙C0 . Further, let (Cn)n∈ω be a family with Cn ⊆ Y.
The characteristic function of⋃n∈ω Cn is b𝟙Y

n∈ω 𝟙Cn .
By Lemma 6.1, the σ-algebra σ(S) is generated byA := {g−1((λ, +∞)) | g ∈ S, λ ∈ ℝ}. Let A ∈ A, andwrite

A = g−1((λ, +∞)) for some g ∈ S and some λ ∈ ℝ+. We have𝟙A∩Y := 𝟙Yj

n∈ω
n(g − λ𝟙Y )+. (6.1)

Indeed, for x ∈ A ∩ Y, we have g(x) > λ and 𝟙Y (x) = 1, hence
𝟙Y (x)j

n∈ω
n(g(x) − λ𝟙Y (x))+ = 1j

n∈ω
n(g(x) − λ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
>0
)+ = 1.

For x ∈ Ω \ Y, we have 𝟙Y (x) = 0, and therefore
𝟙Y (x)j

n∈ω
n(g(x) − λ𝟙Y (x))+ = 0j

n∈ω
n(g(x))+ = 0.
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For x ∈ Y \ A, we have g(x) ⩽ λ and 𝟙Y (x) = 1, hence
𝟙Y (x)j

n∈ω
n(g(x) − λ𝟙Y (x))+ = 1j

n∈ω
n(g(x) − λ)+ = 1j

n∈ω
0 = 0.

Given equation (6.1), we have 𝟙A∩Y ∈ ⟨S⟩, which means A ∩ Y ∈ G. By Lemma 6.2, K ∈ G.
The truncation operation ⋅ comes into play in the following lemma.

Lemma 6.4. Let λ ∈ ℝ+ \ {0}. The operations𝟙 ⋅> λ : ℝ→ ℝ, x → {{{1 if x > λ,
0 otherwise,

and 𝟙 ⋅⩾ λ : ℝ→ ℝ, x → {{{1 if x ⩾ λ,
0 otherwise,

are generated by the operations 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b, ⋅ .
Proof. Computation shows 𝟙f>1 = bf

n∈ω n(f − f ). Moreover, 𝟙f>λ = 𝟙 1λ f>1. Finally, let 0 < q0 < q1 < ⋅ ⋅ ⋅ be
a sequence of elements ofℝ such that qn → λ. Then 𝟙f⩾λ = c0

n∈ω 𝟙f>qn .
Lemma 6.5. Let S ⊆ ℝΩ, let g ∈ ⟨S⟩, A ∈ σ(S), λ ∈ ℝ+ be such that λ𝟙A ⩽ g. Then λ𝟙A ∈ ⟨S⟩.
Proof. We have 0 ∈ ⟨S⟩, hence the thesis is immediate for λ = 0. Suppose λ > 0. Then A ⊆ {x ∈ Ω | g(x) ⩾ λ}.
By Lemma 6.4, 𝟙{x∈Ω|g(x)⩾λ} = 𝟙g⩾λ ∈ ⟨S⟩. By Lemma 6.3, 𝟙A ∈ ⟨S⟩, hence λ𝟙A ∈ ⟨S⟩.
Lemma 6.6. Let S ⊆ ℝΩ, let g ∈ ⟨S⟩ and let f ∈ ℝΩ be σ(S)-measurable and such that |f| ⩽ g. Then f ∈ ⟨S⟩.
Proof. First, we prove the statement for f ⩾ 0. Given that f is positive and σ(S)-measurable, f is the supremum
inℝΩ of a positive increasing sequence (sn)n∈ω of σ(S)-measurable simple functions (see [14, Theorem1.17]).
By Lemma 6.5, sn ∈ ⟨S⟩ for every n ∈ ω. Hence

f = sup
n∈ω

sn = sup
n∈ω

sn ∧ g = gj

n∈ω
sn ∈ ⟨S⟩.

For f not necessarily positive, the previous part of the proof shows that f+ and f− belong to ⟨S⟩. Then
f = f+ − f− ∈ ⟨S⟩.
Lemma 6.7. Let (Ω,F) be a measurable space, and, for each n ∈ ω, let fn : Ω → ℝ be a measurable func-
tion. If, for every x ∈ Ω, supn∈ω fn(x) ∈ ℝ, then sup fn : Ω → ℝ is measurable. Analogously, if, for every x ∈ Ω,
infn∈ω fn(x) ∈ ℝ, then the function infn∈ω fn : Ω → ℝ is measurable.
Proof. By [14, Theorem 1.14].

Lemma 6.8. The operations 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b and ⋅ preserve integrability.
Proof. The operations 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ) and ⋅ preserve integrability. Moreover,

gj

n∈ω
fn = sup

n∈ω
{fn ∧ g}

and therefore, by Lemma 6.7,
b
preserves measurability. The constant function 0 is always integrable, there-

fore 0 preserves integrability. By (3) in Lemma 4.3, + preserves integrability. The operation | ⋅ | is immediately
seen to preserve integrability. Since, for every f, g functions, |f ∨ g| ⩽ |f| + |g|, then ∨ preserves integra-
bility by (4) in Lemma 4.3. We have

bg
n∈ω fn = supn∈ω{fn ∧ g}, and therefore f0 ∧ g ⩽ bg

n∈ω fn ⩽ g. Hence,|bg
n∈ω fn| ⩽ |g| + |f0|. Thus, b

preserves integrability. Finally, |f | ⩽ |f|, and therefore ⋅ preserve integrability,
by (4) in Lemma 4.3.

Proof of Theorem 2.3. The operations 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b
and ⋅ preserve integrability by

Lemma 6.8. Moreover, by definition, the class of integrability-preserving operations is closed under every
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integrability-preserving operation and contains the projection functions. Therefore, every operation gener-
ated by 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b and ⋅ preserves integrability.

To prove the converse, we use Theorem 2.1. Let J be a finite subset of I, and let (λj)j∈J be a J-tuple of
nonnegative real numbers. Then∑j∈J λj|πj| ∈ ⟨{πi | i ∈ I}⟩. Let τ beCyl(ℝI)-measurable and such that for every
v ∈ ℝI we have |τ(v)| ⩽ ∑j∈J λj|vj|, i.e., |τ| ⩽ ∑j∈J λj|πj|. Note that Cyl(ℝI) = σ({πi | i ∈ I}), by definition. Then
τ ∈ ⟨{πi | i ∈ I}⟩, by Lemma 6.6. Therefore, τ is generated by 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b, ⋅ .
It is worth recalling that, in the proof of Theorem2.3, the role of the truncation operation ⋅ lies in Lemma6.4.

Proof of Theorem 2.4. Note that the operations 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b
and 1 preserve integrability

over finite measure spaces. Moreover, by definition, the class of the operations that preserve integrability
over finite measure spaces is closed under every integrability-preserving operation and contains the pro-
jection functions. Therefore, every operation generated by 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b

and 1 preserves
integrability over every finite measure space.

To prove the converse, we use Theorem 2.2. Note that the truncation is generated by ∨, −1( ⋅ ) (i.e.,
scalar multiplication by −1), and 1; indeed, f = f ∧ 1 = −((−f) ∨ (−1)). Let J be a finite subset of I, let (λj)j∈J
be a J-tuple of nonnegative real numbers, and let k ∈ ℝ+. Then k +∑j∈J λj|πj| ∈ ⟨{πi | i ∈ I} ∪ {k}⟩. Let τ be
Cyl(ℝI)-measurable and such that for every v ∈ ℝI we have |τ(v)| ⩽ k +∑j∈J λj|vj|, i.e., |τ| ⩽ k +∑j∈J λj|πj|.
Note that Cyl(ℝI) = σ({πi | i ∈ I}) = σ({πi | i ∈ I} ∪ {1}), by definition. Then we have τ ∈ ⟨{πi | i ∈ I} ∪ {1}⟩, by
Lemma 6.6. Therefore, τ is generated by 0, +, ∨, λ− (for each λ ∈ ℝ), b, 1.

Part II:
Truncated Riesz spaces and weak units

7 The operation
b

We now investigate the operation
b
, defined on ℝ in Section 6, for more general lattices. Given a Dedekind

σ-complete (not necessarily bounded) lattice B we write
b
for the operation on B of countably infinite arity

defined as
j(g, f0, f1, . . . ) := sup

n∈ω
{fn ∧ g}

We adopt the notation
gj

n∈ω
fn :=j(g, f0, f1, . . . ).

Proposition 7.1. If B is a Dedekind σ-complete lattice, then the following properties hold for every g, h ∈ B and
all (fn)n∈ω ⊆ B.
(TS1)

bg
n∈ω fn = bg

n∈ω(fn ∧ g).
(TS2)

bg
n∈ω fn = (f0 ∧ g) ∨ (bg

n∈ω\{0} fn).
(TS3)

bg
n∈ω(fn ∧ h) ⩽ h.

Proof. Straightforward verification.

Conversely, we have the following.

Proposition 7.2. If B is a lattice endowed with an operation
b
of countably infinite arity which satisfies (TS1),

(TS2) and (TS3), then B is Dedekind σ-complete and
bg
n∈ω fn = supn∈ω{fn ∧ g}.

Proof. By induction on k ∈ ω, (TS2) entails
gj

n∈ω
fn = (f0 ∧ g) ∨ ⋅ ⋅ ⋅ ∨ (fk ∧ g) ∨ ( gj

n⩾k+1
fn).



M. Abbadini, Operations that preserve integrability, and truncated Riesz spaces | 1501

Thusfk ∧ g ⩽ (f0 ∧ g) ∨ ⋅ ⋅ ⋅ ∨ (fk ∧ g) ∨ (bg
n⩾k+1 fn) = bg

n∈ω fn. Thus,
bg
n∈ω fn is an upper bound of (fk ∧ g)k∈ω.

Suppose now that fn ∧ g ⩽ h for every n ∈ ω. Then
gj

n∈ω
fn

(TS1)= gj

n∈ω
(fn ∧ g) fn∧g⩽h= gj

n∈ω
(fn ∧ g ∧ h) (TS3)⩽ h.

This shows
bg
n∈ω fn = supn∈ω{fn ∧ g}. To prove that B is Dedekind σ-complete, let (fn)n∈ω ⊆ B and g ∈ B be

such that fn ⩽ g for all n ∈ ω. Then
gj

n∈ω
fn = sup

n∈ω
{fn ∧ g} fn⩽g= sup

n∈ω
fn .

A map between two partially ordered sets is σ-continuous if it preserves all existing countable suprema.

Proposition 7.3. Let φ : B → C be a lattice morphism between two Dedekind σ-complete lattices. Then φ is
σ-continuous if, and only if, φ preserves

b
.

Proof. First, suppose φ preserves
b
. Let (fn)n∈ω ⊆ B and f = supn∈ω fn. Then

φ( sup
n∈ω

fn) = φ( sup
n∈ω
{fn ∧ f}) (because fn ⩽ f)= φ( fj

n∈ω
fn)

= φ(f)j

n∈ω
φ(fn) (because φ preserves

j)= sup
n∈ω
{φ(fn) ∧ φ(f)}= sup

n∈ω
φ(fn ∧ f) (because φ preserves ∧)= sup

n∈ω
φ(fn) (because fn ⩽ f).

Therefore, φ is σ-continuous.
For the converse implication, suppose that φ is σ-continuous. Let (fn)n∈ω ⊆ B and g ∈ B. Then

φ( gj

n∈ω
fn) = φ( sup

n∈ω
{fn ∧ g})= sup

n∈ω
φ(fn ∧ g) (because φ preserves count. sups)= sup

n∈ω
{φ(fn) ∧ φ(g)} (because φ preserves ∧)

= φ(g)j

n∈ω
φ(fn).

Hence, φ preserves
b
.

Remark 7.4. Propositions 7.1, 7.2 and 7.3 show that, whenever V is a variety with a lattice reduct, then
its subcategory of Dedekind σ-complete objects, with σ-continuous morphisms, is a variety which has, as
primitive operations, the operations of V together with

b
, and, as axioms, the axioms of V together with

(TS1), (TS2) and (TS3).

8 Truncated ℓ-groups
Weassume familiaritywith the basic theory of ℓ-groups. All needed background canbe found, for example, in
the standard reference [3]. In [2], R. N. Ball defines a truncated ℓ-group as an abelian divisible ℓ-group that is
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endowed with a function ⋅ : G+ → G+, called truncation, which has the following properties for all f, g ∈ G+.
(B1) f ∧ g ⩽ f ⩽ f .
(B2) If f = 0, then f = 0.
(B3) If nf = nf for every n ∈ ω, then f = 0.
In this paper, we do not assume divisibility. The truncation ⋅ may be extended to an operation on G, by
setting f = f+ − f−. Here, as is standard, we set f+ := f ∨ 0, and f− := −(f ∧ 0). Then Ball’s definition may be
reformulated as follows.

Definition 8.1. A truncated ℓ-group is an abelian ℓ-group that is endowed with a unary operation ⋅ : G → G,
called truncation, which has the following properties.
(T1) For all f ∈ G, we have f = f+ − f−.
(T2) For all f ∈ G+, we have f ∈ G+.
(T3) For all f, g ∈ G+, we have f ∧ g ⩽ f ⩽ f .
(T4) For all f ∈ G+, if f = 0, then f = 0.
(T5) For all f ∈ G+, if nf = nf for every n ∈ ω, then f = 0.
Axiom (T2) ensures that ⋅ may be restricted to an operation on G+. Axiom (T1) gives the one-to-one corre-
spondencewith Ball’s definition. Axioms (T3), (T4), (T5) correspond, respectively, to Axioms (B1), (B2), (B3).
An ℓ-homomorphism φ between truncated ℓ-groups preserves ⋅ if, and only if, φ preserves ⋅ over positive
elements; indeed, if φ preserves ⋅ over positive elements, then, for f ∈ G,

φ(f ) = φ(f+ − f−) = φ(f+) − φ(f−) = φ(f+) − φ(f−) = φ(f)+ − φ(f)− = φ(f).
This ensures that the equivalence with Ball’s definition also holds for morphisms.

Note that (T1), (T2) and (T3) are (essentially) equational axioms. This is evident for (T1); (T2) can bewrit-
ten as ∀f f+ ∧ 0 = 0; (T3) is the conjunction of the two equations ∀f, g f+ ∧ g+ ∨ f+ = f+ and ∀f f+ ∨ f+ = f+.
The axioms (T4) and (T5) cannot be expressed in such equational terms. However, as we shall see, this
becomes possible when we add the hypothesis of Dedekind σ-completeness.

It is well known that a Dedekind σ-complete ℓ-group is archimedean and thus abelian. Let G be
a Dedekind σ-complete ℓ-group, endowed with a unary operation ⋅ . We denote by (T4’) and (T5’) the
following properties, which may or may not hold in G.
(T4’) For all f ∈ G+, we have f = bf

n∈ω nf .
(T5’) For all f ∈ G+, we have f = bf

n∈ω(nf − nf ).
Note that (T4’) and (T5’), are (essentially) equational axioms: indeed, (T4’) is equivalent to ∀f f+ = bf+

n∈ω nf+,
and (T5’) is equivalent to ∀f f+ = bf+

n∈ω(nf+ − nf+).
Our aim in this section, met in Propositions 8.2, 8.5 and 8.8, is to show that, for a Dedekind σ-completeℓ-group endowed with a unary operation ⋅ which satisfies (T1), (T2) and (T3), the axioms (T4) and (T5) may

be equivalently replaced by the equational axioms (T4’) and (T5’). This will show the axioms of Dedekind
σ-complete truncated ℓ-groups to be equational.
Proposition 8.2. Let G be an abelian ℓ-group endowed with a unary operation ⋅ . Then (T4’) implies (T4), and
(T5’) implies (T5).

Proof. Suppose (T4’). Let f ∈ G+ be such that f = 0. By (T4’),
f = fj

n∈ω
nf = fj

n∈ω
0 = 0.

Hence, (T4) holds. Suppose (T5’). Let f ∈ G+ be such that nf = nf for every n ∈ ω. By (T5’),
f = fj

n∈ω
(nf − nf ) = fj

n∈ω
0 = 0.

Hence (T5) holds.

We shall use the following standard distributivity result.
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Lemma 8.3. Let G be an ℓ-group, I a set and (xi)i∈I ⊆ G. If supi∈I xi exists, then, for every a ∈ G, supi∈I{a ∧ xi}
exists and

a ∧ ( sup
i∈I

xi) = sup
i∈I
{a ∧ xi}.

Proof. See [3, Proposition 6.1.2].

Lemma 8.4. Let G be a Dedekind σ-complete ℓ-group, let g ∈ G, h ∈ G+ and (fn)n∈ω ⊆ G. Then
gj

n∈ω
(fn + h) = (( gj

n∈ω
fn) + h) ∧ g.

Proof. We have
gj

n∈ω
(fn + h) = sup

n∈ω
{(fn + h) ∧ g}= sup

n∈ω
{(fn + h) ∧ (g + h) ∧ g} (because h ⩾ 0)= sup

n∈ω
{(fn + h) ∧ (g + h)} ∧ g (by Lemma 8.3)= sup

n∈ω
{(fn ∧ g) + h} ∧ g= ( sup

n∈ω
{fn ∧ g} + h) ∧ g= (( gj

n∈ω
fn) + h) ∧ g.

Proposition 8.5. Let G be a Dedekind σ-complete ℓ-group endowed with a unary operation ⋅ such that (T2),
(T3) and (T4) hold. Then (T4’) holds, i.e., for all f ∈ G+,

f = fj

n∈ω
nf .

Proof. By (T2), f ∈ G+. Therefore 0f ⩽ 1f ⩽ 2f ⩽ 3f ⩽ ⋅ ⋅ ⋅ . Hence,
fj

n∈ω
nf = fj

n∈ω\{0}
nf = fj

n∈ω
(n + 1)f = fj

n∈ω
(nf + f ) = (( fj

n∈ω
nf) + f) ∧ f (by Lemma 8.4).

Therefore, setting b := bf
n∈ω nf , we have

0 = ((b + f ) ∧ f) − b = f ∧ (f − b) = f − b,
where the last equality holds because, by (T3), we have f ∧ (f − b) ⩽ f − b and, for the opposite inequality,
we have f − b ⩽ f − b and f − b = f − b ∧ f ⩽ f .

By (T4), since f − b = 0, we have f − b = 0, i.e., f = bf
n∈ω nf .

Lemma 8.6. Let G be a Dedekind σ-complete ℓ-group endowed with a unary operation ⋅ such that (T2) and
(T3) holds. Let a, b ∈ G+. Then

a + b ⩽ a + b.
Proof. By (T3), a+b ⩽ a+b. By (T2), a+b ⩾ 0, thus b ∧ (a+b) ⩾ 0, and therefore a+b ⩽ a+b+ (b ∧ (a+b)).
Hence,

a + b ⩽ [(a + b) ∧ (a + (a + b))] ∧ [(a + b) + (b ∧ (a + b))]= [a + (b ∧ (a + b))] ∧ [(a + b) + (b ∧ (a + b))]= (a ∧ (a + b)) + (b ∧ (a + b))⩽ a + b (by (T3)).
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Lemma 8.7. Let G be an abelian ℓ-group endowed with a unary operation ⋅ such that (T3) holds. Then, for all
a, b ∈ G+, if a ⩽ b, then a − a ⩽ b − b.
Proof. Since a ⩽ b, we have b − b ⩽ b − a. By (T3), b − b ⩽ 0. Hence,

b − b ⩽ (b − a) ∧ 0= (b ∧ a) − a (because + distributes over ∧)⩽ a − a (by (T3))

as desired.

Proposition 8.8. Let G be a Dedekind σ-complete ℓ-group endowed with a unary operation ⋅ such that (T2),
(T3) and (T5) hold. Then (T5’) holds, i.e., for all f ∈ G+,

f = fj

n∈ω
(nf − nf ).

Proof. Let k ∈ ω. By (T3) we have 0 ⩽ kf − kf . We have

fj

n∈ω
(nf − nf ) ⩾ fj

n∈ω\{0,...,k−1}
(nf − nf )

= fj

n∈ω
((n + k)f − (n + k)f )

⩾ fj

n∈ω
(nf − nf + kf − kf ) (by Lemma 8.6)

= (( fj

n∈ω
(nf − nf )) + kf − kf) ∧ f (by Lemma 8.4).

The opposite inequality is immediate. Therefore, setting b := bf
n∈ω(nf − nf ), we have b = (b + kf − kf ) ∧ f ,

which implies
0 = ((b + kf − kf ) ∧ f) − b = (kf − kf ) ∧ (f − b).

We set a := f − b.We have 0 ⩽ a ⩽ f , because 0 ⩽ b ⩽ f . By (T3) and Lemma8.7, 0 ⩽ ka − ka ⩽ kf − kf . There-
fore, 0 = (ka − ka) ∧ a. It is elementary that, in any abelian group, x ∧ y = 0 implies (nx) ∧ y = 0 for each
n ∈ ω. Therefore,

0 = (ka − ka) ∧ ka (T2)= (ka − ka).
Hence, ka = ka. Since k is arbitrary, by (T5) we infer a = 0, i.e., f −bf

n∈ω(nf − nf ) = 0.
To sumup, Propositions 8.2, 8.5 and 8.8 show that, for Dedekind σ-complete ℓ-groups endowedwith a unary
operation ⋅ , Axioms (T1)-(T5) are equivalent to Axioms (T1)-(T3) together with Axioms (T4’) and (T5’).

We denote by σℓ𝔾t the category whose objects are Dedekind σ-complete truncated ℓ-groups, and whose
morphisms are σ-continuous ℓ-homomorphisms that preserve ⋅ . Since Axioms (T1), (T2), (T3), (T4’) and
(T5’) are equational, σℓ𝔾t is a variety, whose operations are the operations of ℓ-groups, together with ⋅ andb
, and whose axioms are the axioms of ℓ-groups, together with the following ones.

(TS1)
bg
n∈ω fn = bg

n∈ω(fn ∧ g).
(TS2)

bg
n∈ω fn = (f0 ∧ g) ∨ (bg

n∈ω\{0} fn).
(TS3)

bg
n∈ω(fn ∧ h) ⩽ h.

(T1) For all f ∈ G, we have f = f+ − f−.
(T2) For all f ∈ G+, we have f ∈ G+.
(T3) For all f, g ∈ G+, we have f ∧ g ⩽ f ⩽ f .
(T4’) For all f ∈ G+, we have f = bf

n∈ω nf .
(T5’) For all f ∈ G+, we have f = bf

n∈ω(nf − nf ).
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9 The Loomis–Sikorski Theorem for truncated ℓ-groups
Definition 9.1. Given a set X, a σ-ideal of subsets of X is a set I of subsets of X such that the following
conditions hold.
(1) 0 ∈ I.
(2) B ∈ I, A ⊆ B ⇒ A ∈ I.
(3) (An)n∈ω ⊆ I⇒ ⋃n∈ω An ∈ I.
If I is a σ-ideal of subsets of X, we say that a property P holds for I-almost every x ∈ X if {x ∈ X | P does not hold
for x} ∈ I. A σ-ideal I of subsets of X induces onℝX an equivalence relation ∼, defined by f ∼ g if, and only if,
f(x) = g(x) for I-almost every x ∈ X. Wewrite ℝX

I
for the quotient ℝX∼ . Every operation τ of countable arity onℝ

induces an operation τ̃ on ℝX
I
, by setting τ̃(([fi]I)i∈I) := [g]I, where g(x) = τ((fi(x))i∈I). The assumption that

I is closed under countable unions guarantees that this definition is well posed. Therefore, by Remark 7.4,
ℝX
I
is a Dedekind σ-complete truncated ℓ-group.
The aim of this section is to prove the following theorem.

Theorem 9.2 (Loomis–Sikorski Theorem for truncated ℓ-groups). Let G be a Dedekind σ-complete truncatedℓ-group. Then there exist a set X, a σ-ideal I of subsets of X and an injective σ-continuous ℓ-homomorphism
ι : G → ℝX

I
such that, for every f ∈ G, ι(f ) = ι(f) ∧ [1]I.

We will give a proof that is rather self-contained, with the main exception of the use of Theorem 9.3 below.
Anyway, we believe that a shorter (but not self-contained) way to prove Theorem 9.2 above (even in the
less restrictive hypothesis that G is an archimedean truncated ℓ-group) may be the following. First, show
that the divisible hull Gd of G admits a truncation that extends the truncation of G. Then embed Gd in ℝX

I

via [2, Theorem 5.3.6 (1)]. Finally, using arguments similar to those in [13, Theorem 6.2], show that this
embedding preserves all countable suprema.

Theorem 9.3 (Loomis–Sikorski Theorem for Riesz spaces). Let G be a Dedekind σ-complete Riesz space. Then
there exist a set X, a σ-ideal I of subsets of X and an injective σ-continuous Riesz morphism ι : G → ℝX

I
.

For a proof of Theorem 9.3 see [7], or [5] and [6].

Corollary 9.4 (Loomis–Sikorski Theorem for ℓ-groups). Let G be a Dedekind σ-complete ℓ-group. Then there
exist a set X, a σ-ideal I of subsets of X and an injective σ-continuous ℓ-homomorphism ι : G → ℝX

I
.

Proof. There exist a Dedekind σ-complete Riesz space H and an injective ℓ-morphism φ : G → H that pre-
serves every existing supremum; see [11]. Applying Theorem 9.3 to the Dedekind σ-complete Riesz space H,
we obtain an injective σ-continuous Riesz morphism φ : H → ℝX

I
. The composition ι = φ ∘ φ : G → ℝX

I
is

an injective σ-continuous ℓ-morphism, since both φ and φ are injective σ-continuous ℓ-morphisms.

Our strategy to prove Theorem 9.2 is the following. Lemma 9.12 will prove Theorem 9.2 for countably gener-
ated algebras. This will imply that ℝ generates the variety of Dedekind σ-complete truncated ℓ-groups, and
from this fact Theorem 9.2 is derived.

Lemma 9.5. Let G be a Dedekind σ-complete truncated ℓ-group generated by a subset S ⊆ G. Then, for every
g ∈ G, there exist s0, . . . , sn−1 ∈ S such that |g| ⩽ |s0| + ⋅ ⋅ ⋅ + |sn−1|.
Proof. Let T := {h ∈ G | there exist s0, . . . , sn−1 ∈ G: |h| ⩽ |s0| + ⋅ ⋅ ⋅ + |sn−1|}. It is clear that S ⊆ T and standard
that T is a convex ℓ-subgroup of G. Moreover, for every g ∈ G, and every (fn)n∈ω ⊆ G, the following hold.
(1)

bg
n∈ω fn = supn∈ω{fn ∧ g}, and therefore f0 ∧ g ⩽ bg

n∈ω fn ⩽ g. Hence, gjn∈ω fn = ( gj

n∈ω
fn) ∨ (− gj

n∈ω
fn) ⩽ g ∨ [−(f0 ∧ g)] ⩽ g ∨ [(−f0) ∨ (−g)] ⩽ |g| ∨ |f0|.

(2) |g| = |g+ − g−| ⩽ |g+| + |g−| (T2)= g+ + g− (T3)⩽ g+ + g− = |g|.
Since T is a convex ℓ-subgroup of G, (1) and (2) imply that T is closed under

b
and ⋅ .
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Lemma 9.6. Let X be a set, and I a σ-ideal of subsets of X. Let (gn)n∈ω be a sequence of functions from X toℝ.
Suppose that, for I-almost every x ∈ X, supn∈ω gn(x) ∈ ℝ. Then the set {[gn]I | n ∈ ω} admits a supremum in ℝX

I
.

Proof. Let A ∈ I be such that, for every x ∈ X \ A, supn∈ω gn(x) ∈ ℝ. Let v : X → ℝ be any function such that,
for every x ∈ X \ A, v(x) = supn∈ω gn(x). Then [v]I is the supremum of {[gn]I | n ∈ ω} in ℝXI .

Lemma 9.7. Let G be a Dedekind σ-complete truncated ℓ-group, let f ∈ G+ and let (fi)i∈ω ⊆ G+. Then
f = fj

i∈ω
(if − ifj

k∈ω
fk).

Proof. Trivially, f ⩽ bf
i∈ω(if −bif

k∈ω fk). We prove the opposite inequality. By (T3), for every k ∈ ω, we have
fk ∧ (if) ⩽ if , and therefore we have bif

k∈ω fk = supi∈ω{fk ∧ (if)} ⩽ if . Hence, if −bif
k∈ω fk ⩾ if − if . Therefore,

we have
fj

i∈ω
(if − ifj

k∈ω
fk) ⩾ fj

i∈ω
(if − if ) (T5’)= f .

Lemma 9.8. Let G be an abelian ℓ-group, let a ∈ G and let u ∈ G+. Then (a+ ∧ u) − a− = a ∧ u.
Proof. We have (a+ ∧ u) − a− = (a+ − a−) ∧ (u − a−) = a ∧ (u + (a ∧ 0)) = a ∧ (u + a) ∧ u = a ∧ u.
Lemma 9.9. Let G be a countably generated Dedekind σ-complete truncated ℓ-group. Then there exist a set X,
a σ-ideal I of subsets of X, an injective σ-continuous ℓ-homomorphism ι : G → ℝX

I
and an element u ∈ ℝX

I
such

that, for every f ∈ G, ι(f ) = ι(f) ∧ u.
Proof. By Corollary 9.4, there exist a set X, a σ-ideal I of subsets of X and an injective σ-continuousℓ-homomorphism ι : G → ℝX

I
.

Let S be a countable generating set of G and let F := {|s0| + ⋅ ⋅ ⋅ + |sn−1| | s0, . . . , sn−1 ∈ S}. Let us enumer-
ate F as F = {f0, f1, f2, . . . }.We shall prove that the set {ι(fn) | n ∈ ω}, admits a supremum u ∈ ℝX

I
that satisfies

the statement of the lemma.
By Lemma 9.7, for each n ∈ ω, we have

fn = fnj

i∈ω
(ifn − ifnj

k∈ω
fk).

Since ι is a σ-continuous ℓ-homomorphism, using Proposition 7.3, we have the following.
(1) For each n ∈ ω, ι(fn) = bι(fn)

i∈ω (iι(fn) −biι(fn)
k∈ω ι(fk)).

For every n ∈ ω, let gn ∈ ℝX be such that [gn]I = ι(fn). Then, by (1), for I-almost every x ∈ X, the following
conditions hold.
(1’) For each n ∈ ω, gn(x) = bgn(x)

i∈ω (ign(x) −bign(x)
k∈ω gk(x)).

Let x be such that (1’) hold. Suppose by way of contradiction that supn∈ω gn(x) =∞. Then there exists n ∈ ω
such that gn(x) > 0. Therefore, we have

gn(x) = gn(x)j

i∈ω
(ign(x) − ign(x)j

k∈ω
gk(x)) > 0,

which implies that there exists i ∈ ω such that ign(x) −bign(x)
k∈ω gk(x) > 0. Thus, bign(x)

k∈ω gk(x) < ign(x). But
supn∈ω gn(x) =∞ implies

bign(x)
k∈ω gk(x) = ign(x), a contradiction. Therefore, supn∈ω gn(x) ∈ ℝ holds for each

x ∈ X satisfying (1), and thus for I-almost every x ∈ X. By Lemma 9.6, the set {[gn]I | n ∈ ω} = {ι(fn) | n ∈ ω}
admits a supremum u.

Let f ∈ G+. Then
ι(f) ∧ u = ι(f) ∧ sup

n∈ω
ι(fn)= sup

n∈ω
{ι(f) ∧ ι(fn)} (by Lemma 8.3)= sup

n∈ω
{ι(f ∧ fn)}⩽ ι(f ) (by (T3)).
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For the opposite inequality, by Lemma 9.5 there existsm ∈ ω such that f ⩽ fm. Then f = f ∧ fm (T3)⩽ fm. There-
fore ι(f ) ⩽ ι(fm) ⩽ u, and moreover ι(f ) ⩽ ι(f) by (T3). Thus, ι(f ) ⩽ ι(f) ∧ u. For an arbitrary f ∈ G, f = f+ − f−
by (T1), hence ι(f ) = ι(f+) − ι(f−) = (ι(f+) ∧ u) − ι(f−) Lem. 9.8= ι(f) ∧ u.
Let G be a Dedekind σ-complete ℓ-group, let H ⊆ G, and let u ∈ G. We say that u is a weak unit for H if u ⩾ 0
and, for every h ∈ H, |h| = |h|j

n∈ω
n(|h| ∧ u).

Remark 9.10. Wewill see in Lemma 11.2 that a weak unit for G in the sense above is the same as a weak unit
of G in the usual sense.

Lemma 9.11. Let Y be a set, J a σ-ideal of subsets of Y, H ⊆ ℝY
J
an ℓ-subgroup, and u ∈ ℝY

J
a weak unit for H.

Then there exists a set X, a σ-ideal I of subsets of X, and a σ-continuous ℓ-homomorphism ψ : ℝY
J
→ ℝX

I
such

that the restriction of ψ to H is injective and ψ(u) = [1]I.
Proof. Let v ∈ ℝY be such that [v]J = u. Since u ⩾ 0, we may choose v ⩾ 0. Let X := {y ∈ Y | v(y) > 0}. Let
I := {J ∩ X | J ∈ J} = {J ∈ J | J ⊆ X}. Let ( ⋅ )|X : ℝY → ℝX be the restriction map that sends f ∈ ℝY to f|X ∈ ℝX,
where f|X(x) = f(x) for each x ∈ X. Write [ ⋅ ]J : ℝY  ℝYJ for the natural quotient map, and similarly for[ ⋅ ]I : ℝX  ℝXI . Since ker [ ⋅ ]J ⊆ ker ([ ⋅ ]I ∘ ( ⋅ )|X), by the universal property of the quotient there exists
a unique σ-continuous ℓ-homomorphism ρ : ℝY

J
→ ℝX

I
such that the following diagram commutes:ℝY ℝX

ℝY
J

ℝX
I
.

( ⋅ )|X

[ ⋅ ]J [ ⋅ ]I

ρ

We claim that the restriction of ρ to H is injective. Indeed, let h ∈ H+ be such that ρ(h) = 0. Let g ∈ ℝY be
such that [g]J = h. Since h ⩾ 0, we may choose g ⩾ 0. We have that [g|X]I = 0. Therefore, for I-almost every
x ∈ X, g(x) = 0. Therefore, for J-almost every y ∈ Y, g(y) = 0 or y ∈ Y \ X, i.e., g(y) = 0 or v(y) = 0. Since
h = bh

n∈ω n(h ∧ u), we have g(y) = bg(y)
n∈ω n(g(y) ∧ v(y)) for J-almost every y ∈ Y. Therefore, for J-almost every

y ∈ Y, if v(y) = 0, then g(y) = bg(y)
n∈ω n(g(y) ∧ 0) = bg(y)

n∈ω 0 = 0, i.e., g(y) = 0. Hence, for J-almost every y ∈ Y,
g(y) = 0. Thus, h = 0.

For every λ ∈ ℝ+ \ {0}, the function λ( ⋅ ) : ℝ→ ℝ which maps x to λx is an isomorphism of Dedekind
σ-complete ℓ-groups. Indeed, its inverse is the map 1

λ ( ⋅ ). Then, the map m : ℝX → ℝX which maps f to the
function m(f) defined by (m(f))(x) = 1

v(x) f(x) is an isomorphism of Dedekind σ-complete ℓ-groups; indeed,
its inverse is m−1 : ℝX → ℝX defined by (m−1(g))(x) = v(x)g(x). For every f, g ∈ ℝX, [f]I = [g]I if, and only
if, [m(f)]I = [m(g)]I. Hence, ker [ ⋅ ]J = ker ([ ⋅ ]J ∘ m). Therefore, there exists an isomorphism η : ℝX

I

∼→ ℝX
I
of

Dedekind σ-complete ℓ-groups which makes the following diagram commute:ℝX ℝX
ℝX
I

ℝX
I
.

[ ⋅ ]I [ ⋅ ]I

m
∼

η
∼

We have the following commutative diagram:ℝY ℝX
ℝY
J

ℝX
I

ℝX
ℝX
I
.

( ⋅ )|X

[ ⋅ ]J [ ⋅ ]I

ρ

[ ⋅ ]I

m
∼

η
∼
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Wesetψ := η ∘ ρ. Note thatm(v|X) ∈ℝX is the function constantly equal to1: indeed,m(v|X)(x)= 1
v(x) vX(x)= 1.

Thus, ψ(u) = η(ρ(u)) = η(ρ([v]J)) = [m(vX)]I = [1]I. Since the restriction of ρ to H is injective, and η is bijec-
tive, the restriction of ψ to H is injective.

Lemma 9.12. Let G be a countably generated Dedekind σ-complete truncated ℓ-group. Then there exist a set
X, a σ-ideal I of subsets of X and an injective σ-continuous ℓ-homomorphism ι : G → ℝX

I
such that, for every

f ∈ G, ι(f ) = ι(f) ∧ [1]I.
Proof. By Lemma 9.9, there exist a set Y, a σ-ideal J of subsets of Y, an injective σ-continuous ℓ-homomor-
phism φ : G → ℝY

J
and an element u ∈ ℝY

J
such that, for every f ∈ G,

φ(f ) = φ(f) ∧ u.
First, 0 ⩽ φ(0) = 0 ∧ u, hence u ⩾ 0. Since, for all f ∈ G, |f| = b|f|

n∈ω n|f| by (T4’), we have|φ(f)| = |φ(f)|j

n∈ω
n(|φ(f)| ∧ u).

Therefore, setting H equal to the image of G, u is a weak unit for H. By Lemma 9.11, there exist a set X,
a σ-ideal I of subsets of X, and a σ-continuous ℓ-homomorphism ψ : ℝY

J
→ ℝX

I
such that the restriction of ψ

to H is injective and ψ(u) = [1]I. The function ι := ψ ∘ φ has the required properties.

Theorem 9.13. The variety σℓ𝔾t of Dedekind σ-complete truncated ℓ-groups is generated byℝ.
Proof. Let G be aDedekind σ-complete truncated ℓ-group. Suppose that an equation τ = ρ (in the language of
Dedekind σ-complete truncated ℓ-groups) does not hold in G. Since τ and ρ have countablymany arguments,
the equation τ = ρ does not hold in a countably generated Dedekind σ-complete truncated ℓ-group G. By
Lemma 9.12, τ = ρ does not hold in ℝ. The statement follows by the HSP Theorem for (infinitary) varieties
(see [16, Theorem (9.1)]).

Proof of Theorem 9.2. Since the variety of Dedekind σ-complete truncated ℓ-groups is generated byℝ, there
exists a set X, a σℓ𝔾t-subalgebra H ⊆ ℝX, and a surjective morphism ψ : H → G of Dedekind σ-complete
truncated ℓ-groups. Let

I := {A ⊆ X | there exists (fn)n∈ω ⊆ kerψ such that for all a ∈ A there exists n ∈ ω such that fn(a) ̸= 0}.
Note that I is a σ-ideal of subsets of X. Therefore we have the projection map ℝX → ℝX

I
which is a mor-

phismofDedekind σ-complete truncated ℓ-groups. If f ∈ kerψ, then f(x) = 0 for I-almost every x ∈ X. In other
words, if f ∈ kerψ, then [f]I = 0. For the universal property of quotients, there exists a morphism ι : G → RX

I

of Dedekind σ-complete truncated ℓ-groups such that the following diagram commutes:

H ℝX
G ℝX

I
.

ι

ψ [ ⋅ ]I

ι

Let f ∈ H be such that ι(ψ(f)) = [f]I = 0. Then there exists a set A ∈ I such that f(x) = 0 for every x ∈ X \ A.
Since A ∈ I, there exists a sequence (fn)n∈ω of elements of kerψ such that, for every a ∈ A, there exists n ∈ ω
such that fn(a) ̸= 0. Let us show |f| = |f|j

n,k∈ω
k|fn|. (9.1)

Equation (9.1) holds if, and only if, for every a ∈ X, |f(a)| = b|f(a)|
n,k∈ω k|fn(a)|. If a ∉ A, then both sides equal 0.

If a ∈ A, then there exists m ∈ ω such that fm(a) ̸= 0, and therefore
|f(a)|j

n,k∈ω
k|fn(a)| ⩾ |f(a)|j

k∈ω
k|fm(a)| = |f(a)|.
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Since the opposite inequality is trivial, (9.1) is shown. By (9.1),|ψ(f)| = |ψ(f)|j

n,k∈ω
k|ψ(fn)| fn∈kerψ= |ψ(f)|j

n,k∈ω
0 = 0.

Therefore ψ(f) = 0, and thus f ∈ kerψ. This implies that ι is injective.

10 ℝ generates Dedekind σ-complete truncated Riesz spaces
Theorem 10.1 (Loomis–Sikorski Theorem for truncated Riesz spaces). Let G be a Dedekind σ-complete trun-
cated Riesz space. Then there exist a set X, a σ-ideal I of subsets of X, and an injective σ-continuous Riesz
morphism ι : G → ℝX

I
such that, for every f ∈ G, ι(f ) = ι(f) ∧ [1]I.

Proof. By Theorem 9.2, there exist a set X, a σ-ideal I of subsets of X, and an injective σ-continuousℓ-homomorphism ι : G → ℝX
I
such that, for every f ∈ G, ι(f ) = ι(f) ∧ [1]I. Since ℝXI is Dedekind σ-complete,

it is archimedean; by [15, Corollary 11.53], ι is a Riesz morphism.

We denote by σℝ𝕊t the variety of Dedekind σ-complete truncated Riesz spaces, whose primitive operations
are 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b, and ⋅ , and whose axioms are the axioms of Riesz spaces, together with
(TS1), (TS2), (TS3), (T1), (T2), (T3), (T4’) and (T5’).

We can now obtain the first main result of Part II, as a consequence of Theorem 10.1.

Theorem 10.2. The variety σℝ𝕊t of Dedekind σ-complete truncated Riesz spaces is generated byℝ.
Proof. Let G be a Dedekind σ-complete truncated Riesz space. By Theorem 10.1, there exist a set X, a σ-ideal
I of subsets of X, and an injective σ-continuous Riesz morphism ι : G → ℝX

I
such that, for every f ∈ G,

ι(f ) = ι(f) ∧ [1]I. Regarding ℝXI as an object of σℝ𝕊t with the structure induced fromℝ, we conclude that G is
a subalgebra of a quotient of a power ofℝ.
Remark 10.3. From [1, Theorem 7.4], it follows that ℝ actually generates σℝ𝕊t as a quasi-variety, where
quasi-equations are allowed to have countably many premises only.

Corollary 10.4. For any set I,

Ft(I) := {f : ℝI → ℝ  f is Cyl(ℝI)-measurable and there exist J ⊆ I finite and (λj)j∈J ⊆ ℝ+: |f| ⩽∑j∈J λj|πj|}= {f : ℝI → ℝ | f preserves integrability}
is the Dedekind σ-complete truncated Riesz space freely generated by the projections πi : ℝI → ℝ (i ∈ I).
Proof. By Theorem 10.2, the variety σℝ𝕊t of Dedekind σ-complete truncated Riesz spaces is generated byℝ.
Therefore, by a standard result in general algebra, the smallest σℝ𝕊t-subalgebra S of ℝℝI that contains the
set of projection functions {πi : ℝI → ℝ | i ∈ I} is freely generated by the projection functions. The set S is the
smallest subset of ℝℝI that contains, for each i ∈ I, the projection function πi : ℝI → ℝ, and which is closed
under every primitive operation of σℝ𝕊t. By Theorem 2.4, S consists precisely of all operations ℝI → ℝ that
preserve integrability. An application of Theorem 2.1 completes the proof.

Write π : I → Ft(I) for the function π(i) = πi. Corollary 10.4 asserts the following. For any set I, for every
Dedekind σ-complete truncatedRiesz spaceG, for every function f : I→ G, there exists aunique σ-continuous
truncation-preserving Riesz morphism φ : Ft(I)→ G such that the following diagram commutes:

I Ft(I)
G.

π

∀f
∃!φ
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11 The Loomis–Sikorski Theorem for ℓ-groups with weak unit
An element 1 of an abelian ℓ-group G is a weak unit if 1 ⩾ 0 and, for every f ∈ G, f ∧ 1 = 0 implies f = 0.
Remark 11.1. Let G be an archimedean abelian ℓ-group, and let 1 be a weak unit. Then f → f ∧ 1 is a trun-
cation. Indeed, the following show that (T1)–(T5) hold.
(1) f ∧ u = (f+ ∧ u) − f− by Lemma 9.8.
(2) For all f ∈ G+, f ∧ 1 ∈ G+.
(3) For all f, g ∈ G+, f ∧ (g ∧ 1) = (f ∧ 1) ∧ g ⩽ f ∧ 1 ⩽ f .
(4) For all f ∈ G+, if f ∧ 1 = 0, then f = 0.
(5) For all f ∈ G+, if nf = (nf)∧1 for every n ∈ ω, then nf ⩽ 1 for every n ∈ ω. Since G is archimedean, f = 0.
Lemma 11.2. Let G be a Dedekind σ-complete ℓ-group G, and let 1 ∈ G. Then 1 is a weak unit if, and only if, the
following conditions hold.
(W1) 1 ⩾ 0.
(W2) For all f ∈ G+, f = bf

n∈ω n(f ∧ 1).
Proof. Since G is Dedekind σ-complete, G is archimedean. If 1 is a weak unit, then 1 ⩾ 0 and, by Remark 11.1
and Proposition 8.5, for all f ∈ G+, f = bf

n∈ω n(f ∧ 1). Conversely, suppose that (W1) and (W2) hold. If
f ∧ 1 = 0, then f = bf

n∈ω n(f ∧ 1) = bf
n∈ω 0 = 0, and so 1 is a weak unit.

Note that, in the language of Dedekind σ-complete ℓ-groups, axioms (W1) and (W2) are equational. Indeed,
(W1) corresponds to 1 ∧ 0 = 0, and (W2) corresponds to ∀f f+ = bf+

n∈ω n(f+ ∧ 1).
Theorem 11.3 (Loomis–Sikorski Theorem for ℓ-groups with weak unit). Suppose G is a Dedekind σ-completeℓ-group with weak unit 1. Then there exist a set X, a σ-ideal I of subsets of X, and an injective σ-continuousℓ-homomorphism ι : G → ℝX

I
such that ι(1) = [1]I.

Proof. By Remark 11.1, G is a Dedekind σ-complete truncated ℓ-group, with the truncation given by
f → f ∧ 1. Then, by Theorem 9.2, there exist a set Y, a σ-ideal J of subsets of Y and an injective σ-continuousℓ-homomorphism φ : G → ℝX

I
such that, for every f ∈ G, φ(f ∧ 1) = φ(f) ∧ [1]J. The element φ(1) is a weak

unit for the image of G under φ. Therefore, by Lemma 9.11, there exists a set X, a σ-ideal I of subsets of
X, and a σ-continuous ℓ-homomorphism ψ : ℝY

J
→ ℝX

I
such that the restriction of ψ to H is injective and

ψ(φ(1)) = [1]I. The function ι := ψ ∘ φ has the desired properties.

Corollary 11.4. The variety of Dedekind σ-complete ℓ-groups with weak unit is generated byℝ.
Proof. Let G be a Dedekind σ-complete ℓ-group with weak unit. By Theorem 11.3, G is a subalgebra of
a quotient of a power ofℝ.
12 ℝ generates Dedekind σ-complete Riesz spaces with weak unit
Theorem 12.1 (Loomis–Sikorski Theorem for Riesz spaces with weak unit). Let G be a Dedekind σ-complete
Riesz space with weak unit. Then there exist a set X, a σ-ideal I of subsets of X, and an injective σ-continuous
Riesz morphism ι : G → ℝX

I
such that ι(1) = [1]I.

Proof. By Theorem 10.1, there exist a set X, a σ-ideal I of subsets of X and an injective σ-continuousℓ-homomorphism ι : G → ℝX
I
such that, for every f ∈ G, ι(1) = [1]I. Since ℝXI is Dedekind σ-complete, and

thus archimedean, by [15, Corollary 11.53], ι is a Riesz morphism.

We denote by σℝ𝕊u the variety of Dedekind σ-complete Riesz spaces with weak unit, whose primitive opera-
tions are 0, +, ∨, λ( ⋅ ) (for each λ ∈ ℝ), b, and 1, and whose axioms are the axioms of Riesz spaces, together
with (TS1), (TS2), (TS3), (W1), (W2).

As the second main result of Part II, we now deduce a theorem that was already obtained in [1].
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Theorem 12.2. The variety σℝ𝕊u of Dedekind σ-complete Riesz spaces with weak unit is generated byℝ.
Proof. Let G be a Dedekind σ-complete truncated Riesz space. By Theorem 12.1, G is a subalgebra of a quo-
tient of a power ofℝ.
Remark 12.3. It has been shown in [1] that ℝ actually generates σℝ𝕊u as a quasi-variety, in the sense of
Remark 10.3.

Corollary 12.4. For any set I,

Fu(I) := {f : ℝI → ℝ | f is Cyl(ℝI)-measurable and there exist J ⊆ I finite, (λj)j∈J ⊆ ℝ+, k ∈ ℝ+
such that |f| ⩽ k +∑

j∈J
λj|πj|}= {f : ℝI → ℝ | f preserves integrability over finite measure spaces}

is the Dedekind σ-complete Riesz space with weak unit freely generated by the elements {πi}i∈I , where, for i ∈ I,
πi : ℝI → ℝ is the projection on the i-th coordinate.
The proof is analogous to the proof of Corollary 10.4, and Fu(I) is characterised by a universal property
analogous to the one that characterises Ft(I).
A Operations that preserve∞-integrability
In Section 4 it has been shown that, for any p ∈ [1, +∞), a function τ : ℝI → ℝ preserves p-integrability if,
and only if, τ is Cyl(ℝI)-measurable and there exist a finite subset of indices J ⊆ I and nonnegative real num-
bers (λj)j∈J such that, for every v ∈ ℝI , we have |τ(v)| ⩽ ∑j∈J λj|vj|. Does the same hold for p =∞? The answer
is no. Indeed, the function ( ⋅ )2 : ℝ→ ℝ, x → x2 is an example of operation which preserves∞-integrability
but not p-integrability, for every p ∈ [1, +∞). In Theorem A.5, we will answer the following question.

Question A.1. Which operationsℝI → ℝ preserve∞-integrability?
We will see that an operationℝI → ℝ preserve∞-integrability if, and only if, roughly speaking, it is measur-
able and it maps coordinatewise-bounded subsets of ℝI onto bounded subsets of ℝ. To make this precise,
we introduce some definitions.

Given a measure space (Ω,F, μ), we define L∞(μ) as the set of F-measurable functions from Ω toℝ that
are bounded outside of a measurable set of null μ-measure.

Definition A.2. Let I be a set, τ : ℝI → ℝ. We say that τ preserves∞-integrability if for every measure space(Ω,F, μ) and every family (fi)i∈I ⊆ L∞(μ) we have τ((fi)i∈I) ∈ L∞(μ).
We can now state the answer to Question A.1 precisely. Let I be a set and let τ : ℝI → ℝ be a function. Then τ
preserves∞-integrability if, and only if, τ is Cyl(ℝI)-measurable and, for every (Mi)i∈I ⊆ ℝ+, the restriction
of τ to∏i∈I[−Mi ,Mi] is bounded. This will follow from Theorem A.5.

A.1 Operations that preserve boundedness

As a preliminary step, in Theorem A.4, we characterise the operations which preserve boundedness.

Definition A.3. Let I be a set, τ : ℝI → ℝ. We say that τ preserves boundedness if for every set Ω and every
family (fi)i∈I of bounded functions fi : Ω → ℝ, we have that τ((fi)i∈I) : Ω → ℝ is also bounded.
Theorem A.4. Let I be a set and τ : ℝI → ℝ. The following conditions are equivalent.
(1) τ preserves boundedness.
(2) For every (Mi)i∈I ⊆ ℝ+, the restriction of τ to∏i∈I[−Mi ,Mi] is bounded.
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Proof. We prove (1)⇒ (2). Fix (Mi)i∈I ⊆ ℝ+. Take Ω := ∏i∈I[−Mi ,Mi] and, for every i ∈ I, let fi be the restric-
tion of the projection function πi : ℝI → ℝ to Ω. Since fi maps Ω onto [−Mi ,Mi], fi is bounded. Thus τ((fi)i∈I)
is bounded, i.e., there exists M̃ such that for every x ∈ Ω we have τ((fi(x))i∈I) ∈ [−M̃, M̃]. Let x ∈ Ω. Then
τ(x) = τ((πi(x))i∈I) = τ((fi(x))i∈I) ∈ [−M̃, M̃]. Thus (2) holds.

We now prove (2)⇒ (1). Let Ω be a set, and let (fi)i∈I be a family of bounded functions from Ω to ℝ.
For each i ∈ I, let Mi ∈ ℝ+ be such that the image of fi is contained in [−Mi ,Mi]. Let M̃ be such that τ maps∏i∈I[−Mi ,Mi] onto a subset of [−M̃, M̃]. Then, for each x ∈ Ω, τ((fi)i∈I)(x) = τ((fi(x))i∈I) ∈ [−M̃, M̃].
A.2 Operations that preserve∞-integrability

The following is the main theorem of this section.

Theorem A.5. Let I be a set and let τ : ℝI → ℝ be a function. The following conditions are equivalent.
(1) τ preserves∞-integrability.
(2) τ preserves measurability and boundedness.
(3) τ is Cyl(ℝI)-measurable and, for every (Mi)i∈I ⊆ ℝ+, the restriction of τ to∏i∈I[−Mi ,Mi] is bounded.
In order to prove Theorem A.5, we need some lemmas.

Lemma A.6. Let I be a set and let τ : ℝI → ℝ be a function. If τ preserves ∞-integrability, then τ preserves
measurability.

Proof. Every measurable space (Ω,F)may be endowed with the null measure μ0: for each A ∈ F, μ0(A) = 0.
Then L∞(μ0) is the set of F-measurable functions from Ω to ℝ. Hence, preservation of∞-integrability over(Ω,F, μ0) is equivalent to preservation of measurability over (Ω,F).
Lemma A.7. Let I be a set and let τ : ℝI → ℝ be a function. If τ preserves ∞-integrability, then τ preserves
boundedness.

Proof. Let us suppose that τ does not preserve boundedness. By Theorem A.4, there exists (Mi)i∈I ⊆ ℝ+ such
that the restriction of τ to∏i∈I[−Mi ,Mi] is not bounded. Fix one such family (Mi)i∈I; let Ω := ∏i∈I[−Mi ,Mi].
Let (ωn)n∈ω be a sequence in Ω such that |τ(ω0)| < |τ(ω1)| < ⋅ ⋅ ⋅ and |τ(ωn)|→∞ as n →∞. Consider
on (Ω,P(Ω)) the discrete measure μ such that μ({ωn}) = 1

2n for every n ∈ ω and μ(Ω \ {ω0, ω1, . . . }) = 0.
Then (Ω,P(Ω), μ) is a finite measure space. For i ∈ I, the restriction (πi)|Ω of πi to Ω is bounded, since its
image is [−Mi ,Mi]. Moreover, (πi)|Ω is P(Ω)-measurable. Therefore, (πi)|Ω ∈ L∞(μ). We have τ|Ω ∉ L∞(μ);
indeed, let A be a subset of Ω of null μ-measure. Then ωn ∉ A for every n ∈ ω. Therefore τ|Ω is not bounded
outside of A.

Lemma A.8. Let I be a set and let τ : ℝI → ℝ be a function. If τ preserves measurability and boundedness,
then τ preserves∞-integrability.
Proof. By Corollary 3.6, τ depends on a countable subset J ⊆ I. Let (Ω,F, μ) be a finite measure space and
consider a family (fi)i∈I ⊆ L∞(μ). For each j ∈ J, let Aj be a measurable subset of Ω such that μ(Aj) = 0 and
fj is bounded outside of Aj. Set A := ⋃j∈J Aj. Then μ(A) = 0. For each i ∈ I, define ̃fi as fi if i ∈ J, otherwise
let ̃fi be the function constantly equal to 0. Since τ depends only on J, we have τ((fi)i∈I) = τ(( ̃fi)i∈I). For
every i ∈ I, the restriction ( ̃fi)|Ω\A is bounded. We have that τ((fi)i∈I)|Ω\A = τ(( ̃fi)i∈I)|Ω\A = τ((( ̃fi)|Ω\A)i∈I) is
bounded since τ preserves boundedness and, for every i ∈ I, ( ̃fi)|Ω\A is bounded. Thus τ((fi)i∈I) is bounded
outside of a set of nullmeasure.Moreover, τ((fi)i∈I) ismeasurable because τ preservemeasurability. Therefore
τ((fi)i∈I) ∈ L∞(μ).
Proof of Theorem A.5. By Lemmas A.6 and A.7, we have (1)⇒ (2). Lemma A.8, we have (2)⇒ (1). By Theo-
rems 3.3 and A.4, we have (2)⇔ (3).

Corollary A.9. Let I bea set and let τ : ℝI → ℝbea function. If τ preserves p-integrability for some p ∈ [1, +∞),
then τ preserves∞-integrability.



M. Abbadini, Operations that preserve integrability, and truncated Riesz spaces | 1513

Proof. By Theorem 2.1, τ is Cyl(ℝI)-measurable and there exist a finite subset of indices J ⊆ I and non-
negative real numbers (λj)j∈J such that, for every v ∈ ℝI , we have |τ(v)| ⩽ ∑j∈J λj|vj|. Let (Mi)i∈I ⊆ ℝ+. Let
v ∈ ∏i∈I[−Mi ,Mi]. Then |τ(v)| ⩽ ∑j∈J λj|vj| ⩽ ∑j∈J λjMj. Thus, the restriction of τ to∏i∈I[−Mi ,Mi] is bounded.
Therefore, by Theorem A.5, τ preserves∞-integrability.
Remark A.10. The converse of Corollary A.9, as mentioned at the beginning of this section, is not true, as
shown by the function ( ⋅ )2 : ℝ→ ℝ, x → x2.
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