cancers

Review

Mechanisms of Immune Evasion in Multiple Myeloma: Open
Questions and Therapeutic Opportunities

Cirino Botta 1-2/*

, Francesco Mendicino

10, Enrica Antonia Martino !, Ernesto Vigna !, Domenica Ronchetti 30,

Pierpaolo Correale 4, Fortunato Morabito 5%, Antonino Neri 7 and Massimo Gentile 1-*

check for

updates
Citation: Botta, C.; Mendicino, E,;
Martino, E.A.; Vigna, E.; Ronchetti, D.;
Correale, P; Morabito, F.,; Neri, A.;
Gentile, M. Mechanisms of Immune
Evasion in Multiple Myeloma: Open
Questions and Therapeutic
Opportunities. Cancers 2021, 13, 3213.
https:/ /doi.org/10.3390/
cancers13133213

Academic Editor: Stefan Knop

Received: 28 May 2021
Accepted: 25 June 2021
Published: 28 June 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; f. mendicino@aocs.it (F.M.);
enricaantoniamartino@libero.it (E.A.M.); ernesto.vigna@aocs.it (E.V.)

Unit of Hematology, Department of Health Promotion, Maternal-Infant, Internal and Specialized Medicine of
Excellence G. D’Alessandro, University of Palermo, 90127 Palermo, Italy

Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
domenica.ronchetti@unimi.it (D.R.); antonino.neri@unimi.it (A.N.)

Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”,

89124 Reggio Calabria, Italy; pierpaolo.correale@ospedalerc.it

Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital,
East Jerusalem 91191, Israel; fmorabito@avh.org

Biothecnology Research Unit, AO of Cosenza, 87100 Cosenza, Italy

Hematology, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
Correspondence: cirino.botta@unipa.it (C.B.); massimogentile@virgilio.it (M.G.)

Simple Summary: The growing interest in immunotherapy for the treatment of multiple myeloma
demands a deep knowledge of the complex interactions between malignant and immune cells within
the bone marrow. Indeed, understanding the cellular and molecular mechanisms underlying this
network should represent the basis for the design of novel patient-oriented biological therapeutic
approaches. Here, we describe the role of the main immune components of the myeloma niche
along disease evolution and their implication in impairing/improving the response to anti-cancer
treatments. Additionally, we provided an overview of the potential weakness of this pro-tumor
interplay, evidencing novel therapeutic opportunities, which deserve future clinical investigations.

Abstract: Multiple myeloma (MM) is the second most common hematologic malignancy, charac-
terized by a multi-step evolutionary path, which starts with an early asymptomatic stage, defined
as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease in
1% of cases per year, often through an intermediate phase known as “smoldering” MM (sMM).
Interestingly, while many genomic alterations (translocation, deletions, mutations) are usually found
at early stages, they are not sufficient (alone) to determine disease evolution. The latter, indeed, relies
on significant “epigenetic” alterations of different normal cell populations within the bone marrow
(BM) niche, including the “evasion” from immune-system control. Additionally, MM cells could
“educate” the BM immune microenvironment (BM-IM) towards a pro-inflammatory and immuno-
suppressive phenotype, which ultimately leads to disease evolution, drug resistance, and patients’
worse outcome. Indeed, it is not a case that the most important drugs for the treatment of MM
include immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide) and monoclonal
antibodies (daratumumab, isatuximab, and elotuzumab). On these bases, in this review, we describe
the most recent advances in the comprehension of the role of the different cells composing the BM-IM,
and we discuss the potential molecular targets, which could represent new opportunities to improve
current treatment strategies for MM patients.

Keywords: multiple myeloma; tumor immunology; anti-cancer immune response; immunotherapy;
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1. Introduction

In recent years, the increased knowledge in cancer immunotherapy has focused many
research efforts on the interaction between cancer cells and the immune microenviron-
ment (IM), supporting the concept that IM plays a crucial role in tumor evolution and
progression [1-3]. Different preclinical studies, in both solid and hematologic oncology,
demonstrated the capability of the immune system to maintain tumors for a long time in a
state of equilibrium, where clonal expansions are antagonized by adaptive immunity (equi-
librium phase of immunoediting) [4,5]. These concepts support the hypothesis that patients
with very early stage or undetectable cancers may have tumor cells, which, while owing
all the genomic alterations typical of advanced diseases, (potentially) never give rise to
an active/aggressive disease (such as clonal hematopoiesis of indeterminate potential) [6].
Multiple myeloma (MM), the second most common hematologic malignancy, presents a
readily detectable premalignant stage, thus representing a unique setting to study this phe-
nomenon. Indeed, MM is a multi-step evolutionary disease characterized by an early stage
defined as monoclonal gammopathy of undetermined significance (MGUS), which evolves
into the overt disease often by an intermediate asymptomatic phase or “smoldering” MM
(sMM) [7-9]. While malignant plasma cells (PCs) usually present key genomic features of
active MM (including chromosomal aberrations such as translocations involving IgH or
hyperdiploidy/TP53 mutations/MYC translocations) [9], only 1% MGUS and 10% sMM
per year eventually evolve to overt MM, supporting the idea that “cell-intrinsic” factors
(i.e., genomic alterations) are not sufficient, alone, for disease evolution. The latter, indeed,
also relies on significant epigenetic alterations of different “normal” cell populations within
the bone marrow (BM) niche. Accordingly, the most active drugs for MM treatment or
for reducing the risk of evolution from sMM to MM include agents with strong activity
on the microenvironment, such as immunomodulatory drugs (IMiDs) or monoclonal anti-
bodies [10,11]. In this context, much evidence supports the critical role played by stromal
cells [12,13] and different cells of the IM (such as dendritic cells [14], myeloid-derived
suppressor cells (MDSCs) [15,16], natural killer [17], and specific lymphocytes subclasses
including the pro-inflammatory Th17 cells [18,19]) as well as BM-extrinsic drivers such as
the microbiota [20] in driving MM evolution. Gut microbiota, particularly by promoting
chronic inflammation and/or immune suppression, could drive non-aerodigestive tract
malignancies with mechanisms that are still under active investigation and have been
recently identified as a new player in determining tumor progression [20,21]. Along this
line, several studies already demonstrated a dysbiosis in MM patients as compared to
MGUS or healthy donors, while an increase in the abundance of Prevotella species in the
gut of sMM mice quickly progressing to MM, with a mechanism dependent on Th17 activa-
tion, has been recently observed [20]. The cross-talk between MM cells and immune cells
(ICs) generates an inflammatory/immunosuppressive milieu, which provides a significant
survival advantage for MM cells in terms of both resistance to conventional chemotherapy
and immunotherapeutic failure [22-24]. Indeed, despite the recent introduction of novel
drugs, which improved the clinical outcome of MM patients, the disease remains incurable,
and novel “microenvironment oriented” strategies are eagerly awaited [11]. Accordingly,
the possibility to modulate the inflammatory microenvironment as well as the immune
system by either recovering the tumor-associated immunosuppression or enhancing the
anti-cancer immune-response represents an emerging and effective opportunity to induce
long-lasting clinical benefits in different malignancies [25].

Within this work, we describe the most recent advances in comprehending the role
of the different cells composing the myeloma-associated IM, with a specific focus on the
molecular and cellular mechanisms involved in immune evasion. Next, we discuss targets
with potential translational relevance for the development of new immunotherapeutic
strategies for the treatment of MM patients.
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2. Myeloid Compartment
2.1. MDSCs

MDSCs are usually described as a mixture of cells in different stages of myeloid
differentiation able to impair innate and adaptive immune responses through several
mechanisms, including L-arginine depletion, oxidative stress, CD8" T-cell apoptosis, and
imbalance of Th1/Th17/Treg response [15,22]. These cells are commonly defined as
a CD11b*CD33*HLADR/!® subset within density gradient separated mononucleated
cells, which expand in patients with cancer. MM cells could induce MDSC development,
whereas, in turn, MDSCs foster tumor growth and chemo-resistance and induce immune
evasion [15].

An increase in MDSCs in peripheral blood and BM aspirates from MM patients (as
compared to MGUS or healthy donors) has been reported [26,27]. Furthermore, along with
disease evolution, an increase in the activation of the JAK/STAT signaling in response
to MM cells exposure has been observed, which, coupled with MDSCs’ capability to
differentiate into “osteoclast-like” cells to deplete arginine from the microenvironment
through overexpression of arginase-1 and to increase nitric oxide production, supports the
establishment of a proinflammatory and tolerogenic niche as well as the generation of lytic
bone lesions [15,24,25,28].

Therefore, it is clear that MDSC should be considered the main target for anti-MM ther-
apy. However, contrasting data report the capability of several anti-MM drugs to potentiate
(dexamethasone, melphalan, and cyclophosphamide) or to deplete (daratumumab) MDSCs
within the BM microenvironment. This point is of the utmost relevance, especially if we
take into account the plethora of immunotherapies currently available for MM, including
monoclonal antibodies, CAR T cells, and T cell engager bispecific antibodies, making
mandatory the identification of an optimal strategy for immunomonitoring. We and others
recently demonstrated that in MM patients, mature neutrophils should be considered the
true MDSCs [16,29-31]. Indeed, by impairing the final part of the differentiation through
a strong epigenetic remodeling, MM cells educate differentiating neutrophils to exhibit
a pro-inflammatory and pro-tumoral transcriptomic and cytokine profile able to impair
lymphocytes response and bispecific drugs activity. We demonstrated that this process
could be reverted by using hypomethylating agents, making this class of agents be taken
into account for combinatory strategy purpose.

Along this line, neutrophil to lymphocyte ratio (NLR) at diagnosis can predict the
outcome in newly diagnosed and post-ASCT MM patients [16,32,33].

Overall, these data support the role of an MDSC-oriented therapeutic strategy, which
could include JAK/STAT (ruxolitinib), arginase, or phosphodiesterase-5 inhibitors, as well
as hypomethylating agents to relieve the immunosuppression and support the activity of
concomitant anti-MM (immuno)therapies (Figure 1).

2.2. Monocytes/Macrophages

Monocytes and macrophages are among the most important regulators of cancer-
associated inflammation. Their role in cancer progression has been widely described in
solid tumors and, more recently, in hematological malignancies, including MM. Indeed,
it has been suggested that within the BM microenvironment, tumor-associated mono-
cytes and macrophages (TAMs) could protect MM cells from therapy-induced apoptosis
and promote neo-angiogenesis and immune-escape [22,23]. Additionally, several reports
confirmed TAMs’ role in inducing resistance to commonly used anti-MM drugs such as
melphalan or bortezomib [34,35].
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Figure 1. Role of myeloid cells in MM niche. Cartoon representing the main relationships among immune cells of myeloid

origin and MM cells. Therapeutic opportunities are reported according to the pathways/cells they interact with.

Currently, a plethora of surface markers have been used to describe TAMs (including
CD14, CD206, CD68, and CD163), which are used to identify at least two types of functional
macrophage states: M1 (inflammatory or “classically activated”), activated during infec-
tions and M2 (suppressive, “alternative pathway”) involved in angiogenesis and wound
healing. Of note, M1 and M2 should be considered the two extremes of a continuum; TAMs
indeed often present a mixed transcriptional profile [36-38]. Interestingly, monocytes
show a similar polarization pattern, which relies on the expression of CD14 and CD16; in
particular, we recognize: classical (CD14*CD16™), intermediate (CD14*/~ CD16!°%), and
non-classical monocytes (CD14~CD16™), the latter being considered a tumor-promoting
phenotype [39]. Due to the lack of shared detection methods, the percentage of TAMs
within MM patients” BM has been reported to be highly variable (from near 0 up to 25%),
increasing during evolution from MGUS to MM, with reports indicating a worse prognosis
for patients with a high CD163" and CD206" TAM infiltration [40-42]. A recent single-cell
study revealed that even if reduced in MGUS compared to most advanced stages, mature
monocytes/macrophages are already dysfunctional, presenting a phenotypic shift leading
to the loss of MHC type II surface representation impairing their antigen-presenting cell
capability [43].

On these premises, several macrophages depleting/reprogramming therapies are
under active investigation. The IKZF1-IRF4/IRF5 axis is necessary to drive the pro-tumoral
polarization of macrophages, and its targeting exerted by IMiDs demonstrated the recovery
of an anti-tumor functional status [44]. This event could contribute to the brilliant clinical
results achieved by the combination of IMiDs with myeloma targeting monoclonal anti-
bodies such as daratumumab and isatuximab, whose activity relies in part on the presence
of functional macrophages [11,45,46]. Further drugs, such as anti-CD47 antibodies [47],
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iron chelators [48], cyclophosphamides [46], and trabectedin [49], are currently under
investigation for their activity on MM-TAMs (Figure 1).

2.3. Dendritic Cells

Dendritic cells (DC) are key antigen-presenting cells (APCs), which work as a bridge
between innate and adaptive immunity. They are commonly divided into two subgroups
according to their function: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). pDCs are
specialized in the production of type I IFN in response to specific stimuli such as viruses;
on the other hand, by releasing particular context-dependent cytokines and through MHC-
dependent and independent cell-to-cell interaction, mDCs orchestrate the differentiation
and polarization of different populations of T lymphocytes, such as Th1, Th2, Th17, CTL,
and Tregs [14,22,23,28,50]. Additionally, mDCs can also interact with NK and B cells and
are involved in the development of local and systemic inflammation as well as autoimmune
disease and cancer [14,22,23,28,50]. It is essential to figure out how DCs are usually regu-
lated and how this regulation may be compromised within cancer IM to understand their
potential dual role (as tumor-suppressors or tumor-promoting cells) in MM fully. Indeed,
DCs extensively infiltrate (up to 10%, accumulating during MGUS to MM evolution [23])
the BM of MM patients, differentiating from local progenitors or monocytes attracted by
the inflammatory BM microenvironment. Within the BM, through different epigenetic
modifications [14], DCs are reprogrammed to (1) directly support MM cells proliferation
by producing growth cytokines including IL-6, RANK-L, and APRIL with a mechanism
dependent on the activation of proinflammatory pathways (p38 and NFkB among oth-
ers); (2) favor the osteoclastogenesis process (being themselves able to differentiate into
osteoclast-like cells); (3) induce Th17 polarization and, mainly, the secretion of IL-17A,
which works both as a direct growth factor for MM and as a proinflammatory/bone lysis
inducer cytokine; (4) promote neoangiogenesis; (5) genomic instability; finally, (6) protect
MM cells from drug-induced (melphalan and bortezomib) apoptosis through the activation
of the CD28/CD86 axis [14,19,22,23,51,52]. In this context, several DCs subsets express
PD-L1 and the immunosuppressive enzyme indoleamine-2,3-dioxygenase (IDO), which
contribute in attenuating a possible tumor specific CTL response within the BM-IM [23,53].
Therefore, it is clear that targeting the DC-MM crosstalk could be of the utmost impor-
tance to recover the physiological antigen presentation functionality fully. Indeed, several
transcriptomic studies suggest that either CD73 (on pDCs) or IL23 (on mDCs) might be
involved in the establishment of an immunosuppressive/proinflammatory BMM, and that
their targeting could rescue the immunological competence of DCs [14,23,51]. Additionally,
the functional inhibition of the CD28/CD80/CD86 axis with CTLA4Ig as well as the use of
anti-IL17 mAbs are currently being explored clinically for the treatment of MM patients
(Figure 1) [19,54,55].

3. Lymphoid Compartment
3.1. T Helper Response

Naive T helper cells polarize, depending on the microenvironment in which they live,
into fully effector cells, which mainly belong to the Th1, Th2, Th17, and regulatory T cells
subsets. Th1 cells promote a cytotoxic phenotype and are involved in the defense against
virus, intracellular bacteria as well as cancer cells, while Th2 lymphocytes mainly promote
a humoral response and also orchestrate the immune response against parasites through
the activation of cells of the innate immune response (mast cells and eosinophils) and by
inducing IgE class-switch in B cells. In this context, IFN-y/TGF-$3 and IL-3/4/5 are the
main markers of Th1l and Th2 response, respectively.

Overall, it has been reported that a higher percentage of CD4+ T cells can be found in
the BM of patients with newly diagnosed MM or high-risk SMM (but not with MGUS) as
compared to HD [28].

Few (and contrasting) data have been reported on the role of the Th1/Th2 response
in MM with no evident alteration in the distribution of those populations in patients
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as compared to healthy subjects. Interestingly, a reduced Th1/Th2 ratio is associated
with worse ISS stage, LDH, and serum 32-microglobulin. However, and interestingly,
an increase in Th2 response has been observed after lenalidomide and pomalidomide
treatment. Specifically, patients who developed an IMiDs-related skin rash obtained the
best results in the anti-cancer response, raising the attention again on the importance of a
Th2 response against MM [56].

More recently, the balance between Th17 and Tregs in the BM microenvironment of
patients with MM has gained a renewed interest. Physiologically, Th17 cells are involved in
the generation of chronic inflammation, could activate neutrophils, and trigger the defense
machinery against extracellular bacteria and fungi by producing, among others, IL-17,
IL6, IL-22, and TNF-« [18,22,24]. On the other hand, Tregs are involved in self-tolerance
induction and maintenance, autoimmunity prevention, and repression of immune response
to avoid damages from an unwanted/overwhelmed inflammatory response through cell-
to-cell contact and secretion of IL-10 and TGF-beta [22,24].

Multiple experimental evidence suggests that IL-17 (and Th17) plays a pivotal role
in MM development and progression. Indeed, several authors recently reported on the
capability of IL-17, induced by several changes in gut microbiota, to promote disease
evolution from SMM to MM [20]. Additionally, Th17 could promote cell proliferation and
migration, neoangiogenesis, immune evasion, and bone disease in MM [14,18,19]. The
role of Tregs instead is still controversial: there are few reports describing the amount
of Tregs infiltration in MM patients (no differences with BM from healthy donors), and
no precise data are currently available on their role on patients” outcome or response
to treatment [57,58]. Recently, a single cell study on BM microenvironment among MM
evolution identified an increase in Treg lymphocytes compared to HD in all the different
phases of MM evolution (starting from MGUS), suggesting that T cell dysfunction is an
early event [43]. Of note, Tregs usually express high levels of CD38, a target of isatuximab
and daratumumab, thus potentially increasing the T cell anti-MM response induced by
these agents (Figure 2) [59].

3.2. Cytotoxic T Lymphocytes (CTLs)

Cytotoxic T lymphocytes (CD8* T cells) are considered the effectors of the adaptive
immune system, being in charge of the protection against intracellular infections (either
bacteria or virus) and the elimination of malignant cells. Interestingly, once the target cells
have been eliminated, few antigen-specific CTLs survive transformed in memory cells,
ready to be re-activated if and when needed [22,23,25,28]. In MM patients, CTLs have been
found to be increased in both MGUS and symptomatic MM (with respect to healthy donors)
but dysfunctional (in term of proliferation and cytotoxic activity), presenting a reduced
capability to respond to antigenic stimuli. Indeed, it has been found that MM-specific
CTLs are unable to kill MM cells mainly due to several mechanisms, including T cell
exhaustion/senescence and the protective effect exerted by the myeloid compartment,
which is highly represented within the tumor microenvironment [16,25,60]. The latter
mechanism, in particular, partially relies on the induction of CD28 signaling in MM cells
by DCs, which reduces the capability of MM cells to present antigens through class-I HLA,
thus evading CTL recognition through T cell receptor engagement. On the other hand,
different soluble factors secreted by MM or ancillary cells (myeloid /mesenchymal cells)
have been found to modulate and eventually abrogate the antitumor activity of CTLs,
including TGF-f3, IL-10 as well as the immunosuppressive nucleoside adenosine and ADP
(dependent on CD38, CD39, and CD73 enzymatic activity) [25,61].
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MM-associated T-cells could present a mixed phenotype, which ranges from a “senes-
cent” effector phenotype, characterized by positivity to KLRG-1, CD57, CD160 associated to
low or negative CD28, CTLA4, and PD1, up to an “exhaustion” phenotype, which includes
the positivity for PD1, CTLA-4, CD57 and the lack of CD28 [22,25,43,60]. Unfortunately,
the failure of trials including anti-PD1 mAbs (even if some interesting results have been
observed from IMiDs-anti-PD1 combinatory strategies) revealed a dismal clinical role for
the axis PDL1-PD1 in MM [61-63]. Several trials are now exploring the activity of anti-
CTLA4 mAbs alone or in combination with anti-PD1. At the same time, the targeting of
the recently recognized immune checkpoint T-cell immunoglobulin and immunoreceptor
tyrosine-based inhibition motif (ITIM) domains (TIGIT) seems to play a promising role
in the future immunotherapy of MM to provide long-term immunological control of the
disease (Figure 2) [64,65].

3.3. NK

NK cells are granular CD56*CD3~ lymphocytes, which represents an essential subset
of the innate immune response. They play a key role in the immunity against viral infection,
in immune surveillance of cancer, and as effectors of anti-tumor therapies. On the NK
surface, we can find activating receptors (such as NKG2D, CD16, 2B4, NKp80, DNAM-
1, and natural cytotoxicity receptors) and inhibitory receptors (KIRs, CD94/NKG2A,
and ILT2/LIR1/CD85j), which recognition by specific ligands could determine an im-
balance between the different intracellular signaling able to activate or inhibit NK acti-
vation [25,28,49,66]. KIRs, in particular, by recognizing classical major histocompatibility
(MHC), class I molecules efficiently block NK cell activation against MHC-I-expressing nor-
mal cells. Once activated, NKs could kill the target cell in several ways: through secretion
of cytotoxic granules such as perforin or granzyme B or via death receptors such as Fas and
TRAIL-related pathways. Preclinical and clinical findings have demonstrated a central role
for NK cells in mediating anti-myeloma activity. Indeed, a decline in NK cell surveillance
and cytotoxicity against MM has been observed along with disease evolution from MGUS
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to later stages [22,43]. Along this line, the NKG2D ligand MICA was found to be reduced
in advanced disease compared to MGUS (shedding), while the expression of inhibitory
ligands such as class I MHCs (ligands for inhibitory KIR), negligible in early MM, increases
in advanced stages. Accordingly, several drugs, including melphalan, doxorubicin, and
trabectedin, have been found to increase the expression of activating ligands on MM cells
and, consequently, to induce NK-mediated cytotoxicity [49,67-69].

A graft vs. myeloma effect has been shown by the differences in post-allogeneic
stem cell transplant relapse rates based on the inherited repertoire of KIR genes expressed
by donor NK cells, indicating a role for NK cell-mediated suppression of relapse [22,24].
Lastly, NK cells mediate ADCC against myeloma cells in vitro and in vivo, thus enhancing
the anti-MM activity of current therapies, which includes mAbs such as the anti-CD38
daratumumab and isatuximab [45] and the anti-SLAMEF7 elotuzumab (Figure 2) [70,71].

3.4. B Lymphocytes

B cells are the main components of humoral immunity and are responsible for the
production and secretion of antibodies. B lymphocytes are strongly impaired in MM
patients, where a progressive reduction in CD19* cells is accompanied by an impaired
functionality with reduced production of polyclonal antibodies and class-switch. Addition-
ally, an increase in regulatory B cells (Bregs) along myeloma evolution from MGUS has
been reported, which determine increased release of IL-10 in the microenvironment and
inhibition of NK-mediated ADCC [25,28,72,73].

Interestingly, Bregs accumulation depends on disease burden, and different ap-
proaches to overcome their immunosuppressive effects should be taken into consideration
when designing therapeutic combinations. Indeed, they could be targeted by daratumumab
(due to their CD19*CD24 PrishtCD38 brisht phenotype) [74] or depleted by bortezomib use
(Figure 2) [28,75]. Despite their potential role as immune-suppressors, Bregs are still poorly
studied in MM.

4. Mesenchymal Stem Cells

Mesenchymal stem cells (MSC) are among the most important constituents of the
bone marrow (BM) non-hematopoietic microenvironment and their role as “drivers” of
myeloma pathobiology has been largely established [24,76]. While MSC-derived cytokines
(including interleukin-6) are fundamental for supporting MM growth, their role in MM
evolution still remains to be fully elucidated. Interestingly, MSCs play a fundamental
role in the development of MM-associated bone disease [12,13], and at least in vitro, their
post-transcriptional regulation through RNA interference could reduce the secretion of
RANK ligand, thus impairing the capability of osteoclasts to induce bone resorption. These
results are further supported by recent findings, which demonstrated the presence of
a specific pro-inflammatory transcriptional phenotype in MM-associated MSC, which
could persist even after deep responses and in patients with a MRD+ disease [76,77]. It is,
therefore, clear that targeting this interplay trough RANK network disrupters (denosumab)
or with proteasome inhibitors such as ixazomib, that have been demonstrated to induce an
osteogenic differentiation from MSC, could be of the utmost importance to counteract the
pro-tumor effects of the MSC-dependent inflammatory microenvironment [78].

5. Long-Term Failure of Novel Immunotherapies: Pitfalls and Opportunities

Despite the exceptional response rates observed with several new immunotherapies
(BCMA-targeted CAR T cells and bispecific T cells engagers), a significant proportion of
patients systematically relapse [79]. Unfortunately, the mechanisms underlying therapy
failures are far from being elucidated. Among others, antigen downregulation, the de-
pendence on T-cell “fitness” as well as the presence of an immunosuppressive BM-IM
could potentially play an important role in the establishment of a long-term resistance
to immune-based therapies in these patients. Specifically, it has been observed that for
BCMA-targeting agents, antigen deregulation could happen as a consequence of previous
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References

anti-BCMA treatments (e.g., belantamab) or by genetic alterations. Indeed, biallelic loss
of BCMA has been reported in several patients relapsing after anti-BCMA CAR-T [80,81].
Additionally, after a deeper analysis, a heterozygous TNFRSF17 loss or monosomy of 16 in
about 15% of MM patients never exposed to anti-BCMA therapy has been observed, letting
us hypothesize a role for genomic alteration in the development of resistance to BCMA-
targeting treatments [80,81]. On the other hand, the activity of anti-CD3/BCMA bispecific
antibodies have been found to be completely abrogated by the presence of granulocyte-like
MDSC [16] or dysfunctional/exhausted T-cells, which arise under an immunosuppressive
microenvironment characterized by a repeated T-cell stimulation [79]. Interestingly, while
the targeting of the PD1/PD-L1 axis in MM patients never demonstrated a significant clini-
cal benefit [82-84], the possibility to combine these drugs with bispecifics or cell therapy is
currently under study due to the overexpression of PD1 on exhausted (CAR-)T cells. Pre-
liminary clinical evidence suggested, indeed, the possibility to prolong the persistence of
adoptive T cells once these were genetically engineered with a disrupted PDCD1 gene [85].
A further promising approach relies on the combination of immunomodulatory agents
(such as lenalidomide) with CAR-T. Along this line, preclinical studies demonstrated that
by enhancing the production of Thl cytokines, lenalidomide increases CAR-T activity even
within immunosuppressive environments and delays the onset of T cell exhaustion [79,86].
New combinatory strategies, which aim to overcome the resistance induced by the BM-IM
(including the use of novel CELMoDs), are currently under active preclinical and clinical
investigation, and results are eagerly awaited [79,87].

6. Conclusions

The evolution from MGUS to active MM is associated with a complex and extensive
reprogramming of the whole immune contexture. Unfortunately, most of these changes are
still far to be elucidated entirely. Many efforts should be made to identify new biomarkers
and novel therapeutic targets to prevent disease evolution. Indeed, much evidence from
solid tumors underlines how the road to cure cancer includes treating patients early. Along
this line, several trials on early treatment of asymptomatic (but at high risk of progression)
MM with IMiDs or mAbs showed advantages in terms of both time to disease evolution
and survival.

Additionally, it is of extreme relevance the identification of potential immunomod-
ulatory activities of drugs currently used for the treatment of advanced disease (such
as proteasome inhibitors [88]) and of novel molecules (hypomethylating agents, HDAC
inhibitors, checkpoint inhibitors) [16,49,60,62]. This will lead to the translational design
of innovative combination strategies tailored to each patient’s “immune status” and to
the development of personalized immune therapy for symptomatic (or asymptomatic)
MM disease.
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