
Efficient SAT-based Proof Search
in Intuitionistic Propositional Logic

Abstract. We present an efficient proof search procedure for Intuition-
istic Propositional Logic which involves the use of an incremental SAT-
solver. Basically, it is obtained by adding a restart operation to the sys-
tem intuit by Claessen and Rosén, thus we call our implementation
intuitR. We gain some remarkable advantages: derivations have a simple
structure; countermodels are in general small; using a standard bench-
marks suite, we outperform intuit and other state-of-the-art provers.

1 Introduction

The intuit theorem prover by Claessen and Rosén [2] implements an efficient
decision procedure for Intuitionistic Propositional Logic (IPL) based on a Sat-
isfiability Modulo Theories (SMT) approach. Given an input formula α, the
clausification module of intuit computes a sequent σ = R,X ⇒ g equivalent
to α with respect to IPL-validity, where R, X and g have a special form: R is
a set of clauses, X is a set of implications (a → b) → c, with a, b, c atoms, g
is an atom. The decision procedure at the core of intuit searches for a Kripke
model K such that at its root all the formulas in R and X are forced and g is
not forced; we call K a countermodel for σ, since it witnesses the non-validity
of σ in IPL. The search is performed via a proper variant of the DPLL(T) pro-
cedure [12], whose top-level loop exploits an incremental SAT-solver. This leads
to a highly performant decision strategy; actually, on the basis of a standard
benchmarks suite, intuit outperforms two of the state-of-the-art provers for
IPL, namely fCube [5] and intHistGC [11]. At first sight, the intuit decision
procedure seems to be far away from the traditional techniques for deciding IPL
validity; on the other hand, the in-depth investigation presented in [10] unveils
a close and surprising connection between the intuit approach based on SMT
and the known proof-theoretic methods. The crucial point is that the main loop
of the decision procedure mimics a standard root-first proof search strategy for
the sequent calculus LJTSAT [10] (see Fig. 7), a variant of Dyckhoff’s calculus
LJT [3]. In [10] the intuit decision procedure is re-formulated so that, given a
sequent σ, it outputs either a derivation of σ in LJTSAT or a countermodel for σ.

Here we continue this investigation to better take advantage of the interplay
between the SMT perspective and proof-theoretic methods. At first, we have en-
hanced the Haskell intuit code1 by implementing the derivation/countermodel

1 Available at https://github.com/koengit/intuit.

c© The Author(s) 2021
A. Platzer and G. Sutcliffe (Eds.): CADE 2021, LNAI 12699, pp.
https://doi.org/10.1007/978-3-030-79876-5 13

Camillo Fiorentini(B)

– , 2021.217 233

Department of Computer Science, Università degli Studi di Milano, Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79876-5_13&domain=pdf
https://github.com/koengit/intuit
http://orcid.org/0000-0003-2152-7488
https://doi.org/10.1007/978-3-030-79876-5_13

extraction procedures discussed in [10]. We experimented some unexpected and
weird phenomena: derivations are often convoluted and contain applications of
the cut rule which cannot be trivially eliminated; countermodels in general con-
tain lots of redundancies. To overcome these issues, we have redesigned the deci-
sion procedure. Differently from intuit, in the main loop we keep all the worlds
of the countermodel under construction. Whenever the generation of a new world
fails, the current model is emptied and the computation restarts with a new it-
eration of the main loop. We call the obtained prover intuitR (intuit with
Restart). We gain some remarkable advantages. Firstly, the proof search proce-
dure has a plain and intuitive presentation, consisting of two nested loops (see the
flowchart in Fig. 3). Secondly, derivations have a linear structure, formalized by
the calculus C→ in Fig. 1; basically, a derivation in C→ is a cut-free derivation in
LJTSAT having only one branch. Thirdly, the countermodels obtained by intuitR

are in general smaller than the ones obtained by intuit, since restarts cross out
redundant worlds. We have replicated the experiments in [2] (1200 benchmarks):
as reported in the table in Fig. 9 and in the scatter plot in Fig. 11, intuitR has
better performances than intuit. The intuitR implementation and other addi-
tional material (e.g., the omitted proofs, a detailed report on experiments) can
be downloaded at https://github.com/cfiorentini/intuitR.

2 Preliminary Notions

Formulas, denoted by lowercase Greek letters, are built from an infinite set of
propositional variables V , the constant ⊥ and the connectives ∧, ∨, →; the
formula α ↔ β stands for (α → β) ∧ (β → α). Elements of the set V ∪ {⊥}
are called atoms and are denoted by lowercase Roman letters, uppercase Greek
letters denote sets of formulas. A (classical) interpretation M is a subset of V ,
identifying the propositional variables assigned to true. By M |= α we mean
that α is true in M ; moreover, M |= Γ iff M |= α for every α ∈ Γ . We write
Γ `c α iff, for every interpretation M , M |= Γ implies M |= α. A formula α is
CPL-valid (valid in Classical Propositional Logic) iff ∅ `c α.

A (rooted) Kripke model for IPL (Intuitionistic Propositional Logic) is a
quadruple 〈W,≤, r, ϑ〉 where W is a finite and non-empty set (the set of worlds),
≤ is a reflexive and transitive binary relation over W , the world r (the root of
K) is the minimum of W w.r.t. ≤, and ϑ : W 7→ 2V (the valuation function) is
a map obeying the persistence condition: for every pair of worlds w1 and w2 of
K, w1 ≤ w2 implies ϑ(w1) ⊆ ϑ(w2). The valuation ϑ is extended into a forcing
relation between worlds and formulas as follows:

w
 p iff p ∈ ϑ(w), ∀p ∈ V w 1 ⊥ w
 α ∧ β iff w
 α and w
 β
w
 α ∨ β iff w
 α or w
 β w
 α→ β iff ∀w′ ≥ w, w′
 α implies w′
 β.

By w
 Γ we mean that w
 α for every α ∈ Γ . A formula α is IPL-valid iff,
for every Kripke model K we have r
 α (here and below r designates the root
of K). Thus, if there exists a model K such that r 1 α, then α is not IPL-valid;
we call K a countermodel for α, written K 6|= α, and we say that α is counter-
satisfiable. We write Γ `i δ iff, for every model K, r
 Γ implies r
 δ; thus,

218 C. Fiorentini

https://github.com/cfiorentini/intuitR

R `c g
cpl0R,X ⇒ g

R, A `c b R, ϕ, X ⇒ g
cpl1R, X ⇒ g

(a→ b)→ c ∈ X
A ⊆ V
ϕ =

∧
(A \ {a})→ c

Fig. 1. The sequent calculus C→; R,X ⇒ g is an r-sequent.

α is IPL-valid iff ∅ `i α. Let σ be a sequent of the form Γ ⇒ δ; σ is IPL-valid
iff Γ `i δ. By K 6|= σ we mean that r
 Γ and r 1 δ. Note that such a model
K witnesses that σ is not IPL-valid; we say that K is a countermodel for σ and
that σ is counter-satisfiable.

Clausification We review the main concepts about the clausification procedure
described in [2]. Flat clauses ϕ and implication clauses λ are defined as

ϕ :=
∧
A1 →

∨
A2 |

∨
A2 ∅ ⊂ Ak ⊆ V ∪ {⊥}, for k ∈ {1, 2}

λ := (a→ b)→ c a ∈ V, {b, c} ⊆ V ∪ {⊥}

where
∧
A1 and

∨
A2 denote the conjunction and the disjunction of the atoms

in A1 and A2 respectively (
∧
{a} =

∨
{a} = a). Henceforth,

∧
∅ →

∨
A2 must

be read as
∨
A2; moreover, R, R1, . . . denote sets of flat clauses; X, X1, . . . sets

of implication clauses; A, A1, . . . sets of atoms. The intuit procedure relies on
the following property (see Lemma 2 in [10]):

Lemma 1. For every set of flat clauses R and every atom g, R `i g iff R `c g.

In the decision procedure, flat clauses are actively used only in classical rea-
soning. A pair (R,X) is→-closed iff, for every (a→ b)→ c ∈ X, b→ c ∈ R. An
r-sequent (reduced sequent) is a sequent Γ ⇒ g where g is an atom, Γ = R ∪X
and (R,X) is →-closed. Given a formula α, the clausification procedure yields a
triple (R,X, g) such that R,X ⇒ g is an r-sequent and:

(1) `i α iff R,X `i g; (2) K 6|= R,X ⇒ g implies K 6|= α, for every K. 2

Thus, IPL-validity of formulas can be reduced to IPL-validity of r-sequents.

3 The Calculus C→

The sequent calculus C→ consists of the rules cpl0 and cpl1 from Fig. 1. Rule
cpl0 (axiom rule) can only be applied if the condition R `c g holds, rule cpl1
requires that R,A `c b holds. In rule cpl1, (a → b) → c is the main formula
and A the local assumptions ; note that A is any set of propositional variables
(not necessarily containing a). Derivations are defined as usual (see e.g. [14]);

2 In [2] the clausification procedure outputs a triple (R,X, g) satisfying (1) and (2);
the→-closure of (R,X) is performed at the beginning of the decision procedure (for
every (a→ b)→ c ∈ X, the clause b→ c is added to R).

Efficient SAT-based Proof Search in Intuitionistic Propositional Logic 219

R0, A0 `c b0
R1, A1 `c b1

Rm−1, Am−1 `c bm−1

Rm `c g
Rm, X ⇒ g

λm−1
Rm−1, X ⇒ g

...
R2, X ⇒ g

λ1
R1, X ⇒ g

λ0
R0, X ⇒ g

λk = (ak → bk)→ ck ∈ X, ϕk =
∧

(Ak \ {ak})→ ck, Rk+1 = Rk ∪ {ϕk}

Fig. 2. Derivation of R0, X ⇒ g in C→ (0 ≤ k ≤ m− 1).

by `C→ σ we mean that there exists a derivation of the r-sequent σ in C→. In
showing derivations, we leave out rule names and we display the main formulas
of cpl1 applications. Soundness of rule cpl1 relies on the following property:

(a) If R,A `c b, then R, (a→ b)→ c `i ϕ, where ϕ =
∧

(A \ {a})→ c.

Indeed, let R,A `c b. By Lemma 1 R,A `i b, thus R,A \ {a} `i a → b.
It follows that R, (a→ b)→ c, A \ {a} `i c, hence R, (a→ b)→ c `i ϕ. By
Lemma 1 and (a), the soundness of C→ follows:

Proposition 1. `C→ R,X ⇒ g implies R,X `i g.

A derivation of σ0 = R0, X ⇒ g has the plain form shown in Fig. 2: it
only contains the branch of sequents σk = Rk, X ⇒ g where the sets Rk
are increasing. Nevertheless, the design of a root-first proof search strategy for
C→ is not obvious. Let σ0 be the r-sequent to be proved; we try to bottom-
up build the derivation in Fig. 2 by running a loop where, at each iteration
k ≥ 0, we search for a derivation of σk. It is convenient to firstly check whether
Rk `c g so that, by applying rule cpl0, we immediately get a derivation of
σk. If this is not the case, we should pick an implication λk from X and guess
a proper set of local assumptions Ak in order to bottom-up apply rule cpl1.

Rk, bk `c bk Rk, X ⇒ g
λk

Rk, X ⇒ g

λk = (ak → bk)→ ck ∈ X, bk → ck ∈ Rk
Ak = {bk}, ϕk = bk → ck, Rk+1 = Rk

If we followed a blind choice, the
procedure would be highly ineffi-
cient; for instance, the application
of rule cpl1 shown on the left trig-
gers a non-terminating loop. In-

stead, we pursue this strategy: we search for a countermodel for σk; if we suc-
ceed, then Rk, X 0i g and, being R0 ⊆ Rk, we conclude that R0, X 0i g and
proof search ends. Otherwise, from the failure we learn the proper λk and Ak
to be used in the application of rule cpl1; in next iteration, proof search restarts
with the sequent σk+1, where Rk+1 is obtained by adding the learned clause
ϕk to Rk. To check classical provability, we exploit a SAT-solver; each time the
solver is invoked, the set Rk has increased, thus it is advantageous to use an
incremental SAT-solver.

220 C. Fiorentini

Countermodels Henceforth we define Kripke models by specifying the interpre-
tations associated with its worlds. Let W be a finite set of interpretations with
minimum M0, namely: M0 ⊆ M for every M ∈ W . By K(W) we denote the
Kripke model 〈W,≤,M0, ϑ〉 where ≤ coincides with the subset relation ⊆ and ϑ
is the identity map, thus M
 p (in K(W)) iff p ∈M . We introduce the following
realizability relation .W between W and implication clauses:

M .W (a→ b)→ c iff (a ∈M) or (b ∈M) or (c ∈M) or
(∃M ′ ∈W s.t. M ⊂M ′ and a ∈M ′ and b 6∈M ′).

By M.W X we mean that M.W λ for every λ ∈ X. Countermodels of r-sequents
can be characterized as follows:

Proposition 2. Let σ = R,X ⇒ g be an r-sequent and let W be a finite set of
interpretations with minimum M0. Then, K(W) 6|= σ iff:
(i) g 6∈M0; (ii) for every M ∈W , M |= R and M .W X.

4 The Procedure proveR

The strategy outlined in Sec. 3 is implemented by the decision procedure proveR

(prove with Restart) defined by the flowchart in Fig. 3. The call proveR(R,X,g)
returns Valid if the r-sequent σ = R,X ⇒ g is IPL-valid, CountSat otherwise;
by tracing the computation, we can build a C→-derivation of σ in the former
case, a countermodel for σ in the latter. We exploit a single incremental SAT-
solver s: clauses can be added to s but not removed; by R(s) we denote the set
of clauses stored in s. The solver s has associated a set of propositional variables
U(s) (the universe of s); we assume that every clause ϕ supplied to s is built over
U(s) (namely, every variable occurring in ϕ belongs to U(s)). The SAT-solver is
required to support the following operations:

– newSolver()

Create a new SAT-solver.
– addClause(s, ϕ) // s is a SAT-solver, ϕ a flat clause built over U(s)

Add the clause ϕ to s.
– satProve(s, A, g) // s is a SAT-solver, A ⊆ U(s), g ∈ U(s) ∪ {⊥}

Call s to decide whether R(s), A `c g (A is a set of local assumptions). The
solver outputs one of the following answers:

• Yes(A′): thus, A′ ⊆ A and R(s), A′ `c g;
• No(M): thus, A ⊆M ⊆ U(s) and M |= R(s) and g 6∈M .

In the former case it follows that R(s), A `c g, in the latter R(s), A 0c g.

The procedure newSolver(R), defined using the primitive operations, creates
a new SAT-solver containing all the clauses in R. The computation of the call
proveR(R, X, g) consists of the following steps:

(S0) A new SAT-solver s storing all the clauses in R is created.
(S1) A loop starts (main loop) with empty W .

Efficient SAT-based Proof Search in Intuitionistic Propositional Logic 221

s ← newSolver(R)

Input Assumptions

R: finite set of flat clauses

X: finite set of implication clauses

g ∈ V ∪ {⊥}
(R,X) is →-closed

Output Properties

Valid implies R,X `i g
CountSat implies R,X 0i g

(S0)R, X, g

W ← ∅ (S1)

satProve(s, ∅, g)

(S2)

Valid

W ← W ∪ {M} (S3)

select 〈w, λ〉 s.t.

w ∈W , λ ∈ X, w7Wλ

(S4)

CountSat

satProve(s, w ∪ {a}, b)

(S5)

ϕ ←
∧

(A \ {a})→ c

addClause(s, ϕ)

(S6)

W : set of interpretations
ϕ: flat clause

(learned clause)

Yes(∅)

No(M)

No such 〈w, λ〉〈w, (a→ b)→ c 〉

Yes(A)

No(M)

Fig. 3. Computation of proveR(R, X, g).

(S2) The SAT-solver s is called to check whether R(s) `c g. If the answer
is Yes(∅), the computation stops yielding Valid. Otherwise, the output is
No(M) and the computation continues at Step (S3).

(S3) A loop starts (inner loop) by adding the interpretation M computed at
Step (S2) to the set W (thus, W = {M}).

(S4) We have to select a pair 〈w, λ〉 such that w ∈W , λ ∈ X and w7Wλ. If such
a pair does not exist, the procedure ends with output CountSat. Otherwise,
the computation continues at Step (S5).

(S5) Let 〈w, (a→ b)→ c〉 be the pair selected at Step (S4). The SAT-solver s is
called to check whether R(s), w, a `c b. If the result is No(M), then a new
iteration of the inner loop is performed where M is added to W . Otherwise,
the answer is Yes(A) and the computation continues at Step (S6); we call A
the learned assumptions and 〈w, (a→ b)→ c〉 the learned pair.

(S6) The clause ϕ (the learned clause) is added to the solver s and the computa-
tion restarts from Step (S1) with a new iteration of the main loop.

222 C. Fiorentini

Note that during the computation no new variables are created, thus U(s) can
be defined as the set of propositional variables occurring in R ∪ X ∪ {g}. We
show that the call proveR(R,X,g) is correct, namely: if R, X, g match the Input
Assumptions, then the Output Properties hold (see Fig. 3). We stipulate that:

– Rk denotes the set R(s) at the beginning of iteration k of the main loop;
– ϕk denotes the clause learned at iteration k of the main loop;
– Wk,j denotes the set W at iteration k of the main loop and just after

Step (S3) of iteration j of the inner loop.
– ∼c denotes classical equivalence, namely: α ∼c β iff `c α↔ β.

We prove some properties about the computation of proveR(R, X, g).

(P1) Let k, j ≥ 0 be such that Wk,j is defined. Then:
(i) The set Wk,j has a minimum element M0 and g 6∈M0.

(ii) For every M ∈Wk,j , M |= Rk.
(iii) If Wk,j+1 is defined, then Wk,j ⊂Wk,j+1.

(P2) For every 0 ≤ h < k such that ϕk is defined, ϕh 6∼c ϕk.

Let Wk,0 = {M}; one can easily check that, setting M0 = M , (i) holds. Point (ii)
follows by the fact that each M in Wk,j comes from an answer No(M), thus
M |= Rk. Let Wk,j+1 be defined and let Wk,j+1 = Wk,j∪{M}, with M computed
at step (S5); there is w ∈ Wk,j and λ = (a → b) → c ∈ X such that w7Wk,j

λ

and w ∪ {a} ⊆ M and b 6∈ M . We cannot have M ∈ Wk,j , otherwise, since
w ⊆ M and a ∈ M and b 6∈ M , we would get w .Wk,j

λ, a contradiction. Thus
M 6∈Wk,j , and this proves (iii).

Let 0 ≤ h < k be such that ϕk is defined, let 〈wk, λk = (ak → bk) → ck〉
and Ak be the pair and the assumptions learned at iteration k respectively;
note that Ak ⊆ wk ∪ {ak}. Since Rh ∪ {ϕh} = Rh+1 ⊆ Rk, we have ϕh ∈ Rk;
by (P1)(ii), it holds that wk |= Rk, hence wk |= ϕh. We show that wk 6|= ϕk, and
this proves (P2). Since 〈wk, λk〉 has been selected at Step (S4), ck 6∈ wk; by the
fact that ϕk =

∧
(Ak \ {ak})→ ck and Ak \ {ak} ⊆ wk, we conclude wk 6|= ϕk.

Exploiting the above properties, we prove the correctness of proveR, also
showing how to extract derivations and countermodels from computations.

Proposition 3. The call proveR(R,X,g) is correct.

Proof. We start by proving that the computation never diverges. By (P2), the
learned clauses ϕk are pairwise not classically equivalent; since each ϕk is built
over the finite set U(s), at most 2|U(s)| such clauses can be generated, and this
proves the termination of the main loop. Since every interpretation M in W is
a subset of U(s), by (P1)(iii) the termination of the inner loop follows.

Let σ = R,X ⇒ g. If proveR(R,X,g) returns CountSat, then the com-
putation ends at Step (S4) since no pair 〈w, λ〉 can be selected. By (P1), the
current set W satisfies the assumptions (i),(ii) of Prop. 2; accordingly, K(W) is
a countermodel for σ, thus R,X 0i g. If proveR(R,X,g) outputs Valid, then
there exists m ≥ 0 such that, at Step (S2) of iteration m of the main loop, the

Efficient SAT-based Proof Search in Intuitionistic Propositional Logic 223

SAT-solver yields Yes(∅), hence Rm `c g. For every iteration k in 0 . . .m− 1 of
the main loop, let 〈wk, λk = (ak → bk) → ck〉 be the learned pair and Ak the
learned assumptions (thus, Rk, Ak `c bk). We can apply rule cpl1 as follows:

Rk, Ak `c bk Rk+1, X ⇒ g
λkRk, X ⇒ g

ϕk =
∧

(Ak \ {ak})→ ck

R0 = R, Rk+1 = Rk ∪ {ϕk}

Accordingly, we can build the derivation of R,X ⇒ g displayed in Fig. 2 and,
by Prop. 1, we conclude R,X `i g. ut

As a corollary, we get the completeness of the calculus C→:

Proposition 4. For every r-sequent σ = R,X ⇒ g, `C→ σ iff R,X `i g.

We give two examples of computations using formulas from the ILTP (Intu-
itionistic Logic Theorem Proving) library [13].

Example 1. Let χ be the first instance of problem class SYJ201 from the ILTP
library [13], where ηij = pi ↔ pj and γ = p1 ∧ p2 ∧ p3:

χ = ((η12 → γ) ∧ (η23 → γ) ∧ (η31 → γ)) → γ

The clausification of χ yields the triple (R0, X, g̃), where X contains the impli-
cation clauses λ0, . . . , λ5 defined in Fig. 4 and R0 the following 17 clauses (we
mark by a tilde the fresh variables introduced during clausification): 3

p̃0 → p̃4, p̃3 → p2, p̃3 → p3, p̃4 → p1, p̃4 → p̃3, p̃5 → p̃4, p̃8 → p̃4,
p̃1 ∧ p̃2 → p̃0, p̃6 ∧ p̃7 → p̃5, p̃9 ∧ p̃10 → p̃8, p1 ∧ p2 ∧ p3 → g̃,
p1 → p̃2, p1 → p̃9, p2 → p̃1, p2 → p̃7, p3 → p̃6, p3 → p̃10.

The trace of the computation of proveR(R0,X,g̃) is shown in Fig. 4. Each
row displays the validity tests performed by the SAT-solver and the computed
answers. If the result is No(), the last two columns show the worlds wk in the
current set W and, for each wk, the list of λ such that wk7Wλ; the pair selected
at Step (S4) is underlined. For instance, after call (0) we have W = {w0} and
w07Wλk for every 0 ≤ k ≤ 5; the selected pair is 〈w0, λ0〉. After call (1), the set
W is updated by adding the world w1 and w17Wλ3, w17Wλ5 and w07Wλk for
every 2 ≤ k ≤ 5 (since w1 ∈ W , we get w0 .W λ0); the selected pair is 〈w1, λ3〉.
Whenever the SAT-solver outputs Yes(A), we display the learned clause ϕk. The
SAT-solver is invoked 15 times and there are 6 restarts. Fig. 4 also shows the
derivation of R0, X ⇒ g̃ extracted from the computation. ♦

Example 2. Let ψ be the second instance of problem class SYJ207 from the ILTP
library [13], where ηij = pi ↔ pj and γ = p1 ∧ p2 ∧ p3 ∧ p4:

ψ = ((η12 → γ) ∧ (η23 → γ) ∧ (η34 → γ) ∧ (η41 → γ)) → (p0 ∨ ¬p0 ∨ γ)

3 With intuit, the set R0 consists of the 11 clauses in the first two rows; the remaining
6 clauses are added when the →-closure of (R ,X0) is performed (see footnote 2).

224 C. Fiorentini

λ0 = (p3 → p2)→ p̃7 λ1 = (p3 → p1)→ p̃9 λ2 = (p2 → p3)→ p̃6
λ3 = (p2 → p1)→ p̃2 λ4 = (p1 → p3)→ p̃10 λ5 = (p1 → p2)→ p̃1
w0 = ∅ w1 = {p3, p̃6, p̃10} w2 = {p2, p̃1, p̃7, p̃10} w3 = {p3, p̃2, p̃6, p̃10}
w4 = {p1, p̃2, p̃6, p̃9} w5 = {p̃1, p̃7, p̃9} w6 = w5 ∪ {p2} w7 = {p1, p̃2, p̃7, p̃9}

@SAT Answer W λ s.t. w7Wλ

Start (0) R0 `?c g̃ No(w0) w0 λ0, . . . , λ5

(1) R0, w0, p3 `?c p2 No(w1) w1 λ3, λ5

w0 λ2, . . . , λ5

(2) R0, w1, p2 `?c p1 Yes({p2, p̃6}) ϕ0 = p̃6 → p̃2

Rest 1 (3) R1 `?c g̃ No(w2) w2 λ1

(4) R1, w2, p3 `?c p1 Yes({p3, p̃1}) ϕ1 = p̃1 → p̃9

Rest 2 (5) R2 `?c g̃ No(w3) w3 λ5

(6) R2, w3, p1 `?c p2 Yes({p1, p̃10}) ϕ2 = p̃10 → p̃1

Rest 3 (7) R3 `?c g̃ No(w4) w4 λ0

(8) R3, w4, p3 `?c p2 Yes({p3}) ϕ3 = p̃7

Rest 4 (9) R4 `?c g̃ No(w5) w5 λ2, λ3, λ4

(10) R4, w5, p2 `?c p3 No(w6) w6 λ4

w5 λ4

(11) R4, w6, p1 `?c p3 Yes({p1, p̃1}) ϕ4 = p̃1 → p̃10

Rest 5 (12) R5 `?c g̃ No(w7) w7 λ2

(13) R5, w7, p2 `?c p3 Yes({p2}) ϕ5 = p̃6

Rest 6 (14) R6 `?c g̃ Yes(∅) Valid

R0, p2, p̃6 `c p1

R1, p3, p̃1 `c p1

R2, p1, p̃10 `c p2

R3, p3 `c p2

R4, p1, p̃1 `c p3

R5, p2 `c p3

R6 `c g̃

R6, X ⇒ g̃
λ2

R5, X ⇒ g̃
λ4

R4, X ⇒ g̃
λ0

R3, X ⇒ g̃
λ5

R2, X ⇒ g̃
λ1

R1, X ⇒ g̃
λ3

R0, X ⇒ g̃

Fig. 4. Computation of proveR(R0,X,g̃), see Ex. 1.

Efficient SAT-based Proof Search in Intuitionistic Propositional Logic 225

λ0 = (p4 → p3)→ p̃11 λ1 = (p4 → p1)→ p̃13 λ2 = (p3 → p4)→ p̃10
λ3 = (p3 → p2)→ p̃8 λ4 = (p2 → p3)→ p̃7 λ5 = (p2 → p1)→ p̃2
λ6 = (p1 → p4)→ p̃14 λ7 = (p1 → p2)→ p̃1 λ8 = (p0 → ⊥)→ g̃
w0 = ∅ w1 = {p4, p̃10, p̃14} w2 = {p3, p̃7, p̃11, p̃14} w3 = {p4, p̃8, p̃10, p̃14}
w4 = w3 ∪ {p2, p̃1} w5 = w4 ∪ {p0, g̃} w6 = {p1, p̃2, p̃8, p̃10, p̃13}
w7 = {p4, p̃1, p̃8, p̃10, p̃14} w8 = w7 ∪ {p2} w9 = w7 ∪ {p0, g̃}

@SAT Answer W λ s.t. w7Wλ

Start (0) R0 `?c g̃ No(w0) w0 λ0, . . . , λ8

(1) R0, w0, p4 `?c p3 No(w1) w1 λ3, λ4, λ5, λ7, λ8

w0 λ2, . . . , λ8

(2) R0, w1, p3 `?c p2 Yes({p3, p̃10}) ϕ0 = p̃10 → p̃8

Rest 1 (3) R1 `?c g̃ No(w2) w2 λ1, λ5, λ7, λ8

(4) R1, w2, p4 `?c p1 Yes({p4, p̃11}) ϕ1 = p̃11 → p̃13

Rest 2 (5) R2 `?c g̃ No(w3) w3 λ4, λ5, λ7, λ8

(6) R2, w3, p2 `?c p3 No(w4) w4 λ8

w3 λ7, λ8

(7) R2, w4, p0 `?c ⊥ No(w5) w5 ∅
w4 ∅
w3 λ7

(8) R2, w3, p1 `?c p2 Yes({p1, p̃14}) ϕ2 = p̃14 → p̃1

Rest 3 (9) R3 `?c g̃ No(w6) w6 λ0, λ4, λ8

(10) R3, w6, p4 `?c p3 Yes({p4, p̃13}) ϕ3 = p̃13 → p̃11

Rest 4 (11) R4 `?c g̃ No(w7) w7 λ4, λ5, λ6

(12) R4, w7, p2 `?c p3 No(w8) w8 λ8

w7 λ8

(13) R4, w8, p0 `?c ⊥ No(w9) w9 ∅
CountSat w8 ∅

w7 ∅

p4, p̃1,
p̃8, p̃10, p̃14

p2, p4, p̃1,
p̃8, p̃10, p̃14

p0, p2, p4, p̃1,
p̃8, p̃10, p̃14, g̃

w9

w8

w7

K({w7, w8, w9})

∅

p0, p3, p̃2,
p̃7, p̃11, p̃13, g̃

p0, p4, p̃1,
p̃8, p̃10, p̃14, g̃

p2, p4, p̃1,
p̃8, p̃10, p̃14

p0, p1, p3, p̃2,
p̃7, p̃11, p̃13, g̃

p0, p2, p4, p̃1,
p̃8, p̃10, p̃14, g̃

Generated by our implementation of intuit

Fig. 5. Computation of proveR(R0,X,g̃), see Ex. 2.

226 C. Fiorentini

1 procedure prove(R, X, g)
2 // Same Input Ass. and Output Prop. as for intuitR (Fig. 3)

3 s ← newSolver(R); τ ← prAux(X, ∅, g)
4 if τ = Yes(∅) then return Valid else return CountSat

5 procedure prAux(X̃, Ã, q)

6 // Output: Yes(A) or No(M), where A ⊆ Ã and M ⊆ Ã
7 τ0 ← satProve(s, Ã, q)
8 if τ0 = Yes(A) then return Yes(A)
9 else // τ0 = No(M)

10 for λ = (a→ b)→ c ∈ X s.t. a 6∈M and b 6∈M and c 6∈M do

11 τ1 ← prAux(X̃ \ {λ}, M ∪ {a}, b)
12 if τ1 = Yes(A) then
13 ϕ ←

∧
(A \ {a})→ c; addClause(s, ϕ)

14 return prAux(X̃, Ã, q)

15 return No(M)

16 end

Fig. 6. The prove procedure of intuit [2,10].

We proceed as in Ex. 1. The clausification procedure yields (R0, X, g̃), where X
consists of the implication clauses λ0, . . . , λ8 in Fig. 5 and the set R0 contains
the 24 flat clauses below:

p0 → g̃, p1 → p̃2, p1 → p̃13, p2 → p̃1, p2 → p̃8, p3 → p̃7, p3 → p̃11, p4 → p̃10, p4 → p̃14,
p̃0 → p̃5, p̃3 → p3, p̃3 → p4, p̃4 → p2, p̃4 → p̃3, p̃5 → p1, p̃5 → p̃4, p̃6 → p̃5, p̃9 → p̃5
p̃1 ∧ p̃2 → p̃0, p̃7 ∧ p̃8 → p̃6, p̃10 ∧ p̃11 → p̃9, p̃13 ∧ p̃14 → p̃12, p̃12 → p̃5, γ → g̃.

The execution of proveR(R0,X,g̃) (see Fig. 5) requires 14 calls to the SAT-
solver and 4 restarts. After the last call we get W = {w7, w8, w9} and wk .W X
for every wk ∈ W , thus the computation ends yielding CountSat. The model
K(W), depicted at the bottom left of the figure, is a countermodel for R0, X ⇒ g̃
and for ψ (see Sec. 2). ♦

5 Related Work and Experimental Results

We compare the procedure proveR of intuitR with its intuit counterpart,
namely the procedure prove defined in Fig. 6. Here we comply with the pre-
sentation in [10], equivalent to the original one in [2]. The recursive auxiliary
function prAux plays the role of the main loop of proveR (but in proveR the set
of atoms Ã is not used); the loop inside prAux corresponds to the inner loop of
proveR. 4 We point out some major differences. Firstly, in prAux the interpre-
tations M computed by the SAT-solver are not collected; in the loop, only the
interpretation M computed at line 8 is considered, thus at the beginning of each

4 Actually intuit implements a variant of prAux where as much as possible clauses
ϕ are added to the solver.

Efficient SAT-based Proof Search in Intuitionistic Propositional Logic 227

R `c q
cpl0R,X ⇒ q

R1, b→ c,X,A⇒ b R2, ϕ,X, (a→ b)→ c⇒ q
ljt

R1, R2, X, (a→ b)→ c⇒ q
R1, X1 `i ϕ ϕ,R2, X2 ⇒ q

cut
R1, R2, X1, X2 ⇒ q

A ⊆ V , q ∈ V ∪ {⊥}
ϕ =

∧
(A \ {a})→ c

Fig. 7. The calculus LJTSAT.

iteration just the “local” conditions of the test M7Wλ are checked (line 10).
Secondly, the call satProve(s, w ∪ {a}, b) to the SAT-solver at Step (S5) is
replaced by the recursive call prAux(X̃ \ {λ}, M ∪ {a}, b) at line 11; as a
consequence, we cannot build derivations by applying rule cpl1. As thoroughly
discussed in [10], the calculus underlying intuit is the sequent calculus LJTSAT

in Fig. 7, obtained from C→ by replacing the rule cpl1 with the more general
rule ljt and introducing a cut rule. Rule ljt can be seen as a generalization of
Dyckhoff’s implication-left rule from the calculus LJT (alias G4ip) [3,14]. We re-
mark that a C→-derivation is isomorphic to a cut-free LJTSAT-derivation where,
in every application of rule ljt, the left-premise has a trivial proof (just apply
rule cpl0). In [10] it is shown how countermodels and LJTSAT-derivations can
be extracted from prove computations. In brief, countermodels are obtained by
considering some of the interpretations coming from No() answers; countermod-
els are in general bigger than the ones built by proveR, where at each restart
the model is emptied. As an example, let σ0 = R0, X ⇒ g̃ be defined as in
Ex. 2; the computation of prove(R0,X,g̃) requires 31 calls to the SAT-solver
(24 No() answers) and the computed countermodel for σ0 has 6 worlds (see
Fig. 5); instead, proveR(R0,X,g̃) requires 14 calls and the countermodel has 3
worlds. Derivation extraction presents some awkward aspects. The key insight
is that, for every recursive call prAux(X̃,Ã,q) occurring in the computation of
prove(R,X,g), if prAux(X̃,Ã,q) returns Yes(A) (where A ⊆ Ã), then we can
build an LJTSAT-derivation of a sequent R,R′, A, X̃ ⇒ q, where R′ contains some
of the clauses added to the SAT-solver. The derivation is built either by applying
the rule cpl0 if prAux ends at line 8, or else by applying rule ljt, exploiting the
derivations obtained by the recursive calls at lines 11 and 14. Accordingly, the
main call prove(R,X,g) yields a derivation of R,R′, X ⇒ g. The crucial point
is that the redundant clauses ϕ in R′ satisfy R,X `i ϕ (this ultimately follows
by property (a) in Sec. 3), thus we can eliminate them by applying the cut rule.

Example 3. Let σ0 = R0, X ⇒ g̃ be defined as in Ex. 1; prove(R0,X,g̃) yields
the LJTSAT-derivation D0 of R2, ϕ4, X ⇒ g̃ in Fig. 8. By applying the cut rule
three times, we get an LJTSAT-derivation of σ0. We stress that the C→-derivation
of σ0 obtained with intuitR (see Fig. 4) has a simpler structure. ut

Finally, we remark that the clauses ϕ computed in prAux do not enjoy prop-
erty (P2) (Sec. 4); we have experimented cases where such clauses are even
duplicated (e.g., with formulas from class SYJ205 of ILTP library).

228 C. Fiorentini

R0, p2, p̃6 `c p1
R0, X{0,3}, p2, p̃6 ⇒ p1

R1, p1, p̃10 `c p2
R1, X{0,5}, p1, p̃10 ⇒ p2

R2, p3 `c p2
R2, X{0}, p3 ⇒ p2

λ5
R1, X{0}, p3 ⇒ p2

λ3 = (p2 → p1)→ p̃2
σ̂ = R0, X{0}, p3 ⇒ p2

...
shown
above
...

σ̂

R3, p3 `c p1
R3, X{1}, p3 ⇒ p1

R4, p1, p̃1 `c p3
R4, X{2,4}, p1, p̃1 ⇒ p3

R5, p2 `c p3
R5, X{2}, p2 ⇒ p3

λ4

R4, X{2}, p2 ⇒ p3

R6 `c g̃
R6, X ⇒ g̃

λ2

R5, X ⇒ g̃
λ1 = (p3 → p1)→ p̃9

R3, ϕ4, X ⇒ g̃
λ0 = (p3 → p2)→ p̃7

R2, ϕ4, X ⇒ g̃

λ2 = (p2 → p3)→ p̃6 λ4 = (p1 → p3)→ p̃10 λ5 = (p1 → p2)→ p̃1
ϕ0 = p̃6 → p̃2 ϕ1 = p̃10 → p̃1 ϕ2 = p̃7 ϕ3 = p̃9 ϕ4 = p̃1 → p̃10 ϕ5 = p̃6
XI = X \ {λk | k ∈ I } Rk+1 = Rk ∪ {ϕk}

Fig. 8. Derivation D0 of R2, ϕ4, X ⇒ g̃ in LJTSAT (see Ex. 3).

Experimental results We have implemented intuitR in Haskell on the top of
intuit: we have replaced the function prove with proveR and added some fea-
tures (e.g., trace of computations, construction of derivations/countermodels);
as in intuit, we exploit the module MiniSat, a Haskell bundle of the MiniSat
SAT-solver [4] (but in principle we can use any incremental SAT-solver). We
compare intuitR with intuit and with two of the state-of-the-art provers for
IPL by replicating the experiments in [2]. The first prover is fCube [5]; it is based
on a standard tableaux calculus and exploits a variety of simplification rules [6]
that can significantly reduce branching and backtracking. The second prover is
intHistGC [11]; it relies on a sequent calculus with histories and uses dependency
directed backtracking for global caching to restrict the search space; we run it
with its best flags (-b -c -c3). All tests were conducted on a machine with
an Intel i7-8700 CPU@3.20GHz and 16GB memory. We considered the bench-
marks provided with intuit implementation, including the ILTP library, the
intHistGC benchmarks and the API problems introduced by intuit developers.
This amounts to a total of 1200 problems, 498 Valid and 702 CountSat; we used
a 600s (seconds) timeout. Fig. 9 reports the more significant results, among which
the classes where at least a prover fails and the classes where intuitR performs
poorly. In all the tests, the time required by clausification is negligible. Even
though no optimized data structure has been implemented, intuitR solve more
problems than its competitors; in families SYJ201 (Valid formulas) and SYJ207
(CountSat formulas) intuitR outperforms its rivals, in all the other cases, except
the families EC, negEC and portia, intuitR is comparable to the best prover
(which is intuit in most cases). The most remarkable improvement with respect
to intuit occurs with class SYJ212 (see Fig. 10), where intuit timings are fluc-

Efficient SAT-based Proof Search in Intuitionistic Propositional Logic 229

Class (number of intuitR intuit fCube intHistGC

problems)

SYJ201(50) 50 (2.259) 50 (11.494) 50 (259.776) 50 (39.466)

SYJ202(38) 10? (49.265) 10? (50.658) 9? (176.984) 6? (324.673)

SYJ203(50) 50 (0.250) 50 (0.335) 50 (1.671) 50 (0.293)

SYJ204(50) 50 (0.442) 50 (0.477) 50 (0.972) 50 (0.203)

SYJ205(50) 50 (0.500) 50 (0.730) 50 (1.317) 50 (4.129)

SYJ206(50) 50 (0.303) 50 (0.348) 50 (0.759) 50 (0.112)

SYJ207(50) 50 (2.291) 50 (109.919) 50 (138.546) 50 (1014.476)

SYJ208(38) 38 (5.225) 38 (5.479) 29? (2.755) 38 (497.715)

SYJ209(50) 50 (0.226) 50 (0.278) 50 (1.690) 50 (0.254)

SYJ210(50) 50 (0.272) 50 (0.252) 50 (0.988) 50 (0.288)

SYJ211(50) 50 (0.462) 50 (1.251) 50 (1.073) 50 (63.686)

SYJ212(50) 50 (0.669) 42? (587.794) 50 (2.698) 50 (1.624)

EC(100) 100 (2.738) 100 (0.821) 100 (6.183) 100 (0.651)

negEC(100) 100 (3.614) 100 (1.116) 100 (13.733) 100 (5.807)

cross(4) 4 (0.100) 4 (0.097) 4 (3.417) 2? (0.005)

jm cross(4) 4 (0.120) 4 (0.090) 4 (5.404) 3? (4.324)

jm lift(3) 3 (0.170) 3 (0.133) 3 (6.847) 2? (0.028)

lift(3) 3 (0.119) 3 (0.102) 3 (6.494) 2? (0.012)

mapf(4) 4 (0.187) 4 (0.400) 4 (446.921) 3? (0.043)

portia(100) 100 (32.878) 100 (22.596) 100 (3255.818) 100 (3200.135)

negportia(100) 100 (7.956) 100 (8.309) 98? (3826.011) 100 (28.289)

negportiav2(100) 100 (8.081) 100 (8.411) 98? (1264.103) 100 (3212.293)

nishimura2(28) 28 (9.784) 28 (12.285) 27? (141.326) 28 (7.616)

Unsolved 28 36 43 38

Fig. 9. For each prover, we report the number of solved problems within 600s timeout
and between brackets the total time in seconds required for the solved problems. The
best prover is highlighted, a star reports that there are some unsolved problems.

tuating. To give a close comparison, let us consider the case k = 25; clausification
produces 246 flat clauses and 100 implications clauses (176 atoms). Our intuit

implementation requires 11214 calls to the SAT-solvers (10181 No()) and the
computed countermodel has 1955 worlds. Instead, intuitR requires 45 calls to
the SAT-solvers, 8 restarts and yields a countermodel consisting of 4 worlds; the
set W contains 26 worlds before the first restart, one world before the remaining
ones. With all the benchmarks the models generated during the computation are
small (typically, big models occur before the first restart); however, differently
from [7,8,9], we cannot guarantee that countermodels have minimum depth or
minimum number of worlds. To complete the picture, the scatter plot in Fig. 11
compares intuitR and intuit on all the benchmarks.

230 C. Fiorentini

k intuitR intuit

1 .. 24 < 0.01 < 0.1
25 0.007 0.691
26 0.007 25.064
27 0.007 0.020
28 0.008 0.083
29 0.009 8.412
30 0.008 -

Problem k:

k intuitR intuit

31 0.007 8.724
32 0.007 4.216
33 0.012 0.034
34 0.010 2.445
35 0.033 77.226
36 0.018 0.038
37 0.016 22.445
38 0.017 -

k intuitR intuit

39 0.020 0.404
40 0.016 0.838
41 0.027 -
42 0.020 0.785
43 0.036 435.324
44 0.026 0.098
45 0.070 0.639
46 .. 50 ≤ 0.07 -

(. . . ((¬¬p1 ↔ p2)↔ p3)↔ . . .↔ pk) ↔ (. . . ((p1 ↔ p2)↔ p3)↔ . . .↔ pk) ¬α := α→ ⊥

Fig. 10. Timings for problems k = 1..50 of SYJ212 (CountSat), - means timeout (600s).

10−3 10−2 10−1 100 101 102
10−3

10−2

10−1

100

101

102

intuitR (Valid, 498 tests)

i
n
t
u
i
t

10−3 10−2 10−1 100 101 102
10−3

10−2

10−1

100

101

102

intuitR (CountSat, 674 tests)

i
n
t
u
i
t

Fig. 11. Comparison between intuitR and intuit (1172 problems, the 28 problems
where both provers run out of time have been omitted); time axis are logarithmic, the
8 red squares indicates that intuit has exceeded the timeout.

To conclude, we point out that intuitR can be extended to deal with some
superintuitionistic logics [1]. For instance, let us consider the Göedel-Dummett
logic GL, characterized by linear models; at any step of the computation of
proveR, the model K(W) must be kept linear. Whenever the insertion of a new
world to W breaks linearity, we follow a “restart with learning” strategy [12]: let
γ = (a → b) ∨ (b → a) be the instance of the GL-axiom falsified at the root of
K(W); we restart by taking γ as “learned axiom”, so to avoid the repetition of
the flaw. However, we cannot add γ to the SAT-solver, because γ is not a clause,
but the clausification of γ, namely the clauses q̃1 ∨ q̃2, q̃1 ∧ a → b, q̃2 ∧ b → a,
where q̃1 and q̃2 are fresh atoms; despite the language of the SAT-solver must
be extended, the process converges. The other generalizations suggested in [2]
(modal logics, fragments of first-order logic) seem to be more challenging.

Acknowledgments. I am grateful to the reviewers for their valuable sugges-
tions. This work has been funded by the INdAM-GNCS project 2020 “Estensioni
del Property-based Testing di e con linguaggi di programmazione dichiarativa”.

Efficient SAT-based Proof Search in Intuitionistic Propositional Logic 231

References

1. Chagrov, A.V., Zakharyaschev, M.: Modal Logic, Oxford logic guides, vol. 35.
Oxford University Press (1997)

2. Claessen, K., Rosén, D.: SAT Modulo Intuitionistic Implications. In: Davis,
M., Fehnker, A., McIver, A., Voronkov, A. (eds.) Logic for Programming, Ar-
tificial Intelligence, and Reasoning - 20th International Conference, LPAR-20
2015, Suva, Fiji, November 24-28, 2015, Proceedings. Lecture Notes in Com-
puter Science, vol. 9450, pp. 622–637. Springer (2015), https://doi.org/10.1007/
978-3-662-48899-7_43

3. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log.
57(3), 795–807 (1992), https://doi.org/10.2307/2275431

4. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer
(2003), https://doi.org/10.1007/978-3-540-24605-3_37

5. Ferrari, M., Fiorentini, C., Fiorino, G.: fCube: An Efficient Prover for Intu-
itionistic Propositional Logic. In: Fermüller, C.G., Voronkov, A. (eds.) Logic for
Programming, Artificial Intelligence, and Reasoning - 17th International Confer-
ence, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings. Lec-
ture Notes in Computer Science, vol. 6397, pp. 294–301. Springer (2010), https:
//doi.org/10.1007/978-3-642-16242-8_21

6. Ferrari, M., Fiorentini, C., Fiorino, G.: Simplification Rules for Intuitionistic
Propositional Tableaux. ACM Trans. Comput. Log. 13(2), 14:1–14:23 (2012),
https://doi.org/10.1145/2159531.2159536

7. Ferrari, M., Fiorentini, C., Fiorino, G.: Contraction-Free Linear Depth Sequent
Calculi for Intuitionistic Propositional Logic with the Subformula Property and
Minimal Depth Counter-Models. J. Autom. Reason. 51(2), 129–149 (2013), https:
//doi.org/10.1007/s10817-012-9252-7

8. Fiorentini, C.: An ASP Approach to Generate Minimal Countermodels in Intuition-
istic Propositional Logic. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019. pp. 1675–1681. ijcai.org (2019), https://doi.org/10.24963/
ijcai.2019/232

9. Fiorentini, C., Ferrari, M.: Duality between unprovability and provability in for-
ward refutation-search for intuitionistic propositional logic. ACM Trans. Comput.
Log. 21(3), 22:1–22:47 (2020), https://doi.org/10.1145/3372299

10. Fiorentini, C., Goré, R., Graham-Lengrand, S.: A Proof-Theoretic Perspective on
SMT-Solving for Intuitionistic Propositional Logic. In: Cerrito, S., Popescu, A.
(eds.) Automated Reasoning with Analytic Tableaux and Related Methods - 28th
International Conference, TABLEAUX 2019, London, UK, September 3-5, 2019,
Proceedings. Lecture Notes in Computer Science, vol. 11714, pp. 111–129. Springer
(2019), https://doi.org/10.1007/978-3-030-29026-9_7

11. Goré, R., Thomson, J., Wu, J.: A History-Based Theorem Prover for Intuition-
istic Propositional Logic Using Global Caching: IntHistGC System Description.
In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Automated Reasoning - 7th
International Joint Conference, IJCAR 2014, Held as Part of the Vienna Sum-
mer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings. Lec-
ture Notes in Computer Science, vol. 8562, pp. 262–268. Springer (2014), https:
//doi.org/10.1007/978-3-319-08587-6_19

232 C. Fiorentini

https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.2307/2275431
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-16242-8_21
https://doi.org/10.1007/978-3-642-16242-8_21
https://doi.org/10.1145/2159531.2159536
https://doi.org/10.1007/s10817-012-9252-7
https://doi.org/10.1007/s10817-012-9252-7
https://doi.org/10.24963/ijcai.2019/232
https://doi.org/10.24963/ijcai.2019/232
https://doi.org/10.1145/3372299
https://doi.org/10.1007/978-3-030-29026-9_7
https://doi.org/10.1007/978-3-319-08587-6_19
https://doi.org/10.1007/978-3-319-08587-6_19

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006), https://doi.org/10.1145/1217856.1217859

13. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic
logic. J. Autom. Reason. 38(1-3), 261–271 (2007), https://doi.org/10.1007/

s10817-006-9060-z

14. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory, Second Edition, Cambridge
tracts in theoretical computer science, vol. 43. Cambridge University Press (2000)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Efficient SAT-based Proof Search in Intuitionistic Propositional Logic 233

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/s10817-006-9060-z
https://doi.org/10.1007/s10817-006-9060-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Efficient SAT-based Proof Search in Intuitionistic Propositional Logic
	1 Introduction
	2 Preliminary Notions
	3 The Calculus C→
	4 The Procedure proveR
	5 Related Work and Experimental Results
	References

