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Abstract

In this paper some new properties and computational tools for finding KL-optimum
designs are provided. KL-optimality is a general criterion useful to select the best
experimental conditions to discriminate between statistical models. A KL-optimum
design is obtained from a minimax optimization problem, which is defined on a infinite-
dimensional space. In particular, continuity of the KL-optimality criterion is proved
under mild conditions; as a consequence, the first-order algorithm converges to the set
of KL-optimum designs for a large class of models. It is also shown that KL-optimum
designs are invariant to any scale-position transformation. Some examples are given
and discussed, together with some practical implications for numerical computation
purposes.

1 Introduction

In presence of families of competing models, one of the main tasks of the optimum exper-
imental design is the choice of the best experimental conditions to discriminate between
rival models.

This problem was studied by many researchers in the field. See for instance, [2],
[7, 8] and [16], among many others. In [3, 4], the authors provided the T-optimality
criterion to select between two, or more, competing homoscedastic Gaussian models. This
criterion was extended in [27] to heteroscedastic Gaussian models. More recently, the KL-
optimality, which is based on the Kullback-Leibler divergence, has been proposed in [19].
The idea of using the Kullback-Leibler divergence to construct an optimality criterion is
not new. For instance, [6] proposed a Bayesian sequential method to discriminate among
several models; at each stage of their sequential scheme, the experimental conditions were
chosen by maximizing a weighted sum of Kullback-Leibler divergences between any couple
of models. In this way, the maximum change in entropy expected from the observations
to be taken at that stage was maximized. See also [18], who applied the Box and Hill
criterion to the problem of augmenting a multifactor design. Finally, we refer the reader
to [30] for another optimality criterion based on the Kullback-Leibler divergence.

∗The final publication is available at Springer via http://dx.doi.org/10.1007/s11222-014-9515-8
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KL-optimum designs proposed by [19] are obtained from a minimax optimization prob-
lem. The KL-criterion is very general since it can be applied when the rival models are
nested or not, homoscedastic or heteroscedastic and with any error distribution; more-
over, it may be seen as an extension of the T-criterion and its generalizations. It was also
applied to discriminate among several models in [25] and used in compound criteria for
the double goal of discrimination and estimation in [24, 20]. T- and KL-optimum designs
are usually computed numerically. Differently, [9] provide analytical results for T-optimal
designs when the interest is in discriminating between two polynomial models which differ
in the degree of two.

In this paper, some interesting properties of KL-optimum designs are proved. The
notation and framework of the problem are given in Section 2. In Section 3 it is shown
that KL-optimum designs are invariant to a scale-position transformation. Moreover, it
is proved the continuity of the KL-optimality criterion with respect to the experimental
design; mild conditions are assumed. This result is very important also for the numerical
computation of a KL-optimum design. In fact, the continuity property is crucial to prove
that the first-order algorithm, recalled in Section 4, converges to the set of KL-optimum
designs, whenever it moves on regular designs (for a detailed proof see [1]). In Section
4.1 it is shown that, at least for the case of Generalized Linear Models, any design with
non-singular Fisher information matrix is KL-regular and viceversa. As a consequence,
the algorithm always converges at least in this class of models. In Section 5 some examples
are provided and discussed. In addition, some computational hints for the application of
the algorithm are described. A final discussion concludes the paper.

2 Framework and notations

Let f1(y|x;β1) and f2(y|x;β2) be two rival statistical models, i.e. two parametric families
of conditional probability densities of an experimental response Y under the experimental
condition x, where x belongs to a compact experimental domain X ⊂ Rq, q ≥ 1, the
parameters βi ∈ Θi, i = 1, 2 and Θi is an open set of Rdi , i = 1, 2.1

A design ξ is a probability distribution having support on X . In a discrimination
problem, the choice of ξ should be done in order to maximize the “separation” between
the competing models.

The KL-optimality criterion is based on the Kullback-Leibler divergence between the
two conditional distributions f1(y|x;β1) and f2(y|x;β2):

I(x,β1,β2) =

∫
Y

log
f1(y|x;β1)

f2(y|x;β2)
f1(y|x;β1) dy. (1)

Note that the statistical models f1(y|x;β1) and f2(y|x;β2) may be conditional densities
with respect to a common general measure µ; to include discrete models it is enough to
replace dy with µ(dy) in Equation (1) and in the rest of the paper. The notation used in
(1) is maintained for simplicity.

1Note that the parameter spaces Θ1 and Θ2 can be required instead to be compact.
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The quantity in Equation (1) is known to be non-negative, and it is zero if and only if
the two responses are equal almost surely. The Kullback-Leibler divergence is often called
distance, although it is not symmetric and does not satisfy the triangular inequality. In
this context, the Kullback-Leibler divergence in Equation (1) measures the dissimilarity
between the two different distributions with parameters β1 and β2, when the experimental
condition is x.

If a design ξ is chosen to maximize the power function in the worst case in a hy-
pothesis test where f1(y|x;β1) is the true completely known model under the alternative
f2(y|x;β2), then this design is the maximum of the KL–optimality criterion proposed in
[19]:

I2,1(ξ;β1) = inf
β2∈Θ2

∫
X
I(x,β1,β2) ξ(dx). (2)

The criterion (2) is the minumum Kullback-Leibler distance between the joint distribution
f1(y|x;β1)ξ(x) and the joint statistical model f2(y|x;β2)ξ(x).

For a given value β1 ∈ Θ1 of the first model, a design ξ is KL-regular if the following
set

Ω2(ξ;β1) =
{
β̂2 : β̂2(ξ) = arg inf

β2∈Θ2

∫
X
I(x,β1,β2) ξ(dx)

}
(3)

is a singleton. Otherwise ξ is called KL-singular.
A KL-optimum design

ξ∗ ∈ arg max
ξ
I2,1(ξ;β1) (4)

exists since the KL-criterion function

I2,1(ξ;β1) : (Ξ, dw)→ [0,+∞) (5)

is concave (as proved in [19]) and upper semi-continuous (as proved in [20]), where Ξ is
the set of probability distributions ξ with support X ⊂ Rq endowed with a metric dw
which metrizes the weak convergence on X . Since X is compact, the metric space (Ξ, dw),
which is an infinite-dimensional space, is complete and compact. In fact, any sequence of
probability distribution on X is tight, and hence, by Prokhorov’s Theorem, it admits a
converging subsequence (in (Ξ, dw)). In what follows, we take the Kantorovich-Wasserstein
metric (see [15]):

dw(ξ1, ξ2) = inf{E(|X1 −X2|) : X1 ∼ ξ1, X2 ∼ ξ2}.

Since β1 is assumed to be known, for sake of simplicy, I2,1(ξ;β1) will be denoted by I2,1(ξ).

3 Invariance property and continuity of the KL-criterion

In this section two important theoretical properties are presented. First, we prove that
KL-optimum designs are invariant to a scale-position transformation of the design region,
whenever this transformation on the experimental condition results in a new parametriza-
tion of the rival models. Then, we prove the continuity of the KL-optimality criterion (5),
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with respect to the design ξ.

Theorem 1. Let
Z = {z = a + Bx|x ∈ X}

be a rescaled experimental domain, where a and B are, respectively, a column vector and
a non singular matrix of known constants.
If

1. fi(y|x;βi) = fi(y|z; γi), where γi = gi(βi) and gi(·) is a one to one function, and
i = 1, 2;

2. the following mean log-likelihood

ML2(β2) =

∫
X

∫
Y

log f2(y|x;β2) f1(y|x;β1) dy ξ(dx) (6)

has at least a maximizer β̂2 ∈ arg sup
β2

ML2(β2) for any fixed design ξ ∈ Ξ;

then a KL-optimum design on Z is

η∗ = ξ∗ ◦ z−1, x ∈ X and z(x) = a + Bx.

Proof. From hypothesis 1 the rival models can be expressed as fi(y|z; γi) where z = a+Bx,
i = 1, 2. The KL-criterion applied to models f1(y|z; γ1) and f2(y|z; γ2) is

IZ2,1(η) = inf
γ2

∫
Z

∫
Y

log
f1(y|z; γ1)

f2(y|z; γ2)
f1(y|z; γ1) dy η(dz)

=

∫
Z

∫
Y

log f1(y|z; γ1) f1(y|z; γ1) dy η(dz)

− sup
γ2

∫
Z

∫
Y

log f2(y|z; γ2) f1(y|z; γ1) dy η(dz).

Let

M̃L2(γ2) =

∫
Z

∫
Y

log f2(y|z; γ2) f1(y|z; γ1) dy η(dz);

from hypothesis 1 and setting ξ(dx) = η(dz)

M̃L2(γ2) =ML2(g−1
2 (γ2))

therefore

γ̂2 ∈ arg supM̃L2(γ2) if and only if β̂2 ∈ arg supML2(β2) (7)

where γ̂2 = g2(β̂2).
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Using hypothesis 1 and Equation (7),

IZ2,1(η) =

∫
Z

∫
Y

log f1(y|z; γ1) f1(y|z; γ1) dy η(dz)

−
∫
Z

∫
Y

log f2(y|z; γ̂2) f1(y|z; γ1) dy η(dz)

=

∫
X

∫
Y

log f1(y|x;β1) f1(y|x;β1) dy ξ(dx)

−
∫
X

∫
Y

log f2(y|x; β̂2) f1(y|x;β1) dy ξ(dx) = IX2,1(ξ),

which proves the theorem.

Continuity is a very nice property which is necessary to prove the convergence of the
first order algorithm; see [1], also recalled in Section 4. We require that the Kullback-
Leibler divergence between the two conditional distributions is continuous and also Lips-
chitz with respect to the experimental condition.

Assumption 1. The Kullback-Leibler divergence I(x,β1,β2) given in Equation (1) is a
Lipschitz function with respect to x.

Note that the Kullback-Leibler divergence between different models is the difference
between the cross entropy of the two models and the information entropy of the first
one. The information entropy is a continuously differentiable function of the parameters
in almost all the classes of parametric models. This smoothness is also observed for the
cross entropy between different classes of models with the same support (for instance,
Lognormal, Weibull, Gamma, . . . ). Therefore, since Ξ is compact, if the parameters
of the rival models (which are assumed to depend on x through some coefficients) are
continuously differentiable functions of the experimental condition x, then the Kullback-
Leibler divergence is a continuously differentiable function of the experimental conditions,
and hence a Lipschitz function.

Denote by J (ξ,β1,β2) the average of the function I(x,β1,β2) in (1) with respect to
the probability measure ξ, namely

J (ξ,β1,β2) =

∫
X
I(x,β1,β2) dξ(x) =

∫
X

∫
Y

log
f1(y|x;β1)

f2(y|x;β2)
f1(y|x;β1) dy ξ(dx).

Again, since X is compact, Assumption 1 implies that the function J is continuous with
respect to ξ. Moreover, this function is linear in ξ. The problem of finding a KL-optimal
design as in equation (4) is an infinite dimension minmax problem. Our goal is to prove
that I2,1(ξ) = infβ2

J (ξ,β1,β2) is continuous as an extension of classical results for semi-
infinite problem (see for instance [21]) to our context. We start with a counterexample,
which shows that Assumption 1 is not sufficient for I2,1(ξ) to be continuous.

Example 1 (I2,1(ξ;β1) is not continuous). Take X = [0, 1], Θ2 = (0,∞), and define

I(x,β1,β2) =

{
2((2β2 − 1)x + (1− β2)) if 0 < β2 ≤ 1

(β2 + 1)xβ2 if 1 < β2
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We have:

• I(x,β1,β2) is a continuous function on X ×Θ2;

• I(x,β1,β2) is a convex and Lipschitz function of x, for any β2 ∈ Θ2;

• I2,1(δx;β1) = 0 for any x ∈ X .

Take ξn be the uniform distribution on [0, 1−1/n]; it can be easily proved that dw(ξn, ξ)→
0, where ξ is the uniform distribution on [0, 1]. We have∫

X
I(x,β1,β2)dξn(x) =

∫ 1−1/n

0

I(x,β1,β2)

1− 1/n
dx

=

{
1− 2β2−1

n if 0 < β2 ≤ 1

(1− 1/n)β2 if 1 < β2

while ∫
X
I(x,β1,β2)dξ(x) =

∫ 1

0
I(x,β1,β2)dx ≡ 1.

Hence,

I2,1(ξn) = inf
β2∈Θ2

∫
X
I(x,β1,β2)dξn(x) = 0

6= 1 = inf
β2∈Θ2

∫
X
I(x,β1,β2)dξ(x) = I2,1(ξ).

We give here a mild assumption which is satisfied in many situations. In fact, when we
fix β1, we can expect that that the Kullback-Leibler divergence I(x,β1,β2) is “dominated”
in β2, in that if I(x,β1,β2) is too big for some x, there is another model f2(y|x; β̃2) that
is always closer to f1(y|x;β1) and dominated by a constant M(β1).

Assumption 2. For any fixed β1, there exists M = M(β1) > 0 such that if I(x,β1,β2) >
M for some x ∈ X , then there will exists β̃2 such that

I(x,β1,β2) ≥ I(x,β1, β̃2), ∀x ∈ X ,

and
sup
x∈X
I(x,β1, β̃2) ≤M.

Theorem 2. Assume 1 and 2. The KL-criterion (2) is a locally Lipschitz function and
hence it is a continuous function of ξ.

Proof. Let β1 be fixed and M be as in Assumption 2. Define

Θ2(β1) = {β̃2 ∈ Θ2 : sup
x∈X
I(x,β1, β̃2) ≤M}. (8)
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The KL-criterion (2), for any ξ ∈ Ξ, may be rewritten as

I2,1(ξ) = inf
β2∈Θ2(β1)

∫
X
I(x,β1,β2) ξ(dx), (9)

for Assumption 2.
Let V be the real vector space of all signed finite measures on X (equipped with the

usual Borel σ-algebra B), which contains Ξ as proper, closed, convex subset. Denoting by
‖h‖L the operator norm of the Banach space of Lipschitz function on X , the vector space
V, equipped with the norm

‖ξ‖V = sup
{∣∣∣ ∫

X
h(x) ξ(dx)

∣∣∣, ‖h‖L ≤ 1
}
,

is a Banach space. (This is a consequence of the results in [28] and [12]).
The map ξ 7→

∫
X I(x,β1,β2) ξ(dx), is a linear functional on V. Moreover, assump-

tion 1 guarantees its boundness on the unit ball ‖ξ‖V ≤ 1:

sup
‖ξ‖V≤1

∣∣∣ ∫
X
I(x,β1,β2) ξ(dx)

∣∣∣ ≤ sup
‖ξ‖V≤1

‖h‖L≤‖I(·,β1,β2)‖L

∣∣∣ ∫
X
h(x) ξ(dx)

∣∣∣
= ‖I(·,β1,β2)‖L sup

‖ξ‖V≤1
‖g‖L≤1

∣∣∣ ∫
X
g(x) ξ(dx)

∣∣∣
= ‖I(·,β1,β2)‖L,

and hence ξ 7→
∫
X I(x,β1,β2) ξ(dx) is a continuous function (see, e.g., [5]). The function

ξ 7→ inf
β2∈Θ2(β1)

∫
X
I(x,β1,β2) ξ(dx)

is concave and upper semi-continuous function since it is the point-wise infimum of linear
continuous functions. Moreover, −∞ < infβ2∈Θ2(β1)

∫
X I(x,β1,β2) ξ(dx) < ∞ since, for

any β2 ∈ Θ2(β1), ∣∣∣ ∫
X
I(x,β1,β2) ξ(dx)

∣∣∣ ≤M ‖ξ‖V ,
as a consequence of (8). Therefore (see [5]) the function

ξ 7→ inf
β2∈Θ2(β1)

∫
X
I(x,β1,β2) ξ(dx)

is locally Liptschtz and hence continuous on the Banach space (V, ‖ · ‖V).
Recall that the set Ξ is the set of the possible experimental designs ξ. When ξ1, ξ2 ∈ Ξ,

the Kantorovich-Wasserstein distance dw can be rewritten also as (see [15])

dw(ξ1, ξ2) = sup
{∣∣∣ ∫

X
h(x) dξ1(x)−

∫
X
h(x) dξ2(x)

∣∣∣, ‖h‖L ≤ 1
}

= ‖ξ1 − ξ2‖V .

Hence the KL-criterion (2) is a locally Liptschtz and continuous function on Ξ.
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4 First order algorithm to obtain KL-optimum designs

To construct a KL-optimum design ξ∗, [19] propose the use of the first order algorithm:

a) Given ξn, find

a1)

β2,n = arg min
β2∈Ω2

∫
X

∫
Y

log
f1(y|x;β1)

f2(y|x;β2)
f1(y|x;β1) dy ξn(dx)

a2)

xn = arg max
x∈X

∫
Y

log
f1(y|x;β1)

f2(y|x;β2,n)
f1(y|x;β1) dy

b) Properly choose 0 ≤ αn ≤ 1 and construct ξn+1 = (1− αn)ξn + αnδxn .

Moreover, [19] prove that, for any ξ, U(ξ) ≤ I2,1(ξ)/I2,1(ξ∗) ≤ 1 where

U(ξ) =

[
1 +

maxx∈X ψ(x; ξ)

I2,1(ξ)

]−1

, (10)

and

ψ(x; ξ) = I(x,β1, β̂2)−
∫
X
I(s,β1, β̂2) ξ(ds) (11)

is the directional derivative of I2,1(ξ) at a regular design ξ in the direction of δx − ξ and

β̂2 is the unique element of (3). According to [19], the iterative procedure should stop at
step N if the upper bound of the efficiency U(ξN ) > δ, where 0 < δ < 1 is a value chosen
by the experimenter, for instance δ = 0.99.

However, [19] give no specific rule to choose αn, neither they provide any proof of the
convergence of the algorithm. Differently, authors [1] suggest to use

αn = arg max
α∈[0,1]

I2,1[(1− α)ξn + αδx] (12)

and using the theory of point-to-set mappings they provide useful convergence results. As
a consequence of Theorem 1 in [1] and of the continuity of I2,1(ξ) proved in Section 3, the
following theorem states that if the algorithm explores regular designs (see (3) in Section
2), then it converges to the set of KL-optimum designs.

Theorem 3. Let ξ0 be an initial design. For any n ≥ 0, let ξn+1 be one of the designs
obtained by the first order algorithm at step (n+ 1), with αn as in (12).

If ξn is a sequence of KL-regular designs then, as n→∞,

inf
ξ∗∈arg max I2,1(ξ)

dw(ξn, ξ
∗)→ 0

and
|I2,1(ξn)−max

ξ
I2,1(ξ)| → 0.

In particular, if the set {ξ∗ ∈ Ξ : ξ∗ = arg max
ξ
I2,1(ξ)} is a singleton, then ξn → ξ∗.
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Proof. We prove the first part of the theorem by way of contradiction. Suppose that for
every ε > 0 and for every N ≥ 1 there exist nN ≥ N such that

dw(ξnN , ξ
∗) ≥ ε (13)

for all ξ∗ ∈ arg max I2,1(ξ).
In [1, Theorem 1] it is stated that if (ξn)n is a sequence of regular designs generated by

the above described algorithm, then the limit of any converging subsequence of (ξn)n is a
KL-optimum design. In [1, Theorem 1] it is required that the sub-level {ξ ∈ Ξ: I2,1(ξ) ≥
I2,1(ξ0)} is compact. This is always verified as a consequence of Theorem 2: the sub-level
is a closed subset of the compact set Ξ.

The sequence (ξnN )N in (13) has at least one convergent subsequence since Ξ is com-
pact; then, from [1, Theorem 1] this converges to a KL-optimum design, which contradicts
(13). It follows that for every ε > 0 there exists N such that for every n ≥ N

inf
ξ∗∈arg max I2,1(ξ)

dw(ξn, ξ
∗) < ε, (14)

and hence the first part of the theorem is proved. Since I2,1(ξ) is continuous and {ξ∗ ∈
arg max I2,1(ξ)} is compact, the second part of the result follows from (14).

A drawback of the application of the first order algorithm is that there is no guarantee
that ξn+1 is a regular design in the sense of (3), even if ξn is. In the next section we prove
that, for generalized linear models (GLM), the algorithm always moves at regular designs;
thus it converges, provided that the initial design ξ0 has a non singular information matrix.

4.1 Regular designs for GLM

As recalled in Section 2, if the KL-criterion is used to find an optimum design to discrim-
inate between two models, a regular design is such that there is a unique estimate of the
parameters β2 as in (3). In many situations, however, the aim of an experiment is to
estimate as precisely as possible the parameters (or a function of the parameters) of the
assumed known model. In this context a design is called regular if its Fisher information
matrix is non singular. In this section it is proved that these two different definitions of
“regular design” are equivalent for a large class of useful statistical models.

In what follows, we specialize the notation for a GLM. X is the design matrix whose
i-th row is xTi. (i.e. xi. is the d2 × 1 vector of experimental conditions for the i-th unit),
β2 ∈ Θ2 is the d2 × 1 vector of regression parameters of f2(y|x,β2), µi = E2(Y |xi.) and
Vari(Y ) = Var2(Y |xi.) are the response mean and the response variance under model
f2(y|xi.,β2), and ηi = xTi.β2 is the linear predictor. Both µi and Vari(Y ) depend on xi.
and β2 through ηi, in particular g(µi) = ηi where g(·) is a link function. It is well known
that for the generalized linear model the Fisher information matrix is

J = XTWX, (15)
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where

W = diag

[
1

Vari(Y )

(
∂µi
∂ηi

)2
]

is a diagonal matrix which depends on both the design matrix X and the parameter vector
β2.

From (15), J = X̃T X̃, where X̃ = W1/2X; thus

Range J = Range X̃T = Range XT ,

since W is a diagonal non-singular matrix. Therefore, the Fisher information matrix is
non-singular (i.e. Rank(J) = d2) if and only if Rank(X) = d2.

As recalled in Section 2, in the context of discrimination between rival models, an
exact design ξ = 1

n

∑
i δxi. is regular if the set

Ω2

( 1

n

∑
i

δxi.

)
=
{
β̂2 : β̂2 = arg min

β2

n∑
i=1

∫
Y

log
f1(y|xi.,β1)

f2(y|xi.,β2)
f1(y|xi.,β1) dy

}
is singleton. Since

n∑
i=1

∫
Y

log
f1(y|xi.,β1)

f2(y|xi.,β2)
f1(y|xi.,β1) dy

=
n∑
i=1

∫
Y

log f1(y|xi.,β1) f1(y|xi.,β1) dy −
n∑
i=1

∫
Y

log f2(y|xi.,β2) f1(y|xi.,β1) dy,

finding

arg min
β2

n∑
i=1

∫
Y

log
f1(y|xi.,β1)

f2(y|xi.,β2)
f1(y|xi.,β1) dy

is equivalent to compute arg max
β2

ML2(β2) where ξ = 1
n

∑
i δxi. and thus

ML2(β2) =

n∑
i=1

∫
Y

1

n
log f2(y|xi.,β2) f1(y|xi.,β1) dy.

Assuming that ML2(β2) is differentiable with respect to β2 for any fixed xi., then the
maximization of ML2(β2) is performed by setting the partial derivatives of ML2(β2)
equal to zero. Let us assume that

∂ML2(β2)

∂β2j
∝

n∑
i=1

∂

∂β2j

∫
Y

log f2(y|xi.,β2) f1(y|xi.,β1) dy

=

n∑
i=1

∫
Y

∂

∂β2j
log f2(y|xi.,β2) f1(y|xi.,β1) dy. (16)
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It is well known that if f2(y|x,β2) is a GLM, then at xi., the i-th experimental condition,

∂ log f2(y|xi.,β2)

∂β2j
=

(y − µi)xij
Vari(Y )

(
∂µi
∂ηi

)
, j = 1, . . . , d2.

Therefore, from equation (16)

∂ML2(β2)

∂β2j
∝

n∑
i=1

∫
Y

(y − µi)xij
Vari(Y )

(
∂µi
∂ηi

)
f1(y|xi.,β1) dy

=

n∑
i=1

[E1(Y |xi.)− µi]xij
Vari(Y )

(
∂µi
∂ηi

)
= vT (X;β2)x.j , j = 1 . . . , d2, (17)

where x.j denotes the j-th column of the design matrix X and v(X;β2) is a n× 1 vector
whose i-th item is

vi(xi.;β2) =
E1(Y |xi.)− E2(Y |xi.)

Vari(Y )

(
∂µi
∂ηi

)
and E1(Y |xi.) is the response mean under the known model f1(y|xi.,β1).

Setting equal to zero the right-hand side of equations (17), we have a system of d2

non-linear equations whose solution is the maximum likelihood estimator. For the most
commonly used GLMs (for instance when the link function is canonical and for the link
functions described in [29]) this solution exists and is unique if and only if Rank(X) = d2

i.e. if and only if the Fisher information matrix is non-singular.
Let us denote by “regular GLM” a GLM for which there exists a unique solution of

the system vT (X;β2)x.j = 0, j = 1, . . . , d2 if and only if Rank(X) = d2. Theorem 3 has
the following corollary at least for regular GLMs.

Corollary 1. Let f1(y|x,β1) and f2(y|x,β2) be regular GLMs and let ξ0 ∈ Ξ have a
non-singular Fisher information matrix. For any n ≥ 0, let ξn+1 be one of the designs
obtained by the first order algorithm at step (n+ 1), with αn as in (12). Then

|I2,1(ξn)−max
ξ
I2,1(ξ)| → 0

as n→∞. In particular, if the optimum ξ∗ is unique, ξn → ξ∗.

Proof. In the classes of the GLMs, any KL-regular design has non-singular Fisher infor-
mation matrix, and any design with non-singular Fisher information matrix is KL-regular;
therefore if ξn is regular then ξn+1 is also regular. For these models, it is then guaranteed
that the algorithm moves on regular designs if it starts from a regular design ξ0.

5 Examples and computational aspects

In this section we show some practical implications of the theoretical results proved in
Sections 3 and 4.
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For what concerns the invariance property, the practitioner can observe that the algo-
rithm performs differently in different experimental regions. If it is numerically difficult to
compute the KL-optimum design in a specified X , the experimenter can take advantage of
the invariance property. He can compute the KL-optimum design in a suitable transformed
space Z (where less computational effort is required) and then find the KL-optimum de-
sign in X through the invariance property. In the example provided in Subsection 5.1 the
algorithm needs more iterations than in a transformed space.

Continuity of KL-criterion is necessary to assure that the approximated solution ob-
tained with the stopping rule is close to the KL-optimum design. Furthermore, it also
guarantees that the solution obtained through the regularization procedure is a “nearly”
KL-optimum design. Subsection 5.2 gives an example where the problem is regularized
since the KL-optimum design is singular.

In Subsection 5.3 some practical hints are proposed, in comparison with the suggestions
provided in [13].

5.1 A benchmark test

In this example we develop a benchmark test for the convergence of the algorithm, where
the analytical result for the KL-optimum design is obtained through the Chebyshev poly-
nomials.

We take x ∈ X = [−1; 1] and we test a polynomial of degree three versus a poly-
nomial of degree two. In other words, f1(y|x,β1) and f2(y|x,β2) are the probabil-
ity densities of two Gaussian random variables with means β01 + β11x + β21x

2 + β31x
3

and β02 + β12x + β22x
2, respectively and common variance σ2. We assume the poly-

nomial of degree 3 is completly known. Except for the constant of proportionality β31,
given a design ξ, the Kullback-Leibler divergence between these two Gaussian models is
I(x,θ) =

(
θ0 + θ1x+ θ2x

2 + x3
)2

, where θi = βi1−βi2
β31

and i = 0, 1, 2. Let

J (ξ,θ) =

∫
X

(
θ0 + θ1x+ θ2x

2 + x3
)2
ξ(dx),

then, except for a constant of proportionality, the KL-criterion is

I2,1(ξ) = inf
θ
J (ξ,θ).

In order to solve the previous optimization problem we set the partial derivatives of J (ξ,θ)
equal to zero, i.e.

∂J (ξ,θ)

∂θi
= 2

∫
X
xi
(
θ0 + θ1x+ θ2x

2 + x3
)
ξ(dx) = 0, i = 0, 1, 2. (18)

The Chebyshev polynomial of degree three, T3(x) = 4x3−3x, fulfills the following orthog-
onality conditions, ∫

X
xi T3(x) ξ̃(dx) = 0, i = 0, 1, 2,

12



where ξ̃ =

{
−1 −1/2 1/2 1
1/6 1/3 1/3 1/6

}
. Let us note that the design points of ξ̃ are the

singular points of T3(x) in X = [−1, 1].
Therefore, if we denote the solutions of Equation (18) by θ̂ = (θ̂0, θ̂1, θ̂2)T , we have

that θ̂0 = θ̂2 = 0 and θ̂1 = −3/4.
Let us prove that ξ̃ is actually a KL-optimum design by checking the equivalence

theorem inequality (see [19], for more details). Since T3(x) is a Shabat polynomial (i.e. it
assumes the same minimum and maximum values except for the sign) we have that the
directional derivative of I2,1(ξ) at ξ̃ in the direction of ξx − ξ̃ is

ψ(x; ξ̃) = I(x, θ̂)−
∫
X
I(x, θ̂) ξ̃(dx) =

(
−3

4
x+ x3

)2

−max
x

(
−3

4
x+ x3

)2

≤ 0

with equality at the singular points -1, -1/2, 1/2 and 1. This proves that ξ̃ is a KL-
optimum design. The same result has been shown in a different way by [23] and extended
by [8].

We have applied the first order algorithm described in Section 4 using Matlab 7.6
optimization toolbox, obtaining the following results. The iterative procedure converges
to the KL-optimum design ξ̃ after 107 iterations with δ = 0.99, and after 384 iterations
with δ = 0.995.

We have then tested the invariance property in this benchmark setting. If the exper-
imental condition is z = 2 + 4x ∈ Z = [−2; 6] instead of x ∈ X , then after 430 iteration

with δ = 0.95 the KL-optimum design η∗ =

{
−2 0 4 6
1/6 1/3 1/3 1/6

}
is reached. This

solution is consistent with the invariance property given in Theorem 1.
Note that in the transformed experimental region the optimum is reached with a larger

number of iterations.

5.2 Discrimination between two logistic regression models

The purpose of this Subsection is to handle an example where the optimal design is
singular. The experimental conditions are assumed to vary in the interval X = [0, 1]
and logistic regression models are considered instead of linear regression models. In other
words, Y is a binary response variable such that

P (Y = 1|x;βi) = F (ηi) =
eηi

1 + eηi
, i = 1, 2

where η1 = β01 +β11x+β21x
2 and η2 = β12x+β22x

2 are two rival models for the expected
response. For these models the Kullback-Leibler divergence is

I(x,β1,β2) = (η1 − η2)
exp(η1)

1 + exp(η1)
+ log

1 + exp(η2)

1 + exp(η1)
.

The algorithm reaches in few steps the one point design which concentrates the whole
mass at zero, i.e. ξ∗ = δ0. Once the algorithm has reached this design, it fails in capturing
the whole Ω2(ξ∗), and it enters in a loop.
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It is well known that a design ξ∗ is optimum if and only if ψ(x, ξ∗) ≤ 0 for any x.
However, ψ(x, ξ) can be computed only for regular designs. When the optimum design is
singular, in order to check its optimality we can regularize the problem (see [1]), that is
to use the function

Iγ(ξ) = I2,1[(1− γ)ξ + γξ̃] (19)

instead of I2,1(ξ), where 0 < γ < 1 and ξ̃ is a regular design, that is a design with a non
singular information matrix. Let ξ1 = (1− γ)ξ+ γξ̃; then, Iγ(ξ) = I21(ξ1). The first order
algorithm may be specialized for Iγ(ξ) using ξ1n = (1− γ)ξn + γξ̃ instead of ξn at the step
(a1) of the algorithm described in Section 4. The stopping rule recalled in Section 4 may
also be specialized for Iγ(ξ).
Let ξ̄1 = (1− γ)ξ̄ + γξ̃; then, the directional derivative of Iγ(ξ) in the direction of ξ̄ − ξ is

∂Iγ(ξ; ξ̄) = ∂I21(ξ1; ξ̄1) =

∫
X
ψ(x; ξ1)ξ̄1(dx), (20)

where the last equality is proved by [19]. From (20) and (11), it follows that

∂Iγ(ξ; ξ̄) =

∫
X

[
I(f1, f2,x, β̂2)−

∫
X
I(f1, f2, s, β̂2) ξ1(ds)

]
ξ̄1(dx)

=

∫
(1− γ)ψ(x; ξ)ξ̄(dx), (21)

where ψ(x; ξ) =
[
I(f1, f2,x, β̂2)−

∫
X I(f1, f2, s, β̂2) ξ(ds)

]
with

β̂2 = β2(ξ1) = arg min
β2∈Ω2

∫
X
I(f1, f2,x,β2) ξ1(dx). (22)

instead of β̂2 = β2(ξ).
Since Iγ(ξ) is a concave function, the iterative procedure based on Iγ(ξ) stops at the

step n if [
1 +

maxx∈X (1− γ)ψ(x; ξn)

Iγ(ξn)

]−1

> δ, (23)

where 0 < δ < 1 is a suitable value chosen by the experimenter, e.g. δ = 0.995.

It is well known that in maxmin problems it may be difficult to check the optimality of a
design because the expression of the directional derivative is not easy to be found when
a design is not regular (see, for instance, [14, Theorem 2.6.1]). More specifically, in order
to check the directional derivative it is necessary introduce a measure on β2, which is not
easy to be found. Differently, since Iγ(ξ) = I21(ξ1) and ξ1 is a regular design by definition,
equation (21) provides the directional derivative of Iγ(ξ) at any design ξ, without assuming
the regularity of ξ. Therefore, if the above described algorithm stops at the n-th step, it is
always possible to check the optimality of ξn through the following directional derivative
of Iγ(ξ) at ξn in the direction of δx − ξn,

ψγ(x; ξn) = (1− γ)ψ(x; ξn). (24)
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If ψγ(x; ξn) ≤ 0 for any x and the equality is reached at the design points of ξn, then ξn
is an optimal design.

Applying the first order algorithm to Iγ(ξ), after only two iterations we have that
ξ∗n = δ0, as shown by Figure 5.2 which displays the function ψγ(x; ξ∗n). As proved in

Figure 1: Directional derivative ψγ(x; δ0)

[1], from the continuity of the KL-criterion ξ∗n is a “nearly” KL-optimal design and, in
particular, the smaller γ the better this design. Note that different regular designs ξ̃ lead
to different expressions of ψγ(x; ξ∗n) but to the same “nearly” KL-optimum design ξ∗n = δ0.

5.3 Computational aspects

In this section we suggest some tricks to get numerically a KL-optimum design through
the first order algorithm. We also compare these tricks to [13, pag. 109ff.], underlying
possible improvements.

1. When ξn is singular, the directional derivative of the KL-criterion function at ξn in
the direction of δx − ξn cannot be expressed as in (11) with ξ = ξn (for more details
see [14, pag. 41]). Therefore, it cannot be used in the algorithm. On the other hand,
the directional derivative of the regularized criterion (19) at ξn, in the direction
of δx − ξn, is given by (24), whether or not ξn is regular. Therefore, before each
step (a1), we suggest to decide between the original KL-criterion or the regularized
one according to the following rule: use the regularized criterion if ξn has less than
d2 support points (see the discussion in Section 4.1); otherwise, use the original
KL-criterion.

2. At step (a1) of the first order algorithm described in Section 4, in order to find

β2,n a starting point β
(0)
2,n is necessary. We suggest to use a point close to β2,n−1,

for instance β
(0)
2,n = β2,n−1 + ε, where ε is a random error with the magnitude of

β2,n−1. Sometimes, the reasonable choice of β
(0)
2,n = β2,n−1 led the algorithm to a

situation of stagnation around a local maximum, for this reason a random error is
also considered.
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3. As in [13], at step (a2), in order to choose a starting point x
(0)
n we suggest to take

the maximum point in a regular grid or in a set of randomly selected starting points
of X , as X is a compact space. In our benchmarks, we did not find significant
differences between these two choices.

4. We suggest to check the terminal condition U(ξ) > δ after step (a2), where the point
xn is computed, which gives the direction of the maximum increasing δxn − ξn−1.
Note that if ξn is a singular design, even though it has at least d2 support points,
then it is not computationally guaranteed that δxn − ξn−1 is an increasing direction.
In that case, the value αn computed at step (b) is zero, and thus we suggest to
regularize the criterion function, as described in Example 5.2.

5. At step (b) we construct a new design ξn+1 adding the new point xn with weight
αn. Before going back to step (a1), we suggest

(i) as in [13], to collapse the points xs ∈ B(xn, rn) (where rn is a radius tending
to zero) in a new point x̄n with weight given by the sum of the weights of xs’s
and xn. To speed up the algorithm we suggest to increase the weight of xn in
the computation of the barycenter x̄n, as n becomes larger (we found that a
good choice is to increase the weight of xn by a factor of magnitude n0.8, while
the radius decreases as n−0.65);

(ii) as in [13], to remove the support points with low weights (in absolute value as
in [13], and also when the weight is low compared with the mean weight of the
others).

6 Conclusions

In this paper we have provided some nice properties for the KL-optimality criterion, which
are useful from a practical point of view. For instance, since the KL-optimum design
is invariant to a scale-position transformation of the design region, if the experimental
domain changes from X to Z = {z : z = a + Bx|x ∈ X}, in order to compute a new
KL-optimum design on Z it is enough to change in the same way the support points of
the KL-optimum design on X .

We have proved a crucial theoretical property, that is, the KL-criterion is continuous
with respect to the design ξ. Continuity also guarantees the computational stability, since
when designs are obtained in practice they are approximated at each step. Moreover it is
a key property to prove the convergence of the first order algorithm.

We have showed that, at least in a large class of models, if the first order algorithm
starts from an initial design with non-singular information matrix, then it moves on regular
designs and thus it converges to the set of KL-optimum designs. If the KL-optimum design
is singular then, in order to check its optimality, a regularized KL-criterion can be used:
from the continuity of the KL-criterion, an optimum design for the regularized criterion
is also nearly optimum for the KL-criterion.
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Let us note that Kullback (see [17]) has already investigated some invariance prop-
erties of the Kullback-Leibler divergence and some relations with the Fisher information
matrix. The KL-criterion, however, is the minimum Kullback-Leibler divergence between
two parametric families. Therefore, the invariance property and the connection with the
Fisher information matrix herein proved, are original results.

In this work, we also provide a list of useful advices to implement the first order
algorithm, in order to get numerically a KL-optimum design. Some interesting examples
show the application of the algorithm.

The KL-criterion depends on the unknown model parameters. For this reason, KL-
optimum designs computed in this work are only locally optimal. In [10] it is showed that
T-optimal designs (which are also KL-optimal) are sensitive with respect to parameter
misspecification. To construct efficient discriminating designs which are instead robust
to parameter misspecification, [26] propose a Bayesian version of the KL-criterion, while
[20] follow a sequential approach. Another possibility to solve the problem of parameter
dependence could be to use the following standardized maxmin KL-optimality criterion:

IM2,1(ξ) = inf
β1∈Θ1

I2,1(ξ;β1)

I2,1(ξ∗;β1)
.

Another drawback of the KL-criterion is that the Kullback-Leibler divergence is not
simmetric and thus, when the rival models are not nested, two different KL-criteria may
be defined. This problem is solved in [26] by using a prior distribution for the models.
Another solution could be to use the Jeffreys divergence instead of the Kullback-Leibler
one, as done in [11].

As a matter of future work we intend to develop a new optimality criterion based on
the Jeffreys divergence as well as to apply the standardized maxmin approach to compute
robust discriminating design.

Acknowledgements. We are grateful to Professor Valerii Fedorov who suggested us some relevant refer-

ences and to two anonymous referees for their useful remarks. We thank also Professor Giancarlo Manzi

for helping us in improving the original draft of the paper.

References

[1] G. Aletti, C. May and C. Tommasi. A convergent algorithm for finding KL-optimum
designs and related properties. In: mODa 10—Advances in model-oriented design
and analysis, Contrib. Statist., pp. . Physica-Verlag/Springer, Heidelberg, 2013.

[2] A. C. Atkinson and D. R. Cox. Planning experiments for discriminating between
models. Journal of the Royal Statistical Society. Series B, 36(3):321–348, 1974.

[3] A. C. Atkinson and V. V. Fedorov. The design of experiments for discriminating
between two rival models. Biometrika, 62:57–70, 1975.

[4] A. C. Atkinson and V. V. Fedorov. Optimal design: experiments for discriminating
between several models. Biometrika, 62(2):289–303, 1975.

17



[5] J. M. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization. CMS
Books in Mathematics/Ouvrages de Mathématiques de la SMC, 3. Springer, New
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