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Abstract
We provide a direct and elementary proof of the fact that the category of Nachbin’s compact
ordered spaces is dually equivalent to an ℵ1-ary variety of algebras. Further, we show that
ℵ1 is a sharp bound: compact ordered spaces are not dually equivalent to any SP-class of
finitary algebras.

Keywords Compact ordered spaces · Duality · Axiomatisability · Infinitary varieties

In 1936, in his landmark paper [21], M. H. Stone described what is nowadays known as Stone
duality for Boolean algebras. In modern terms, it states that the category of Boolean algebras
with homomorphisms is dually equivalent to the category of totally disconnected compact
Hausdorff spaces with continuousmaps. If we drop the assumption of total disconnectedness,
we are left with the category KH of compact Hausdorff spaces and continuous maps. Duskin
showed in 1969 that the opposite category KHop—which, by Gelfand-Naimark duality [10],
can be identified with the category of commutative unital C∗-algebras—is monadic over the
category of sets and functions [8, 5.15.3]. In fact, KHop is equivalent to a variety of algebras.
Although not finitary, this is an ℵ1-ary variety. That is, it can be described by operations of
at most countably infinite arity. A generating set of operations was exhibited by Isbell [13],
while a finite axiomatisation of this variety was provided in [16]. Therefore, if we allow for
infinitary operations, Stone duality for Boolean algebras can be lifted to compact Hausdorff
spaces, retaining the algebraic nature.

Shortly after his paper on the duality forBoolean algebras, Stone published a generalisation
of this theory to distributive lattices [23]. In his formulation, the dual category consists of
the nowadays called spectral spaces and perfect maps. While spectral spaces are in general
not Hausdorff, H. A. Priestley showed in 1970 that they can be equivalently described as
certain compact Hausdorff spaces equipped with a partial order relation [19]. More precisely,
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922 M. Abbadini , L. Reggio

Priestley duality states that the category of (bounded) distributive lattices is dually equivalent
to the full subcategory ofNachbin’s compact ordered spaces on the totally order-disconnected
objects (cf. Definitions 3 and 19). As with Boolean algebras, one may ask if Priestley duality
can be lifted to the category KH≤ of compact ordered spaces while retaining its algebraic
nature. In [12], the authors showed that KHop

≤ is equivalent to an ℵ1-ary quasi-variety and
partially described its algebraic theory. In the recent work [1], the first-named author proved
that KHop

≤ is in fact equivalent to anℵ1-ary variety, by providing an equational axiomatisation.
The result is rather involved, and is based on an algebraic language whose finitary reduct
extends the positive part of the language of MV-algebras [7].

In this note we provide a new proof of the fact that KHop
≤ is equivalent to an ℵ1-ary variety,

which relies only on properties of Nachbin’s compact ordered spaces. The structure of our
proof is the following. A well-known result in category theory, recalled in Sect. 1, charac-
terises those categories which are equivalent to some variety of possibly infinitary algebras.
A key property, which distinguishes varieties among quasi-varieties, is the effectiveness
of (internal) equivalence relations. In Sect. 2 we recall some basic facts about compact
ordered spaces. Further, we state Theorem 8, asserting that equivalence relations in KHop

≤ are
effective, and show that it implies that KHop

≤ is equivalent to an ℵ1-ary variety. Sections 3,
4 contain the proof of Theorem 8. First, we characterise equivalence relations on a com-
pact ordered space X , in the category KHop

≤ , as certain pre-orders on the order-topological
coproduct X + X . Then, we rephrase effectiveness into an order-theoretic condition and
show that it is satisfied by every pre-order arising from an equivalence relation. Finally,
in Sect. 5, we show that the bound ℵ1 is best possible: KH≤ is not dually equivalent to
any class of finitary algebras which is closed under taking subalgebras and Cartesian prod-
ucts.

Notation Given morphisms fi : X → Yi for i ∈ {0, 1}, the unique morphism induced by
the universal property of the product is 〈 f0, f1〉 : X → Y0 × Y1. Similarly, given morphisms
gi : Xi → Y with i ∈ {0, 1}, the coproduct map is

(g0
g1

) : X0 + X1 → Y . For infinite coprod-
ucts, we use the notation

∑
i∈I Xi . Epimorphisms are denoted by�, while monomorphisms

(resp. regular monomorphisms) by � (resp. ↪→). We use the symbol � for pre-orders, and
≤ for partial orders.

1 Varieties as Categories

In this section we provide the background needed to state a well-known characterisation of
those categories which are equivalent to some (quasi-)variety of algebras. See Theorem 2
below. Throughout, all categories are assumed to be locally small and, unless otherwise
stated, (quasi-)varieties admit possibly infinitary function symbols in their signatures.

Recall from [6] or [5] that a category C is regular provided (i) it has finite limits, (ii)
it admits coequalisers of kernel pairs, and (iii) regular epimorphisms in C are stable under
pullbacks. For instance, varieties and quasi-varieties of algebras (with homomorphisms) are
regular categories. Those regular categories in which there is a good correspondence between
regular epimorphisms and equivalence relations are called exact. In order to give a precise
definition, we recall the notion of equivalence relation in a category.

Let C be a category with finite limits and A an object of C. An (internal) equivalence
relation on A is a subobject 〈p0, p1〉 : R � A × A satisfying the following properties:

reflexivity there exists a morphism d : A → R in C such that the following diagram
commutes;
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On the Axiomatisability of the Dual… 923

symmetry there exists a morphism s : R → R in C such that the following diagram
commutes;

transitivity if the left-hand diagram below is a pullback square in C,

then there is a morphism t : P → R such that the right-hand diagram commutes.

Definition 1 An equivalence relation 〈p0, p1〉 : R � A×A is effective if it coincideswith the
kernel pair of the coequaliser of p0 and p1. A regular category C is exact if every equivalence
relation in C is effective.

For categories of algebras, the definition of equivalence relation given above coincides with
the usual notion of congruence. Varieties of algebras are therefore exact categories, while the
effective equivalence relations in quasi-varieties are the so-called relative congruences.

We need one last piece of terminology to state the desired characterisation of (quasi-)
varieties of algebras. Recall that an object G of a category C is a regular generator if (i) for
every set I the copower

∑
I G exists in C, and (ii) for every object A of C, the canonical

morphism
∑

homC(G,A)

G → A

is a regular epimorphism. Further, G is regular projective if, for every morphism f : G → A
and regular epimorphism g : B → A, f factors through g. We can now state the following
well-known result.

Theorem 2 For a category C, consider the following conditions:

(1) C is regular with coequalisers of equivalence relations;
(2) C has a regular projective regular generator G;
(3) every equivalence relation in C is effective.

The category C is equivalent to a quasi-variety if and only if it satisfies 1 and 2, and it is
equivalent to a variety if and only if it satisfies 1, 2 and 3. 	
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924 M. Abbadini , L. Reggio

The abstract characterisation of varieties and quasi-varieties has a long history in category
theory, starting with the works of Lawvere, Isbell, Linton, Felscher and Duskin in the 1960s.
We do not attempt here to provide an accurate historical account. For the case of quasi-
varieties we refer the reader to [18, Theorem 1.8], and for varieties to [6, Theorem 4.4.5]
or [25]. Further, we point out that the assumption that C be regular can be omitted provided
C has all coequalisers, cf. [2, Theorem 3.6].

2 Compact Ordered Spaces and Their Dual Variety

We collect here some basic facts about compact ordered spaces, first introduced by Nach-
bin [17]. In particular, we describe their limits and colimits. This will come handy in the
following sections.

Definition 3 A compact ordered space (or compact pospace, for short) is a pair (X ,≤)where
X is a compact space and ≤ is a partial order on X which is closed in the product topology
of X × X . We write KH≤ for the category of compact pospaces and continuous monotone
maps.

A basic example of compact pospace is the unit interval [0, 1] equipped with the Euclidean
topology and its usual total order. Note that, for any compact pospace (X ,≤), the opposite
order≤op = {(x, y) | y ≤ x} is also closed in the product topology of X×X . The intersection
≤∩≤op coincides with the diagonal �X = {(x, x) | x ∈ X}, which is thus closed in X × X .
That is, X is a Hausdorff space.

This shows that there is a forgetful functor KH≤ → KH, where KH denotes the category of
compact Hausdorff spaces and continuous maps. On the other hand, there is also a functor
� : KH → KH≤ sending a compact Hausdorff space X to the compact pospace (X ,�X ). It
is readily seen that � is left adjoint to the forgetful functor KH≤ → KH. In symbols,

We will see in a moment that KH≤ admits all limits and colimits. By the adjunction in
(1), limits in KH≤ are computed in KH, whence in the category of sets. However, this is not
the case for colimits. To circumvent this issue, we embed KH≤ in a larger category where
colimits admit a simpler description.

Definition 4 A pre-ordered compact Hausdorff space is a pair (X ,�) where X is a compact
Hausdorff space and� is a pre-order on X which is closed in the product topology of X × X .
We write KH� for the category of pre-ordered compact Hausdorff spaces and continuous
monotone maps.

Clearly, KH≤ is a full subcategory of KH� and the adjunction in (1) lifts to an adjunction
between KH� and KH. Further, the forgetful functor KH� → KH has, in addition to the
left adjoint �, also a right adjoint. Write ∇ : KH → KH� for the functor sending a compact
Hausdorff space X to the pre-ordered compact Hausdorff space (X ,∇X ), where∇X = X×X
is the improper relation on X . It is immediate that ∇ is right adjoint to the forgetful functor
KH� → KH.
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On the Axiomatisability of the Dual… 925

Given a pre-ordered compact Hausdorff space (X ,�), we can consider the quotient of X
with respect to the symmetrization of �, that is the equivalence relation ∼ = � ∩ �op. The
pre-order � descends to a partial order ≤ on the quotient space X/∼, and the map

ρX : (X ,�) � (X/∼,≤)

is continuous and monotone. The pair (X/∼,≤) is readily seen to be a compact pospace.
This assignment extends to a functor ρ : KH� → KH≤ which is left adjoint to the inclusion
KH≤ → KH�. In other words, KH≤ is a reflective subcategory of KH�.

The category KH� is complete and cocomplete because the forgetful functor KH� → KH
is topological [24, Example 2], hence so is its reflective subcategory KH≤. Since the forgetful
functor KH� → KH has a right adjoint, colimits in KH� are computed in KH. In turn, the
colimit of a diagram in KH≤ can be obtained by first computing the colimit in KH�, and then
applying the reflector ρ. For more details, cf. Remark 6.

Proposition 5 The following statements hold:

(1) the regular monomorphisms in KH≤ are the continuous order-embeddings;
(2) the epimorphisms in KH≤ are the continuous monotone surjections;
(3) the unit interval [0, 1] is a regular injective regular cogenerator in KH≤.

Proof See, e.g., [12, Theorem 2.6]. In particular, the unit interval is a regular cogenerator
in KH≤ by [17, Chapter I, Theorems 1 and 4], and it is regular injective by [17, Chapter I,
Theorem 6]. 	

Remark 6 Let X , Y be compact pospaces. Their coproduct in KH� is the disjoint union of
X and Y , with the coproduct topology and the coproduct pre-order. The latter is a compact
pospace, whence it coincides with the coproduct of X and Y in KH≤. Next, we describe
certain pushouts in KH≤.

Consider regular monomorphisms f0 : X ↪→ Y0, f1 : X ↪→ Y1 in KH≤ and their pushout
in the category KH�, as displayed in the following diagram.

As a space, P is homeomorphic to the quotient of the coproduct space Y0+Y1 with respect
to the equivalence relation

{( fi (x), f j (x)) ∈ (Y0 + Y1) × (Y0 + Y1) | x ∈ X , i, j ∈ {0, 1}}
(transitivity follows because f0 and f1 are order-embeddings by item 1 in Proposition 5),
which is easily seen to be closed in the product topology. Let i ∈ {0, 1}, and write i∗ = 1− i .
With this notation, the pre-order on P is given by � = �′ ∪ �′′, where
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926 M. Abbadini , L. Reggio

�′ = {(p, q) ∈ P × P | ∃i ∈ {0, 1}, ∃w ∈ λ−1
i (p), ∃w′ ∈ λ−1

i (q), w ≤Yi w′},
�′′ = {(p, q) ∈ P × P | ∃i ∈ {0, 1}, ∃w ∈ λ−1

i∗ (p), ∃w′ ∈ λ−1
i (q), ∃x ∈ X ,

w ≤Yi fi (x) and fi∗(x) ≤Yi∗ w′}.
The relation� is clearly reflexive, and is seen to be transitive again by item 1 in Proposition 5.
Note that �′ = ⋃

i∈{0,1} (λi × λi )(≤Yi ) is closed in P × P . On the other hand,

�′′ =
⋃

i∈{0,1}
(λi∗ × λi )({(w,w′) ∈ Yi × Yi∗ | ∃x ∈ X , w ≤Yi fi (x), fi∗(x) ≤Yi∗ w′})

=
⋃

i∈{0,1}
(λi∗ × λi )({(w,w′) ∈ Yi × Yi∗ | ∃x ∈ X , (w,w′) ≤Yi×Y ∂

i∗
( fi (x), fi∗(x))})

=
⋃

i∈{0,1}
(λi∗ × λi )(↓ Im(X

〈 fi , fi∗ 〉−−−−→ Yi × Y ∂
i∗)),

where Y ∂
i∗ = (Yi∗ ,≤op

Yi∗ ). Since the downward closure ↓D of any closed subset D of a
compact pospace is again closed [17, Proposition 4], we conclude that �′′ is also closed.
Whence, � is a closed pre-order. It is not difficult to see that it is the smallest pre-order on
P making λ0 and λ1 monotone. Finally, the pushout of f0 along f1 in KH≤ is obtained by
applying the reflector ρ : KH� → KH≤ to P .

Corollary 7 The category KH≤ is dually equivalent to a quasi-variety of algebras.

Proof By Theorem 2, it is enough to show that (i) KHop
≤ is regular with coequalisers of

equivalence relations, and (ii) it admits a regular projective regular generator G.
We already observed that KH≤ is complete and cocomplete. Whence, so is KHop

≤ . To show
that KHop

≤ is regular, it suffices to prove that regular monos, i.e. continuous order-embeddings,
are stable under pushouts inKH≤. Pushouts inKH≤ can be computed byfirst taking the pushout
in KH�, and then composing with the reflection map. Reasoning as in Remark 6, it is not
difficult to see that the pushout of a continuous order-embedding in KH� is again a continuous
order-embedding. Further, composing with the reflection yields again a continuous order-
embedding, i.e. a regular mono in KH≤. This proves (i). In turn, (ii) follows at once from item
3 in Proposition 5, by setting G = [0, 1]. We mention that one may also deduce (i) from (ii)
and the fact that KHop

≤ is cocomplete, cf. [2, Theorem 3.6]. 	

The latter fact was already observed in [12] where, in addition, the authors provide a descrip-
tion of an ℵ1-ary quasi-variety dually equivalent to KH≤ (see Theorem 3.15 in op. cit.). Our
main contribution consists in a direct proof of the following result:

Theorem 8 Every equivalence relation in KHop
≤ is effective.

A proof of the previous theorem is provided in Sects. 3, 4. We conclude this section by
observing that Theorem 8 implies that KHop

≤ is equivalent to an ℵ1-ary variety of algebras,
that is a variety of algebras in a language consisting of function symbols of at most countably
infinite arity.

Corollary 9 The category KH≤ is dually equivalent to an ℵ1-ary variety of algebras.

Proof By Corollary 7, we know that KH≤ is dually equivalent to a quasi-variety of algebras.
Theorems 2 and 8 entail that KH≤ is in fact dually equivalent to a variety of algebras. Indeed,
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On the Axiomatisability of the Dual… 927

KHop
≤ is equivalent to the category of Eilenberg-Moore algebras for the monad induced by

the adjunction
∑

−
[0, 1] � homKHop

≤ ([0, 1],−) : KHop
≤ → Set .

The latter is equivalent to anℵ1-ary variety of algebras if, and only if, themonad preservesℵ1-
directed colimits. It suffices to show that, for every set I and continuous monotone function
f : [0, 1]I → [0, 1], there is a countable subset J ⊆ I such that f factors through the
projection [0, 1]I � [0, 1]J . In turn, this is a consequence of the Stone-Weierstrass Theorem
for compact Hausdorff spaces [22]. 	


3 Equivalence Co-relations on Compact Ordered Spaces

In this section we provide a description of equivalence relations in the category KHop
≤ , which

will then be exploited in the next section to prove that equivalence relations in KHop
≤ are

effective.
To start with, we dualise the notion of subobject. Given a compact pospace X , a quotient

object of X is a subobject of X in the category KHop
≤ . The poset of quotient objects of X is

denoted by Q(X). Explicitly, Q(X) is the poset of (equivalence classes of) epimorphisms
with domain X , where f1 : X � Y1 is below f2 : X � Y2 whenever there exists g : Y2 → Y1
such that g ◦ f2 = f1.

Remark 10 We warn the reader that our terminology is non-standard. By a quotient object
we do not mean a regular epimorphism, but what may be called a co-subobject (not every
epimorphism in KH≤ is regular).

By definition, an equivalence relation on X in the opposite category KHop
≤ is a subobject of

X × X (where the product is computed in KHop
≤ ) which is reflexive, symmetric and transitive.

This corresponds to a quotient object
(q0
q1

) : X + X � S of the compact pospace X + X
satisfying the dual properties:
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928 M. Abbadini , L. Reggio

A quotient object of X + X which satisfies the three properties above will be called an
equivalence co-relation on X . The key observation is that equivalence co-relations are more
manageable than their duals, because quotient objects of X are in bijection with certain
pre-orders on X .

Indeed, if f : (X ,≤X ) � (Y ,≤Y ) is an epimorphism in KH≤, then

� f = {(x1, x2) ∈ X × X | f (x1) ≤Y f (x2)}
is a pre-order on X . The monotonicity of f entails ≤X ⊆ � f . Further, recalling that epimor-
phisms inKH≤ are precisely the continuousmonotone surjections (see item2 inProposition5),
we see that � f is closed in X × X because it coincides with the preimage of ≤Y under the
continuous map f × f : X × X → Y × Y . Let us denote by P(X) the poset of all closed
pre-orders on X which extend ≤X , ordered by reverse inclusion. By the previous discussion,
there is a map Q(X) → P(X) sending f to � f . This function is well-defined, as � f does
not depend on the choice of a representative in the equivalence class of f . Conversely, given
a pre-order� in P(X), consider its symmetrization∼ = �∩�op. The space X/∼, equipped
with the quotient topology, is compact. The direct image of � under the quotient map is a
partial order on X/∼, and it is closed because so is �. Moreover, since ≤X ⊆ �, we get an
epimorphism

X � X/∼
in KH≤. Taking its equivalence class, we obtain an element of Q(X). The following fact
follows easily.

Lemma 11 For every compact pospace X, the assignments

( f : X � Y ) �→ � f and � �→ (X � X/∼)

induce an isomorphism between the posets P(X) and Q(X). 	

Remark 12 Assume f1 : X → Y1 and f2 : X → Y2 are surjective morphisms in KH≤. By
Lemma 11, there exists g : Y1 → Y2 such that g ◦ f1 = f2 if, and only if, ∀x, y ∈ X ,
f1(x) ≤ f1(y) implies f2(x) ≤ f2(y). In fact, it is not difficult to see that this is true even if
f2 is not surjective, as we can factor it as a surjective map followed by an injective one.

Recall from Remark 6 that the compact pospace X + X is isomorphic to the disjoint union

{(x, 0) | x ∈ X} ∪ {(x, 1) | x ∈ X},
equipped with the coproduct topology and the coproduct order.

Notation We denote the elements of X + X by (x, i), (y, j), . . . where i, j vary in {0, 1}.
Further, i∗ stands for 1 − i . For example, (x, 1∗) = (x, 0).

For the rest of this section, we fix a quotient object
(q0
q1

) : X + X � S of a compact pospace
X . We write �(q0q1)

, or simply �S , for the associated pre-order on X + X . We say that �S

is co-reflexive (co-symmetric, co-transitive) if so is
(q0
q1

)
. To improve readability, we write

[(x, i)] instead of
(q0
q1

)
(x, i).

Lemma 13 The following statements hold:

(1) the pre-order �S is co-reflexive if, and only if, (x, i) �S (y, j) entails x ≤ y;
(2) the pre-order �S is co-symmetric if, and only if, (x, i) �S (y, j) entails (x, i∗) �S

(y, j∗).
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On the Axiomatisability of the Dual… 929

Proof (1) By definition, �S is co-reflexive if, and only if,
(q0
q1

) : X + X � S is above
(1X
1X

) : X+X � X in the posetQ(X+X). ByLemma11, this is equivalent to�S ⊆ �
(1X1X )

.

Given (x, i), (y, j) ∈ X + X , we have

(x, i) �
(1X1X )

(y, j) ⇐⇒ x ≤ y.

It follows that the pre-order �S is co-reflexive if, and only if, (x, i) �S (y, j) entails
x ≤ y.

(2) Again, by definition, �S is co-symmetric if and only if
(q0
q1

) : X + X � S is above
(q1
q0

) : X + X � S inQ(X + X). By Lemma 11, this happens exactly when �S ⊆ �(q1q0)
.

Given (x, i), (y, j) ∈ X + X ,

(x, i) �(q1q0)
(y, j) ⇐⇒ (x, i∗) �S (y, j∗).

Therefore, the pre-order �S is co-symmetric if, and only if, (x, i) �S (y, j) entails
(x, i∗) �S (y, j∗). 	


Lemma 14 Assume the pre-order �S is co-reflexive. Then it is co-transitive if, and only if,

(x, i) �S (y, i∗) �⇒ ∃z ∈ X [(x, i) �S (z, i∗) and (z, i) �S (y, i∗)].
Proof Recall that �S is co-transitive if, and only if, given a pushout square in KH≤ as in the
left-hand diagram below,

there is t : S → P making the right-hand diagram commute. By Remark 12, such a t exists
precisely when, for every (x, i), (y, j) ∈ X + X , (x, i) �S (y, j) implies

(
λ0◦q0
λ1◦q1

)
(x, i) ≤

(
λ0◦q0
λ1◦q1

)
(y, j), i.e. λi ([(x, i)]) ≤ λ j ([(y, j)]). Recall that �S is co-reflexive provided q0

and q1 are both sections of a morphism d : S → X . In particular, q0 and q1 are regular
monomorphisms in KH≤. Thus, by Remark 6, λi ([(x, i)]) ≤ λ j ([(y, j)]) if, and only if,

[i = j and (x, i) �S (y, j)] or [i �= j and ∃z ∈ X s.t. (x, i) �S (z, j) and (z, i) �S (y, j)].
(2)

We conclude that �S is co-reflexive if, and only if, equation (2) holds whenever (x, i) �S

(y, j). In turn, this is equivalent to the condition in the statement of the lemma. 	

From Lemmas 13 and 14, we obtain the following characterisation of equivalence co-

relations in KH≤.

Proposition 15 The pre-order �S is an equivalence co-relation on X if, and only if,

(x, i) �S (y, j) �⇒ [x ≤ y and (x, i∗) �S (y, j∗)]
and

(x, i) �S (y, i∗) �⇒ ∃z ∈ X [(x, i) �S (z, i∗) and (z, i) �S (y, i∗)]. 	
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930 M. Abbadini , L. Reggio

4 Proof of Theorem 8

Assume
(q0
q1

) : X + X � S is an equivalence co-relation on X . Dualising Definition 1, we

say that
(q0
q1

)
is effective provided it coincides with the co-kernel pair of its equaliser. That is,

provided the following is a pushout square in KH≤,

(3)

where k is the equaliser of q0, q1 : X ⇒ S in KH≤. Also, we say that the pre-order �S is
effective if so is the corresponding quotient object. By item 1 in Proposition 5, the space Y
can be identified with a closed subset of X , equipped with the induced order and topology.
Define the relation �Y on X + X as follows:

(x, i) �Y (y, j) ⇐⇒ (i = j and x ≤ y) or (i∗ = j and ∃z ∈ Y s.t. x ≤ z ≤ y). (4)

Lemma 16 �Y is the pre-order on X+X associatedwith the pushout of the inclusion Y ↪→ X
along itself.

Proof This is an immediate consequence of Remark 6. 	


For the next proposition, recall that ∼S = �S ∩ �op
S is the symmetrization of the pre-order

�S .

Proposition 17 The equivalence co-relation �S is effective if, and only if,

(x, i) �S (y, i∗) �⇒ ∃z ∈ X [x ≤ z ≤ y and (z, i) ∼S (z, i∗)].

Proof Recall that the equivalence co-relation�S is effective if, and only if, the diagram in (3)
is a pushout in KH≤. In turn, by Lemma 16, this is equivalent to saying that �S = �Y . Since
Y = {x ∈ X | (x, i) ∼S (x, i∗)},

(x, i) �Y (y, j) ⇐⇒ ∃z ∈ X [x ≤ z ≤ y and (z, i) ∼S (z, i∗)].
Therefore, to settle the statement, it suffices to show that the inclusion �Y ⊆ �S is always
satisfied.

Note that any equivalence co-relation � on X satisfies (x, i) � (y, i) if, and only if,
x ≤ y. The left-to-right implication follows from item 1 in Lemma 13, while the right-to-left
implication holds because� extends the coproduct order of X+X . Whence, (x, i) �Y (y, i)
if, and only if, (x, i) �S (y, i). Suppose now (x, i) �Y (y, i∗), and let z ∈ Y satisfy
x ≤ z ≤ y. We have

(x, i) �S (z, i) ∼S (z, i∗) �S (y, i∗),

where the two inequalities hold because �S extends the partial order of X + X . Therefore,
�Y ⊆ �S . 	


Wecan finally proveTheorem8, stating that every equivalence relation inKHop
≤ is effective.
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Proof of Theorem 8 Let (X ,≤) be a compact pospace and � an equivalence co-relation on
X . In view of Proposition 17 it is enough to show that, whenever (x, i) � (y, i∗), there is
z ∈ X such that

x ≤ z ≤ y and (z, i) ∼ (z, i∗).

Fix arbitrary x, y ∈ X and i ∈ {0, 1} satisfying (x, i) � (y, i∗), and set

� = {u ∈ X | (x, i) � (u, i∗) and (u, i) � (y, i∗)}.
The idea is to apply Zorn’s Lemma to show that � has a maximal element z satisfying the

desired properties.
First, note that � is non-empty because � is co-transitive, cf. Lemma 14. We claim that

every non-empty chain C ⊆ � admits an upper bound in �.
Every directed set in a compact pospace has a supremum, which coincides with the

topological limit of the set regarded as a net [11, PropositionVI.1.3]. Thus,C has a supremum
s in X , which belongs to the topological closure C of C .

Claim � is a closed subset of X.

Proof The set � can be written as the intersection of the sets

�1 = {u ∈ X | (x, i) � (u, i∗)} and �2 = {u ∈ X | (u, i) � (y, i∗)}.
Hence, it is enough to show that �1 and �2 are closed in X . We show that �1 is closed. The
proof for �2 is the same, mutatis mutandis. The set �1 is the preimage, under the coproduct
injection ιi∗ : X → X + X , of

↑(x, i) = {(w, j) ∈ X + X | (x, i) � (w, j)}.
Since� is a closed pre-order on X + X , the set ↑(x, i) is closed in X + X [17, Proposition 1].
Therefore, its preimage �1 is closed in X . 	


The previous claim entails that s ∈ C ⊆ �, i.e. C has a supremum in �. Hence, every
non-empty chain in � admits an upper bound. By Zorn’s Lemma, � has a maximal element
z. By co-reflexivity of � (see item 1 in Lemma 13), (x, i) � (z, i∗) and (z, i) � (y, i∗)
imply x ≤ z ≤ y. It remains to show that (z, i) ∼ (z, i∗).

Since (z, i) � (y, i∗), by co-transitivity of � (cf. Lemma 14), there is u ∈ X such that
(z, i) � (u, i∗) and (u, i) � (y, i∗). Also, (x, i) � (z, i) because � extends the partial order
of X . Thus (x, i) � (z, i) � (u, i∗), which implies u ∈ �. By co-reflexivity, (z, i) � (u, i∗)
entails z ≤ u. Since z is maximal, it must be z = u. Therefore, (z, i) � (z, i∗). By co-
symmetry (see item 2 in Lemma 13), we conclude that (z, i) ∼ (z, i∗). 	


We saw that, for every compact pospace X and closed subset Y ⊆ X , there is a pre-order
�Y on X + X given as in (4). In fact, by Lemma 16, �Y is the equivalence co-relation
on X associated with the pushout of the inclusion Y ↪→ X along itself. Conversely, every
equivalence co-relation � on X yields a closed subset of X , namely


(�) = {x ∈ X | (x, i) ∼ (x, i∗)}.
Corollary 18 For every compact pospace X, the assignments

� �→ 
(�) and (Y ↪→ X) �→ �Y

yield an isomorphism between the poset of equivalence co-relations on X and the poset of
closed subsets of X.
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Proof The two maps are clearly monotone. For any closed subset Y ⊆ X , we have

(�Y ) = Y because

(x, i) ∼Y (x, i∗) ⇐⇒ ∃z ∈ Y s.t. x ≤ z ≤ x ⇐⇒ x ∈ Y .

Moreover, it follows at once from Theorem 8 and Proposition 17 that, for any equivalence
co-relation � on X , � ⊆ �
(�). For the converse inclusion, see the proof of Proposition 17.

	


5 Epilogue: Negative Axiomatisability Results

In the previous sections, we have given a direct proof of the fact that the category KH≤
of compact ordered spaces is dually equivalent to an ℵ1-ary variety of algebras. One may
wonder whether it is necessary to resort to infinitary operations. In this section we show that
KHop

≤ is not equivalent to any SP-class of finitary algebras (i.e., one closed under subalgebras
and Cartesian products), let alone a finitary (quasi-)variety.

Recall that an object A of a categoryC is (Gabriel-Ulmer) finitely presentable if the covari-
ant hom-functor homC(A,−) : C → Set preserves directed colimits. See [9, Definition 6.1]
or [3, Definition 1.1]. Further, C is finitely accessible provided it has directed colimits and
there exists a set S of its objects such that (i) each object of S is finitely presentable, and (ii)
each object of C is a directed colimit of objects in S. See [3, Definition 2.1].

For example, finitary varieties and finitary quasi-varieties (with homomorphisms) are
finitely accessible categories, cf. [3, Corollary 3.7 and Theorem 3.24]. Recall the following
definition:

Definition 19 A Priestley space is a compact pospace (X ,≤) which is totally order-
disconnected, i.e. for all x, y with x � y there is a clopen C ⊆ X which is an up-set
for ≤ and satisfies x ∈ C but y /∈ C .

Lemma 20 A compact pospace is a Priestley space if, and only if, it is the codirected limit
in KH≤ of finite posets equipped with the discrete topologies.

Proof This result is folklore. For a proof see, e.g., [14, Corollary VI.3.3]. 	

Denote by PSp the full subcategory of KH≤ defined by all Priestley spaces. By a result

of Priestley [19], PSpop is equivalent to the category of bounded distributive lattices with
homomorphisms. In particular, PSpop is a finitely accessible category. The following result
is an adaptation of [16, Proposition 1.2] to the ordered case.

Theorem 21 Let F be a full subcategory of KH≤ extending PSp. If Fop is a finitely accessible
category— in particular, if Fop is a finitary variety or a finitary quasi-variety— then F = PSp.

Proof It suffices to show that every object in F is a Priestley space. We claim that every
finitely copresentable object in F (i.e. one which is finitely presentable when regarded as an
object of Fop) is finite.

Let (X ,≤) be an arbitrary finitely copresentable object in F. Consider an epimorphism
γ : Y � X in KH≤ with Y a Priestley space. (E.g., let Y = β|X | be the Čech-Stone compacti-
fication of the underlying set of X equipped with the discrete topology, and γ : (β|X |,=) →
(X ,≤) the unique continuous extension of the identity function |X | → |X |). By Lemma 20,
Y is the codirected limit in KH≤ of finite posets {Yi }i∈I with the discrete topologies. Denote

123



On the Axiomatisability of the Dual… 933

by αi : Y → Yi the i-th limit arrow. Since Y lies in F, and the full embedding F → KH≤
reflects limits, Y is in fact the codirected limit of {Yi }i∈I in F.

The object X being finitely copresentable in F, there are j ∈ I and amorphismϕ : Y j → X
such that γ = ϕ ◦ α j . The map γ is surjective, hence so is ϕ. This shows that X is finite, and
thus the claim is settled.

Since Fop is finitely accessible, every object of F is the codirected limit of finitely cop-
resentable objects. Using again the fact that the full embedding F → KH≤ reflects limits,
we deduce from Lemma 20 that every object of F is a Priestley space, as was to be shown.
Finally, we have already observed that finitary varieties and finitary quasi-varieties are finitely
accessible categories. 	


Corollary 22 KHop
≤ is not equivalent to any SP-class of finitary algebras.

Proof By Theorem 8, every equivalence relation in KHop
≤ is effective. In turn, Banaschewski

observed in [4] that every SP-class of finitary algebras in which every equivalence relation
is effective is a variety of algebras. The statement then follows from Theorem 21. 	


Remark 23 In a recent work, Lieberman, Rosický and Vasey [15] proved that the oppo-
site of the category KH of compact Hausdorff spaces is not equivalent to any elementary
class of structures, with morphisms all the homomorphisms. In fact, they show that there
exists no faithful functor KHop → Set which preserves directed colimits. Since directed
colimits in elementary classes are concrete [20], the preceding statement follows. This
implies that KHop

≤ is not equivalent to any elementary class of structures. Indeed, note that
the embedding � : KHop → KHop

≤ (cf. equation (1)) preserves directed colimits. Hence, if
there were a faithful functor F : KHop

≤ → Set preserving directed colimits, the composition
F ◦� : KHop → Setwould also be a faithful functor preserving directed colimits, contradict-
ing the aforementioned result. This shows that KHop

≤ cannot be equivalent to an elementary
class of structures with morphisms all the homomorphisms.
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