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A B S T R A C T   

The short revisit times afforded by recently-deployed optical satellite sensors that acquire 3–30 m resolution 
imagery provide new opportunities to study seasonal vegetation dynamics. Previous studies demonstrated a 
successful retrieval of phenology with Sentinel-2 for relatively stable annual growing seasons. In semi-arid East 
Africa however, vegetation responds rapidly to a concentration of rainfall over short periods and consequently is 
subject to strong interannual variability. Obtaining a sufficient density of cloud-free acquisitions to accurately 
describe these short vegetation cycles is therefore challenging. The objective of this study is to evaluate if data 
from two satellite constellations, i.e., PlanetScope (3 m resolution) and Sentinel-2 (10 m resolution), each in
dependently allow for accurate mapping of vegetation phenology under these challenging conditions. The study 
area is a rangeland with bimodal seasonality located at the 128-km2 Kapiti Farm in Machakos County, Kenya. 
Using all the available PlanetScope and Sentinel-2 imagery between March 2017 and February 2019, we derived 
temporal NDVI profiles and fitted double hyperbolic tangent models (equivalent to commonly-used logistic 
functions), separately for the two rainy seasons locally referred to as the short and long rains. We estimated start- 
and end-of-season for the series using a 50% threshold between minimum and maximum levels of the modelled 
time series (SOS50/EOS50). We compared our estimates against those obtained from vegetation index series from 
two alternative sources, i.e. a) greenness chromatic coordinate (GCC) series obtained from digital repeat pho
tography, and b) MODIS NDVI. We found that both PlanetScope and Sentinel-2 series resulted in acceptable 
retrievals of phenology (RMSD of ~8 days for SOS50 and ~15 days for EOS50 when compared against GCC series) 
suggesting that the sensors individually provide sufficient temporal detail. However, when applying the model to 
the entire study area, fewer spatial artefacts occurred in the PlanetScope results. This could be explained by the 
higher observation frequency of PlanetScope, which becomes critical during periods of persistent cloud cover. 
We further illustrated that PlanetScope series could differentiate the phenology of individual trees from grass
land surroundings, whereby tree green-up was found to be both earlier and later than for grass, depending on 
location. The spatially-detailed phenology retrievals, as achieved in this study, are expected to help in better 
understanding climate and degradation impacts on rangeland vegetation, particularly for heterogeneous ran
geland systems with large interannual variability in phenology and productivity.   

1. Introduction 

Rangelands are the land use with the largest spatial extent globally, 
and comprise various land cover types such as savannahs, grasslands, 
prairies, steppe, and shrubland. In Africa alone, rangelands cover over 
60% of the land surface and are an essential resource for wildlife and 
livestock (Reid et al., 2008). Millions of pastoral households depend on 

their livestock for milk and meat production (Sayre et al., 2013). Their 
livelihoods are strongly affected by weather shocks, such as drought 
(Blackwell, 2010; Little et al., 2008). During the past century, climatic 
shifts have resulted in increasing rainfall variability in rangelands 
(Sloat et al., 2018), which in turn affects rangeland productivity (Briske 
et al., 2015; Knapp et al., 2008) and composition (Scheiter and Higgins, 
2009), and consequently the animals and humans that depend on the 
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rangelands for forage and livelihoods. The severity of impacts of re
current droughts depends on their time and on rangeland type. Besides 
rainfall variability, factors such as carbon dioxide enrichment (e.g.,  
Morgan et al., 2007), soil properties, herbivory, and fire regime equally 
influence rangeland status (Briske et al., 2005; House et al., 2003). 

Assessing phenological dynamics of vegetation permits us to better 
understand how climatic variability and management affect different 
rangeland functional groups. For example, the deployment and reten
tion of leaves differs between grasses and trees (Higgins et al., 2011; Liu 
et al., 2017; Scholes and Archer, 1997) and this temporal separation in 
photosynthetic activity may reduce competition for water (Ogle and 
Reynolds, 2004; Sankaran et al., 2004). Vegetation phenology in turn 
also influences ecosystem functions (e.g., Gross, 2017; Guuroh et al., 
2018), among others due to the timing and abundance of resource 
availability, affecting migratory species (Cleland et al., 2007; Miles 
et al., 2017), including desert locusts, which caused a major plague in 
2019–2020 in East Africa and South Asia (Meynard et al., 2020). 

Time series of optical remote sensing data are a critical input to 
studying phenology at the landscape level. One option for this can be 
referred to as near-surface remote sensing, i.e. mounting a camera that 
frequently takes pictures of vegetation from a fixed position in the field. 
This digital repeat photography allows to either directly observe phe
nological events like flowering, or to automatically assess changes in 
greenness by deriving vegetation indices, such as the Greenness 
Chromatic Coordinate (GCC) from the photograph series (Richardson 
et al., 2018). For example, Alberton et al. (2014) used camera-derived 
GCC series to show interspecies phenological differences for a tropical 
savannah system in Brazil. While this approach can provide useful in
sights, particularly if employed for long time periods, satellite imagery 
is the sole option to synoptically assess phenology for larger areas. 
Moderate to coarse spatial resolution data (100–1000 m) have been 
used for this purpose, because their short revisit times increase the 
probability of obtaining sufficient cloud-free observations throughout 
the year. Typically these observations are subjected to cloud and 
shadow screening, temporal compositing, and smoothing of resulting 
vegetation indices to achieve a reliable description of temporal changes 
in vegetation activity (Hmimina et al., 2013; Zeng et al., 2020). 

Estimates of vegetation phenology have been frequently obtained 
for the African continent, or parts thereof (for a review see Adole et al., 
2016), using vegetation index series derived from various moderate and 
coarse resolution sensors, including the Moderate Resolution Imaging 
Spectroradiometer (MODIS), the Satellite Pour l'Observation de la Terre 
(SPOT) Vegetation, and the Advanced Very High Resolution Radio
meter (AVHRR) series. Estimates of vegetation phenological timings 
have various practical applications. For instance they contribute to 
drought early warning systems and index insurance schemes by in
dicating when crops or rangelands are in a productive phase (Rembold 
et al., 2019; Vrieling et al., 2016). Start- and end-of-season (SOS/EOS) 
estimates are also inputs to calculating a seasonal accumulation of a 
spectral vegetation index, an often-used proxy for seasonal biomass 
production (Diouf et al., 2015; Meroni et al., 2014a; Schucknecht et al., 
2017). Trends and interannual variability can be assessed when esti
mating phenological estimates with satellite series over longer time 
periods (Brown et al., 2010; Heumann et al., 2007), but attribution of 
this variability to specific factors (i.e. management, climate) can be 
cumbersome (Vrieling et al., 2011). Water availability is known to be 
the major determinant of phenological variability in rangelands. 
Growth onset of herbaceous vegetation tends to follow precipitation 
onset, but the green-up of woody vegetation can show a deviating be
haviour (Archibald and Scholes, 2007). In some cases, woody vegeta
tion becomes photosynthetically active before rains start, which has 
been attributed to day length cues (Archibald and Scholes, 2007) and 
the tree root system's access to deep ground water (Guan et al., 2014). 
In other cases woody green-up may also be delayed with respect to 
herbaceous vegetation (Liu et al., 2017). Taking advantage of dissimilar 
responses of vegetation to water variability, phenological behaviour as 

captured by satellites can be utilized for differentiating functional 
groups or vegetation communities, as for example Hüttich et al. (2009) 
illustrated for the Kalahari in Namibia. Other applications include a 
prediction of seasonal movements of livestock herds (Butt et al., 2011). 
While some success was achieved in estimating fractional cover of trees 
and grasses from MODIS-derived phenology in Kruger National Park 
(Ibrahim et al., 2018), Hmimina et al. (2013) showed that the large 
spatial heterogeneity of rangelands cannot properly be represented by 
MODIS-sized pixels (250 m), resulting in poor overall phenology esti
mates. 

Finer spatial resolution satellite sensors (≤30 m) have potential to 
more accurately describe the phenology of spatially heterogeneous 
rangelands. However, the longer revisit times of such sensors, in com
bination with frequent cloud cover, often makes it hard to obtain suf
ficient cloud-free observations to effectively describe seasonal changes 
in greenness. To overcome this, a few main strategies have been pro
posed:  

a) Fusion of Landsat with coarser-resolution MODIS or VIIRS (Visible 
Infrared Imaging Radiometer Suite) series to reconstruct a denser 
dataset at Landsat resolution, which is then used as the basis for 
phenology estimation (e.g., Frantz et al., 2016; Walker et al., 2014;  
Zhang et al., 2020). While promising results have been attained, this 
approach is less effective for heterogeneous landscapes with rapid 
changes.  

b) Combination of multiple years of Landsat acquisitions into a single 
‘synthetic’ year (Elmore et al., 2012; Fisher et al., 2006; Nijland 
et al., 2016). This has been particularly used for locations where 
adjacent Landsat orbits overlap and consequently result in higher 
image density. The resulting multi-annual average phenology can 
subsequently be adjusted to meet individual year observations 
(Melaas et al., 2013; Melaas et al., 2016). This strategy only works in 
case the overall shape of the temporal profile remains relatively 
similar between years.  

c) Taking advantage of reduced revisit times of new satellite missions, 
such as Sentinel-2 (10–60 m resolution), phenological metrics may 
be directly estimated using imagery from a single season (Pan et al. 
2015; Schwieder et al., 2018; Vrieling et al., 2018; Vrieling et al., 
2017; White et al., 2014). These attempts mostly focussed on areas 
with long annual vegetative seasons.  

d) To increase robustness of single-season phenology retrievals, a 
combination of (b) and (c) was proposed (Jönsson et al., 2018). In 
this case, if insufficient observations are available for (part of) the 
season under consideration, specific parameters that describe the 
temporal trajectory of vegetation indices are pulled from the multi- 
year average phenology. This concept was also used by Bolton et al. 
(2020) who fitted cubic splines to generate daily vegetation index 
series. They assigned weights to alternate-year observations, 
whereby more weight was given to observations of years with a 
similar trajectory as the year under consideration. By applying this 
approach to the new harmonized Landsat 8 and Sentinel-2 dataset 
(Claverie et al., 2018) they retrieved a 30-m phenology for the North 
American continent. 

Semi-arid rangelands, particularly in East Africa, are characterized 
by short vegetation cycles that show large interannual variability both 
in the timing and magnitude of vegetation productivity. In combination 
with the high degree of cloud cover during rainy seasons, this puts 
stronger requirements on the observation frequency as compared to 
many of the 10–30 m -resolution phenology studies executed until 
present. This is because the density of observations required to reliably 
sample the dynamic signal of vegetation is roughly inversely propor
tional to the length of the season. 

The aim of this study is to assess if two fine-resolution satellite 
systems with short revisit times, i.e. PlanetScope and Sentinel-2, can be 
effectively applied to retrieve and map phenological metrics for a semi- 
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arid rangeland site in Kenya. For the purpose of this paper we will use 
“fine-resolution” and “fine-scale” to refer to the 3–10 m spatial re
solution of these systems and the resulting phenology estimates. Given 
the large interannual variability in seasonal characteristics, we followed 
the above-mentioned strategy “c”, i.e. the direct estimation of phe
nology from single-season imagery. Using a model-fit approach on time 
series of the normalized difference vegetation index (NDVI), we re
trieved two temporal phenological metrics (SOS and EOS) and two 
metrics related to productivity (maximum NDVI and accumulation of 
NDVI). We then compared the independent retrievals from PlanetScope 
and Sentinel-2 data to those obtained from in-situ camera photograph 
series, and from MODIS 250 m observations, as a commonly-used sa
tellite data source for phenology studies. Our purpose is not to propose 
a new robust phenology extraction methodology (as attempted in other 
papers, e.g. Bolton et al., 2020), but rather to process different data 
sources with a standard curve-fitting approach in order to evaluate 
whether the data quality and frequency is sufficient to obtain accurate 
and spatially-consistent estimates of phenological metrics in a chal
lenging environment with short and variable vegetation seasons. 

2. Study area and data 

2.1. Study area 

The study is executed for the Kapiti Farm research station in 
Machakos County, Kenya (Fig. 1). The Kapiti Farm is property of the 
International Livestock Research Institute (ILRI) and used to conduct 
research on sustainable livestock and rangeland management. The farm 
covers approximately 128 km2 on which about 2500 heads of beef 
cattle, 1200 sheep, and 250 goats are maintained. In addition, it serves 
as an important habitat and ecological corridor for wildlife. The vege
tation is predominantly herbaceous with various densities of shrub 
cover (mostly Acacia drepanolobium). The dominant herbaceous species 
in Kapiti Farm are Themeda (red oat grass), Panicum (switchgrass), 
Chloris (finger grass), Pennisetum (fountain grass), Cenchrus (African 
foxtail grass), and Setaria (bristle grass). On the central higher part of 
Kapiti, Balanites trees (Balanites aegyptiaca, > 2 m) are dominant. 

Kapiti Farm has a bimodal rainfall pattern. Based on in-situ records 
of daily precipitation (Fig. 2), the “short rain” (SR) season is from Oc
tober to January and the “long rain” (LR) season is from March to June, 
although rainfall quantity and timing shows substantial interannual 
variability. The average precipitation during the last 19 years 

(2001–2019) is 225  ±  121 mm for SR and 253  ±  128 mm for LR 
(mean  ±  standard deviation). Precipitation characteristics and grazing 
intensity are the most important controls on the dynamics of vegetation 
life cycle and productivity in Kapiti Farm. The seasonal vegetation 
phenology responds strongly to the timing and quantity of rainfall. 

2.2. PlanetScope imagery 

PlanetScope is a satellite constellation consisting presently of 130+ 
CubeSats (4-kg satellites) operated by Planet Labs (Planet Labs Inc, 
2020). The majority of these CubeSats are in a sun-synchronous orbit 
with an equator crossing time between 9:30 and 11:30 (local solar time) 
(Planet Labs Inc, 2020). PlanetScope imagery contains four spectral 
bands, i.e. blue (455–515 nm), green (500–590 nm), red (590–670 nm), 
and near-infrared (NIR, 780–860 nm). We used the Level-3B surface 
reflectance products that have been atmospherically corrected by 
Planet Labs using the 6S radiative transfer model with ancillary data 
from MODIS (Kotchenova and Vermote, 2007; Kotchenova et al., 2006;  
Planet Labs Inc, 2020). The spatial resolution of these products is 3 m 
and the RMSE positional error is less than 10 m, and we found that 
different PlanetScope acquisitions were well co-registered (no apparent 
shifts). 

A total of 760 Level-3B surface reflectance products between March 
2017 and February 2019 were downloaded. The average revisit interval 
for Kapiti Farm is 2.22 days. The range (mean  ±  standard deviation) 
of view zenith angle, sun azimuth, and sun altitude for all of these 
surface products is 1.17  ±  1.44, 95  ±  36, and 54  ±  5 degrees, 
respectively. Each product contained about 200 km2 that partially 
overlapped Kapiti Farm in a non-consistent way. Images acquired on 
the same day from the same satellite and orbit were mosaicked and 
clipped to the study area extent, resulting in 313 mosaicked images. 

Although Planet Labs has recently improved their cloud and shadow 
masking algorithm (i.e., the so-called “unusable data mask”), its results 
were not available for the entire temporal range of this study. We 
therefore performed cloud and shadow screening ourselves. Existing 
cloud screening algorithms for Sentinel-2, MODIS, and other satellite 
imagery mostly use thresholds of spectral bands and derived indices 
(e.g., Ackerman et al., 1998; Hollstein et al., 2016). Given that spectral 
information in PlanetScope imagery is limited to four bands, we in
cluded texture features using the Gray Level Co-occurrence Matrix 
(GLCM; Bai et al., 2016; Soh and Tsatsoulis, 1999) to take advantage of 
the fact that clouds and shadows generally have a smoother texture 

Fig. 1. Overview of the study area. The left map shows the boundary of Kapiti Farm and the location of the three field cameras. The centre map shows a 5 m- 
resolution Digital Terrain Model, which was generated from data acquired with a Leica ALS60 aerial LIDAR survey. The background imagery for both maps is a 
WorldView-2 scene (natural colour; 0.5 m) acquired on 2 February 2017 provided by DigitalGlobe. The maps on the right show the location of Kapiti Farm in Kenya. 
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than the land surface, particularly in fine-resolution imagery (Li et al., 
2017; Lu, 2007; Schröder et al., 2002). We generated 120 spectral and 
texture features from four bands of PlanetScope imagery, including a 
large set of band algebra combinations and per band 18 GLCM features 
calculated for 9 × 9 pixel moving windows. We then used a Random 
Forest classifier to test the relative importance of the four spectral 
bands plus 120 features in discriminating cloud and cloud shadow. A 
reference set was made by visually interpreting 23,782 pixels from 
multiple images that were either clear, or had clouds, or cloud shadows; 
half of this set (11,981 pixels) were used for training, and the other half 
for validation. The features of highest relative importance for dis
criminating clouds were found to be band 4 (NIR) reflectance and its 
GLCM sum average (b4_savg). For cloud shadows the best performing 
combination was band 2 (green) and its GLCM sum average (b2_savg). 
Because shadows reduce the estimated reflectance of the land surface, 
which in itself varies over time (e.g., due to phenological change), the 
thresholds for classifying clouds and cloud shadows were set separately 
for each month in each year. The decision tree (Fig. A1) for the clas
sification of clear, clouds, and cloud shadows combines the monthly 
thresholds of b2, b2_savg, b4 and b4_savg. A Python script (https://gist. 
github.com/YanCheng-go/6f692136ab05e1f2345892fd0abb03dc) was 
developed to automate the cloud and cloud shadow detection process 
for PlanetScope imagery. 

The cloud and cloud shadow detection algorithm was implemented 
for all 313 PlanetScope mosaics. Visual inspection of classification re
sults revealed a reasonable detection for most images. Based on the 
11,891 independent validation pixels, we estimated a true positive rate 
of 71.2% (actual cloud/shadows correctly identified) and a true nega
tive rate (actual clear pixels correctly identified) of 96.6%. We further 
eliminated pixels within a three-pixel buffer around the identified 
clouds and cloud shadows, which increased true positive rate to 72.9% 
and slightly decreased true negative rate to 96.3%. Fig. A2 illustrates 
examples of the classification results. 

The NDVI was then calculated for each PlanetScope mosaic. The 
NDVI was selected because 1) it is commonly used in phenology studies, 
and 2) it has a good dynamic range in low biomass areas and in such 

conditions does not suffer from saturation (Huete et al., 2002). We 
further refer to the PlanetScope-derived NDVI time series as NDVIP (the 
subscript P referring to PlanetScope). 

2.3. Sentinel-2 imagery 

We focused the phenology analysis with Sentinel-2 only on the 
period September 2017 to February 2019, given that before June 2017 
no Sentinel-2B images were available for Kapiti and image density was 
poor for LR 2017 as a result. We used a total of 89 Sentinel-2 surface 
reflectance Level-2A products for tile code 37MBU that were atmo
spherically corrected using the Sen2Cor processor (version 2.5.5). The 
scene classification file was used to mask pixels classified as cloud 
shadow, cloud, and thin cirrus. In addition, pixels with blue band re
flectance below 0.01 were also filtered out, because they were found to 
predominantly relate to undetected cloud shadows. We then applied a 
three-pixel buffer around the masked pixels to reduce poor quality 
observations near cloud and cloud shadow edges. We calculated NDVI 
from the 10 m resolution spectral bands 4 and 8. The Sentinel-2-derived 
NDVI time series are referred to as NDVIS in this manuscript (the sub
script S referring to Sentinel-2). 

2.4. Field camera time series 

The first data set used to evaluate the phenology retrievals from 
PlanetScope and Sentinel-2 was obtained through digital repeat pho
tography. To monitor greenness changes of vegetation on a daily basis, 
three Bushnell Trophy Cam Essential (model 119,736) trail cameras 
were installed in Kapiti Farm (Fig. 1) in October 2017. We purposively 
selected relatively homogenous locations of the main vegetation com
munities to enable subsequent comparison with satellite image series, 
including those with coarser resolution like MODIS. Fig. 3 shows 
sample photos captured by each camera, as well as their footprints. 
Cameras A and B are in an approximately flat area, and camera C is on a 
slope. The elevation of camera A, B, and C are 1632 m, 1636 m and 
1723 m, respectively. Camera A takes images of an open grassland, 

Fig. 2. Precipitation in Kapiti Farm based on manually-collected in-situ daily rain gauge data. The upper panel shows daily and monthly rainfall from March 2017 to 
February 2018, and bottom panel for March 2018 to February 2019. The average monthly precipitation was calculated from data of the past 18 years (January 
2001–February 2019). 

Y. Cheng, et al.   Remote Sensing of Environment 248 (2020) 112004

4

https://gist.github.com/YanCheng-go/6f692136ab05e1f2345892fd0abb03dc
https://gist.github.com/YanCheng-go/6f692136ab05e1f2345892fd0abb03dc


camera B of an Acacia drepanolobium shrubland with herbaceous ve
getation, and camera C images a woodland containing ~5 m tall Ba
lanites trees and herbaceous vegetation. Each of these three cameras is 
set up to take one RGB photograph (JPEG format) every 30 min from 
8:00 to 17:30 Eastern Africa Time (EAT). The white balance and ex
posure is determined automatically and cannot be adjusted for these 
cameras. 

Photographs were collected between October 2017 and February 
2019, corresponding to two SR seasons and one LR season. The pho
tographs that were blurred, over- or underexposed, or for which animal 
presence prevented the view of the vegetation were visually identified 
and discarded from the database. Subsequently, we calculated the GCC 
(Gillespie et al., 1987) for each retained photograph as follows: 

=
+ +

GCC Green
Red Green Blue (1)  

The GCC accounts for the influence of scene illumination on 
brightness levels (Sonnentag et al., 2012; Woebbecke et al., 1995) and 
is often used in phenology studies (Migliavacca et al., 2011; Richardson 
et al., 2007). 

GCC values were averaged within the regions of interest (ROI;  
Fig. 3) to generate representative time series of greenness changes. Each 
ROI represents a dominant vegetation community. ROI1 of camera A 
(A1) represents open grassland; B1 represents shrub, and B2 grasses; 
and C1 represents tree canopy and C2 grasses. To relate the GCC to the 
satellite phenology retrievals, we additionally identified the ROI B0 for 
camera B that comprises a combination of the grass and shrub vege
tation communities within the field of view. Although for camera C we 
also have multiple vegetation communities, only the tree canopy and 

the grasses not hidden by the tree canopy (i.e. the open grasses ex
cluding the understory) are visible to a nadir-viewing satellite. For that 
reason, we estimated the fraction of trees and open grasses from the 
WorldView-2 image of February 2017, resulting in approximately 50% 
tree cover and 50% grass cover in the area within the field of view of 
camera C. For making this estimate we considered a larger area than the 
selected Sentinel-2 pixel (Fig. 3c), given possible geolocation un
certainty of the imagery. We consequently calculated the average GCC 
from C1 and C2 for comparison with the satellite NDVI series. To fur
ther reduce the influence of different scene illumination on the ROI- 
averaged GCC, the 90th percentile of all GCC values within a non- 
overlapping three-day window (GCC90) was extracted and assigned to 
the centre day following Sonnentag et al. (2012). 

2.5. MODIS imagery 

The second dataset to which we compared our fine-resolution 
phenology retrievals consisted of MODIS imagery, given its widespread 
use in phenology studies. MOD13Q1 and MYD13Q1 Version 6250 m 
resolution vegetation index products (Didan, 2015a, 2015b) from 
March 2017 to February 2019 were accessed through Google Earth 
Engine (GEE). These products are generated using a maximum value 
compositing technique with constrained viewing angle for acquisitions 
from the Terra and Aqua satellite, respectively. Each product includes a 
16-day composite NDVI and Enhanced Vegetation Index (EVI). Due to 
the eight-day shift between MOD13Q1 and MYD13Q1, their combina
tion results in an average eight-day interval for the combined VI time 
series. Rather than using daily MODIS acquisitions, we selected these 
products to have a high-quality dataset, which is used in various 

Fig. 3. (A)–(C) Sample photos taken by cameras A, B, and C at Kapiti Farm at 12:00 (EAT) on 19 November 2017 (top row), with corresponding locations placed on 
the same WorldView-2 scene as in Fig. 1 (bottom row). The red polygons in A-C indicate the region of interest (ROI) used for averaging GCC values. A1 refers to ROI1 
in camera frame A. ROIs A1, B1, B2, C1, and C2 attempt to isolate different vegetation communities. B0 merges two communities in a landscape-level view to increase 
comparability with satellite observations. On the bottom row the yellow lines indicate the field of view of the camera, and the 10 m Sentinel-2 grid is shown in black. 
The blue boxes represent the selected Sentinel-2 pixel locations used for comparison of time series. 
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phenology studies (e.g. Hmimina et al., 2013; Liu et al., 2015; Peng 
et al., 2017; Vrieling et al., 2017). We used the pixel-specific NDVI and 
acquisition date, and masked out pixels that were flagged as poor- 
quality observations due to the presence of clouds, cloud shadows, or 
large viewing angles in the quality reliability layer. The MODIS-derived 
NDVI time series are named NDVIM in the following (the subscript M 
referring to MODIS). 

3. Methods 

3.1. Phenology retrieval from vegetation index time series 

Many approaches exist to retrieve phenology from vegetation index 
time series (de Beurs and Henebry, 2010). Despite recent advances in 
devising robust approaches for estimating phenology from 10 to 30 m 
resolution data (e.g., Bolton et al., 2020; Jönsson et al., 2018), there is 
no consensus on a single best approach for all cases, as this depends on 
study area, targeted phenological metrics, the shape of the VI series, 
and the presence of noise (White et al., 2009; Zeng et al., 2020). To 
reduce the impact of noise in the series, the fitting of mathematical 
functions to VI series has often been used. This curve fitting can be 
applied iteratively to use the fact that larger VI values are more reliable 
(Chen et al., 2004; Zeng et al., 2020). While acknowledging the possi
bility of applying alternative approaches, here we chose to consistently 
apply a common curve fitting approach to different data sources with 
the aim of assessing if data quality and frequency is sufficient to obtain 
accurate and spatially-consistent estimates of phenological metrics. For 
this purpose, we selected the double hyperbolic tangent function 
(Meroni et al., 2014b). A hyperbolic tangent function is a rescaled 
version of (and thus equivalent to) the logistic function, commonly used 
in phenology studies (e.g., White et al., 2014; Zhang et al., 2003). 
Contrary to the six-parameter formulations of double logistic models 
(e.g., Beck et al., 2006; Jönsson et al., 2018), we used an additional 
parameter to account for different minimum VI values before and after 
the season (e.g., which happens in our area due to different lengths of 
the dry season). We fitted the double hyperbolic tangent function to the 
VI time series generated from the satellite imagery (NDVIP, NDVIS, and 
NDVIM) and from the camera photographs (GCC90). Based on season- 
specific VI series we found that this function could accurately describe 
the temporal VI variability. The double hyperbolic tangent function can 
be written as: 

= + + + +VI t a a tanh t a a a tanh t a a a( ) [( ) ] 1
2

[( ) ] 1
20 1

2 3
4

5 6
4 (2) 

where t is time (days). The parameters were initialized as in Vrieling 
et al. (2018) and include:  

- a0: the baseline minimum VI value;  
- a1 (a4): the difference between the maximum and minimum VI value 

in the green-up (senescence) phase;  
- a2 (a5): the inflection point of the green-up (senescence) phase;  
- a3 (a6): controls the steepness of the green-up (senescence) phases. 

The curve fitting was executed separately for each season through a 
Python script (https://gist.github.com/YanCheng-go/d4e17831f294- 
199443d0f7682558e608). The Levenberg-Marquardt algorithm (Moré, 
1978), as implemented in the lmfit Python package (Newville et al., 
2014), was used to find the optimum model parameters that minimize 
the sum of squared residuals between fitted values and actual values. 
Because lower VI values, relative to preceding or subsequent observa
tions, can be due to remaining contamination of atmospheric effects or 
undetected clouds and shadows, the fitted curves were adapted to the 
upper envelope based on an iterative weighing method as used by  

Meroni et al. (2014b) and Vrieling et al. (2018). The method follows the 
weighing idea of Sellers et al. (1994), which was later developed into an 
iterative scheme by Chen et al. (2004). In short, if observations in the 
original VI time series are smaller than the corresponding fitted values, 
their weights will be decreased in the next iteration of the curve fitting. 
Preliminary tests indicated that for NDVI time series from PlanetScope- 
and Sentinel-2 the fitting converged in less than five iterations for more 
than 90% of the cases. To avoid infinite iterations, a maximum of 10 
iterations was set. 

The March 2017 to February 2019 timeframe of this study spans 
four vegetation seasons. We fitted each season separately, whereby the 
season included the dry period before and after the vegetation cycle. In 
this way, the same observations belonging to a dry season that sepa
rates the two cycles are used twice; once as the end period of the earlier 
season, and once as the initial period of the later one. We acknowledge 
that this may result in fitted curves that are not overlapping precisely 
during the shared dry season. Nonetheless, to keep a simple and 
straightforward approach (as implemented also in e.g., Vrieling et al., 
2018), we preferred to optimally tune our models to the VI variability 
for each season separately. To achieve this, the timeframe was divided 
into four parts with one-month overlapping periods between successive 
vegetation seasons: 1 March 2017–1 October 2017 (LR2017), 1 Sep
tember 2017–1 March 2018 (SR2017), 1 February 2018–1 October 
2018 (LR2018), 1 September 2018–1 March 2019 (SR2018). We 
decided on a different starting point for the two LR seasons, given that 
LR2017 started in April, i.e. one month later than for LR2018 (Fig. 2), 
which was reflected in the VI series. For field camera series, the curve 
fitting was applied for both landscape-level ROI and community-level 
ROIs in the field of view of the three cameras (Fig. 3). For satellite 
imagery, the curve fitting was applied for all pixels contained within 
Kapiti Farm. 

After fitting curves for satellite- and camera-derived VI time series 
(i.e., GCC90 and NDVI), two temporal metrics, the start of season (SOS) 
and end of season (EOS) dates, were estimated from the fitted curves by 
taking the 50% amplitude threshold, which roughly indicates the time 
of fastest green-up or senescence (White et al., 1997). The amplitude in 
the green-up and decay phases is computed as the difference between 
the maximum of the fitted function minus the minimum fitted initial 
and final values, respectively. For clarity, these minima are the fitted 
values within the time frames considered (e.g., for LR2017 the fitted 
values for 1 March 2017 and 1 October 2017) rather than the the 
parameter a0 of Eq. (2). 

Apart from SOS and EOS, two NDVI-related phenological metrics 
were retrieved from satellite-derived NDVI time series. These are 
maxNDVI, which relates to maximum biomass levels and cumNDVI, 
which is often used as a proxy for seasonal productivity (Bailey et al., 
2004; Heumann et al., 2007). This results in the following four metrics:  

- SOS50: the start of the season; the date when VI first reaches 50% of 
the difference between the modelled maximum and minimum VI in 
green-up phase;  

- EOS50: the end of the season; the date when VI first reaches 50% of 
the difference between the modelled maximum and minimum VI in 
the senescence phase;  

- maxNDVI: the modelled maximum NDVI;  
- cumNDVI50: the cumulative value of the modelled NDVI between 

SOS50 and EOS50. 

3.2. Analysis of results 

Based on the phenological metrics estimated from NDVI series of 
Sentinel-2, PlanetScope, MODIS, and camera-derived GCC90 time 
series, we performed a number of analyses to 1) evaluate the 
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relationship between satellite- with camera-derived phenological me
trics; 2) visually determine if the resulting spatial patterns are realistic 
and/or present artefacts; and 3) compare phenological metrics derived 
from Sentinel-2, PlanetScope and MODIS. With artefacts, we here refer 
to spatial patterns that are induced by factors that do not relate to the 
land surface dynamics, but rather to variability in image availability 
(e.g. due to cloud cover). Different statistical measures were used for 
these analyses, including: 1) Root Mean Squared Deviation (RMSD) for 
quantifying the difference across datasets, 2) Mean Signed Deviation 
(MSD) for assessing the bias, and 3) coefficient of determination (R2) or 
Pearson's correlation coefficient (r) for evaluating the relationship be
tween two datasets. 

For the purpose of comparing satellite- with camera-derived phe
nological metrics, NDVIP series were aggregated to 10 m resolution to 
more closely match the field of view of cameras, to mitigate geometric 
errors, and to be compatible with Sentinel-2 series. This aggregation 
was achieved by taking the average NDVIP of all 3 m resolution pixels 
for which the centre is located within the geometry of a 10 m Sentinel-2 
grid cell. The SOS50 and EOS50 retrieved from the aggregated 
PlanetScope, the Sentinel-2, and the MODIS NDVI time series for the 
pixels corresponding to the three camera locations were then compared 
against the SOS50 and EOS50 from the camera-derived GCC90 time 
series. We only used the landscape-level camera ROIs for this compar
ison, given that the satellite measures the combined reflectance from 
multiple vegetation communities within a pixel. The RMSD and MSD 
between the satellite-derived and camera-derived phenological metric 
were used to quantify their difference. 

We visually analyzed the resulting phenology maps to assess a) if 
the retrieved dates are sensible; b) if the spatial patterns match ex
pectations; and c) if there are spatial artefacts that are indicative of 
lacking or erroneous observations, hence resulting in improper fits and 
retrieved phenological parameters. For clarity, this visual analysis was 
not intended to eliminate data points, but rather to evaluate the ef
fectiveness of the phenology retrieval for the different satellite sources 
across the spatial extent of the study area. 

To quantitatively compare phenological metrics between 
PlanetScope, Sentinel-2, and MODIS, we resampled PlanetScope-de
rived phenology maps to 10 m and 250 m resolution by averaging the 
values of all pixels whose centre falls within the Sentinel-2 and MODIS 
grid cells. Subsequently, all seasons were combined by calculating for 
each phenological metric the deviation from the season-specific mean, 
as obtained from the PlanetScope retrievals. After that, density scat
terplots were generated and the R2, RMSD, and MSD were calculated. 
Due to the anomaly calculation, the plots and statistics illustrate how 
well the spatial variability of the metrics compare over the different 
seasons. We note that if instead we would plot the non-normalized 
metrics, the resulting R2 would be significantly higher due to the strong 
interseasonal variability of phenology and NDVI levels. 

We also evaluated to what extent the fitted curves correspond with 
the original data series. For this purpose, r, RMSD, and MSD were 
calculated for each fitted VI time series as compared to the original VI 
time series (Vrieling et al., 2017). Lower values of r, and higher values 
of RMSD or MSD do not necessarily imply a worse fitting performance 
because the iterative fitting may account for erroneously low VI values 
by adapting to the upper envelope. Nevertheless, these statistics can 
provide a combined quantification of model fit and noise level differ
ences between data sources. 

4. Results 

4.1. Phenological retrievals: camera versus satellite 

Fig. 4 compares the GCC90 time series and phenological metrics of 
different vegetation communities in the field of view of camera A, B, 

and C for SR2017, LR2018, and SR2018. The most striking phenological 
difference between vegetation communities was for EOS50, which was 
substantially later for shrubs and trees as compared to grasses for all 
three seasons considered. On average, after the grass entered the se
nescence phase, the shrubs and trees maintained the green leaf canopy 
for about one more month. The time lag was larger with increasing total 
seasonal precipitation. The SOS50 of grass was similar to shrubs while 
earlier than trees in two out of the three seasons (LR2018 and SR2018, 
while for SR2017 SOS50 was similar). Overall, grass had a shorter 
growing season and responded more rapidly (i.e. faster increase) to 
precipitation than trees. It is worth noting that the trees and grass in the 
field of view of camera C had a short secondary green-up phase after the 
main green-up phase in SR2017, caused by an approximate 43-day dry 
period in late November and December 2017 followed with substantial 
rainfall on 2 and 3 January 2018, and in LR2018 caused by a small 
rainfall event on 31 July 2018 (Fig. 4). However, this secondary green- 
up is less apparent for the ROIs of camera A and B. Moreover, the speed 
of green-up for the grass in the field of view of camera C is faster than 
the grass in the field of view of cameras A and B. Possibly also the 
terrain position plays a role here (Fig. 1), given that the camera C lo
cation may be receiving larger amounts of runoff from upslope areas 
and potentially more rain due to a small orographic effect. In short, the 
camera-based analysis indicates that vegetation phenology in Kapiti 
Farm is spatially and temporally heterogeneous, likely as a function of 
the complex composition of vegetation, rainfall variability, and terrain 
characteristics. 

Fig. 5 compares satellite-derived NDVI time series with camera- 
derived GCC90 time series for the three camera locations (using ROIs 
A1, B0, and C0). The seasonal signal is clear in both satellite- and 
camera-derived vegetation index time series. Because the same MODIS 
pixel covers the field of view of both camera A and B, the MODIS-de
rived NDVI are the same in Fig. 5a and b. The PlanetScope-derived 
NDVI time series show noisier temporal patterns as compared to Sen
tinel-2 and MODIS-derived NDVI. Nevertheless, the combined use of all 
PlanetScope acquisitions resulted in a denser NDVI time series as those 
derived from MODIS and Sentinel-2. Table 1 compares satellite- with 
camera-derived SOS50 and EOS50; it shows that MODIS series resulted 
in SOS50 retrievals that were more similar to the camera-based SOS50 

retrievals as compared to those from PlanetScope and Sentinel-2 series. 
The largest discrepancy between PlanetScope- and camera-derived 
SOS50 occurred for SR2017 (Fig. 5b). This may be attributed to the 
unrealistically low NDVIP values for 16 and 24 November 2017, which 
based on visual examination seem to result from small undetected thin 
clouds in the PlanetScope imagery for the area that is compared with 
the camera B field of view. For EOS50, retrievals from PlanetScope 
series were most similar to camera-based retrievals. Nonetheless, a 
large deviation between EOS50 from camera, PlanetScope, and Sentinel- 
2 existed for SR2017 (Fig. 5c); this is because the secondary green-up 
for that season is contained in the PlanetScope time series, but not 
captured by Sentinel-2 due to a lack of observations in January. The 
RMSD for EOS50 retrievals is approximately twice as large as for SOS50 

retrievals. According to the MSD statistics in Table 1, on average sa
tellite-based SOS50 and EOS50 retrievals tend to be later than those from 
the camera series. 

4.2. Mapping of phenological metrics 

Pixel-level phenology was retrieved over the Kapiti Farm. Table 2 
compares the image availability and the fit statistics for PlanetScope, 
Sentinel-2 and MODIS. For all seasons, the average number of cloud- 
free observations is almost double for PlanetScope as compared to 
Sentinel-2 and MODIS. We note however that in case of MODIS the 
smaller number is due also to the 16-day VI products used (Section 2.5). 
The maximum gap (in days) between two sequential cloud-free 
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observations in SR2017 is 50% shorter for PlanetScope as compared to 
Sentinel-2 and MODIS. While maxGap provides information about the 
maximum lack of observations in a certain period, minGap is not re
ported here because it would merely reflect the satellites' revisit time. 
For the dry season, it is relatively easy to find two consecutive cloud- 
free images, resulting in a minGap of 5 for Sentinel-2 and 1 for Pla
netScope. For each season, Sentinel-2 was the dataset with the largest 
maximum gap. LR2018 was the season with the largest maxGap 
(> 30 days for all sensors), which is due to the persistent cloud cover in 
April and May 2018. In principle, a larger number of valid observations 
and shorter temporal gaps ensure a better description of the actual 
vegetation dynamics. In this light, the smaller r value for PlanetScope 
(Table 2) may be partially explained by more noise, but also by the 
effective capturing of more natural temporal variation that is not 
properly modelled by a single season (for example the above-mentioned 
secondary green-up in SR2017, see Figs. 5 and 6). For Sentinel-2 and 
MODIS, this second peak was not apparent, resulting in similar r values 
for all seasons. 

Fig. 6 shows the maps of PlanetScope-derived SOS50, EOS50, 
maxNDVI, and cumNDVI50 for the four seasons considered. Spatial 
patterns as observed on high-resolution WorldView-2 imagery and a 
DTM (Fig. 1) are reflected in the various maps. The different pheno
logical metrics derived from PlanetScope series are generally spatially 

smooth (i.e. they do not show unrealistic abrupt spatial variations over 
homogenous areas). It is worth noting that spatial patterns are different 
across phenological metrics and seasons. For example, the EOS50 for 
LR2017 is relatively early in the southeast, while for SR2017 the EOS50 

is significantly later in the centre. Not all spatial differences depicted in 
the maps can be attributed to real phenological differences. This is the 
case for the EOS50 map for LR2018 (Fig. 6j), where a linear separation is 
apparent, with later EOS50 dates west of this line. The main cause was 
that a cloud-free image acquired on 17 July 2017 only covered the 
northwestern part of Kapiti. When repeating the phenological analysis 
without that image, the EOS50 difference between two neighbouring 
pixels decreased from 10 to 2 days (Fig. 7ab, points 1 and 2). This 
demonstrates that despite the many valid observations in NDVIP time 
series, a single observation can have an important influence on the 
fitting and resulting phenological metrics. This artefact is not reflected 
on the maxNDVI and cumNDVI maps for LR2018, suggesting that those 
metrics are less sensitive to (the lack of) individual observations. 

Fig. 8 shows the maps of Sentinel-2- and MODIS-derived SOS50. 
Apparent artefacts exist in Sentinel-2-derived SOS50 maps for LR2018 
and SR2018 (Fig. 8b-c). Unlike the straight-line separation in the Pla
netScope-derived map, these artefacts have irregular shapes. An ex
planation for these artefacts could be the lack of observations from 
March until the beginning of April in 2018. Fig. 7c-d shows that a single 

Fig. 4. Time series of GCC90 for each vegetation community in the field of view of camera A, B, and C.Tthe lines are fitted curves and the horizontal bars near the x- 
axis indicate the duration of growing seasons from SOS50 to EOS50, as estimated from the GCC90 series. The blue vertical lines in panel A indicate the daily 
precipitation from 1 September 2017 to 28 February 2019. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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observation in that period, not available for the entire study area due to 
clouds, strongly influences the fitting. Despite these artefacts, the coarse 
spatial patterns of the Sentinel-2 and MODIS-derived SOS50 maps agree 
with those obtained from PlanetScope. For example, both MODIS and 
PlanetScope indicate a delayed SOS50 for LR2017 in the northwestern 

part of Kapiti. For SR2017, the relatively late SOS50 in southeastern 
Kapiti is consistently shown across PlanetScope-, Sentinel-2- and 
MODIS-derived maps. The MODIS-derived SOS50 shows less detailed 
spatial patterns and on average occurs for all seasons earlier than their 
PlanetScope- and Sentinel-2 equivalents (see reported mean in Fig. 8). 

Fig. 5. Time series of satellite-derived NDVI and camera-derived GCC90 at three camera locations (A, B, and C in Fig. 1) in SR2017, LR2018 and SR2018. GCC90 was 
extracted for the entire field of view of each camera location (A1, B0, and C0 in Fig. 2). The lines show the fitted curves and the horizontal bars near the x-axis 
indicate the duration of growing seasons from SOS50 to EOS50, as estimated from each respective data source. The blue vertical lines in the uppermost panel indicate 
the daily precipitation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Visual assessment of the phenology results for small areas reveals 
that PlanetScope effectively captures the spatial variation caused by 
various vegetation covers (e.g. individual trees) better than Sentinel-2, 
as can be observed from comparison with the 0.5 m resolution 
WorldView-2 image (Fig. 9). In this example the single tree (Vachellia 
tortilis) shows an earlier SOS50 as compared to the grass surrounding it. 
We can recognize this similar spatial pattern for Sentinel-2, but the tree 
phenology is less apparent due to the coarser resolution and consequent 
mixed spectral response; nonetheless the patterns show that despite 
reported positional errors, PlanetScope and Sentinel-2 retrievals are 
reasonably aligned. The earlier SOS50 for this tree is different from what 
is observed elsewhere, for example in the area of camera C, where both 
camera (Fig. 4c) and PlanetScope retrievals (Fig. 10) detected a tree 
cover green-up that is later than for grass. 

Fig. 11 compares anomalies of the phenological metrics from Sen
tinel-2 and MODIS to those from PlanetScope at the 10 × 10 m and 
250 × 250 m grid cell level, respectively. For Sentinel-2, and to a lesser 
extent for MODIS, a stronger correlation is found for maxNDVI and 
cumNDVI50 as compared to SOS50 and EOS50. The negative MSD of 
SOS50 means that on average SOS50 from Sentinel-2 was earlier than 
SOS50 derived from PlanetScope. This is especially obvious for MODIS- 
derived SOS50 (MSD = −5.8). For EOS50, Sentinel-2 shows a positive 
MSD, which could be partially caused by the large area of artefacts in 
the PlanetScope-derived EOS50 map (Fig. 7a). The RMSD values for 
SOS50 and EOS50 indicate that on average Sentinel-2-derived SOS50 and 
EOS50 had 8- and 10-day difference from PlanetScope-derived ones. The 
difference between PlanetScope and MODIS was 9 days for SOS50 and 
11 days for EOS50. The positive MSD values for maxNDVI and 
cumNDVI50 indicate that on average NDVIS and NDVIM had larger va
lues than NDVIP series. For all metrics except SOS50, PlanetScope 
showed a stronger correlation with Sentinel-2 as compared to MODIS. 
This correlation was particularly strong for maxNDVI and cumNDVI50, 
with R2 above 0.5. 

5. Discussion 

Our results showed that fine-resolution satellite systems are effec
tive in retrieving detailed spatial patterns of vegetation phenology for 
semi-arid rangelands with short vegetation cycles. A curve fitting ap
proach applied to PlanetScope and Sentinel-2 series resulted in similar 
spatial patterns. The camera series showed that herbaceous vegetation 
responds rapidly to rainfall and moisture deficits, at times resulting in 

multiple greenness peaks within one season. Such rapid temporal 
variability could to some extent be captured by the frequent 
PlanetScope observations, but not by Sentinel-2. As compared to 
camera-based in-situ measurements, satellite-derived SOS50 and EOS50 

were on average within 9 and 18 days of camera-derived SOS50 and 
EOS50, respectively (Table 1). Other studies also revealed differences 
between in-situ observations and satellite-retrieved phenological me
trics of 10 to 30 days (White et al., 2014). For digital repeat photo
graphy, these differences can be partially explained by the use of dif
ferent vegetation indices (Bolton et al., 2020; Liu et al., 2017; Vrieling 
et al., 2018). Unlike GCC that only uses the visible spectrum, NDVI uses 
NIR reflectance, which is sensitive to changes in vegetation structure 
and leaf area index. In addition, different viewing angles contribute to 
the inconsistency between satellite- and camera-derived phenological 
metrics. Vegetation greenness observed from an oblique camera view 
differs from greenness as observed by the satellites' more nadir view 
(Bolton et al., 2020) given that non-photosynthetic elements like stems 
and grass heads are more dominant in the oblique view (Vrieling et al., 
2018). In fact, radiative transfer model simulations offered a physically- 
sound explanation for the earlier EOS50 observed from oblique versus 
nadir viewing angles (Vrieling et al., 2018). Despite these incon
sistencies of observation characteristics, the satellite retrievals effec
tively captured the main seasonal changes as observed by the cameras. 

Phenology retrieval results over the Kapiti Farm showed that fine- 
scale spatial variability in phenological timings exists. Identifying the 
precise causes for this variability was beyond the scope of this study, 
but they certainly include terrain characteristics, vegetation composi
tion, water availability, and herbivory. Terrain characteristics (Fig. 1) 
affect both vegetation composition and water availability, for example 
due to runoff processes. With regard to vegetation composition we 
found that the timing of green-up of woody plants versus herbaceous 
vegetation is not consistent between locations (Figs. 4, 9, and 10). This 
confirms findings by Whitecross et al. (2017) who highlighted that tree 
and grass phenologies are variable for African savannahs. In addition, 
we found that spatial patterns were different for the various phenolo
gical metrics and between seasons. Because water availability is the 
main factor influencing vegetation growth in semi-arid areas (Scholes 
and Walker, 1993), a large part of the spatial and temporal differences 
in phenology are likely a result of variable plant water availability and 
intra- and inter-annual variability of precipitation. Given that rainfall 
variability can be important even at small spatial scales (e.g., Fischer 
et al., 2016), setting up additional rain gauges across the study area 

Table 1 
Comparison of satellite-derived SOS50 and EOS50 with camera-derived ones. The RMSD and MSD were calculated by combining the results for three camera locations 
in three seasons.          

SOS50 EOS50 

PlanetScope Sentinel-2 MODIS PlanetScope Sentinel-2 MODIS  

RMSD (days) 8.55 7.98 5.28 13.98 16.23 18.16 
MSD (days) 4.44 5.11 −0.11 5.77 3.55 9.44 

Table 2 
Image availability and fit statistics for PlanetScope, Sentinel-2 and MODIS; r is the correlation between fitted and original NDVI values. nImages refers to the average 
number of cloud-free observations in the NDVI time series. maxGap indicates the maximum difference (days) between two consecutive cloud-free observations in the 
NDVI time series. Mean and standard deviation are reported for each measurement. The statistics were averaged using all pixels within the extent of Kapiti Farm.             

SR2017 LR2018 SR2018 

PlanetScope Sentinel-2 MODIS PlanetScope Sentinel-2 MODIS PlanetScope Sentinel-2 MODIS  

r 0.86  ±  0.07 0.95  ±  0.03 0.96  ±  0.04 0.93  ±  0.03 0.96  ±  0.04 0.96  ±  0.03 0.92  ±  0.03 0.95  ±  0.05 0.97  ±  0.03 
nImages 39  ±  3 21  ±  2 17  ±  2 41  ±  3 22  ±  2 21  ±  2 46  ±  4 23  ±  2 21  ±  1 
maxGap 14  ±  5 21  ±  6 20  ±  3 32  ±  8 34  ±  8 30  ±  6 19  ±  5 23  ±  8 18  ±  2    
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could help to better understand if precipitation is an important driver of 
spatial variability of phenology. Moreover, precipitation is not the sole 
determinant of water availability, but soil properties, topography, and 
water logging could be further explanatory factors for phenological 
variability. Lastly, herbivory through grazing by livestock and wildlife 
could also affect the variability, as it impacts species composition, ve
getation structure, and biomass quantity and quality (Altesor et al., 

2005; Hiernaux, 1998; Jansen et al., 2016; Metzger et al., 2005; Olsen 
et al., 2015). However, Olsen et al. (2015) found that grazing-induced 
differences in vegetation life spans and biomass can hardly be reflected 
in MODIS-based NDVI time series, possibly due to the coarse resolution. 
While the simultaneous grazing by livestock and wildlife in Kapiti 
makes the collection of grazing data cumbersome, it would be inter
esting to acquire detailed spatio-temporal data on grazing intensity and 

Fig. 6. SOS50, EOS50, maxNDVI and cumNDVI50 retrieved from PlanetScope-derived NDVI time series for Kapiti Farm for four seasons. The mean and standard 
deviation are reported beside each map. All maps are visualized by showing the difference from the mean. For SOS50/EOS50, red colours indicate that the date is 
before the mean, and blue after the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Illustration of causes of spatial artefacts in two phenology maps, i.e., PlanetScope-derived EOS50 for LR2018 and Sentinel-2-deirved SOS50 for LR2018. Panels 
A and C show the phenology map with a detailed view of the artefact, and the relevant image (false colour composite) that causes the artefact. Panel B and panel D 
are the fitted curves for pixels near the artefacts. The green and yellow curves are fitted curves for location 1 and 2 that are highlighted in panel A and C. The red 
curves are fitted for location 1 after removing the PlanetScope acquisition of 17 July 2018 and the Sentinel-2 acquisition of 4 April 2018. SOS50 and EOS50 derived 
from each fitted curve are indicated as the start and end point of horizontal lines near the x-axis. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 8. SOS50 retrieved from Sentinel-2 and MODIS NDVI time series for Kapiti Farm for four seasons (three for Sentinel-2). The maps show the difference from the 
mean, with red indicating earlier and blue later retrievals with respect to the mean of each map (mean and standard deviation are reported for each map on the 
figure). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Fine-scale spatial comparison of SOS50, EOS50, maxNDVI, and cumNDVI50 for SR2018 derived from PlanetScope and Sentinel-2 series in one MODIS pixel 
footprint (panel A). The 0.5 m-resolution WorldView-2 image of 2 February 2017 (natural colour) on the left allows visual identification of different vegetation forms. 
Panel B zooms to a single tree canopy in the centre of the WorldView-2 imagery in Panel A. 

Fig. 10. WorldView-2 image (panel A) and SOS50 retrieval from PlanetScope for SR2018 (panel B), indicating a later green-up for areas with tree cover.  
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assess if these may explain part of the phenology variability found in 
the PlanetScope and Sentinel-2 derived phenology estimates. 

The comparison between fine-resolution retrievals of phenology 
(i.e. from PlanetScope and Sentinel-2) and the more traditional coarse- 
resolution MODIS retrievals confirmed prior findings on spatial scaling 
of phenology, and illustrated the benefit of phenological retrievals at 
finer spatial scales. Zhang et al. (2017) found that coarse-resolution 
phenology is controlled more by the earlier SOS at finer resolution, 
resulting in a better match between coarse-resolution SOS and the 30th 
percentile of fine-resolution SOS as compared to its spatial average, 
particularly in heterogeneous environments. Consequently, we may 
expect earlier spatial average SOS50 values from coarse-resolution data, 
which is confirmed for MODIS by this study (Figs. 8 and 11) and also by  
Vrieling et al. (2017). Although PlanetScope's spatial resolution is also 
finer than the one of Sentinel-2, SOS50 retrievals from Sentinel-2 were 
not significantly earlier, probably partially because the resolutions are 
more similar, and additionally because of the effect of spatial artefacts. 
Further efforts could be made to evaluate scaling effects between Pla
netScope and Sentinel-2 phenology by only selecting pixels/seasons 
with high-quality retrievals, as was done by Zhang et al. (2017). We 
nonetheless showed that spatial patterns of the various phenology 
metrics displayed a reasonable agreement between the retrievals from 
the various sensors (Figs. 6, 8, A3). 

A clear advantage of the fine resolution phenology is that it may be 
linked more directly to specific vegetation communities and in-situ 
phenological measurements (e.g. visual observations, field cameras, 
and flux tower data), as was recently also shown for other spatial 
contexts (Dronova et al., 2020; Granero-Belinchon et al., 2020; Pastick 
et al., 2020). For example, PlanetScope retrievals (and also those from 
Sentinel-2, although less clearly) showed that phenological metrics for 

a single tree differed substantially from its surroundings (Fig. 9). This 
could help in gaining a more detailed understanding of ecosystem 
structure and function at the local scale for semi-arid rangelands. For 
example, the finer-resolution mapping of cumNDVI as a proxy mea
surement of gross primary productivity may provide a more accurate 
estimate of rangeland productivity and carbon stock (Schwieder et al., 
2018), which in turn may allow a better understanding of its drivers. 

Maps of phenological metrics derived from Sentinel-2, and to a 
lesser extent from PlanetScope, displayed spatial artefacts due to noisy 
or missing data, which implies that at least for some locations the 
phenology estimates are inaccurate. These artefacts and the resulting 
uncertainty in the estimates are larger for SOS50 and EOS50 than for 
maxNDVI and cumNDVI (see also Figs. S1 and S2 in the Supplementary 
Data for simulation tests on data elimination). This results from the fact 
that retrievals of timing metrics (SOS50 and EOS50) are more sensitive 
to the shape of the fitted curves as compared to maxNDVI and cumNDVI 
(Myers et al., 2019; Vrieling et al., 2017). Hence, depending on the 
phenological metric required in a specific application, the presence of 
artefacts can be more or less critical. For example, despite inaccuracies 
in SOS and EOS, the spatio-temporal assessment of rangeland pro
ductivity based on cumNDVI (Vrieling et al., 2016) could be less pro
blematic, and estimates of its spatial variability or interseasonal var
iation may notwithstanding be of acceptable quality. 

Due to more frequent observations, PlanetScope-derived phenology 
maps showed fewer artefacts due to clouds and slightly more robust 
simulation results as compared to Sentinel-2 (Figs. S1 and S2). This 
higher frequency allows for more frequent observations particularly in 
periods of more intense cloud cover, and for capturing irregular short 
vegetation cycles that result from precipitation variability in semi-arid 
regions. However, PlanetScope surface reflectance series are noisier 

Fig. 11. Density scatterplots for SOS50, EOS50, maxNDVI and cumNDVI50 for the combined SR2017, LR2018, and SR2018 seasons. The x- and y-axis indicate the 
difference of each phenological metric as compared to the mean SOS50, EOS50, maxNDVI, and cumNDVI50 of each considered season calculated from the PlanetScope 
series. The x-axis represents the PlanetScope-derived phenological metric, resampled to 10 or 250 m to match the spatial resolution of the data source indicated on 
the y-axis. The y-axis is the phenological metric derived from Sentinel-2 or MODIS. Blue to red colours indicate an increase in frequency. The black line in each plot is 
the linear regression model, and the dashed line the 1:1 relationship. RMSD, MSD and R2 are reported in each plot. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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than those from Sentinel-2 and MODIS. This larger noisiness is a result 
of two factors:  

1) PlanetScope imagery is acquired by many satellites with varying 
illumination geometry (i.e., sun azimuth and elevation), relatively 
low radiometric quality, and poor inter-sensor calibration, resulting 
in less stable surface reflectance retrievals. One option to enhance 
the quality could be through cross-calibration with other, more 
stable, satellite sensors like Sentinel-2 and MODIS (Houborg and 
McCabe, 2018; Wang et al., 2020);  

2) our cloud and shadow screening approach does not result in masks 
of similar quality as available for Sentinel-2 and MODIS, which both 
have more dedicated spectral bands. A new “usable data mask” 
(UDM2) was announced by Planet Labs in April 2019 (Planet Labs 
Inc, 2019), which could improve our present implementation, but 
was not available for the full study period, nor is the approach used 
well documented. Alternative deep learning approaches for cloud, 
shadow, and haze discrimination have recently been developed 
(Shendryk et al., 2019) and could benefit phenological retrieval 
(e.g., White et al., 2014). 

Nonetheless, even without these potential further improvements, 
we found that the dense PlanetScope series were effective in retrieving 
fine-scale phenological patterns. Because currently free access to 
PlanetScope data is limited to monthly quota-bound academic licenses, 
and phenological analysis require many images in time, scaling this 
analysis to larger areas may at present be prohibitive. Therefore, the 
integration of multiple non-commercial data sources (e.g., the 
Harmonized Landsat and Sentinel-2 dataset: Claverie et al., 2018) 
should be further explored. In addition, synergistic use of PlanetScope 
and Sentinel-2 series may allow to attain more robust fine-resolution 
estimates of phenology, which requires further research. Precise co- 
registration through image registration would benefit such synergistic 
use to ascertain a good spatial fit between data sources across the 
spatial domain of analysis (Behling et al., 2014; Stumpf et al., 2018). 

The upper envelope function fitting approach, used in this paper, 
was shown to be most sensitive to removing observations in the (short) 
green-up and senescence phases (Fig. S2), which is in line with the 
results of similar sensitivity analyses conducted by Vrieling et al. (2018) 
and Zhang et al. (2009). To mitigate the impact of reduced observations 
on the estimation of phenology, more efforts can be made to improve 
the robustness of the curve fitting method used in this study. Recent 
efforts to achieve this (Bolton et al., 2020; Jönsson et al., 2018) were 
discussed in the introduction of this paper, and involve the incorpora
tion of data from alternative years to help describe the expected ve
getation dynamics, in case the specific year has limited observations. It 
remains an open question whether such an approach would be effective 
in systems with short vegetation cycles and large interannual variability 
in timing and magnitude of greenness as found in Kapiti Farm. A further 
improvement to our curve fitting approach would be to avoid the 
manual definition of the seasonal timeframe for which a curve should 
be fitted. This definition was currently based on visual observation of 
the time series and prior knowledge. Such a user definition of expected 
phenology is also part of existing phenology software packages like 
TIMESAT (Jönsson and Eklundh, 2004), when creating spatial output. 
More automatic approaches could set breakpoint based on a multi-year 
VI climatology (Meroni et al., 2014b) or cycle search techniques that 
first retrieve local maxima and minima from the series (e.g., Bolton 
et al., 2020; Meroni et al., 2020; Vrieling et al., 2011). 

6. Conclusions 

This study demonstrated the potential of using PlanetScope and 
Sentinel-2 image series to retrieve vegetation phenology at fine (3- 
10 m) spatial resolution for heterogeneous landscapes with short ve
getation seasons. Satellite-derived SOS50 was on average within nine 
days and EOS50 within 18 days of their camera-derived equivalents. 
Due to its shorter revisit time, PlanetScope had a better density of 
cloud-free observations as compared to Sentinel-2 NDVI time series. For 
that reason, phenology retrievals from PlanetScope were less affected 
by persistent cloud cover during rainy seasons, resulting in more con
sistent spatial patterns and fewer spatial artefacts as compared to 
Sentinel-2. Nonetheless, opportunities exist to improve the PlanetScope 
NDVI stability, and consequently its derived phenological estimates, 
among others through improved cloud masking and cross-calibration 
with more stable sensors like Sentinel-2. Our study does not intend to 
be conclusive about Sentinel-2's potential for studying phenology of 
short vegetation cycles, but shows that for tropical rangelands its revisit 
interval cannot ascertain sufficient cloud-free observations across space 
for every season. While cost may still be prohibitive for scaling phe
nological analysis with PlanetScope to larger regions, we demonstrated 
its ability to estimate the phenology of vegetation communities and 
even individual scattered trees. This may assist in improved under
standing of ecosystem functioning at the local scale for heterogeneous 
landscapes like semi-arid rangelands. 
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Appendix A. Additional figures 

Fig. A1. Decision tree using monthly thresholds for the surface reflectance of Band 2 (b2), the GLCM sum average of Band 2 (b2_savg), the surface reflectance in Band 
4 (b4) and the GLCM sum average of Band 4 (b4_savg). UTm refers to the upper threshold in month m and LTm refers to the lower threshold in month m, which differ 
for b2, b4, b2_savg, and b4_savg. 

Fig. A2. Example results of cloud and shadow masking. The first row shows false colour composite images, and the second row the overlay of classified clouds and 
shadows. 
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Fig. A3. EOS50, maxNDVI and cumNDVI50 retrieved from Sentinel-2- and MODIS-derived NDVI time series for Kapiti Farm for four seasons. The mean and standard 
deviation are reported beside each map. The maps for SOS50 and EOS50 are visualized by showing the difference from the mean. Red colours means that the date is 
before the mean, and blue colours mean that the date is after the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2020.112004.  
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