
ar
X

iv
:1

70
4.

04
81

9v
2 

 [
m

at
h-

ph
] 

 1
6 

M
ay

 2
01

7

The Excitation Spectrum of Bose Gases

Interacting Through Singular Potentials

Chiara Boccato1, Christian Brennecke1, Serena Cenatiempo2, Benjamin Schlein1

Institute of Mathematics, University of Zurich

Winterthurerstrasse 190, 8057 Zurich, Switzerland1

Gran Sasso Science Institute, Viale Francesco Crispi 7

67100 L’Aquila, Italy2

May 18, 2017

Abstract

We consider systems of N bosons in a box with volume one, interacting through
a repulsive two-body potential of the form κN3β−1V (Nβx). For all 0 < β < 1, and
for sufficiently small coupling constant κ > 0, we establish the validity of Bogoliubov
theory, identifying the ground state energy and the low-lying excitation spectrum
up to errors that vanish in the limit of large N .

1 Introduction and main result

We consider systems of N bosons in the three dimensional box Λ = [−1/2; 1/2]×3 with
periodic boundary conditions. The Hamilton operator is given by

Hβ
N =

N∑

j=1

−∆xj +
κ

N

N∑

i<j

N3βV (Nβ(xi − xj)) (1.1)

for some β ∈ [0; 1] and acts on the Hilbert space L2
s(Λ

N ), the subspace of L2(ΛN )
consisting of all functions that are symmetric with respect to any permutation of the N
particles. In (1.1), V is a non-negative, compactly supported and spherically symmetric
two-body potential. Later, we will require that V ∈ L3(R3) and that the coupling
constant κ > 0 is sufficiently small. For β = 0, (1.1) is the Hamilton operator of a
Bose gas in the so-called mean-field limit. If β = 1, on the other end, we recover the
Gross-Pitaevskii regime.

In this paper, we are interested in low-energy states of (1.1), i.e. the ground state and
eigenstates with small excitation energy. The properties of low-energy states of dilute
Bose gases have already been studied in the pioneering work of Bogoliubov, see [3]. Bo-
goliubov wrote the Hamilton operator of a dilute Bose gas in Fock space, using standard
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creation and annihilation operators. Since low-energy states exhibit Bose-Einstein con-
densation, he proposed to replace creation and annihilation operators associated to the
zero momentum mode by commuting numbers and then to neglect all cubic and quartic
contributions to the resulting Hamilton operator. With this approximation, Bogoliubov
obtained a quadratic Hamilton operator, which he was able to diagonalize finding precise
expressions for the ground state energy and for excited eigenvalues.

Mathematically, the validity of Bogoliubov theory has only been established for a
limited number of systems, so far. In [15], Lieb and Solovej used a rigorous version of
Bogoliubov’s method to compute the ground state energy of bosonic jellium. Similar
ideas were used by Giuliani and Seiringer in [8] to show the Lee-Huang-Yang formula
for the ground state energy of a Bose gas in a simultaneous limit of weak coupling and
high density. In [23], Seiringer proved the validity of Bogoliubov theory for the Hamilton
operator (1.1) in the case β = 0 (the mean field limit). More precisely, assuming V to
be positive definite, he proved that the ground state energy of (1.1) for β = 0 satisfies

Eβ=0
N =

(N − 1)

2
κV̂ (0)− 1

2

∑

p∈2πZ3\{0}

[
p2 + κV̂ (p)−

√
|p|4 + 2p2κV̂ (p)

]
+ o(1) (1.2)

as N → ∞. Furthermore, he showed that the spectrum of Hβ=0
N − Eβ=0

N below a fixed
threshold ζ > 0 is given, up to errors vanishing in the limit N → ∞, by finite sums of
the form ∑

p∈2πZ3\{0}

np

√
|p|4 + 2p2κV̂ (p) (1.3)

where np ∈ N for all p ∈ Λ∗
+ = 2πZ3\{0} (in fact, in [23] the threshold ζ may grow with

N ; (1.3) remains true as long as ζ ≪ N1/3).
The results of [23] were extended by Grech and Seiringer to mean-field systems of

bosons trapped by external potentials in [9]. Results similar to (1.2), (1.3) for Bose gases
in the mean-field limit were also obtained, with different approaches, by Lewin, Nam,
Serfaty and Solovej in [11] and by Derezinski and Napiorkowski in [5]. Furthermore, in
[20, 21, 22], Pizzo obtained, for β = 0 and imposing an ultraviolet cutoff, a convergent
series expansion for the ground state of (1.1) in powers of N−1.

The goal of our paper is to extend the results (1.2), (1.3) and to prove the validity of
Bogoliubov’s prediction for the ground state energy and the excitation spectrum of (1.1)
in scaling limits with 0 < β < 1, where the range of the interaction potential shrinks to
zero, as N → ∞. This is the content of our main theorem.

Theorem 1.1. Let V ∈ L3(R3) be non-negative, spherically symmetric, compactly sup-
ported and assume that the coupling constant κ > 0 is small enough. Fix 0 < β < 1 and
let mβ ∈ N be the largest integer with mβ ≤ 1/(1 − β) + min(1/2, β/(1 − β)). Then, in

the limit N → ∞, the ground state energy Eβ
N of the Hamilton operator Hβ

N defined in
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(1.1) is given by

Eβ
N = 4π(N − 1)aβN

− 1

2

∑

p∈Λ∗
+

[
p2 + κV̂ (0)−

√
|p|4 + 2p2κV̂ (0)− κ2V̂ 2(0)

2p2

]
+O(N−α)

(1.4)

for all 0 < α < β such that α ≤ (1− β)/2. Here we set Λ∗
+ = 2πZ3\{0} and we defined

8πaβN = κV̂ (0)− 1

2N

∑

p∈Λ∗
+

κ2V̂ 2(p/Nβ)

p2

+

mβ∑

k=2

(−1)k

(2N)k

∑

p∈Λ∗
+

κV̂ (p/Nβ)

p2

×
∑

q1,q2,...,qk−1∈Λ
∗
+

κV̂ ((p− q1)/N
β)

q21

(
k−2∏

i=1

κV̂ ((qi − qi+1)/N
β)

q2i+1

)
κV̂ (qk−1/N

β)

(1.5)

Moreover, the spectrum of Hβ
N −Eβ

N below an energy ζ consists of eigenvalues given, in
the limit N → ∞, by

∑

p∈Λ∗
+

np

√
|p|4 + 2p2κV̂ (0) +O(N−α(1 + ζ3)) (1.6)

for all 0 < α < β such that α ≤ (1 − β)/2. Here np ∈ N for all p ∈ Λ∗
+ and np 6= 0 for

finitely many p ∈ Λ∗
+ only.

Remarks:

1) The sum over p ∈ Λ∗
+ appearing on the r.h.s. of (1.4) converges (a careful analysis

shows that the expression in the parenthesis decays as |p|−4 for large |p|). It gives
therefore a contribution of order one to the ground state energy Eβ

N .

2) The r.h.s. of (1.5) isN times a Born series expansion for the scattering length of the
potential κN3β−1V (Nβ.). A simple computation shows that the k-th term in the
sum on the r.h.s. of (1.5) (including the term on the first line, which is associated
with k = 1) is of the order Nk(β−1), for all k ∈ N. Hence, it gives a contribution to
the ground state energy (1.4) of the order Nkβ−(k−1) which is negligible (vanishes,
as N → ∞) if β < (k − 1)/k or, equivalently, if k > 1/(1 − β). The truncation of
the Born series at k = mβ ≃ 1/(1−β)+min(1/2, β/(1−β)) is chosen to make sure
that the error we do in neglecting terms with k > mβ is of the order O(N−α), for
all α ≤ min(β, (1 − β)/2) (and therefore it is negligible, compared to other errors
arising in the analysis). Notice that in the Gross-Pitaevskii regime β = 1, which
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is not covered by Theorem 1.1, the situation is different. In this case, all terms in
the Born series are of order one; their sum reconstructs the scattering length a0 of
the unscaled potential V . In this sense, (1.4) is consistent with the results of Lieb
and Yngvason in [16] and of Lieb, Seiringer and Yngvason in [14] which imply that

Eβ=1
N = 4πa0N + o(N).

3) As explained in [3, 13, 8], the validity of Bogoliubov’s approximation is restricted to
regimes where the ratio µ = a/R between the scattering length a of the interaction
and its range R is such that

1 ≫ µ≫
√
ρa3 ≫ µ2 (1.7)

For the trapped gas described by (1.1), we have a ≃ N−1, R ≃ N−β and ρ = N .
Hence, (1.7) is only satisfied if β < 1/2. In other words, for 1/2 ≤ β < 1, Theorem
1.1 establishes the validity of the predictions of Bogoliubov’s theory in regimes
where Bogoliubov approximation fails (in fact, Bogoliubov theory is expected to
hold in any dilute limit, with ρa3 ≪ 1).

4) It is worth noticing that the expression (1.6) for the excitation spectrum of (1.1)
has important consequences from the point of view of physics. It shows that
the dispersion of bosons described by (1.1) is linear for small momenta, in sharp
contrast with the quadratic dispersion of free particles. This observation was used
by Bogoliubov in [3] to explain the emergence of superfluidity, via the so-called
Landau criterion [10].

5) Theorem 1.1 describes low-lying eigenvalues of the Hamiltonian (1.1). As a corol-
lary of (1.4) and (1.6), it is also possible to describe eigenvectors associated to
low-lying eigenvalues of (1.1). Referring to arguments from [9], we provide a norm
approximation of these eigenvectors in a remark at the end of Section 6, after the
proof of Theorem 1.1.

To show Theorem 1.1, we follow the strategy introduced in [2] to show complete
Bose-Einstein condensation for low-energy states in the Gross-Pitaevskii regime (and
also used in [4] to study the time-evolution of condensates in this scaling limit). We
start with an idea from [11]. Every ψ ∈ L2

s(Λ
N ) can be represented uniquely as

ψ =
N∑

n=0

ψ(n) ⊗s ϕ
⊗(N−n)
0

for a sequence ψn ∈ L2
⊥(Λ)

⊗sn, where L2
⊥(Λ) is the orthogonal complement of ϕ0(x) = 1

in L2(Λ) and L2
⊥(Λ)

⊗sn is the symmetric tensor product of n copies of L2
⊥(Λ). This

remark allows us to define a unitary map

U : L2
s(Λ

N ) → F≤N
+ =

N⊕

n=0

L2
⊥(Λ)

⊗sn (1.8)
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through Uψ = {ψ(0), . . . , ψ(N)} (F≤N
+ is the Fock space over L2

⊥(Λ), truncated to exclude
sectors with more than N particles). The map U factors out the condensate (particles
described by the wave function ϕ0) and let us focus on its orthogonal excitations. Us-

ing U , we can define a first excitation Hamiltonian Lβ
N = UHβ

NU
∗ : F≤N

+ → F≤N
+ .

Conjugating with U , we effectively extract, from the interaction term in the original
Hamiltonian (1.1), contributions to Lβ

N that are constant (c-numbers) and quadratic in
creation and annihilation operators. This is very much in the spirit of the Bogoliubov ap-
proximation, where creation and annihilation operators involving the condensate mode
ϕ0 are replaced by commuting numbers.

In the mean-field regime (i.e. for β = 0), conjugation with U is sufficient to extract
all contributions of the many-body interaction whose expectation in low energy states
survives, as N → ∞. In other words, in the mean-field regime, the excitation Hamil-
tonian Lβ=0

N can be approximated by the sum of a constant and of a term quadratic in
creation and annihilation operators; the expected value of all other terms vanishes, as
N → ∞, when we consider low-energy states.

For β > 0, the situation is different; some of the quartic terms in Lβ
N that were

negligible for β = 0 are now important, in the limit N → ∞. To better understand this
point, let us observe that

〈Ω,Lβ
NΩ〉 = 〈U∗Ω,Hβ

NU
∗Ω〉 = 〈ϕ⊗N

0 ,Hβ
Nϕ

⊗N
0 〉 = (N − 1)V̂ (0)

2

According to (1.4), the difference between 〈Ω,Lβ
NΩ〉 and the real ground state energy

of (1.1) is of the order Nβ and diverges, as N → ∞. To make up for this error, we
have to take into account correlations among particles. In [1], this goal was achieved
by conjugating the excitation Hamiltonian with a unitary Bogoliubov transformation of
the form

T̃ = exp


1
2

∑

p∈2πZ3,p 6=0

(
ηpa

∗
pa

∗
−p − η̄papa−p

)

 (1.9)

for appropriate coefficients ηp = η−p (the context of [1] was slightly different; it focused on
the time-evolution for approximately coherent initial data on the Fock space). In (1.9),
the operators a∗p and ap create and, respectively, annihilate a particle with momentum
p ∈ 2πZ3 (see Section 2 below for precise definitions). While Bogoliubov transformations
of the form (1.9) work well on the Fock space, they do not map the space F≤N

+ into itself
(because they do not preserve the constraint N ≤ N).

To obviate this problem, we follow the strategy used in [4, 2]. We introduce modified
creation and annihilation operators b∗p, bp for all p ∈ 2πZ3. The creation operator b∗p
creates a particle with momentum p but, at the same time, it removes a particle with
momentum zero from the condensate. Similarly, bp annihilates a particle with momentum
p but, simultaneously, it creates a particles with momentum 0 in the condensate. Hence,
b∗p and bp create and annihilate excitations but they do not change the total number
of particles in the system. As a consequence, when transformed with U , they map the
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Hilbert space F≤N
+ into itself. Using these operators, we can therefore define generalized

Bogoliubov transformations of the form

T = exp


1
2

∑

p∈2πZ3

(
ηpb

∗
pb

∗
−p − η̄pbpb−p

)

 (1.10)

with appropriate coefficients ηp = η−p. In contrast with (1.9), generalized Bogoliubov

transformations leave the space F≤N
+ invariant. This allows us to define a modified

excitation Hamiltonian having the form Gβ
N = T ∗UHNU

∗T : F≤N
+ → F≤N

+ .
With the right definition of the coefficients ηp, we can show that the modified ex-

citation Hamiltonian Gβ
N can be approximated by the sum of a constant and of a term

quadratic in creation and annihilation operators. To be more precise, we first prove, as
we recently did in [2] for the case β = 1, that, for sufficiently small κ > 0, Gβ

N satisfies
the lower bound

Gβ
N − Eβ

N ≥ 1

2
N+ − C (1.11)

where N+ denotes the number of particles operator on F≤N
+ . As we will show in

Prop. 4.1, Eq. (1.11) easily implies that states ψN ∈ L2
s(Λ

N ) with bounded excitation
energy can be written as ψN = UTξN , for an excitation vector ξN ∈ F≤N

+ satisfying

〈ξN ,N+ξN 〉 ≤ C (1.12)

with a constant C > 0 independent of N . In other words, (1.11) shows that low-energy
states exhibit complete Bose-Einstein condensation in a very strong sense: the number
of excitations, that is the number of particles that are not in the condensate, remains
bounded, uniformly in N . Notice that Bose-Einstein condensation in the ground state
of the Gross-Pitaevskii Hamiltonian (i.e. (1.1) for β = 1) has been known since the work
[12] of Lieb and Seiringer; the novelty of (1.12) is the fact that it gives a bound, in fact
an optimal bound, on the number of excitations.

Combining (1.11) with the commutator estimate

±
[
Gβ
N , iN+

]
≤ C(Hβ

N + 1) (1.13)

where Hβ
N denotes the Hamiltonian (1.1), rewritten as an operator on the Fock space,

we show then that the excitation vector ξN ∈ F≤N
+ associated with a low-energy state

also satisfy the stronger bound

〈ξN , (N+ + 1)(Hβ
N + 1)ξN 〉 ≤ C (1.14)

for a constant C > 0 independent of N . Eq. (1.14) does not only provide control on the
expectation of the number of excitations, but also on their energy. It is worth noticing
that, like for (1.12), the improved estimate (1.14) does not require the assumption β < 1;
it also holds true for the Gross-Pitaevskii Hamiltonian obtained with β = 1.
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Equipped with the bound (1.14) we go back to the excitation Hamiltonian Gβ
N and

we show that, in low-energy states, the expectation of all terms that are not constant or
quadratic in creation and annihilation operators vanish, in the limit of large N . More
precisely, we prove that

Gβ
N = Cβ

N +Qβ
N + Eβ

N (1.15)

where Cβ
N is a constant (to leading order, the ground state energy of Hβ

N ), Qβ
N is

quadratic in creation and annihilation operators, and Eβ
N is such that

± Eβ
N ≤ CN−α(N+ + 1)(Hβ

N + 1) (1.16)

for all 0 < α < β such that α ≤ (1 − β)/2. Combining (1.16) with the bound (1.12),

it follows that, on low-energy states, Gβ
N is dominated by its quadratic part. As a

consequence, to conclude the proof of Theorem 1.1, we only have to conjugate Gβ
N with

a second generalized Bogoliubov transformation, diagonalizing the quadratic operator
Qβ

N .
It is in the proof of (1.16) that the assumption β < 1 plays a crucial role. For β = 1,

in the Gross-Pitaevskii regime, the error term Eβ
N is not small; in this case, (1.16) only

holds with α = 0. In other words, the excitation Hamiltonian Gβ=1
N contains cubic and

quartic contributions that remain of order one in the limit of large N . This observation
is not surprising. Already in [7] and more recently in [17, 18], it has been shown that
quasi-free states can only approximate the ground state of a dilute Bose gas up to an
error of order one. For this reason, when β = 1 we cannot expect to extract all relevant
terms from the Hamiltonian (1.1) by applying Bogoliubov transformations. To prove

Theorem 1.1 in the Gross-Pitaevskii regime, the Hamilton operator Hβ=1
N must instead

be conjugated with more complicated maps. A first partial result in this direction is the
upper bound for the ground state energy obtained by Yau and Yin in [24].

The paper is organized as follows. In Section 2 we introduce the formalism of second
quantization, defining generalized Bogoliubov transformations and studying their prop-
erties. The main results of this section are Lemma 2.5 and Lemma 2.6 (taken from [4])
where we show how to expand the action of generalized Bogoliubov transformations in
absolutely convergent infinite series. In Section 3, we define the excitation Hamiltonian
Gβ
N and we state its most important properties (namely the bounds (1.11), (1.13) and

(1.16)) in Theorem 3.2, whose long and technical proof is deferred to Section 7. In
Section 4, we show how (1.11) and (1.13) can be used to show the bounds (1.12) and,
more importantly, (1.14) for the excitation vectors of low-energy states. In Section 5, we

show how to diagonalize the quadratic part of Gβ
N using a second generalized Bogoliubov

transformation. Using the results of Section 4 and Section 5, we prove our main result,
Theorem 1.1, in Section 6.

Acknowledgement. B.S. gratefully acknowledge support from the NCCR SwissMAP
and from the Swiss National Foundation of Science through the SNF Grant “Effective
equations from quantum dynamics” and the SNF Grant “Dynamical and energetic prop-
erties of Bose-Einstein condensates”.
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2 Fock space

Let
F =

⊕

n≥0

L2
s(Λ

n) =
⊕

n≥0

L2(Λ)⊗sn

be the bosonic Fock space over L2(Λ), where L2
s(Λ

n) is the subspace of L2(Λn) consisting
of wave functions that are symmetric w.r.t. permutations. We use the notation Ω =
{1, 0, . . . } ∈ F for the vacuum vector in F .

For g ∈ L2(Λ), we define the creation operator a∗(g) and the annihilation operator
a(g) by

(a∗(g)Ψ)(n)(x1, . . . , xn) =
1√
n

n∑

j=1

g(xj)Ψ
(n−1)(x1, . . . , xj−1, xj+1, . . . , xn)

(a(g)Ψ)(n)(x1, . . . , xn) =
√
n+ 1

∫

Λ
ḡ(x)Ψ(n+1)(x, x1, . . . , xn) dx

Notice that a∗(g) is the adjoint of a(g) and that creation and annihilation operators
satisfy canonical commutation relations

[a(g), a∗(h)] = 〈g, h〉, [a(g), a(h)] = [a∗(g), a∗(h)] = 0 (2.1)

for all g, h ∈ L2(Λ) (here 〈g, h〉 is the usual inner product on L2(Λ)).
Since we consider a translation invariant system, it will be convenient to work in

momentum space. From now on, let Λ∗ = 2πZ3. For p ∈ Λ∗, we define the normalized
wave function ϕp(x) = e−ip·x in L2(Λ). We set

a∗p = a∗(ϕp), and ap = a(ϕp) (2.2)

In other words, a∗p and ap create, respectively annihilate, a particle with momentum p.
In some occasions, it will also be important to switch to position space (where it is

easier to use the positivity of the potential V (x)). For this reason, we introduce operator
valued distributions ǎx, ǎ

∗
x defined so that

a(f) =

∫
f̄(x) ǎx dx, a∗(f) =

∫
f(x) ǎ∗x dx (2.3)

On F , we also introduce the number of particles operator, defined by (NΨ)(n) =
nΨ(n). Notice that

N =
∑

p∈Λ∗

a∗pap =

∫
ǎ∗xǎx dx .

It is important to observe that creation and annihilation operators are bounded by the
square root of the number of particles operator, i.e.

‖a(f)Ψ‖ ≤ ‖f‖‖N 1/2Ψ‖, ‖a∗(f)Ψ‖ ≤ ‖f‖‖(N + 1)1/2Ψ‖ (2.4)
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for all f ∈ L2(Λ).
We will often deal with quadratic (and translation invariant) expressions in creation

and annihilation operators. For f ∈ ℓ2(Λ∗), we define

A♯1,♯2(f) =
∑

p∈Λ∗

fp a
♯1
α1pa

♯2
α2p (2.5)

where ♯1, ♯2 ∈ {·, ∗}, and where we use the notation a♯ = a, if ♯ = ·, and a♯ = a∗ if ♯ = ∗.
Also, αj ∈ {±1} is chosen so that α1 = 1, if ♯1 = ∗, α1 = −1 if ♯1 = ·, α2 = 1 if ♯2 = ·
and α2 = −1 if ♯2 = ∗. Notice that, in position space

A♯1,♯2(f) =

∫
dxdy f̌(x− y) ǎ♯1x ǎ

♯2
y

with the inverse Fourier transform

f̌(x) =
∑

p∈Λ∗

fpe
ip·x .

In the next simple lemma, taken from [4], we show how to bound quadratic operators of
the form (2.5).

Lemma 2.1. Let f ∈ ℓ2(Λ∗) and, if ♯1 = · and ♯2 = ∗ assume additionally that j ∈
ℓ1(Λ∗). Then we have, for any Ψ ∈ F ,

‖A♯1,♯2(f)Ψ‖ ≤
√
2‖(N + 1)Ψ‖ ·

{
‖f‖2 + ‖f‖1 if ♯1 = ·, ♯2 = ∗
‖f‖2 otherwise

As already explained in the introduction, we will work on certain subspaces of F .
Recall that ϕ0 ∈ L2(Λ) is the constant wave function with ϕ0(x) = 1 for all x ∈ Λ. We
denote by L2

⊥(Λ) the orthogonal complement of the one dimensional space spanned by
ϕ0 in L2(Λ). We define

F+ =
⊕

n≥0

L2
⊥(Λ)

⊗sn .

as the Fock space constructed over L2
⊥(Λ), i.e. the Fock space generated by creation and

annihilation operators a∗p, ap, with p ∈ Λ∗
+ := 2πZ3\{0}. On F+, we denote the number

of particles operator by

N+ =
∑

p∈Λ∗
+

a∗pap

We will also need a truncated version of F+. For N ∈ N, we define

F≤N
+ =

N⊕

n=0

L2
⊥(Λ)

⊗sn .

On F≤N
+ , we construct modified creation and annihilation operators. For f ∈ L2

⊥(Λ),
we set

b(f) =

√
N −N+

N
a(f), and b∗(f) = a∗(f)

√
N −N+

N

9



We have b(f), b∗(f) : F≤N
+ → F≤N

+ . As we will discuss in the next section, the impor-
tance of these fields arises from the application of the map U , defined in (1.8), since, for
instance,

Ua∗(f)a(ϕ0)U
∗ = a∗(f)

√
N −N+ =

√
Nb∗(f) (2.6)

Based on (2.6), we can interpret b∗(f) as an operator exciting a particle from the con-
densate into its orthogonal complement. Compared with the standard fields a∗, a, the
modified operators b∗, b have an important advantage; they create (or annihilate) exci-
tations but, at the same time, they annihilate (or create) a particle in the condensate,
preserving thus the total number of particles.

It is convenient to introduce modified creation and annihilation operators in momen-
tum space, setting

bp =

√
N −N+

N
ap, and b∗p = a∗p

√
N −N+

N

for all p ∈ Λ∗
+ and operator valued distributions in position space

b̌x =

√
N −N+

N
ǎx, and b̌∗x = ǎ∗x

√
N −N+

N

for all x ∈ Λ.
Modified creation and annihilation operators satisfy the commutation relations

[bp, b
∗
q ] =

(
1− N+

N

)
δp,q −

1

N
a∗qap

[bp, bq] = [b∗p, b
∗
q ] = 0

(2.7)

and, in position space,

[b̌x, b̌
∗
y] =

(
1− N+

N

)
δ(x − y)− 1

N
ǎ∗yǎx

[b̌x, b̌y] = [b̌∗x, b̌
∗
y] = 0

(2.8)

Furthermore

[b̌x, ǎ
∗
yǎz] = δ(x− y)b̌z, [b̌∗x, ǎ

∗
yǎz] = −δ(x− z)b̌∗y (2.9)

It follows that [b̌x,N+] = b̌x, [b̌
∗
x,N+] = −b̌∗x and, in momentum space, [bp,N+] = bp,

[b∗p,N+] = −b∗p. With (2.4), we obtain

‖b(f)ξ‖ ≤ ‖f‖
∥∥∥∥∥N

1/2
+

(
N + 1−N+

N

)1/2

ξ

∥∥∥∥∥

‖b∗(f)ξ‖ ≤ ‖f‖
∥∥∥∥∥(N+ + 1)1/2

(
N −N+

N

)1/2

ξ

∥∥∥∥∥

(2.10)
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for all f ∈ L2
⊥(Λ) and ξ ∈ F≤N

+ . Since N+ ≤ N on F≤N
+ , b(f), b∗(f) are bounded

operators with ‖b(f)‖, ‖b∗(f)‖ ≤ (N + 1)1/2‖f‖.
We will consider quadratic expressions in the b-fields. As we did in (2.5), we restrict

our attention to translation invariant operators. For f ∈ ℓ2(Λ∗
+), we let

B♯1,♯2(f) =
∑

p∈Λ∗

fpb
♯1
α1pb

♯2
α2p

with α1 = 1 if ♯1 = ∗, α1 = −1 if ♯1 = ·, α2 = 1 if ♯2 = · and α2 = −1 if ♯2 = ∗. By
construction, B♯1,♯2(f) : F≤N

+ → F≤N
+ . In position space, we find

B♯1,♯2(f) =

∫
f̌(x− y) b♯1x b

♯2
y dxdy

From Lemma 2.1, we obtain the following bounds.

Lemma 2.2. Let f ∈ ℓ2(Λ∗
+). If ♯1 = · and ♯2 = ∗, we assume additionally that

f ∈ ℓ1(Λ∗
+). Then

‖B♯1,♯2(f)ξ‖∥∥∥(N+ + 1)
(
N+2−N+

N

)
ξ
∥∥∥
≤

√
2 ·
{

‖f‖2 + ‖f‖1 if ♯1 = ·, ♯2 = ∗
‖f‖2 otherwise

for all ξ ∈ F≤N . Since N+ ≤ N on F≤N
+ , the operator B♯1,♯2(f) is bounded, with

‖B♯1,♯2(f)‖ ≤
√
2N

{
‖f‖2 + ‖f‖1 if ♯1 = ·, ♯2 = ∗
‖f‖2 otherwise

We will need to consider products of several creation and annihilation operators. In
particular, two types of monomials in creation and annihilation operators will play an im-
portant role in our analysis. For f1, . . . , fn ∈ ℓ2(Λ∗

+), ♯ = (♯1, . . . , ♯n), ♭ = (♭0, . . . , ♭n−1) ∈
{·, ∗}n, we set

Π
(2)
♯,♭ (f1, . . . , fn)

=
∑

p1,...,pn∈Λ∗

b♭0α0p1a
♯1
β1p1

a♭1α1p2a
♯2
β2p2

a♭2α2p3 . . . a
♯n−1

βn−1pn−1
a♭n−1
αn−1pnb

♯n
βnpn

n∏

ℓ=1

fℓ(pℓ)
(2.11)

where, for every ℓ = 0, 1, . . . , n, we set αℓ = 1 if ♭ℓ = ∗, αℓ = −1 if ♭ℓ = ·, βℓ = 1
if ♯ℓ = · and βℓ = −1 if ♯ℓ = ∗. In (2.11), we impose the condition that for every
j = 1, . . . , n − 1, we have either ♯j = · and ♭j = ∗ or ♯j = ∗ and ♭j = · (so that the

product a♯ℓβℓpℓ
a♭ℓαℓpℓ+1

always preserves the number of particles, for all ℓ = 1, . . . , n − 1).

With this assumption, we find that the operator Π
(2)
♯,♭ (f1, . . . , fn) maps F≤N

+ into itself.

If, for some ℓ = 1, . . . , n, ♭ℓ−1 = · and ♯ℓ = ∗ (i.e. if the product a
♭ℓ−1
αℓ−1pℓa

♯ℓ
βℓpℓ

for

11



ℓ = 2, . . . , n, or the product b♭0α0p1a
♯1
β1p1

for ℓ = 1, is not normally ordered) we require

additionally that fℓ ∈ ℓ1(Λ∗
+). In position space, the same operator can be written as

Π
(2)
♯,♭ (f1, . . . , fn) =

∫
b̌♭0x1
ǎ♯1y1 ǎ

♭1
x2
ǎ♯2y2 ǎ

♭2
x3
. . . ǎ♯n−1

yn−1
ǎ♭n−1
xn

b̌♯nyn

n∏

ℓ=1

f̌ℓ(xℓ − yℓ) dxℓdyℓ (2.12)

An operator of the form (2.11), (2.12) with all the properties listed above, will be called
a Π(2)-operator of order n.

For g, f1, . . . , fn ∈ ℓ2(Λ
∗
+), ♯ = (♯1, . . . , ♯n) ∈ {·, ∗}n, ♭ = (♭0, . . . , ♭n) ∈ {·, ∗}n+1, we

also define the operator

Π
(1)
♯,♭ (f1, . . . , fn; g)

=
∑

p1,...,pn∈Λ∗

b♭0α0,p1a
♯1
β1p1

a♭1α1p2a
♯2
β2p2

a♭2α2p3 . . . a
♯n−1

βn−1pn−1
a♭n−1
αn−1pna

♯n
βnpn

a♭n(g)
n∏

ℓ=1

fℓ(pℓ)

(2.13)

where αℓ and βℓ are defined as above. Also here, we impose the condition that, for
all ℓ = 1, . . . , n, either ♯ℓ = · and ♭ℓ = ∗ or ♯ℓ = ∗ and ♭ℓ = ·. This implies that

Π
(1)
♯,♭

(f1, . . . , fn; g) maps F≤N
+ back into F≤N

+ . Additionally, we assume that fℓ ∈ ℓ1(Λ∗
+),

if ♭ℓ−1 = · and ♯ℓ = ∗ for some ℓ = 1, . . . , n (i.e. if the pair a
♭ℓ−1
αℓ−1pℓa

♯ℓ
βℓpℓ

is not normally
ordered). In position space, the same operator can be written as

Π
(1)
♯,♭ (f1, . . . , fn; g) =

∫
b̌♭0x1
ǎ♯1y1 ǎ

♭1
x2
ǎ♯2y2 ǎ

♭2
x3
. . . ǎ♯n−1

yn−1
ǎ♭n−1
xn

ǎ♯nyn ǎ
♭n(g)

n∏

ℓ=1

f̌ℓ(xℓ − yℓ) dxℓdyℓ

(2.14)
An operator of the form (2.13), (2.14) will be called a Π(1)-operator of order n. Operators
of the form b(f), b∗(f), for a f ∈ ℓ2(Λ∗

+), will be called Π(1)-operators of order zero.
In the next lemma we show how to bound Π(2)- and Π(1)-operators. The simple

proof, based on Lemma 2.1, can be found in [4].

Lemma 2.3. Let n ∈ N, g, f1, . . . , fn ∈ ℓ2(Λ∗
+). Assume that Π

(2)
♯,♭ (f1, . . . , fn) and

Π
(1)
♯,♭ (f1, . . . , fn; g) are defined as in (2.11), (2.13). Then

∥∥∥Π(2)
♯,♭ (f1, . . . , fn)ξ

∥∥∥ ≤ 6n
n∏

ℓ=1

K
♭ℓ−1,♯ℓ
ℓ

∥∥∥∥(N+ + 1)n
(
1− N+ − 2

N

)
ξ

∥∥∥∥

∥∥∥Π(1)
♯,♭ (f1, . . . , fn; g)ξ

∥∥∥ ≤ 6n‖g‖
n∏

ℓ=1

K
♭ℓ−1,♯ℓ
ℓ

∥∥∥∥∥(N+ + 1)n+1/2

(
1− N+ − 2

N

)1/2

ξ

∥∥∥∥∥

(2.15)

where

K
♭ℓ−1,♯ℓ
ℓ =

{
‖fℓ‖2 + ‖fℓ‖1 if ♭ℓ−1 = · and ♯ℓ = ∗
‖fℓ‖2 otherwise
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Since N+ ≤ N on F≤N
+ , it follows that

∥∥∥Π(2)
♯,♭ (f1, . . . , fn)

∥∥∥ ≤ (12N)n
n∏

ℓ=1

K
♭ℓ−1,♯ℓ
ℓ

∥∥∥Π(1)
♯,♭ (f1, . . . , fn; g)

∥∥∥ ≤ (12N)n
√
N‖g‖

n∏

ℓ=1

K
♭ℓ−1,♯ℓ
ℓ

Next, we introduce generalized Bogoliubov transformations and we discuss their
properties. For η ∈ ℓ2(Λ∗

+) with η−p = ηp for all p ∈ Λ∗
+, we define

B(η) =
1

2

∑

p∈Λ∗
+

(
ηpb

∗
pb

∗
−p − η̄pbpb−p

)
. (2.16)

and we consider

eB(η) = exp


1
2

∑

p∈Λ∗
+

(
ηpb

∗
pb

∗
−p − η̄pbpb−p

)

 (2.17)

Notice that B(η), eB(η) : F≤N
+ → F≤N

+ . We refer to unitary operators of the form (2.17)
as generalized Bogoliubov transformations. The name arises from the observation that,
on states with N+ ≪ N , we have bp ≃ ap, b

∗
p ≃ a∗p and therefore

B(η) ≃ B̃(η) =
1

2

∑

p∈Λ∗
+

(
ηpa

∗
pa

∗
−p − η̄papa−p

)
(2.18)

Since B̃(η) is quadratic in creation and annihilation operators, exp(B̃(η)) is a stan-
dard Bogoliubov transformation, whose action on creation and annihilation operators is
explicitly given by

e−B̃(η)ape
B̃(η) = cosh(ηp)ap + sinh(ηp)a

∗
−p . (2.19)

As discussed in the introduction, (2.18) does not map F≤N into itself. For this reason,
in the following it will be convenient for us to work with generalized Bogoliubov trans-
formations of the form (2.17). The price we have to pay is the fact that there is no
explicit expression like (2.19) for the action of (2.17). We need other tools to control the
action of generalized Bogoliubov transformations.

A first important observation is the following lemma, whose proof can be found in
[4] (a similar result was previously established in [23]).

Lemma 2.4. Let η ∈ ℓ2(Λ∗) and B(η) be defined as in (2.16). Then, for every n1, n2 ∈
Z, there exists a constant C > 0 (depending on ‖η‖) such that, on F≤N

+ ,

e−B(η)(N+ + 1)n1(N + 1−N+)
n2eB(η) ≤ C(N+ + 1)n1(N + 1−N+)

n2 .
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Controlling the change of the number of particles operator is not enough for our
purposes. We will often need to express the action of generalized Bogoliubov transfor-
mations by means of a convergent series of nested commutators. We notice, first of all,
that for any p ∈ Λ∗

+,

e−B(η) bp e
B(η) = bp +

∫ 1

0
ds

d

ds
e−sB(η)bpe

sB(η)

= bp −
∫ 1

0
ds e−sB(η)[B(η), bp]e

sB(η)

= bp − [B(η), bp] +

∫ 1

0
ds1

∫ s1

0
ds2 e

−s2B(η)[B(η), [B(η), bp]e
s2B(η)

Iterating m times, we find

e−B(η)bpe
B(η) =

m−1∑

n=1

(−1)n
ad

(n)
B(η)(bp)

n!

+

∫ 1

0
ds1

∫ s1

0
ds2· · ·

∫ sm−1

0
dsm e

−smB(η)ad
(m)
B(η)

(bp)e
smB(η)

(2.20)

where we recursively defined

ad
(0)
B(η)(A) = A and ad

(n)
B(η)(A) = [B(η), ad

(n−1)
B(η) (A)]

We will later show that, under appropriate assumptions on η, the norm of the error term
on the r.h.s. of (2.20) vanishes, as m → ∞. Hence, the action of eB(η) on bp, b

∗
p can be

described in terms of the nested commutators ad
(n)
B(η)(bp) and ad

(n)
B(η)(b

∗
p) for n ∈ N. In

the next lemma, we give a detailed analysis of these operators; the proof can be found
in [2, Lemma 2.5].

Lemma 2.5. Let η ∈ ℓ2(Λ∗
+) be such that ηp = η−p for all p ∈ ℓ2(Λ∗). To simplify

the notation, assume also η to be real-valued (as it will be in applications). Let B(η) be

defined as in (2.16), n ∈ N and p ∈ Λ∗. Then the nested commutator ad
(n)
B(η)(bp) can be

written as the sum of exactly 2nn! terms, with the following properties.

i) Possibly up to a sign, each term has the form

Λ1Λ2 . . .ΛiN
−kΠ

(1)
♯,♭ (η

j1 , . . . , ηjk ; ηspϕαp) (2.21)

for some i, k, s ∈ N, j1, . . . , jk ∈ N\{0}, ♯ ∈ {·, ∗}k, ♭ ∈ {·, ∗}k+1 and α ∈ {±1}
chosen so that α = 1 if ♭k = · and α = −1 if ♭k = ∗ (recall here that ϕp(x) = e−ip·x).
In (2.21), each operator Λw : F≤N → F≤N , w = 1, . . . , i, is either a factor
(N −N+)/N , a factor (N − (N+ − 1))/N or an operator of the form

N−hΠ
(2)
♯′,♭′(η

z1 , ηz2 , . . . , ηzh) (2.22)

for some h, z1, . . . , zh ∈ N\{0}, ♯, ♭ ∈ {·, ∗}h.

14



ii) If a term of the form (2.21) contains m ∈ N factors (N −N+)/N or (N − (N+ −
1))/N and j ∈ N factors of the form (2.22) with Π(2)-operators of order h1, . . . , hj ∈
N\{0}, then we have

m+ (h1 + 1) + · · · + (hj + 1) + (k + 1) = n+ 1 (2.23)

iii) If a term of the form (2.21) contains (considering all Λ-operators and the Π(1)-
operator) the arguments ηi1 , . . . , ηim and the factor ηsp for some m, s ∈ N, and
i1, . . . , im ∈ N\{0}, then

i1 + · · ·+ im + s = n.

iv) There is exactly one term having of the form (2.21) with k = 0 and such that all
Λ-operators are factors of (N −N+)/N or of (N + 1−N+)/N . It is given by

(
N −N+

N

)n/2(N + 1−N+

N

)n/2

ηnp bp (2.24)

if n is even, and by

−
(
N −N+

N

)(n+1)/2 (N + 1−N+

N

)(n−1)/2

ηnp b
∗
−p (2.25)

if n is odd.

v) If the Π(1)-operator in (2.21) is of order k ∈ N\{0}, it has either the form

∑

p1,...,pk

b♭0α0p1

k−1∏

i=1

a♯iβipi
a♭iαipi+1

a∗−pk
η2rp ap

k∏

i=1

ηjipi

or the form
∑

p1,...,pk

b♭0α0p1

k−1∏

i=1

a♯iβipi
a♭iαipi+1

apkη
2r+1
p a∗p

k∏

i=1

ηjipi

for some r ∈ N, j1, . . . , jk ∈ N\{0}. If it is of order k = 0, then it is either given
by η2rp bp or by η2r+1

p b∗−p, for some r ∈ N.

vi) For every non-normally ordered term of the form

∑

q∈Λ∗

ηiqaqa
∗
q ,

∑

q∈Λ∗

ηiqbqa
∗
q

∑

q∈Λ∗

ηiqaqb
∗
q , or

∑

q∈Λ∗

ηiqbqb
∗
q

appearing either in the Λ-operators or in the Π(1)-operator in (2.21), we have i ≥ 2.

15



With Lemma 2.5, it follows that the series on the r.h.s. of (2.20) converges absolutely,
if the ℓ2-norm ‖η‖ is small enough. The proof of the next Lemma is a simple adaptation
of the proof of [4, Lemma 3.3]

Lemma 2.6. Let η ∈ ℓ2(Λ∗) be symmetric, with ‖η‖ sufficiently small. Then we have

e−B(η)bpe
B(η) =

∞∑

n=0

(−1)n

n!
ad

(n)
B(η)(bp)

e−B(η)b∗pe
B(η) =

∞∑

n=0

(−1)n

n!
ad

(n)
B(η)(b

∗
p)

(2.26)

and the series on the r.h.s. are absolutely convergent.

3 The excitation Hamiltonian

We define the unitary operator U : L2
s(Λ

N ) → F≤N
+ as in (1.8). In terms of creation and

annihilation operators, the map U is given by

Uψ =
N⊕

n=0

(1− |ϕ0〉〈ϕ0|)⊗n a(ϕ0)
N−n

√
(N − n)!

ψ

for all ψ ∈ L2
s(Λ

N ) (here we identify ψ ∈ L2
s(Λ

N ) with the vector {0, . . . , 0, ψ, 0, . . . } ∈
F). The map U∗ : F≤N

+ → L2
s(Λ

N ) is given, on the other hand, by

U∗{ψ(0), . . . , ψ(N)} =
N∑

n=0

a∗(ϕ0)
N−n

√
(N − n)!

ψ(n)

It is useful to compute the action of U on the product of a creation and an annihilation
operators. We find (see [11]):

Ua∗0a0U
∗ = N −N+

Ua∗pa0U
∗ = a∗p

√
N −N+

Ua∗0apU
∗ =

√
N −N+ap

Ua∗paqU
∗ = a∗paq

(3.1)

for all p, q ∈ Λ∗
+ = 2πZ3\{0}. Writing (1.1) in momentum space, we find

Hβ
N =

∑

p∈Λ∗

p2a∗pap +
κ

N

∑

p,q,r∈Λ∗

V̂ (r/Nβ)a∗pa
∗
qaq−rap+r

where

V̂ (q) =

∫

R3

V (x)e−iq·xdx
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denotes the Fourier transform of V , for all q ∈ R
3. With (3.1), we can conjugate Hβ

N

with the map U , defining Lβ
N = UHβ

NU
∗ : F≤N

+ → F≤N
+ . We find

Lβ
N = L(0)

β,N + L(2)
β,N + L(3)

β,N + L(4)
β,N (3.2)

with

L(0)
N,β =

N − 1

2N
V̂ (0)(N −N+) +

V̂ (0)

2N
N+(N −N+)

L(2)
N,β =

∑

p∈Λ∗
+

p2a∗pap +
∑

p∈Λ∗
+

V̂ (p/Nβ)

[
b∗pbp −

1

N
a∗pap

]

+
1

2

∑

p∈Λ∗
+

V̂ (p/Nβ)
[
b∗pb

∗
−p + bpb−p

]

L(3)
N,β =

1√
N

∑

p,q∈Λ∗
+:p+q 6=0

V̂ (p/Nβ)
[
b∗p+qa

∗
−paq + a∗qa−pbp+q

]

L(4)
N,β =

1

2N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p,−q

V̂ (r/Nβ)a∗p+ra
∗
qapaq+r

(3.3)

As explained in the introduction, for β 6= 0, conjugation with U does not yet pull all
important contributions for low-energy states into the constant and the quadratic parts
of the excitation Hamiltonian Lβ

N . In other words, in contrast to the mean-field case

β = 0, for β > 0 we cannot expect L(3)
N,β and L(4)

N,β to be small on low-energy states,

in the limit N → ∞. For this reason, we need to conjugate Lβ
N with an appropriate

generalized Bogoliubov transformation of the form (2.17).
To choose the function η ∈ ℓ2(Λ∗

+) entering (2.16) and (2.17), we fix a length 0 <
ℓ < 1/2, independently of N , and we consider the solution of the Neumann problem

(
−∆+

κ

2
N3β−1V (Nβx)

)
fN,ℓ(x) = λN,ℓfN,ℓ(x) (3.4)

on the ball |x| ≤ ℓ, with radial derivative ∂|x|fN,ℓ(x) = 0 and with the normalization
fN,ℓ(x) = 1 for |x| = ℓ (we omit the β-dependence in the notation for fN,ℓ and for λN,ℓ).
The condition ℓ < 1/2 guarantees that the ball of radius ℓ is contained in Λ. We extend
then fN,ℓ to Λ, by setting fN,ℓ(x) = 1 for all |x| > ℓ. Then, for all x ∈ Λ, we have

(
−∆+

κ

2
N3β−1V (Nβx)

)
fN,ℓ(x) = λN,ℓfN,ℓ(x)χℓ(x) (3.5)

where χℓ is the characteristic function of the ball of radius ℓ. It is also useful to define
wN,ℓ = 1 − fN,ℓ (so that wN,ℓ(x) = 0 if |x| > ℓ). Since wN,ℓ is compactly supported on
Λ, it can be interpreted as a periodic function. Its Fourier coefficients are given by

ŵN,ℓ(p) =

∫

Λ
wN,ℓ(x)e

−ip·xdx
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for all p ∈ Λ∗. From (3.5), we find that

−p2ŵN,ℓ(p) +
κ

2N
V̂ (p/Nβ)− κ

2N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)ŵN,ℓ(q)

= λN,ℓχ̂ℓ(p)− λN,ℓ

∑

q∈Λ∗

χ̂ℓ(p − q)ŵN,ℓ(q)
(3.6)

for all p ∈ Λ∗. In the next lemma we collect some important properties of λN,ℓ and of
the functions wN,ℓ, fN,ℓ; the proof can be found in [6, Lemma A.1] and in [4] (notice that
this lemma is the reason we require V ∈ L3(R3); for the rest of the analysis, V ∈ L2(R3)
would suffice).

Lemma 3.1. Let V ∈ L3(R3) be non-negative, compactly supported and spherically
symmetric. Fix 0 < ℓ < 1/2 and let fN,ℓ denote the ground state solution of the Neumann
problem (3.4).

i) We have

λN,ℓ =
3κV̂ (0)

8πNℓ3

(
1 +O(Nβ−1)

)

ii) We have 0 ≤ fN,ℓ, wN,ℓ ≤ 1.

iii) There exists a constant C > 0 such that

wN,ℓ(x) ≤
Cκ

N(|x|+N−β)
and |∇wN,ℓ(x)| ≤

Cκ

N(x2 +N−2β)
. (3.7)

for all |x| ≤ ℓ. As a result

∫

Λ
wN,ℓ(x)dx ≤ Cκℓ2

N

iv) There exists a constant C > 0 such that

|ŵN,ℓ(p)| ≤
Cκ

Np2

for all p ∈ Λ∗
+.

Using the function wN,ℓ = 1− fN,ℓ defined above, we define η : Λ∗
+ → R through

ηp = −NŵN,ℓ(p) (3.8)

From Lemma 3.1, it follows that

|ηp| ≤
Cκ

p2
(3.9)
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Hence η ∈ ℓ2(Λ∗
+), uniformly in N . With Lemma 3.1 (part iii)), we also obtain

∑

p∈Λ∗
+

p2|ηp|2 = ‖∇η̌‖22 ≤ CNβκ2 (3.10)

Sometimes, it is useful to define η also at the point p = 0. We set η̃(p) = −Nŵℓ(p) for
all p ∈ Λ∗. Then η̃p = ηp for all p 6= 0. By Lemma 3.1, part iii), we find

|η̃0| ≤ N

∫

Λ
wN,ℓ(x)dx ≤ Cκℓ2 (3.11)

From (3.6), we obtain the following relation for the coefficients η̃:

p2η̃p +
κ

2
V̂ (p/Nβ) +

κ

2N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)η̃q

= NλN,ℓχ̂ℓ(p) + λN,ℓ

∑

q∈Λ∗

χ̂ℓ(p − q)η̃q
(3.12)

With η ∈ ℓ2(Λ∗
+), we construct, as in (2.17), the generalized Bogoliubov transformation

eB(η) : F≤N
+ → F≤N

+ . Furthermore, we define the excitation Hamiltonian Gβ
N : F≤N

+ →
F≤N
+ by setting (recall the definition (3.2) of the operator Lβ

N )

Gβ
N = e−B(η)Lβ

Ne
B(η) = e−B(η)UHβ

NU
∗eB(η) (3.13)

In the next theorem, we collect important properties of the self-adjoint operator Gβ
N . We

will use the notation

K =
∑

p∈Λ∗
+

p2a∗pap, and VN =
κ

2N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p,−q

V̂ (r/Nβ)a∗p+ra
∗
qapaq+r

for the kinetic and potential energy operators on the excitation Fock space F≤N
+ . We

also define Hβ
N = K + VN .

Theorem 3.2. Let V ∈ L3(R3) be non-negative, compactly supported and spherically
symmetric and assume that the coupling constant κ ≥ 0 is small enough.

a) Let Eβ
N denote the ground state energy of the Hamilton operator (1.1). There exists

a constant C > 0 such that

Gβ
N − Eβ

N ≥ 1

2
Hβ

N −C (3.14)

and
±
[
iGβ

N ,N+

]
≤ C(Hβ

N + 1) (3.15)
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b) For p ∈ Λ∗
+, we set σp = sinh(ηp) and γp = cosh(ηp). Let

Cβ
N =

(N − 1)

2
κV̂ (0)

+
∑

p∈Λ∗
+

[
p2σ2p + κV̂ (p/Nβ)(σ2p + σpγp) +

κ

2N

∑

q∈Λ∗
+

V̂ ((p− q)/Nβ)ηpηq

]

(3.16)

Moreover, for every p ∈ Λ∗
+, we define

Fp = p2(σ2p + γ2p) + κV̂ (p/Nβ)(σp + γp)
2

Gp = 2p2σpγp + κV̂ (p/Nβ)(σp + γp)
2 +

κ

N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)η̃q
(3.17)

We use the coefficients Fp, Gp to construct the operator

Qβ
N =

∑

p∈Λ∗
+

[
Fp b

∗
pbp +

1

2
Gp (b

∗
pb

∗
−p + bpb−p)

]

quadratic in the b, b∗-fields. We define the self-adjoint operator Eβ
N through the

identity
Gβ
N = Cβ

N +Qβ
N + Eβ

N

Then there exists a constant C such that, on F≤N
+ ,

± Eβ
N ≤ CN (β−1)/2(N+ + 1)(K + 1) (3.18)

In the last term in the definition of Gp, recall that η̃q = −NŵN,ℓ(q) coincides with
ηq for all q 6= 0 (we find it more convenient to include the contribution with q = 0 in the
definition of Gp). The proof of Theorem 3.2 represents the main technical part of our
paper. It is deferred to Section 7 below. In the next three sections, on the other hand,
we show how to use the statement of Theorem 3.2 to complete the proof of Theorem 1.1.

4 Bounds on excitation vectors for low-energy states

In this section, we establish important bounds for excitation vectors of the form ξN =
e−B(η)UψN ∈ F≤N

+ associated with low energy states ψN ∈ L2
s(Λ

N ). We begin with a
simple application of the bound (3.14) in Theorem 3.2.

Proposition 4.1. Let V ∈ L3(R3) be non-negative, compactly supported and spherically

symmetric and assume that the coupling constant κ ≥ 0 is small enough. Let Eβ
N be the

ground state energy of the Hamilton operator (1.1). Let ψN ∈ L2
s(Λ

N ) be a normalized
wave function, with

〈ψN ,H
β
NψN 〉 ≤ Eβ

N + ζ
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for some ζ > 0. Let ξN = e−B(η)UψN be the excitation vector associated with ψN (so
that ψN = U∗eB(η)ξN). Then there exists a constant C > 0 such that

〈ξN ,N+ξN 〉 ≤ C(1 + ζ)

〈ξN ,Hβ
NξN 〉 ≤ C(1 + ζ)

(4.1)

Proof. Since, on F≤N
+ , N+ ≤ (2π)−2K ≤ (2π)−2Hβ

N , it is enough to show the second
bound in (4.1). From (3.14), we find

〈ξN ,Hβ
N ξN 〉 ≤ C + 2〈ξN , (Gβ

N − Eβ
N )ξN 〉

= C + 2
[
〈ξN , e−B(η)UHNU

∗eB(η)ξN 〉 − Eβ
N

]

= C + 2
[
〈ψN ,HNψN 〉 − Eβ

N

]
≤ C(1 + ζ)

To control the expectation of the error term in (3.18), we need stronger estimates on
excitation vectors associated with low-energy states. We prove the required bounds in
the next proposition, combining (3.14) with the commutator estimate (3.15). We remark
that the proposition also holds with the same proof in the case β = 1.

Proposition 4.2. Let V ∈ L3(R3) be non-negative, compactly supported and spherically

symmetric and assume that the coupling constant κ ≥ 0 is small enough. Let Eβ
N be the

ground state energy of the Hamilton operator (1.1). Let ψN ∈ L2
s(Λ

N ) with ‖ψN‖ = 1

belong to the spectral subspace of the Hamiltonian (1.1), with energies below Eβ
N + ζ, for

some ζ > 0. In other words, assume that

ψN = 1
(−∞;Eβ

N+ζ]
(Hβ

N )ψN

Let ξN = e−B(η)UψN be the excitation vector associated with ψN . Then there exists a
constant C > 0 such that

〈ξN , (N+ + 1)(K + 1)ξN 〉 ≤ 〈ξN , (N+ + 1)(Hβ
N + 1)ξN 〉 ≤ C(1 + ζ2)

Proof. The first inequality follows from VN ≥ 0 and since K,VN both commute with
N+. We focus on the second inequality. From (3.14), we find

〈ξN , (N+ + 1)(Hβ
N + 1)ξN 〉 = 〈ξN (N+ + 1)1/2(Hβ

N + 1)(N+ + 1)1/2ξN 〉
≤ 2〈ξN , (N+ + 1)1/2(G̃β

N + C)(N+ + 1)1/2ξN 〉

where we introduced the notation G̃β
N = Gβ

N − Eβ
N . Next, we commute the operator

(G̃β
N + C) to the right, through the factor (N+ + 1)1/2. We obtain

〈ξN , (N+ + 1)(Hβ
N + 1)ξN 〉 ≤ 2〈ξN , (N+ + 1)(G̃β

N + C)ξN 〉
+ 2
〈
ξN , (N+ + 1)1/2

[
Gβ
N , (N+ + 1)1/2

]
ξN

〉 (4.2)
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With Cauchy-Schwarz, the first term on the r.h.s. of (4.2) can be estimated by
∣∣∣〈ξN , (N+ + 1)(G̃β

N + C)ξN 〉
∣∣∣

≤ 〈ξN , (N+ + 1)(G̃β
N + C)−1(N+ + 1)ξN 〉1/2〈ξN , (G̃β

N + C)3ξN 〉1/2

Since, by (3.14), (G̃β
N + C) ≥ c(N+ + 1) for some c > 0 (choosing C > 0 large enough),

and since ξN = e−B(η)UψN is in the spectral subspace of G̃β
N , associated with the interval

[0; ζ], we conclude that
∣∣∣〈ξN , (N+ + 1)(G̃β

N + C)ξN 〉
∣∣∣ ≤ 〈ξN , (N+ + 1)ξN 〉1/2(ζ + C)3/2 ≤ C(1 + ζ2) (4.3)

where we used Prop. 4.1.
As for the commutator term on the r.h.s. of (4.2), we use the representation

1√
z
=

1

π

∫ ∞

0

1√
t

1

t+ z
dt .

We find

i
[
Gβ
N , (N+ + 1)1/2

]
=

1

π

∫ ∞

0
dt

√
t

1

t+N+ + 1
i[Gβ

N ,N+]
1

t+N+ + 1

=
1

π

∫ ∞

0
dt

√
t

1

t+N+ + 1
(Hβ

N + 1)1/2A(Hβ
N + 1)1/2

1

t+N+ + 1

where we defined the operator A = (Hβ
N +1)−1/2i[Gβ

N ,N+](Hβ
N +1)−1/2. It follows from

(3.15) that A is a bounded operator, with norm ‖A‖ ≤ C, uniformly in N . Hence, we

have (since [Hβ
N ,N+] = 0)

∣∣∣〈ξN ,(N+ + 1)1/2[Gβ
N , (N+ + 1)1/2]ξN 〉

∣∣∣

≤ 1

π

∫ ∞

0
dt

√
t
∣∣∣
〈
ξN ,

(N+ + 1)1/2(Hβ
N + 1)1/2

t+N+ + 1
A(Hβ

N + 1)1/2

t+N+ + 1
ξN

〉∣∣∣

≤ 1

π

∫ ∞

0
dt

√
t

1

(t+ 1)2

∥∥∥(N+ + 1)1/2(Hβ
N + 1)1/2ξN

∥∥∥
∥∥∥(Hβ

N + 1)1/2ξN

∥∥∥

Therefore, for every δ > 0 we find C > 0 such that
∣∣∣〈ξN , (N+ + 1)1/2[Gβ

N , (N+ + 1)1/2]ξN 〉
∣∣∣

≤ δ〈ξN , (N+ + 1)(Hβ
N + 1)ξN 〉+ C〈ξN , (Hβ

N + 1)ξN 〉
≤ δ〈ξN , (N+ + 1)(Hβ

N + 1)ξN 〉+ C(1 + ζ)

by Prop. 4.1. Choosing δ = 1/2, we conclude from (4.2) and (4.3) that

〈ξN , (N+ + 1)(Hβ
N + 1)ξN 〉 ≤ C(1 + ζ2)
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5 Diagonalization of quadratic Hamiltonian

From Theorem 3.2, we recall that the excitation Hamiltonian Gβ
N = e−B(η)UHNU

∗eB(η)

can be decomposed as
Gβ
N = Cβ

N +Qβ
N + Eβ

N (5.1)

with the constant Cβ
N defined in (3.16), the quadratic part

Qβ
N =

∑

p∈Λ∗
+

[
Fpb

∗
pbp +

1

2
Gp(b

∗
pb

∗
−p + bpb−p)

]
(5.2)

with the coefficients Fp, Gp defined in (3.17) and with the error term Eβ
N satisfying

± Eβ
N ≤ CN (β−1)/2(N+ + 1)(K + 1), (5.3)

The goal of this section is to diagonalize the quadratic operator (5.2). To this end,

we will conjugate the excitation Hamiltonian Gβ
N with one more generalized Bogoliubov

transformation.
In order to define the Bogoliubov transformation that is going to diagonalize Qβ

N we
need, first of all, to establish some properties of the coefficients Fp, Gp defined in (3.17).

Lemma 5.1. Let V ∈ L3(R3) be non-negative, compactly supported and spherically
symmetric. If the coupling constant κ ≥ 0 is small enough, we find a constant C > 0
such that p2/2 ≤ Fp ≤ C(1 + p2),

|Gp| ≤
Cκ

p2
(5.4)

and
|Gp|
Fp

≤ C

|p|4 ≤ 1

2
(5.5)

for all p ∈ Λ∗
+.

Proof. Since σ2p + γ2p ≥ 1, and since there is a constant C > 0 such that |V̂ (p/Nβ)| ≤ C
and |σp|, γp ≤ C for all p ∈ Λ∗

+ (using the boundedness (3.9) of the coefficients ηp), we
easily find that Fp ≥ p2 −Cκ ≥ p2/2, if κ > 0 is small enough (recall that |p| > (2π) on
Λ∗
+). To bound Gp, we write

Gp = 2p2ηp + κV̂ (p/Nβ) +
κ

N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)η̃q + G̃N,p (5.6)

where G̃N,p is such that |G̃N,p| ≤ Cκp−2 for all p ∈ Λ∗
+. Here we used the fact that

|σpγp − ηp| = | sinh(ηp) cosh(ηp)− ηp|

=

∣∣∣∣
1

2
sinh(2ηp)− ηp

∣∣∣∣ ≤
1

2

∑

n≥1

22n+1|ηp|2n+1

(2n+ 1)!
≤ Cκ3

|p|6
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and that, similarly,

|(σp + γp)
2 − 1| ≤ Cκ

p2

To estimate the other terms in (5.6), we use the relation (3.12). We obtain that

Gp = 2NλN,ℓχ̂ℓ(p) + 2λN,ℓ

∑

q∈Λ∗

χ̂ℓ(p− q)η̃q + G̃N,p (5.7)

From Lemma 3.1, part i), we have NλN,ℓ ≤ Cκ. A simple computation shows that

χ̂ℓ(p) =

∫

|x|≤ℓ
e−ip·xdx =

4π

|p|2
(
sin(ℓ|p|)

|p| − ℓ cos(ℓ|p|)
)

(5.8)

which, in particular, implies that |χ̂ℓ(p)| ≤ C|p|−2. Similarly, we find

λN
∑

q∈Λ∗

χ̂ℓ(p− q)η̃q = NλN,ℓ

∫

Λ
χℓ(x)wN,ℓ(x)e

−ip·xdx = NλN,ℓ

∫

|x|≤ℓ
wN,ℓ(x)e

−ip·xdx

Switching to spherical coordinates and integrating by parts, we find (abusing slightly
the notation by writing wN,ℓ(r) to indicate wN,ℓ(x) for |x| = r),

∫

|x|≤ℓ
wN,ℓ(x)e

−ip·xdx = 2π

∫ ℓ

0
dr r2wN,ℓ(r)

∫ π

0
dθ sin θ e−i|p|r cos θ

=
4π

|p|

∫ ℓ

0
dr rwN,ℓ(r) sin(|p|r)

= − 4π

|p|2 lim
r→0

rwN,ℓ(r) +
4π

|p|2
∫ ℓ

0
dr

d

dr
(rwN,ℓ(r)) cos(|p|r)

With (3.7) and using again the bound NλN,ℓ ≤ Cκ, we conclude that there is a constant
C > 0 such that ∣∣∣∣∣∣

λN
∑

q∈Λ∗

χ̂ℓ(p − q)η̃q

∣∣∣∣∣∣
≤ Cκ

p2
(5.9)

for all p ∈ Λ∗
+. From (5.7), we obtain that there is C > 0 such that |Gp| ≤ Cκ/p2.

Together with the estimate |Fp| ≥ p2/2, we find the desired bound, choosing κ > 0
sufficiently small.

Since by Lemma 5.1 we know that |Gp|/Fp ≤ 1/2 for all p ∈ Λ∗
+, we can define a

sequence τp by setting

tanh(2τp) = −Gp

Fp

for all p ∈ Λ∗
+. Equivalently,

τp =
1

4
log

1−Gp/Fp

1 +Gp/Fp
(5.10)
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This easily implies that

|τp| ≤ C
|Gp|
Fp

≤ Cκ

|p|4 (5.11)

for all p ∈ Λ∗
+. Let us stress the fact that the fast decay of τ for large momenta (which

will be crucial below) is a consequence of the fact that the coefficients ηp satisfy the
relation (3.12).

We use the coefficients τp (which are, by definition, real) to define a new generalized
Bogoliubov transformation. As in (2.17), we construct the antisymmetric operator

B(τ) =
1

2

∑

p∈Λ∗
+

τp(b
∗
pb

∗
−p − bpb−p)

and the generalized Bogoliubov transformation

eB(τ) = exp


1
2

∑

p∈Λ∗
+

τp(b
∗
pb

∗
−p − bpb−p)


 (5.12)

With (5.12), we define a new excitation Hamiltonian Mβ
N : F≤N

+ → F≤N
+ by setting

Mβ
N = e−B(τ)e−B(η)UHNU

∗eB(η)eB(τ)

= e−B(τ)Gβ
Ne

B(τ)

= Cβ
N + e−B(τ)Qβ

Ne
B(τ) + e−B(τ)Eβ

Ne
B(τ)

(5.13)

In the next lemma we show that, with (5.10), the action of the generalized Bogoliubov

transformation (5.12) approximately diagonalizes the quadratic operator Qβ
N .

Lemma 5.2. Let V ∈ L3(R3) be non-negative, compactly supported and spherically
symmetric and assume that the coupling constant κ ≥ 0 is small enough, so that the
bounds of Lemma 5.1 hold true. Let Qβ

N be defined as in (5.2) and τp as in (5.10). Then

e−B(τ)Qβ
Ne

B(τ) =
1

2

∑

p∈Λ∗
+

[
−Fp +

√
F 2
p −G2

p

]
+
∑

p∈Λ∗
+

√
F 2
p −G2

p a
∗
pap + δN,β

where the self-adjoint operator δN,β is such that

± δN,β ≤ CN−1(N+ + 1)(K + 1) (5.14)

Proof. For p ∈ Λ∗
+, we define a remainder operator dp through

e−B(τ)bpe
B(τ) = cosh(τp)bp + sinh(τp)b

∗
−p + dp (5.15)

With (5.15) and using the short-hand notation γ̃p = cosh τp, σ̃p = sinh τp, we can write

e−B(τ)Qβ
Ne

B(τ) =
∑

p∈Λ∗
+

(
Fpσ̃

2
p +Gpγ̃pσ̃p

)
+
∑

p∈Λ∗
+

[
Fp(γ̃

2
p + σ̃2p) + 2Gpσ̃pγ̃p

]
b∗pbp

+
1

2

∑

p∈Λ∗
+

[
2Fpγ̃pσ̃p +Gp(γ̃

2
p + σ̃2p)

]
(bpb−p + b∗pb

∗
−p) + δ̃N,β

(5.16)
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where

δ̃N,β =
∑

p∈Λ∗
+

Fpd
∗
pe

−B(τ)bpe
B(τ) +

∑

p∈Λ∗
+

Fp(γ̃pb
∗
p + σ̃pbp)dp

+
1

2

∑

p∈Λ∗
+

Gp

[
d∗pe

−B(τ)b∗−pe
B(τ) + h.c.

]
+

1

2

∑

p∈Λ∗
+

Gp

[
(γ̃pb

∗
p + σ̃pb−p)d

∗
−p + h.c.

]

(5.17)

With the definition (5.10), (5.16) simplifies, after a lengthy but straightforward compu-
tation, to

e−B(τ)Qβ
Ne

B(τ) =
1

2

∑

p∈Λ∗
+

[
− Fp +

√
F 2
p −G2

p

]
+
∑

p∈Λ∗
+

√
F 2
p −G2

p b
∗
pbp + δ̃N,β

From the bound Fp ≤ C(1 + p2) in Lemma 5.1 we obtain

∣∣∣
∑

p∈Λ∗
+

√
F 2
p −G2

p

[
〈ξ, b∗pbp ξ〉 − 〈ξ, a∗papξ〉

]∣∣∣ =
∣∣∣ 1
N

∑

p∈Λ∗
+

√
F 2
p −G2

p 〈ξ, a∗pN+apξ〉
∣∣∣

≤ 1

N

∑

p∈Λ∗
+

(p2 + 1)‖ap(N+ + 1)1/2ξ‖2

=
1

N
〈ξ, (N+ + 1)(K + 1)ξ〉

for all ξ ∈ F≤N
+ . Hence, the claim follows if we can show that the operator δ̃N,β defined

in (5.17) satisfies (5.14). To reach this goal we notice that, by Lemma 2.6,

e−B(τ)bpe
B(τ) =

∑

n∈N

(−1)n

n!
ad

(n)
B(τ)(bp)

and therefore

dp =
∑

n∈N

1

(2n)!

[
ad

(2n)
B(τ)(bp)− τ2np bp

]
−
∑

n∈N

1

(2n+ 1)!

[
ad

(2n+1)
B(τ) (bp)− τ2n+1

p b∗−p

]

Let us now consider the expectation of the first term on the r.h.s. of (5.17). We find

∣∣∣
∑

p∈Λ∗
+

Fp〈dpξ, e−B(τ)bpe
B(τ)ξ〉

∣∣∣

≤
∑

n,m∈N

1

n!m!

∑

p∈Λ∗
+

Fp ‖(N+ + 1)−1/2
[
ad

(n)
B(τ)(bp)− τnp b

♯n
αnp

]
ξ‖

× ‖(N+ + 1)1/2ad
(m)
B(τ)

(bp)ξ‖

(5.18)

where αn = 1 and ♯n = · if n is even while αn = −1 and ♯n = ∗ if n is odd.
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From Lemma 2.5 it follows that, for any m ∈ N, ad
(m)
B(τ)(bp) is given by the sum of

2mm! terms of the form

Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (τ

j1 , . . . , τ jk1 ; τ ℓ1p ) (5.19)

where i1, k1, ℓ1 ∈ N, j1, . . . , jk1 ∈ N\{0}, and where each Λj is either a factor (N −
N+)/N , (N + 1−N+)/N or a Π(2)-operator having the form

N−pΠ
(2)
♯,♭ (τ

q1 , . . . , τ qp) (5.20)

for some p, q1, . . . , qp ∈ N\{0}. Distinguishing the cases ℓ1 ≥ 1 and ℓ1 = 0, this implies
that

‖(N+ + 1)1/2ad
(m)
B(τ)(bp)ξ‖ ≤ Cmκmm!

[
|p|−4‖(N+ + 1)ξ‖ + ‖bp(N+ + 1)1/2ξ‖

]
(5.21)

Similarly, the operator ad
(n)
B(τ)(bp) can be expanded in the sum of 2nn! contributions

of the form (5.19). Part iv) of Lemma 2.5 implies that exactly one of these contributions
will have the form (

N −N+

N

)n/2(N + 1−N+

N

)n/2

τnp bp (5.22)

if n is even or the form

−
(
N −N+

N

)(n+1)/2 (N + 1−N+

N

)(n−1)/2

τnp b
∗
−p (5.23)

if n is odd. All other terms will have either k1 6= 0 or at least one of the Λ-operator
having the form (5.20). Notice that the main part of the contribution (5.22), (5.23)
is exactly τnp bp if n is even and −τnp b∗−p if n is odd and it is canceled exactly by the

subtraction of τnp b
♯n
αnp. We obtain

‖(N+ + 1)−1/2
[
ad

(n)
B(τ)(bp)− τnp b

♯n
αnp

]
ξ‖

≤ Cnκnn!N−1
[
|p|−4‖(N+ + 1)ξ‖+ ‖bp(N+ + 1)1/2ξ‖

] (5.24)

Inserting the last inequality and (5.21) in (5.18), and using the estimate Fp ≤ C(p2 +1)
from Lemma 5.1, we conclude that the expectation of the first term on the r.h.s. of
(5.17) is bounded by

∣∣∣
∑

p∈Λ∗
+

Fp〈dpξ, e−B(τ)bpe
B(τ)ξ〉

∣∣∣ ≤ CN−1〈ξ, (N+ + 1)(K + 1)ξ〉

The expectation of the second term on the r.h.s. of (5.17) can be bounded similarly.
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To bound the expectation of the third term on the r.h.s. of (5.17) we expand

∣∣∣
∑

p∈Λ∗
+

Gp〈dpξ, e−B(τ)b∗−pe
B(τ)ξ〉

∣∣∣

=
∑

p∈Λ∗
+

|Gp|‖(N+ + 1)−1/2dpξ‖‖(N+ + 1)1/2e−B(τ)b∗−pe
B(τ)ξ‖

≤ Cκ‖(N+ + 1)ξ‖
∑

n≥0

1

n!

∑

p∈Λ∗
+

|p|−2
∥∥∥(N+ + 1)−1/2

[
ad

(n)
B(τ)(bp)− τnp b

♯n
αnp

]
ξ
∥∥∥

where we used (twice) Lemma 2.4 and the bound |Gp| ≤ Cκ|p|−2 from Lemma 5.1.
Inserting (5.24), we find

∣∣∣
∑

p∈Λ∗
+

Gp〈dpξ, e−B(τ)b∗−pe
B(τ)ξ〉

∣∣∣ ≤ CN−1‖(N+ + 1)ξ‖2

if κ > 0 is small enough. The last term on the r.h.s. of (5.17) can be controlled
similarly.

Next, we prove precise estimates for the constant term and for the coefficients of the
diagonal part of Mβ

N , as defined in (5.13).

Lemma 5.3. Let V ∈ L3(R3) be non-negative, compactly supported and spherically
symmetric and assume that the coupling constant κ ≥ 0 is small enough, so that the
bounds of Lemma 5.1 hold true (with Fp, Gp defined as in (3.17)). Suppose that Cβ

N is
defined as in (3.16). Then, for N → ∞,

Cβ
N +

1

2

∑

p∈Λ∗
+

[
−Fp +

√
F 2
p −G2

p

]

= 4π(N − 1)aβN +
1

2

∑

p∈Λ∗
+

[
−p2 − κV̂ (0) +

√
|p|4 + 2|p|2κV̂ (0) +

κV̂ 2(0)

2p2

]
+O(N−α)

(5.25)

with aβN as defined in (1.5) and for all 0 < α < β such that α ≤ (1−β)/2. Furthermore,

on F≤N
+ , we have

∑

p∈Λ∗
+

√
F 2
p −G2

p a
∗
pap =

∑

p∈Λ∗
+

√
p4 + 2p2κV̂ (0)a∗pap + ϑN,β (5.26)

where
±ϑN,β ≤ CN−α(N+ + 1)2

for all α ≤ min(β, (1 − β)).
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Proof. From (3.16) and from the definition of the coefficients Fp, Gp in (3.17) we obtain

Cβ
N − 1

2

∑

p∈Λ∗
+

Fp =
(N − 1)

2
κV̂ (0)− 1

2

∑

p∈Λ∗
+

[
p2 + κV̂ (p/Nβ)

]
+

κ

2N

∑

p,q∈Λ∗
+

V̂ (p/Nβ)ηpηq

On the other hand, setting

Ap = − 2
[
κV̂ (p/Nβ)(γp + σp)

2 + 2p2γpσp

] κ
N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)η̃q

−
[ κ
N

∑

q∈Λ∗

V̂ ((p− q)/Nβ)η̃q

]2 (5.27)

we find that
F 2
p −G2

p = |p|4 + 2p2κV̂ (p/Nβ) +Ap (5.28)

Notice that with (3.9) and (3.11), we have

∣∣∣ κ
N

∑

q∈Λ∗

V̂ ((p− q)/Nβ)η̃q

∣∣∣ ≤ C
κ2

N

∑

q∈Λ∗

|V̂ ((p− q)/Nβ)|
q2 + 1

≤ Cκ2Nβ−1 (5.29)

which implies that
|Ap| ≤ CNβ−1 (5.30)

for every fixed p ∈ Λ∗. Choosing κ > 0 so small that |p|4 + 2p2κV̂ (p/Nβ) and |p|4 +
2p2κV̂ (p/Nβ) + Ap are positive and bounded away from 0, uniformly in p ∈ Λ∗

+, we
observe that
√

|p|4 + 2p2κV̂ (p/Nβ) +Ap =

√
|p|4 + 2p2κV̂ (p/Nβ)

+
Ap√

|p|4 + 2p2κV̂ (p/Nβ) +Ap +

√
|p|4 + 2p2κV̂ (p/Nβ)

The denominator in the last term is such that

2p2 ≤
√

|p|4 + 2p2κV̂ (p/Nβ) +Ap +

√
|p|4 + 2p2κV̂ (p/Nβ)

≤ 2p2

[
1 + C

(
Ap

|p|4 +
κV̂ (p/Nβ)

p2

)]

This implies that

Ap

2p2

[
1− C

(
Ap

|p|4 +
κV̂ (p/Nβ)

p2

)]

≤ Ap√
|p|4 + 2p2κV̂ (p/Nβ) +Ap +

√
|p|4 + 2p2κV̂ (p/Nβ)

≤ Ap

2p2

29



for all p ∈ Λ∗
+. Since, from (5.30),

∑

p∈Λ∗
+

A2
p

|p|6 ≤ CN2(β−1), and
∑

p∈Λ∗
+

Ap|V̂ (p/Nβ)|
|p|4 ≤ CNβ−1

we conclude that

Cβ
N+

1

2

∑

p∈Λ∗
+

[
− Fp +

√
F 2
p −G2

p

]

=
(N − 1)

2
κV̂ (0) +

1

2

∑

p∈Λ∗
+

[
−p2 − κV̂ (p/Nβ) +

√
|p|4 + 2p2κV̂ (p/Nβ)

]

+
∑

p∈Λ∗
+


 Ap

4p2
+

κ

2N

∑

q∈Λ∗
+

V̂ ((p− q)/Nβ)ηpηq


+O(Nβ−1)

(5.31)

We still have to compute

B :=
∑

p∈Λ∗
+


 Ap

4p2
+

κ

2N

∑

q∈Λ∗
+

V̂ ((p − q)/Nβ)ηpηq


 (5.32)

To this end, we decompose Ap = A1,p +A2,p with

A1,p = −
[
κV̂ (p/Nβ) + 2p2ηp +

κ

2N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)η̃q

][2κ
N

∑

q∈Λ∗
+

V̂ ((p− q)/Nβ)η̃q

]

In other words, we define A1,p by replacing, in (5.27), (γp + σp)
2 by 1 and γpσp by ηp;

recalling the bound (5.29), we conclude that the rest term A2,p is such that

∑

p∈Λ∗
+

A2,p

p2
≤ CNβ−1 (5.33)

From (5.32), we obtain

B = −
∑

p∈Λ∗
+

1

p2

[ κ
2N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)η̃q

]

×
[
κV̂ (p/Nβ) + p2ηp +

κ

2N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)η̃q

]

+O(Nβ−1)

Notice here that, in contrast with (5.32), the sum on the r.h.s. includes the point q = 0
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(which gives a contribution of order Nβ−1). Using the relation (3.12), we find

B = −
∑

p∈Λ∗
+

1

p2

[ κ
2N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)η̃q

]

×
[κ
2
V̂ (p/Nβ) +NλN,ℓχ̂ℓ(p) + λN,ℓ

∑

q∈Λ∗

χ̂ℓ(p − q)η̃q

]

+O(Nβ−1)

With (5.8) and the bounds (5.9) and (5.29), we can simplify the last identity to

B = −
∑

p∈Λ∗
+

κV̂ (p/Nβ)

2p2
κ

2N

∑

q∈Λ∗

V̂ ((p− q)/Nβ)η̃q +O(Nβ−1)

= −
∑

p∈Λ∗
+

κV̂ (p/Nβ)

2p2
κ

2N

∑

q∈Λ∗
+

V̂ ((p − q)/Nβ)ηq +O(Nβ−1)

(5.34)

since the contribution from the term with q = 0 is of the order Nβ−1 (and since η̃q = ηq
for q 6= 0). The r.h.s. is of the order N2β−1 (the sum over q is of the order Nβ−1, but it
does not decay in p; summing over p produces an additional factor Nβ). For β < 1/2,
the whole r.h.s. is negligible, in the limit N → ∞. For β ≥ 1/2, on the other hand, we
have to expand it further. To this end, we use again the relation (3.12) to write

q2ηq = − κ

2
V̂ (q/Nβ)− κ

2N

∑

q2∈Λ∗

V̂ ((q − q2)/N
β)η̃q2

+NλN,ℓχ̂ℓ(q) + λN,ℓ

∑

q2∈Λ∗

χ̂ℓ(q − q2)η̃q2

(5.35)

Inserting this identity in the r.h.s. of (5.34) we notice that the contribution of the last
two terms on the r.h.s. is negligible, in the limit of large N (after summing over p, q, q2,
it is of the order Nβ−1 ≪ 1). Also the contribution associated with q2 = 0 in the second
term on the r.h.s. of (5.35) vanishes, as N → ∞ (it is of order N2(1−β)). We arrive at

B =
∑

p∈Λ∗
+

κV̂ (p/Nβ)

2p2
κ

2N

∑

q∈Λ∗

V̂ ((p− q)/Nβ)
κV̂ (q/Nβ)

2q2

+
∑

p∈Λ∗
+

κV̂ (p/Nβ)

2p2
κ

2N

∑

q1∈Λ∗

V̂ ((p − q1)/N
β)

κ

2q21N

∑

q2∈Λ∗
+

V̂ ((q1 − q2)/N
β)ηq2

+O(Nβ−1)

(5.36)

While the first term on the r.h.s. is of the order N2β−1, the second term is now of the
order N3β−2. If β < 2/3, it is negligible. If instead β ≥ 2/3, we iterate again the same
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procedure, expressing ηq2 using (5.35). After k iterations, we obtain

B =
k∑

j=1

(−1)j+1κj+2

2j+2N j

∑

p,q1,...,qj∈Λ∗
+

V̂ (p/Nβ)

p2
V̂ ((p− q1)/N

β)

q21

V̂ ((q1 − q2)/N
β)

q22
. . .

. . .
V̂ ((qj−1 − qj)/N

β)

q2j
V̂ (qj/N

β)

+O(N (k+1)β−k) +O(Nβ−1).

(5.37)

Choosing k = mβ the largest integer with mβ ≤ 1/(1 − β) + min(1/2, β/(1 − β)), we
obtain that (k + 1)β − k < −min((1 − β)/2, β). Inserting (5.37) in (5.31), we obtain

Cβ
N+

1

2

∑

p∈Λ∗
+

[
− Fp +

√
F 2
p −G2

p

]

=
(N − 1)

2
κV̂ (0) +

mβ∑

j=1

(−1)j+1κj+2

2j+2N j

×
∑

p,q1,...,qj∈Λ∗
+

V (p/Nβ)

p2
V̂ ((p − q1)/N

β)

q21
. . .

V̂ ((qj−1 − qj)/N
β)

q2j
V̂ (qj/N

β)

+
1

2

∑

p∈Λ∗
+

[
− p2 − κV̂ (p/Nβ) +

√
|p|4 + 2p2κV̂ (p/Nβ)

]
+O(N−α)

for all α < min(β, (1 − β)/2). Adding and subtracting
∑

p∈Λ∗
+
κ2V̂ 2(p/Nβ)/(4p2) and

comparing with the definition (1.5) of aβN , we get

Cβ
N+

1

2

∑

p∈Λ∗
+

[
− Fp +

√
F 2
p −G2

p

]

= 4π(N − 1)aβN

+
1

2

∑

p∈Λ∗
+

[
− p2 − κV̂ (p/Nβ) +

√
|p|4 + 2p2κV̂ (p/Nβ) +

κ2V̂ 2(p/Nβ)

2p2

]
+O(N−α)

(5.38)

for every α < min(β, (1 − β)/2). Expanding the square root in the last sum as
√

|p|4 + 2p2κV̂ (p/Nβ)

= p2

{
1 +

κV̂ (p/Nβ)

p2
− κ2V̂ 2(p/Nβ)

2|p|4

+
3κ3V̂ 3(p/Nβ)

|p|6
∫ 1

0
ds1 s

2
1

∫ 1

0
ds2 s2

∫ 1

0
ds3

1
[
1 + 2κs1s2s3V̂ (p/Nβ)

p2

]5/2





(5.39)
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it is easy to check that

∣∣∣− p2 − κV̂ (p/Nβ) +

√
|p|4 + 2p2κV̂ (p/Nβ) +

κ2V̂ 2(p/Nβ)

2p2

∣∣∣ ≤ C

|p|4

uniformly in N and, comparing (5.39) with a similar expansion with V̂ (p/Nβ) replaced
by V̂ (0), that

∣∣∣
[
− p2 − κV̂ (p/Nβ) +

√
|p|4 + 2p2κV̂ (p/Nβ) +

κ2V̂ 2(p/Nβ)

2p2

]

−
[
− p2 − κV̂ (0) +

√
|p|4 + 2p2κV̂ (0) +

κ2V̂ 2(0)

2p2

]∣∣∣ ≤ CN−β|p|−3

Here, we used the fact that κ > 0 is so small that the denominator in the integral on
the r.h.s. of (5.39) is bounded away from 0, uniformly in p ∈ Λ∗

+. Separating the sum
in two regions |p| ≤ Nβ and |p| ≥ Nβ, we conclude that

∣∣∣
∑

p∈Λ∗
+

[
−p2 − κV̂ (p/Nβ) +

√
|p|4 + 2p2κV̂ (p/Nβ) +

κ2V̂ 2(p/Nβ)

2p2

]

−
∑

p∈Λ∗
+

[
−p2 − κV̂ (0) +

√
|p|4 + 2p2κV̂ (0) +

κ2V̂ 2(0)

2p2

] ∣∣∣ ≤ CN−α

for every α < β. Inserting in (5.38), we obtain (5.25).
Let us now prove (5.26). From (5.28), we find

∑

p∈Λ∗
+

√
F 2
p −G2

p a
∗
pap

=
∑

p∈Λ∗
+

√
|p|4 + 2p2κV̂ (p/Nβ) +Ap a

∗
pap

=
∑

p∈Λ∗
+

√
|p|4 + 2p2κV̂ (p/Nβ) a∗pap

+
∑

p∈Λ∗
+

Ap√
|p|4 + 2p2κV̂ (p/Nβ) +Ap +

√
|p|4 + 2p2κV̂ (p/Nβ)

a∗pap

=: B1 + B2

(5.40)

With (5.30), we find

|〈ξ,B2ξ〉| ≤
∑

p∈Λ∗
+

|Ap|√
|p|4 + 2p2κV̂ (p/Nβ) +Ap +

√
|p|4 + 2p2κV̂ (p/Nβ)

‖apξ‖2

≤ CNβ−1〈ξ,N+ξ〉
(5.41)
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As for B1, we write

B1 =
∑

p∈Λ∗
+

√
|p|4 + 2p2κV̂ (0) + 2N−βp2κ

∫ 1

0
ds p · ∇V̂ (s p/Nβ) a∗pap

=
∑

p∈Λ∗
+

√
|p|4 + 2p2κV̂ (0) a∗pap

+
∑

p∈Λ∗

2N−βp2κ
∫ 1
0 ds p · ∇V̂ (s p/Nβ)√

|p|4 + 2p2κV̂ (0) +

√
|p|4 + 2p2κV̂ (p/Nβ)

a∗pap

=
∑

p∈Λ∗
+

√
|p|4 + 2p2κV̂ (0) a∗pap + B̃1

The expectation of the second term can be bounded by

|〈ξ, B̃1ξ〉| ≤ CN−β
∑

p∈Λ∗
+

|p|‖apξ‖2 ≤ CN−β
∑

p∈Λ∗
+

(1 + p2)‖apξ‖2 ≤ CN−β〈ξ, (K + 1)ξ〉

Combining the last bound with (5.40) and (5.41) we obtain

∑

p∈Λ∗
+

√
F 2
p −G2

p a
∗
pap =

∑

p∈Λ∗
+

√
|p|4 + 2κp2V̂ (0) a∗pap + ϑN,β

where ϑN,β is such that

±ϑN,β ≤ CN−α(Hβ
N + 1)(N+ + 1)

for all α ≤ min(β, (1 − β)).

To show that the error term EN appearing in the decomposition (5.1) of Gβ
N remains

negligible after conjugation with the generalized Bogoliubov transformation eB(τ), we
use the following lemma.

Lemma 5.4. Let V ∈ L3(R3) be non-negative, spherically symmetric, compactly sup-
ported and suppose that the coupling constant κ > 0 is small enough. Suppose that, for
p ∈ Λ∗

+, τp is defined as in (5.10). Then there exists C > 0 such that

e−B(τ)(N+ + 1)(Hβ
N + 1)eB(τ) ≤ C(N+ + 1)(Hβ

N + 1) (5.42)

Proof. We apply Gronwall’s inequality. For ξ ∈ F≤N
+ and s ∈ R, we consider

∂s〈ξ, e−sB(τ)(Hβ
N + 1)(N+ + 1)esB(τ)ξ〉 = −〈ξ, e−sB(τ)[B(τ), (Hβ

N + 1)(N+ + 1)]esB(τ)ξ〉

We have

[B(τ), (Hβ
N + 1)(N+ + 1)] = [B(τ),K](N+ + 1)

+ [B(τ),VN ](N+ + 1) + (Hβ
N + 1)[B(τ),N+]

(5.43)
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Consider first the last term on the r.h.s. of (5.43). With

[B(τ),N+] =
∑

p∈Λ∗
+

τp(bpb−p + b∗pb
∗
−p)

we find

〈ξ, e−sB(τ)(Hβ
N + 1)[B(τ),N+]e

sB(τ)ξ〉
=

∑

p,q∈Λ∗
+

τpq
2〈ξ, e−sB(τ)a∗qaq(bpb−p + b∗pb

∗
−p)e

sB(τ)ξ〉

+
∑

p∈Λ∗
+

τp〈ξ, e−sB(τ)VN (bpb−p + b∗pb
∗
−p)e

sB(τ)ξ〉

= I + II

(5.44)

where

|I| ≤
∑

p,q∈Λ∗
+

τpq
2‖aq(N+ + 1)1/2esB(τ)ξ‖

×
[
‖(bpb−p + b∗pb

∗
−p)(N+ + 1)−1/2aqe

sB(τ)ξ‖+ δp,q‖ξ‖
]

≤ C
∑

p,q∈Λ∗
+

τpq
2‖aq(N+ + 1)1/2esB(τ)ξ‖2 +

∑

p

τpp
2‖ap(N+ + 1)1/2ξ‖‖ξ‖

≤ C‖K1/2(N+ + 1)1/2esB(τ)ξ‖2 + ‖(N+ + 1)esB(τ)ξ‖‖ξ‖
≤ C〈esB(τ)ξ, (N+ + 1)(K + 1)esB(τ)ξ〉

and, expressing the potential energy operator in position space,

|II| ≤
∑

p∈Λ∗
+

τp

∫
dxdy N−1+3βV (Nβ(x− y))

∣∣∣〈ǎxǎyesB(τ)ξ, ǎxǎy(bpb−p + b∗pb
∗
−p)e

sB(τ)ξ〉
∣∣∣

≤
∑

p∈Λ∗
+

τp

∫
dxdy N−1+3βV (Nβ(x− y))‖ǎxǎy(N+ + 1)1/2esB(τ)ξ‖

×
[
‖(bpb−p + b∗pb

∗
−p)(N+ + 1)−1/2ǎxǎye

sB(τ)ξ‖+ ‖ǎyesB(τ)ξ‖+ ‖ǎxesB(τ)ξ‖
]

≤ C

∫
dxdy N−1+3βV (Nβ(x− y))‖ǎxǎy(N+ + 1)1/2esB(τ)ξ‖2

+ C‖(N+ + 1)1/2esB(τ)ξ‖2

≤ C〈ξ, e−sB(τ)(VN + 1)(N+ + 1)esB(τ)ξ〉

Here we used (5.11) to conclude that
∑

p∈Λ∗
+
|τp| <∞. From (5.44) we obtain that

∣∣∣〈ξ, e−sB(τ)(Hβ
N +1)[B(τ),N+]e

sB(τ)ξ〉
∣∣∣ ≤ C〈ξ, e−sB(τ)(Hβ

N +1)(N++1)esB(τ)ξ〉 (5.45)
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Let us now consider the first term on the r.h.s. of (5.43). Since

[B(τ),K] =
∑

p∈Λ∗
+

p2τp
(
bpb−p + b∗pb

∗
−p

)

we obtain by Cauchy-Schwarz that
∣∣∣〈ξ,e−sB(τ)[B(τ),K](N+ + 1)esB(τ)ξ〉

∣∣∣

≤
∑

p∈Λ∗
+

p2|τp|‖bpb−pe
sB(τ)ξ‖‖(N+ + 1)esB(τ)ξ‖

≤ C‖(N+ + 1)esB(τ)ξ‖
[ ∑

p∈Λ∗
+

‖bp(N+ + 1)1/2esB(τ)ξ‖2
]1/2

≤ C〈ξ, e−sB(τ)(N+ + 1)2esB(τ)ξ〉 ≤ C〈ξ, e−sB(τ)(Hβ
N + 1)(N+ + 1)esB(τ)ξ〉

(5.46)

Here, we used the estimate (5.11) (to make sure that
∑

p∈Λ∗
+
p4τ2p < ∞) and again the

fact that, on F≤N
+ , N+ ≤ CHβ

N .
Finally, let us consider the second term on the r.h.s. of (5.43). It is convenient to

express the potential energy operator VN in position space. We find

〈ξ,e−sB(τ)[B(τ),VN ](N+ + 1)esB(τ)ξ〉

=
κ

2N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))τ̌ (x− y)〈esB(τ)ξ, (b∗xb

∗
y + bxby)(N+ + 1)esB(τ)ξ〉

+
κ

N

∫

Λ×Λ
dxdyN3βV (Nβ(x− y))〈esB(τ)ξ,

[
b∗xb

∗
ya

∗(τ̌y)ǎx + h.c.
]
(N+ + 1)esB(τ)ξ〉

= III + IV

where we set τ̌(x) =
∑

p∈Λ∗
+
τpe

ip·x. Since ‖τ̌‖∞ ≤ ‖τ‖1 ≤ C < ∞ uniformly in N , it is

simple to estimate

|I| ≤ C〈ξ, e−sB(τ)(VN + 1)(N+ + 1)esB(τ)ξ〉

Similarly, since ‖τ̌y‖2 = ‖τ̌‖2 = ‖τ‖2 ≤ C < ∞ independently of y ∈ Λ and of N , we
find

|II| ≤ C〈ξ, e−sB(τ)(VN + 1)(N+ + 1)esB(τ)ξ〉
We conclude therefore that

∣∣∣〈ξ, e−sB(τ)[B(τ),VN ](N+ + 1)esB(τ)ξ〉
∣∣∣ ≤ C〈ξ, e−sB(τ)(VN + 1)(N+ + 1)esB(τ)ξ〉

Combining this bound with (5.45) and (5.46), we obtain from (5.43) that
∣∣∣∂s〈ξ, e−sB(τ)(Hβ

N + 1)(N+ + 1)esB(τ)ξ〉
∣∣∣ ≤ C〈ξ, e−sB(τ)(Hβ

N + 1)(N+ + 1)esB(τ)ξ〉

By Gronwall’s inequality, we arrive at (5.42).
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In the next corollary, we summarize the properties of the excitation Hamiltonian
Mβ

N defined in (5.13) that follow from Lemma 5.2, Lemma 5.3 and Lemma 5.4 above.
This corollary will be the starting point for the proof of Theorem 1.1 in the next section.

Corollary 5.5. Fix 0 < β < 1. Let V ∈ L3(R3) be non-negative, spherically symmetric
and compactly supported with sufficiently small coupling constant κ > 0. Then the
excitation Hamiltonian Mβ

N = e−B(τ)e−B(η)UHNU
∗eB(η)eB(τ) : F≤N

+ → F≤N
+ is such

that

Mβ
N =4π(N − 1)aβN +

1

2

∑

p∈Λ∗
+

[
−p2 − κV̂ (0) +

√
|p|4 + 2|p|2κV̂ (0) +

κV̂ 2(0)

2p2

]

+
∑

p∈Λ∗
+

√
p4 + 2p2κV̂ (0) a∗pap + ρN,β

(5.47)

where, for all 0 < α < β such that α ≤ (1− β)/2 there exists C > 0 with

±ρN,β ≤ CN−α(N+ + 1)(Hβ
N + 1)

Furthermore, let Eβ
N be the ground state energy of the Hamiltonian Hβ

N and let ψN ∈
L2
s(R

3N ) with ‖ψN‖ = 1 belong to the spectral subspace of Hβ
N with energies below Eβ

N+ζ,
for some ζ > 0. In other words, assume that

ψN = 1
(−∞;Eβ

N+ζ]
(Hβ

N )ψN

Let ξN = e−B(τ)e−B(η)UψN ∈ F≤N
+ . Then there exists a constant C > 0 such that

〈ξN , (N+ + 1)(Hβ
N + 1)ξN 〉 ≤ C(1 + ζ2)

6 Proof of Theorem 1.1

Let

Ẽβ
N = 4π(N − 1)aβN +

1

2

∑

p∈Λ∗
+

[
−p2 − κV̂ (0) +

√
|p|4 + 2|p|2κV̂ (0) +

κV̂ 2(0)

2p2

]

with aβN defined as in (1.5). To prove Theorem 1.1, we will compare the eigenvalues of

Mβ
N − Ẽβ

N (which of course coincide with the eigenvalues of Hβ
N − Ẽβ

N ) with those of the
diagonal quadratic operator

D =
∑

p∈Λ∗
+

εpa
∗
pap, (6.1)

acting on F≤N
+ . Here we defined εp = (|p|4 + 2p2κV̂ (0))1/2 for all p ∈ Λ∗

+. For m ∈ N,

let λm denote the m-th eigenvalue of Mβ
N − Ẽβ

N and λ̃m the m-th eigenvalue of D
(eigenvalues are counted with multiplicity). We will show that

|λm − λ̃m| ≤ CN−α(1 + ζ3) (6.2)
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for all 0 < α < β such that α ≤ (1− β)/2 and for all m ∈ N such that λ̃m < ζ.

Since λ̃0 = 0, (6.2) implies first of all that Eβ
N = Ẽβ

N + O(N−α), for all 0 < α < β

such that α ≤ (1− β)/2. Furthermore, since the eigenvalues λ̃m of (6.1) have the form

k∑

j=1

njεpj

for k ∈ N, n1, . . . , nk ∈ N and p1, . . . , pk ∈ Λ∗
+, (6.2) also implies the relation (1.6) for

the low-lying excitation energies of Hβ
N .

To show (6.2), we first prove an upper bound for λm, valid for allm ∈ N with λ̃m < ζ.
To this end, we use the min-max principle, which implies that

λm = inf
Y⊂F≤N

+ :
dim Y=m

sup
ξ∈Y :
‖ξ‖=1

〈ξ, (Mβ
N − Ẽβ

N )ξ〉 ≤ sup
ξ∈Y m

D :
‖ξ‖=1

〈ξ, (Mβ
N − Ẽβ

N )ξ〉 (6.3)

where Y m
D denotes the space spanned by normalized eigenvectors ξ1, . . . , ξm of D, as-

sociated with the eigenvalues λ̃1 ≤ · · · ≤ λ̃m < ζ. Without loss of generality, since D
commutes with N+ we may assume that ξ0, . . . , ξm are also eigenvectors of N+; we de-
note the corresponding eigenvalue by r0, . . . , rm ∈ N, i.e. N+ξj = rjξj. Since D ≥ cN+,
we find rj ≤ Cζ. From Lemma 7.3 and since K ≤ D we obtain

〈ξ, (N++1)(Hβ
N +1)ξ〉 ≤ C〈ξ, (N++1)2(K+1)ξ〉 ≤ C〈ξ, (N++1)2(D+1)ξ〉 ≤ C(1+ζ3)

for all ξ ∈ Y m
D . With (5.47), we conclude that

〈ξ, (Mβ
N − Ẽβ

N )ξ〉 ≤ 〈ξ,Dξ〉+ CN−α(1 + ζ3)

for all ξ ∈ Y m
D and all 0 < α < β such that α ≤ (1− β)/2. From (6.3), we obtain

λm ≤ sup
ξ∈Y m

D
:‖ξ‖=1

〈ξ,Dξ〉+ CN−α(1 + ζ3) ≤ λ̃m + CN−α(1 + ζ3)

again for all 0 < α < β such that α ≤ (1− β)/2.
Next, we prove the lower bound for λm. From the upper bound above and since we

assumed that λ̃m < ζ, we find that λm ≤ ζ if N is large enough. Denoting by Pζ the

spectral projection of Mβ
N − Ẽβ

N associated with the interval (−∞; ζ], we find

λm = inf
Y⊂F≤N

+ :
dim Y=m

sup
ξ∈Y :
‖ξ‖=1

〈ξ, (Mβ
N − Ẽβ

N )ξ〉

≥ inf
Y⊂Pζ(F

≤N
+ ):

dim Y=m

sup
ξ∈Y :
‖ξ‖=1

〈ξ,Dξ〉 − CN−α(1 + ζ3)

≥ inf
Y⊂F≤N

+ :
dim Y=m

sup
ξ∈Y :
‖ξ‖=1

〈ξ,Dξ〉 − CN−α(1 + ζ3)

= λ̃m − CN−α(1 + ζ3)
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for all 0 < α < β such that α ≤ (1 − β)/2. This concludes the proof of (6.2) and the
proof of Theorem 1.1.

Remark: Theorem 1.1 states the convergence of low-lying eigenvalues of the Hamilton
operator (1.1) towards the eigenvalues of the quadratic Hamiltonian

Q∞ = Eβ
N +

∑

p∈Λ∗
+

√
|p|4 + 2p2κV̂ (0) a∗pap (6.4)

In fact, using ideas from [9], one can also show convergence of the corresponding eigen-

vectors. More precisely, for a fixed j ∈ N, let P
(j)

Hβ
N

denote the orthogonal projection

onto the subspace of L2
s(R

3N ) spanned by the eigenvectors associated with the j small-

est eigenvalues of Hβ
N . Similarly, let P

(j)
Q denote the orthogonal projection onto the

subspace of F≤N
+ spanned by the eigenvectors associated with the j smallest eigenvalues

Eβ
N = µ1 ≤ µ2 ≤ · · · ≤ µj of the quadratic Hamiltonian Q∞. Then, assuming that

µj+1 > µj, we find

∥∥∥e−B(τ)e−B(η)UP
(j)

Hβ
N

U∗eB(η)eB(τ) − P
(j)
Q∞

∥∥∥
2

HS
≤ C

µj+1 − µj
N−α (6.5)

for all 0 < α < β such that α ≤ (1 − β)/2. In particular, if ψβ
N denotes the ground

state of the Hamiltonian Hβ
N defined in (1.1), then there exists an appropriate phase

θ ∈ [0; 2π) such that

∥∥ψβ
N − eiθU∗eB(η)eB(τ)Ω

∥∥2 ≤ C

µ1 − µ0
N−α

for all 0 < α < β such that α ≤ (1 − β)/2. The proof of (6.5) follows very closely the
arguments used in Section 7 of [9].

7 Analysis of the excitation Hamiltonian

The goal of this section is to show Theorem 3.2. We decompose

Gβ
N = G(0)

N,β + G(2)
N,β + G(3)

N,β + G(4)
N,β (7.1)

with
G(j)
N,β = e−B(η)L(j)

N,βe
B(η)

and with L(j)
N,β as defined in (3.3), for j = 0, 2, 3, 4. We study the four contributions on

the r.h.s. of (7.1) in the following subsections.
First, in the next three lemmas, we collect some preliminary results that will be used

later to analyze the operators G(j)
N,β, j = 0, 2, 3, 4. In the first lemma, we show how to

bound typical operators arising from expansions of nested commutators, as described in
Lemma 2.5 above.
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Lemma 7.1. Let ξ ∈ F≤N , p, q ∈ Λ∗
+, i1, i2, k1, k2, ℓ1, ℓ2 ∈ N, j1, . . . , jk1 , m1, . . . ,mk2 ∈

N\{0} and let αℓi = (−1)ℓi , for i = 1, 2. For every s = 1, . . . ,max{i1, i2}, let Λs, Λ
′
s be

either a factor (N −N+)/N , a factor (N + 1−N+)/N or a Π(2)-operator of the form

N−hΠ
(2)
♯,♭ (η

z1 , . . . , ηzh) (7.2)

for some h ∈ N\{0} and z1, . . . , zh ∈ N\{0}. Suppose that the operators

Λ1 . . .Λi1N
−k1Π

(1)
♯,♭

(ηj1 , . . . , ηjk1 ; ηℓ1p ϕαℓ1
p)

Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; ηℓ2q ϕαℓ2
q)

appear in the expansion of ad
(n)
B(η)(bp) and of ad

(k)
B(η)(bq), as described in Lemma 2.5, for

some n, k ∈ N.

i) For any β ∈ Z, let

B = (N+ + 1)(β−1)/2Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕαℓ1
p)ξ (7.3)

and
B̃ = (N+ + 1)(β−1)/2N−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕαℓ1
p)

∗Λ∗
i1 . . .Λ

∗
1ξ

Then, we have
‖B‖, ‖B̃‖ ≤ Cnκnp−2ℓ1‖(N+ + 1)β/2ξ‖ (7.4)

If ℓ1 is even, we also find

‖B‖ ≤ Cnκnp−2ℓ1‖ap(N+ + 1)(β−1)/2ξ‖ (7.5)

ii) For β ∈ Z, let

D = (N+ + 1)(β−1)/2Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕαℓ1
p)

× Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; ηℓ2q ϕαℓ2
q)ξ

(7.6)

Then, we have

‖D‖ ≤ Cn+kκn+kp−2ℓ1q−2ℓ2‖(N+ + 1)(β+1)/2ξ‖ (7.7)

If ℓ2 is even, we find

‖D‖ ≤ Cn+kκn+kp−2ℓ1q−2ℓ2‖aq(N+ + 1)β/2ξ‖ (7.8)

If ℓ1 is even, we have

‖D‖ ≤ Cn+kkN−1κn+kp−2(ℓ1+1)q−2ℓ2‖(N+ + 1)(β+1)/2ξ‖
+ Cn+kκn+kp−2(ℓ1+ℓ2)µℓ2δp,−q‖(N+ + 1)(β−1)/2ξ‖
+ Cn+kκn+kp−2ℓ1q−2ℓ2‖ap(N+ + 1)β/2ξ‖

(7.9)
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where µℓ2 = 1 if ℓ2 is odd and µℓ2 = 0 if ℓ2 is even. If ℓ1 is even and either k1 > 0
or k2 > 0 or there is at least one Λ- or Λ′-operator having the form (7.2), we
obtain the improved bound

‖D‖ ≤ Cn+kkN−1κn+kp−2(ℓ1+1)q−2ℓ2‖(N+ + 1)(β+1)/2ξ‖
+ Cn+kN−1κn+kp−2(ℓ1+ℓ2)µℓ2δp,−q‖(N+ + 1)(β+1)/2ξ‖
+ Cn+kκn+kp−2ℓ1q−2ℓ2‖ap(N+ + 1)β/2ξ‖

(7.10)

Finally, if ℓ1 = ℓ2 = 0, we can write

D = D1(p, q) +D2 apaqξ (7.11)

where
‖D1(p, q)‖ ≤ Cn+kkN−1κn+kp−2‖aq(N+ + 1)β/2ξ‖

and D2 is a bounded operator on F≤N
+ with

‖D♮
2ζ‖ ≤ Cn+kκn+k‖(N+ + 1)(β−1)/2ζ‖ (7.12)

for ♮ ∈ {·, ∗} and for all ζ ∈ F≤N
+ . If k1 > 0 or k2 > 0 or at least one of the Λ- or

Λ’-operators has the form (7.2), we also have the improved bound

‖D♮
2ζ‖ ≤ Cn+kN−1κn+k‖(N+ + 1)(β+1)/2ζ‖ (7.13)

for ♮ ∈ {·, ∗} and all ζ ∈ F≤N
+ .

iii) All the bounds in part ii) remain true if, in the definition of D, we replace the

operator Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕαℓ1
p) by the operator ηnb♮nαnp, where

♮n = · and αn = 1 if n is even while ♮n = ∗ and αn = −1 if n is odd (in this case,
ℓ1 = n).

The proof of Lemma 7.1, part i) and ii) can be found in [2, Lemma 4.1]. The proof
of part iii) is very similar to the proof of part ii). Notice that part iii) states essentially
that all bounds in part ii) remain true if in the definition of D, we replace all operators
Λ1, . . . ,Λi1 by the identity). We will use part iii) of Lemma 7.1 in the proof of Prop.
7.5 and Prop. 7.6 below. In some occasions, it will also be important to bound vectors
of the form (7.6), expressed as functions in position space. To this end, we will use the
following lemma, whose proof follows closely the proof of Lemma 5.2 in [4].

Lemma 7.2. Let ξ ∈ F≤N , β ∈ N, i1, i2, k1, k2, ℓ1, ℓ2 ∈ N, j1, . . . , jk1 ,m1, . . . ,mk2 ∈
N\{0}, For every s = 1, . . . ,max{i1, i2}, let Λs,Λ

′
s be either a factor (N − N+)/N ,

(N + 1−N+)/N or a Π(2)-operator of the form

N−hΠ
(2)
♯,♭ (η

z1 , . . . , ηzh) (7.14)
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for some h, z1, . . . , zh ∈ N\{0}. Suppose that the operators

Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; η̌ℓ1x )

Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; η̌ℓ2y )

appear in the expansion of ad
(n)
B(η)(b̌x), ad

(k)
B(η)(b̌y), respectively, for some n, k ∈ N. Here

we use the notation η̌ℓ1x for the function z → η̌ℓ1(x − z), where η̌ℓ1 denotes the Fourier
transform of the function ηℓ1 defined on Λ∗

+. Let

S = (N+ + 1)β/2Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; η̌ℓ2y )

× Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; η̌ℓ1x )ξ

Then we have the following bounds. If ℓ1, ℓ2 ≥ 1,

‖S‖ ≤ Cn+kκn+k‖(N+ + 1)(β+2)/2ξ‖ (7.15)

If ℓ1 = 0 and ℓ2 ≥ 1,

‖S‖ ≤ Cn+kκn+k‖ǎx(N+ + 1)(β+1)/2ξ‖

If ℓ1 ≥ 1 and ℓ2 = 0,

‖S‖ ≤ Cn+kκn+knN−1‖(N+ + 1)(β+2)/2ξ‖
+ Cn+kκn+k−ℓ2µℓ2 |η̌ℓ2(x− y)|‖(N+ + 1)β/2ξ‖
+ Cn+kκn+k‖ǎy(N+ + 1)(β+1)/2ξ‖

(7.16)

where µℓ2 = 1 if ℓ2 is odd, while µℓ2 = 0 if ℓ2 is even. If ℓ1 ≥ 1 and ℓ2 = 0 and we
additionally assume that k1 > 0 or k2 > 0 or at least one of the Λ- or Λ′-operators is a
Π(2)-operator of the form (7.14), we obtain the improved estimate

‖S‖ ≤Cn+kκn+knN−1‖(N+ + 1)(β+2)/2ξ‖
+ Cn+kκn+k−ℓ2µℓ2N

−1|η̌ℓ2(x− y)|‖(N+ + 1)(β+2)/2ξ‖
+ Cn+kκn+k‖ǎy(N+ + 1)(β+1)/2ξ‖

(7.17)

Finally, if ℓ1 = ℓ2 = 0,

‖S‖ ≤ Cn+kκn+knN−1‖ǎx(N+ + 1)(β+1)/2ξ‖+ Cn+kκn+k‖ǎxǎy(N+ + 1)β/2ξ‖

Finally, in the next lemma, we show that the expectation of the potential energy
operator is small, of the order Nβ−1, on states with bounded expectation of (N+ +
1)(K + 1). This lemma will be important to show that, asymptotically the quadratic

part of the generator Gβ
N is dominant.
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Lemma 7.3. Suppose V ∈ L2(R3). Then there exists C > 0 such that

〈ξ,VN ξ〉 =
κ

2N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p,−q

V̂ (r/Nβ)a∗p+ra
∗
qaq+rap

≤ CκNβ−1‖(K + 1)1/2(N+ + 1)1/2ξ‖2

for every ξ ∈ F≤N
+ . Here K =

∑
p∈Λ∗

+
p2a∗pap is the kinetic energy operator.

Proof. We observe that

〈ξ,VN ξ〉 ≤
κ

2N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p,−q

|V̂ (r/Nβ)| |p + r|
|q + r| ‖ap+raqξ‖

|q + r|
|p + r|‖aq+rapξ‖

≤ κ

N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p,−q

|V̂ (r/Nβ)|
(q + r)2

(p+ r)2‖ap+raqξ‖2

≤ κ



 sup

q∈Λ∗
+

1

N

∑

r∈Λ∗:r 6=−q

|V̂ (r/Nβ)|
(q + r)2



 ‖N 1/2

+ K1/2ξ‖2

The claim follows from the estimate

1

N

∑

r∈Λ∗:r 6=−q

|V̂ (r/Nβ)|
(q + r)2

≤ ‖V̂ ‖∞
N

∑

r∈Λ∗:|r+q|≤Nβ

1

(r + q)2

+
1

N

[ ∑

r∈Λ∗

|V̂ (r/Nβ)|2
]1/2[ ∑

r∈Λ∗:|r+q|>Nβ

1

|r + q|4
]1/2

≤ CNβ−1

(7.18)

uniformly in q ∈ Λ∗
+.

7.1 Analysis of G(0)
N

From (3.3), we have

G(0)
N,β = e−B(η)L(0)

N,βe
B(η) =

(N − 1)

2
κV̂ (0) + E(0)

N,β

where

E(0)
N,β =

κV̂ (0)

2N
e−B(η)N+e

B(η) − κV̂ (0)

2N
e−B(η)N 2

+e
B(η)

We collect the properties of E(0)
N,β in the next proposition.

Proposition 7.4. Under the assumptions of Theorem 3.2, there exists C > 0 such that,
on F≤N

+ ,

±E(0)
N,β ≤ Cκ

N
(N+ + 1)2 ≤ Cκ(N+ + 1)

±[E(0)
N,β, iN+] ≤ C(N+ + 1)

(7.19)
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Proof. The first bound in (7.19) follows directly from Lemma 2.4. To prove the second
estimate in (7.19), we write

e−B(η)N+e
B(η) = N+ +

∑

p∈Λ∗
+

∫ 1

0
ds e−sB(η)[a∗pap, B(η)]esB(η)

= N+ +
∑

p∈Λ∗
+

ηp

∫ 1

0
ds e−sB(η)(bpb−p + b∗pb

∗
−p)e

sB(η)

With Lemma 2.6, we obtain

e−B(η)N+e
B(η) = N+ +

∑

n,m≥0

(−1)n+m

n!m!(n+m+ 1)

∑

p∈Λ∗
+

ηp

(
ad

(n)
B(η)(bp)ad

(m)
B(η)(b−p) + h.c.

)

(7.20)
It follows from Lemma 2.5 that the operator

∑

p∈Λ∗
+

ηp ad
(n)
B(η)(bp)ad

(m)
B(η)(b−p)

can be written as the sum of 2nn! terms of the form

E =
∑

p∈Λ∗
+

ηpΛ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕαℓ1
p)

× Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯,♭ (η

m1 , . . . , ηmk2 ; ηℓ2p ϕ−αℓ2
p)

(7.21)

where i1, i2, k1, k2, ℓ1, ℓ2 ∈ N, j1, . . . , jk1 ,m1, . . . ,mk2 ∈ N\{0}, αℓ1 = (−1)ℓ1 and where
each Λr,Λ

′
r is either a factor (N −N+)/N , a factor (N +1−N+)/N or a Π(2)-operator

of the form
N−hΠ

(2)
♯,♭ (η

z1 , . . . , ηzh)

with h, z1, . . . , zh ∈ N\{0}. Lemma 7.1, part ii), allows us to bound matrix-elements of
(7.21) by

|〈ξ1,E ξ2〉| ≤
∑

p∈Λ∗
+

|ηp|‖(N+ + 1)1/2ξ1‖

× ‖(N+ + 1)−1/2Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1ϕαℓ1
p)

× Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯,♭ (η

m1 , . . . , ηmk2 ; ηℓ2ϕ−αℓ2
p)ξ2‖

≤ Cn+mκn+m+1‖(N+ + 1)1/2ξ1‖
∑

p∈Λ∗
+

{
‖p|−4‖(N+ + 1)1/2ξ2‖+ |p|−2‖apξ2‖

}

≤ Cn+mκn+m+1‖(N+ + 1)1/2ξ1‖‖(N+ + 1)1/2ξ2‖
(7.22)

44



Since [N+,E] has again the form E, up to a multiplicative constant bounded by (n+m),
the bound (7.22), with (7.20), also implies that

∣∣∣〈ξ1,
[
e−B(η)N+e

B(η),N+

]
ξ2〉
∣∣∣ ≤ Cκ‖(N+ + 1)1/2ξ1‖‖(N+ + 1)1/2ξ2‖ (7.23)

for all ξ1, ξ2 ∈ F≤N
+ . With Lemma 2.4, we obtain

∣∣∣
〈
ξ,
[
e−B(η)N 2

+e
B(η),N+

]
ξ2
〉∣∣∣ =

∣∣∣〈ξ, e−B(η)N+e
B(η)

[
e−B(η)N+e

B(η),N+

]
ξ〉

+ 〈ξ,
[
e−B(η)N+e

B(η),N+

]
e−B(η)N+e

B(η)ξ〉
∣∣∣

≤ Cκ‖(N+ + 1)1/2e−B(η)N+e
B(η)ξ‖‖(N+ + 1)1/2ξ‖

≤ Cκ‖(N+ + 1)3/2ξ‖‖(N+ + 1)1/2ξ‖
≤ CκN‖(N+ + 1)1/2ξ‖2

Together with (7.23), this concludes the proof of the second estimate in (7.19).

7.2 Analysis of G(2)
N

From (3.3), we have

G(2)
N,β = e−B(η)L(2)

N,βe
B(η) = e−B(η)KeB(η) + e−B(η)L(V )

N,βe
B(η)

where K =
∑

p∈Λ∗
+
p2a∗pap and

L(V )
N,β =

∑

p∈Λ∗
+

κV̂ (p/Nβ)

[
b∗pbp −

1

N
a∗pap

]
+
κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)
[
b∗pb

∗
−p + bpb−p

]
(7.24)

We study first the contribution arising from the kinetic energy operator K. We define

the operator Ẽ(K)
N,β through

e−B(η)KeB(η) = K +
∑

p∈Λ∗
+

p2η2p +
∑

p∈Λ∗
+

p2ηp
[
b∗pb

∗
−p + bpb−p

]
+ Ẽ(K)

N,β (7.25)

To prove part b) of Theorem 3.2, we need to keep track of more order one terms arising

from the conjugation of K. We define the operator E(K)
N,β through

e−B(η)KeB(η) = K +
∑

p∈Λ∗
+

[
p2σ2p + p2σpγp

(
bpb−p + b∗pb

∗
−p

)
+ 2p2σ2pb

∗
pbp

]
+ E(K)

N,β (7.26)

In the next proposition, we study the properties of the error terms Ẽ(K)
N,β , E

(K)
N,β .
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Proposition 7.5. Under the assumptions of Theorem 3.2, for every δ > 0 there exists
C > 0 such that, on F≤N

+ ,

± Ẽ(K)
N,β ≤ δHβ

N + Cκ(N+ + 1)

±
[
Ẽ(K)
N,β , iN+

]
≤ C(Hβ

N + 1)
(7.27)

Furthermore, there exists C > 0 such that

± E(K)
N,β ≤ CNβ−1(N+ + 1)(K + 1) (7.28)

Proof. We compute

e−B(η)KeB(η) = K+

∫ 1

0
ds

d

ds
e−sB(η)KesB(η)

= K+

∫ 1

0
ds e−sB(η)[K, B(η)]esB(η)

= K+

∫ 1

0
ds
∑

p∈Λ∗
+

p2ηp e
−sB(η)

(
bpb−p + b∗pb

∗
−p

)
esB(η)

With Lemma 2.6 we find

e−B(η)KeB(η) = K +

∫ 1

0
ds

∑

n,m≥0

(−1)n+m

n!m!

∑

p∈Λ∗
+

p2ηp

[
ad

(n)
sB(η)(bp)ad

(m)
sB(η)(b−p) + h.c.

]

= K +

∫ 1

0
ds

∑

n,m≥0

(−1)n+m

n!m!

∑

p∈Λ∗
+

p2ηp

×
{[
snηnp b

♯n
αn

+ ad
(n)
sB(η)

(bp)− snηnp b
♯n
αn

]

×
[
smηmp b

♯m
αm

+ ad
(m)
sB(η)(bp)− smηmp b

♯m
αm

]
+ h.c.

}

where we defined αn = +1 and ♯n = · if n is even while αn = −1 and ♯n = ∗ if n is odd.
Integrating over s, and using

ηp

∫ 1

0

(
cosh2(sηp) + sinh2(sηp)

)
ds = cosh(ηp) sinh(ηp)

2ηp

∫ 1

0
sinh(sηp) cosh(sηp) ds = sinh2(ηp)
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we easily find, with the notation γp = cosh ηp and σp = sinh ηp,

e−B(η)KeB(η)

= K +
∑

p∈Λ∗
+

p2σ2p +
∑

p∈Λ∗
+

p2γpσp
(
bpb−p + b∗pb

∗
−p

)
+ 2

∑

p∈Λ∗
+

p2σ2pb
∗
pbp

+
∑

n,m≥0

(−1)n+m

n!m!(n+m+ 1)

∑

p∈Λ∗
+

p2ηn+1
p b♯nαnp

[
ad

(m)
B(η)(b−p)− ηmp b

♯m
−αmp

]
+ h.c.

+
∑

n,m≥0

(−1)n+m

n!m!(n+m+ 1)

∑

p∈Λ∗
+

p2
[
ad

(n)
B(η)(bp)− ηnp b

♯n
αnp

]
ηm+1
p b♯m−αmp + h.c.

+
∑

n,m≥0

(−1)n+m

n!m!(n+m+ 1)

∑

p∈Λ∗
+

p2ηp

[
ad

(n)
B(η)(bp)− ηnp b

♯n
αnp

]

×
[
ad

(m)
B(η)(b−p)− ηmp b

♯m
−αmp

]
+ h.c.

=: K +
∑

p∈Λ∗
+

[
p2σ2p + p2γpσp

(
bpb−p + b∗pb

∗
−p

)
+ 2p2σ2pb

∗
pbp

]

+ E(K)
1 + E(K)

2 + E(K)
3 .

Comparing with (7.25) and (7.26), we conclude that E(K)
N,β = E(K)

1 + E(K)
2 + E(K)

3 and

Ẽ(K)
N,β =

∑

p∈Λ∗
+

p2
[
σ2p − η2p

]
+ 2p2σ2pb

∗
pbp + p2

[
σpγp − ηp

][
b∗pb

∗
−p + bpb−p

]

+ E(K)
1 + E(K)

2 + E(K)
3

=: E(K)
0 + E(K)

1 + E(K)
2 + E(K)

3

Since, by (3.9), |σ2p − η2p| ≤ Cκ2|p|−8, p2σ2p ≤ Cκ2 and |σpγp − ηp| ≤ Cκ3|p|−6, it is easy
to check that

|〈ξ, E(K)
0 ξ〉| ≤ Cκ‖(N+ + 1)1/2ξ‖2

|〈ξ, [E(K)
0 ,N+]ξ〉| ≤ Cκ‖(N+ + 1)1/2ξ‖2

Hence, Proposition 7.5 follows if we can show that the three error terms E(K)
1 , E(K)

2 , E(K)
3

satisfy the three bounds in (7.27), (7.28).

We consider first the term E(K)
1 . According to Lemma 2.5, the operator

∑

p∈Λ∗
+

p2ηn+1
p b♯nαnp

[
ad

(m)
B(η)(b−p)− ηmp b

♯m
−αmp

]
(7.29)
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is given by the sum of one term of the form

F1 =
∑

p∈Λ∗
+

p2ηm+n+1
p b♯nαnp

×





(
N −N+

N

)m+(1−αm)/2
2

(
N + 1−N+

N

)m−(1−αm)/2
2

− 1



 b♯m−αmp

(7.30)

and of 2mm!− 1 terms of the form

F2 =
∑

p∈Λ∗
+

p2ηn+1
p b♯nαnpΛ1 . . .Λi1N

−k1Π
(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕ−αℓ1
p) (7.31)

where i1, k1, ℓ1 ∈ N, j1, . . . , jk1 ∈ N\{0}, αℓ1 = (−1)ℓ1 and where each Λr is either a
factor (N −N+)/N , (N + 1−N+)/N or a Π(2)-operator of the form

N−hΠ
(2)
♯,♭ (η

z1 , . . . , ηzh) (7.32)

with h, z1, . . . , zh ∈ N\{0}. Furthermore, since we are considering the term (7.30) sepa-
rately, each term of the form (7.31) must have either k1 > 0 or it must contain at least
one Λ-operator of the form (7.32) for some p > 0.

To estimate (7.30), we define

f(N+) =



1−

(
N −N+

N

)m+(1−αm)/2
2

(
N + 1−N+

N

)m−(1−αm)/2
2





and we notice that
− Cm/N ≤ f(N+) ≤ CmN+/N (7.33)

Since f(N+) = 0 when m = 0, distinguishing the two cases n+m ≥ 2 and n = 0,m = 1
we conclude that

|〈ξ,F1ξ〉| ≤ Cn+m+1κn+m+1
∑

p∈Λ∗
+

{
(m+ 1)

N |p|4 ‖(N+ + 1)ξ‖2 + m

Np2
‖bp(N+ + 1)1/2ξ‖2

}

+
m

N
‖(N+ + 1)1/2ξ‖2

∑

p∈Λ∗
+

p2η2p

≤ Cn+m+1κn+m+1(m+ 1)
{
N−1‖(N+ + 1)ξ‖2 +Nβ−1‖(N+ + 1)1/2ξ‖2

}

(7.34)

for all n,m ∈ N (the second line bounds the term with the commutator [bp, b
∗
p] arising

when n = 0 and m = 1). Since N+ ≤ N on F≤N
+ , (7.34) also implies that

|〈ξ,F1ξ〉| ≤ Cn+m+1κn+m+1(m+ 1)‖(N+ + 1)1/2ξ‖2 (7.35)
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Eq. (7.34) will be used in the proof of (7.28), while (7.35) will be used to show (7.27).
Let us now consider the expectation of (7.31). First, assume that ℓ1 + n ≥ 1. Then,

Lemma 7.1, part iii), implies that

|〈ξ,F2ξ〉| ≤
∑

p∈Λ∗
+

p2|ηp|‖(N+ + 1)1/2ξ‖

× ‖(N+ + 1)−1/2b♯nαnpΛ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕ−αℓ1
p)ξ‖

≤ Cn+mκn+m+1‖(N+ + 1)1/2ξ‖

×
∑

p∈Λ∗
+

{
(1 +m/N)

|p|4 ‖(N+ + 1)1/2ξ‖+ 1

|p|2 ‖apξ‖
}

+ Cn+mκn+m−1‖(N+ + 1)1/2ξ‖2 1

N

∑

p∈Λ∗
+

p2η2p

≤ Cn+mκn+m+1(m+ 1)‖(N+ + 1)1/2ξ‖2

(7.36)

by (3.10), which will be used in the proof of (7.27). Also here we will need a slightly
different estimate to show (7.28). Using again Lemma 7.1, part iii), under the assumption
ℓ1 + n ≥ 1, we find

|〈ξ,F2ξ〉| ≤
∑

p∈Λ∗
+

p2|ηp|‖(N+ + 1)ξ‖

× ‖(N+ + 1)−1b♯nαnpΛ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕ−αℓ1
p)ξ‖

≤ Cn+mκn+m+1

N
‖(N+ + 1)ξ‖

×
∑

p∈Λ∗
+

{
(1 +m)

|p|4 ‖(N+ + 1)ξ‖+ 1

|p|2 ‖ap(N+ + 1)1/2ξ‖
}

+
Cn+mκn+m−1

N
‖(N+ + 1)ξ‖‖ξ‖

∑

p∈Λ∗
+

p2η2p

≤ Cn+mκn+m+1(m+ 1)Nβ−1‖(N+ + 1)ξ‖2

(7.37)

In the case n = ℓ1 = 0, Lemma 7.1, part iii), allows us to write

〈ξ,F2ξ〉 =
∑

p∈Λ∗
+

p2ηp〈ξ,D1(p)〉+
∑

p∈Λ∗
+

p2ηp〈ξ,D2 apa−pξ〉

where
‖(N+ + 1)−1D1(p)‖ ≤ CmκmmN−1|p|−2‖ap(N+ + 1)−1/2ξ‖
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and ‖D∗
2ξ‖ ≤ CmκmN−1‖(N+ + 1)ξ‖. Hence, in this case,

|〈ξ,F2ξ〉| ≤
Cmκm+1m

N
‖(N+ + 1)ξ‖

∑

p∈Λ∗
+

|p|−2‖ap(N+ + 1)−1/2ξ‖

+
∣∣∣
∑

p∈Λ∗
+

p2ηp〈ξ,D2 apa−pξ〉
∣∣∣

≤ Cmκm+1mN−1‖(N+ + 1)ξ‖2 +
∣∣∣
∑

p∈Λ∗
+

p2ηp〈D∗
2 ξ, apa−pξ〉

∣∣∣

To control the last term, we use (3.12) to replace

p2ηp = −κ
2
V̂ (p/Nβ)− κ

2N

∑

q∈Λ∗

V̂ ((p − q)/Nβ)η̃q +NλN,ℓχ̂ℓ(p) + λN,ℓ

∑

q∈Λ∗

χ̂ℓ(p− q)η̃q

(7.38)
To bound the contribution proportional to κV̂ (p/Nβ), we switch to position space. We
find

∣∣∣κ
∑

p∈Λ∗
+

V̂ (p/Nβ)〈D∗
2 ξ, apa−pξ〉

∣∣∣

=

∣∣∣∣κ
∫

Λ×Λ
dxdyN3βV (Nβ(x− y))〈D∗

2ξ, ǎxǎyξ〉
∣∣∣∣

≤ Cmκm+1

N

∫

Λ×Λ
dxdyN3βV (Nβ(x− y))‖(N+ + 1)ξ‖‖ǎxǎyξ‖

≤ Cmκm+1/2N−1/2‖V1/2
N ξ‖‖(N+ + 1)ξ‖

The contribution of the other terms on the r.h.s. of (7.38) can be bounded similarly. We
conclude that, for n = ℓ1 = 0,

|〈ξ,F2ξ〉| ≤
Cmκm+1(m+ 1)

N
‖(N+ + 1)ξ‖2 + Cmκm+1/2

√
N

‖(N+ + 1)ξ‖‖V1/2
N ξ‖

Since N+ ≤ N on F≤N
+ , the last estimate also implies that

|〈ξ,F2ξ〉| ≤ Cmκm+1(m+ 1)‖(N+ + 1)1/2ξ‖2 + Cmκm+1/2‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖

Combining the last two bounds with (7.36) and (7.37) we obtain that, for every n,m ∈ N,

|〈ξ,F2ξ〉| ≤ Cn+mκn+m+1(m+1)‖(N++1)1/2ξ‖2+Cn+mκn+m+1/2‖(N++1)1/2ξ‖‖V1/2
N ξ‖
(7.39)

and, with Lemma 7.3,

|〈ξ,F2ξ〉| ≤ Cn+mκn+m+1(m+ 1)Nβ−1‖(N+ + 1)ξ‖2 + Cn+mκn+m‖V1/2
N ξ‖2

≤ Cn+mκn+m(m+ 1)Nβ−1‖(N+ + 1)1/2(K + 1)1/2ξ‖2 .
(7.40)
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From (7.35) and (7.39) we conclude that, if κ > 0 is small enough,

|〈ξ, E(K)
1 ξ〉| ≤ Cκ‖(N+ + 1)1/2ξ‖+ Cκ1/2‖(N+ + 1)1/2ξ‖‖V1/2

N ξ‖

Hence, for every δ > 0 we can find C > 0 such that

|〈ξ, E(K)
1 ξ〉| ≤ δ‖V1/2

N ξ‖2 + Cκ‖(N+ + 1)1/2ξ‖2

From (7.40) and (7.35), we can also estimate, if κ > 0 is small enough,

|〈ξ, E(K)
1 ξ〉| ≤ CNβ−1‖(N+ + 1)1/2(K + 1)1/2ξ‖2

This proves that the error term E(K)
1 satisfies the first bound in (7.27) and (7.28). In

fact, it also satisfies the second bound in (7.27), because the commutator of every term of
the form (7.29) with N+ has again the same form, up to multiplication with a constant,
bounded by C(m + 1) (because the difference between the number of creation and the
number of annihilation operators in (7.30), (7.31) is at most proportional to m).

The error term E(K)
2 can be controlled exactly as we did with E(K)

1 . Also the error

term E(K)
3 can be controlled similarly. The difference is that, now, the operator

∑

p∈Λ∗
+

p2ηp
[
ad

(n)
B(η)(bp)− ηnp b

♯n
αnp

][
ad

(m)
B(η)(b−p)− ηmp b

♯m
−αmp

]

can be written as the sum of (2mm!− 1)(2nn!− 1) terms of the form

F3 =
∑

p∈Λ∗
+

p2ηpΛ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕαℓ1
p)

× Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; ηℓ2p ϕ−αℓ2
p)

(7.41)

of (2mm!− 1) terms of the form

F4 =
∑

p∈Λ∗
+

p2ηp





(
N −N+

N

)n+(1−αn)/2
2

(
N + 1−N+

N

)n−(1−αn)/2
2

− 1



 b♯nαnp

× Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; ηℓ2p ϕ−αℓ2
p)

(7.42)

of (2nn!− 1) terms of the form

F5 =
∑

p∈Λ∗
+

p2ηp Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕαℓ1
p)

×





(
N −N+

N

)m+(1−αm)/2
2

(
N + 1−N+

N

)m−(1−αm)/2
2

− 1



 b♯m−αmp

(7.43)
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and of one term of the form

F6 =
∑

p∈Λ∗
+

p2ηp





(
N −N+

N

)n+(1−αn)/2
2

(
N + 1−N+

N

)n−(1−αn)/2
2

− 1



 b♯nαnp

×





(
N −N+

N

)m+(1−αm)/2
2

(
N + 1−N+

N

)m−(1−αm)/2
2

− 1



 b♯m−αmp

(7.44)

where i1, i2, k1, k2, ℓ1, ℓ2 ∈ N, j1, . . . , jk1 ,m1, . . . ,mk2 ∈ N\{0}, αr = (−1)r and where
each Λr- and Λ′

r-operator is either a factor (N −N+)/N , a factor (N +1−N+)/N or a
Π(2)-operator of the form (7.32). Furthermore, in (7.41), we must have k1 > 0 or at least
one Λ-operator of the form (2.11) and k2 > 0 or at least one Λ′-operator of the form
(2.11). Similarly, in (7.42) we must have k2 > 0 or at least one Λ′-operator of the form
(2.11) and in (7.43) we must have k1 > 0 or at least one Λ-operator of the form (2.11).
The terms (7.41), (7.42), (7.43) and (7.44) can therefore be estimated using Lemma 7.1
as we did above with the terms F1 defined in (7.30) and the terms F2 defined in (7.31).
We omit the details.

Next, we focus on the quadratic terms in (7.24). We define the operator Ẽ(V )
N through

e−B(η)L(V )
N,βe

B(η) =
∑

p∈Λ∗
+

[
κV̂ (p/Nβ)ηp +

κV̂ (p/Nβ)

2
(bpb−p + b∗pb

∗
−p)

]
+ Ẽ(V )

N,β (7.45)

To prove part b) of Theorem 3.2, we will need to keep track of more contributions to

L(V )
N , so that the error has a vanishing expectation, in the limit of large N , on low-energy

states. We define therefore the operator E(V )
N,β through

e−B(η)L(V )
N,βe

B(η) =
∑

p∈Λ∗
+

[
κV̂ (p/Nβ)σ2p + κV̂ (p/Nβ)σpγp

]

+
∑

p∈Λ∗
+

κV̂ (p/Nβ)(γp + σp)
2b∗pbp

+
1

2

∑

p∈Λ∗
+

κV̂ (p/Nβ)(γp + σp)
2(bpb−p + b∗pb

∗
−p) + E(V )

N,β

(7.46)

In the next proposition, we establish bounds for the error terms Ẽ(V )
N,β and E(V )

N,β.

Proposition 7.6. Under the assumptions of Theorem 3.2, for every δ > 0 there exists
C > 0 such that, on F≤N

+ ,

±Ẽ(V )
N,β ≤ δVN + Cκ(N+ + 1)

±
[
Ẽ(V )
N,β, iN+

]
≤ C(Hβ

N + 1)

Furthermore,

±E(V )
N,β ≤ CNβ−1‖(N+ + 1)1/2(K + 1)1/2ξ‖2
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Proof. From the definition of L(V )
N,β in (7.24), we find

G(2)
N,β = κ

∑

p∈Λ∗
+

V̂ (p/Nβ)e−B(η)b∗pbpe
B(η) − κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)eB(η)a∗pape
−B(η)

+
κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)e−B(η)
[
bpb−p + b∗pb

∗
−p

]
eB(η)

=: G(2,1)
N,β + G(2,2)

N,β + G(2,3)
N,β

(7.47)

From Lemma 2.6, the term G(2,1)
N,β can be written (using again the notation γp = cosh ηp,

σp = sinh ηp) as

G(2,1)
N,β =

∑

m,n≥0

(−1)m+n

m!n!
κ
∑

p∈Λ∗
+

V̂ (p/Nβ)
[
ad

(m)
B(η)(b

∗
p)− ηmp b

♯̄m
αmp + ηmp b

♯̄m
αmp

]

×
[
ad

(n)
B(η)(bp)− ηnp b

♯n
αnp + ηnp b

♯n
αnp

]

=
∑

m,n≥0

(−1)m+n

m!n!
κ
∑

p∈Λ∗
+

V̂ (p/Nβ)ηm+n
p b♯̄mαmpb

♯n
αnp + E(V )

1

= κ
∑

p∈Λ∗
+

V̂ (p/Nβ)
[
γpb

∗
p + σpb−p

][
γpbp + σpb

∗
−p] + E(V )

1

(7.48)

with αn = 1 and ♯n = · if n is even while αn = −1 and ♯n = ∗ if n is odd (and ♯̄n = ∗ if
♯n = · and ♯̄n = · if ♯n = ∗) and with the error term

E(V )
1 =

∑

m,n≥0

(−1)m+n

m!n!
κ
∑

p∈Λ∗
+

V̂ (p/Nβ)ηmp b
♯̄m
αmp

[
ad

(n)
B(η)(bp)− ηnp b

♯n
αnp

]

+
∑

m,n≥0

(−1)m+n

m!n!
κ
∑

p∈Λ∗
+

V̂ (p/Nβ)
[
ad

(m)
B(η)(b

∗
p)− ηmp b

♯̄m
αmp

]
ηnp b

♯n
αnp

+
∑

m,n≥0

(−1)m+n

m!n!
κ
∑

p∈Λ∗
+

V̂ (p/Nβ)
[
ad

(m)
B(η)(b

∗
p)− ηmp b

♯̄m
αmp

][
ad

(n)
B(η)(bp)− ηnp b

♯n
αnp

]

(7.49)

According to Lemma 2.5, the operator

κ
∑

p∈Λ∗
+

V̂ (p/Nβ)ηmp b
♯̄m
αmp

[
ad

(n)
B(η)(bp)− ηnp b

♯n
αnp

]
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can be written as the sum of one term of the form

G1 = κ
∑

p∈Λ∗
+

V̂ (p/Nβ)ηm+n
p b♯̄mαmp

×





(
N −N+

N

)n+(1−αn)/2
2

(
N + 1−N+

N

)n−(1−αn)/2
2

− 1



 b♯nαnp

(7.50)

and of 2nn!− 1 terms of the form

G2 = κ
∑

p∈Λ∗
+

V̂ (p/Nβ)ηmp b
♯̄m
αmpΛ1 . . .Λi1N

−k1Π
(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕαℓ1
p) (7.51)

with i1, k1, ℓ1 ∈ N, j1, . . . , jk1 ∈ N\{0}, αr = (−1)r and where each Λr is either a factor
(N −N+)/N , a factor (N + 1−N+)/N or a Π(2)-operator of the form

N−hΠ
(2)
♯,♭ (η

z1 , . . . , ηzp) (7.52)

for h, z1, . . . , zp ∈ N\{0}. Furthermore, each operator of the form (7.51) must have either
k1 > 0 or at least one Λ-operator having the form (7.52).

Noticing that G1 = 0 if n = 0, the expectation of (7.50) can be bounded by

|〈ξ,G1ξ〉| ≤
Cn+mκn+m+1

N
‖(N+ + 1)ξ‖

×
∑

p∈Λ∗
+

|V̂ (p/Nβ)|
p2

[
‖ap(N+ + 1)1/2ξ‖+ 1

p2
‖(N+ + 1)ξ‖

]

≤ Cn+mκn+m+1

N
‖(N+ + 1)ξ‖2

As for the term G2 defined in (7.51), its expectation can be bounded with Lemma 7.1
part iii) by

|〈ξ,G2ξ〉| ≤
Cn+mκn+m+1

N

∑

p∈Λ∗
+

|V̂ (p/Nβ)|
{
‖ap(N+ + 1)1/2ξ‖+ 1

p2
‖(N+ + 1)ξ‖

}2

≤ Cn+mκn+m+1

N
‖(N+ + 1)ξ‖2

for all ξ ∈ F≤N
+ . The expectation of the operators appearing on the second and third

line in (7.49) can be controlled similarly, using again Lemma 7.1. Therefore, if κ > 0 is
small enough, we can sum over m,n ∈ N, and from (7.49) we conclude that

|〈ξ, E(V )
1 ξ〉| ≤ Cκ

N
‖(N+ + 1)ξ‖2 ≤ Cκ‖(N+ + 1)1/2ξ‖2. (7.53)
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Since commutators of N+ with operators of the form (7.50), (7.51) have again the same
form (up to a multiplicative constant bounded by C(n+ 1)), we also find

|〈ξ,
[
N+, E(V )

1

]
ξ〉| ≤ Cκ‖(N+ + 1)1/2ξ‖2. (7.54)

Let us now consider the second contribution to G(2)
N,β on the r.h.s. of (7.47). We

observe that

−G(2,2)
N,β =

κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)e−B(η)a∗pape
B(η)

=
κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)

[
a∗pap +

∫ 1

0
ds e−sB(η)[a∗pap, B(η)]esB(η)

]

=
κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)a∗pap +

∫ 1

0
ds

κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)e−sB(η)(bpb−p + b∗pb
∗
−p)e

sB(η)

=
κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)a∗pap

+
∑

n,m≥0

(−1)m+n

m!n!(m+ n+ 1)

κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)
[
ad

(n)
B(η)(bp)ad

(m)
B(η)(b−p) + h.c.

]

(7.55)

The first term on the r.h.s. of (7.55) is clearly bounded by CκN+/N . Let us focus now
on the sum over m,n. By Lemma 2.5, the operator

κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)ad
(n)
B(η)(bp)ad

(m)
B(η)(b−p)

can be written as the sum of 2n+mn!m! terms of the form

L =
κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . ηjk1 ; ηℓ1p ϕαℓ1
p)

× Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; ηℓ2p ϕ−αℓ2
p)

(7.56)

with i1, i2, k1, k2, ℓ1, ℓ2 ∈ N, j1, . . . , jk1 ,m1, . . . ,mk2 ∈ N\{0}, αr = (−1)r and where
each Λr and Λ′

r-operator is either a factor (N −N+)/N , a factor (N + 1−N+)/N or a
Π(2)-operator of the form (7.52).

If ℓ1 + ℓ2 ≥ 1, Lemma 7.1, part ii), implies that

|〈ξ,Lξ〉| ≤ Cn+mκn+m+1

N

∑

p∈Λ∗
+

|V̂ (p/Nβ)|
p2

‖(N+ + 1)1/2ξ‖2

≤ Cn+mκn+m+1Nβ−1‖(N+ + 1)1/2ξ‖2
(7.57)
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If instead ℓ1 = ℓ2 = 0, we use Lemma 7.1, part ii), to write

〈ξ,Lξ〉 = κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)〈ξ,D1(p)〉+
κ

N

∑

p∈Λ∗
+

V̂ (p/Nβ)〈ξ,D2 apa−pξ〉 (7.58)

with

‖(N+ + 1)−1/2D1(p)‖ ≤ Cm+nκm+nm

Np2
‖apξ‖ and ‖D2‖ ≤ Cm+nκm+n . (7.59)

Switching to position space to estimate the second term on the r.h.s. of (7.58) we find,
for ℓ1 = ℓ2 = 0,

|〈ξ,Lξ〉| ≤ Cm+nκm+n+1m

N
‖(N+ + 1)1/2ξ‖2 +

∣∣∣∣
κ

N

∫

Λ×Λ
N3βV (Nβ(x− y))〈ξ,D2ǎxǎyξ〉

∣∣∣∣

≤ Cm+nκm+n+1m

N
‖(N+ + 1)1/2ξ‖2

+
Cm+nκm+n+1

N

∫

Λ×Λ
N3βV (Nβ(x− y))‖ξ‖‖ǎxǎyξ‖

≤ Cm+nκm+n+1m

N
‖(N+ + 1)1/2ξ‖2 + Cm+nκm+n+1/2

√
N

‖V1/2
N ξ‖‖ξ‖

(7.60)

Combining (7.57) with (7.60) we conclude that

|〈ξ,Lξ〉| ≤ Cm+nκm+n+1(m+ 1)Nβ−1‖(N+ + 1)1/2ξ‖2 + Cm+nκm+n+1/2

√
N

‖ξ‖‖V1/2
N ξ‖

Hence, for κ > 0 small enough (so that we can sum over m,n ∈ N), (7.55) implies

|〈ξ,G(2,2)
N,β ξ〉| ≤ CκNβ−1‖(N+ + 1)1/2ξ‖2 + Cκ1/2√

N
‖ξ‖‖V1/2

N ξ‖ (7.61)

This shows, on the one hand, that for every δ > 0 there exists C > 0 such that

|〈ξ,G(2,2)
N,β ξ〉| ≤ δ‖V1/2

N ξ‖2 + Cκ‖(N+ + 1)1/2ξ‖2 (7.62)

and, since as usual the commutator of N+ with operators of the form (7.56) has again
the same form,

|〈ξ,
[
G(2,2)
N,β ,N+

]
ξ〉| ≤ δ‖V1/2

N ξ‖2 + Cκ‖(N+ + 1)1/2ξ‖2 (7.63)

On the other hand, taking into account Lemma 7.3, (7.61) also proves that

|〈ξ,G(2,2)
N,β ξ〉| ≤ CNβ−1‖(N+ + 1)1/2(K + 1)1/2ξ‖2
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Finally, let us consider the third contribution to G(2)
N,β on the r.h.s. of (7.47). We

have, with Lemma 2.6,

G(2,3)
N,β =

κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)e−B(η)
[
bpb−p + b∗pb

∗
−p

]
eB(η)

=
∑

m,n≥0

(−1)m+n

m!n!
κ
∑

p∈Λ∗
+

V̂ (p/Nβ)
[
ad

(m)
B(η)(bp)ad

(n)
B(η)(b−p) + h.c.

]

=
κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)

×
{[
γpbp + σpb

∗
−p

] [
γpb−p + σpb

∗
p

]
+
[
γpb

∗
p + σpb−p

] [
γpb

∗
−p + σpbp

]}

+ E(V )
3

(7.64)

with the error term

E(V )
3 =

∑

m,n≥0

(−1)m+n

m!n!

κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ) ηmp b
♯m
αmp

[
ad

(n)
B(η)(b−p)− ηnp b

♯n
−αnp

]

+
∑

m,n≥0

(−1)m+n

m!n!

κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)
[
ad

(m)
B(η)(bp)− ηmp b

♯m
αmp

]
ηnp b

♯n
−αnp

+
∑

m,n≥0

(−1)m+n

m!n!

κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)

×
[
ad

(m)
B(η)(bp)− ηmp b

♯m
αmp

] [
ad

(n)
B(η)(b−p)− ηnp b

♯n
−αnp

]

+ h.c.

(7.65)

We consider the first sum on the r.h.s. of (7.65). According to Lemma 2.6, the operator

κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)ηmp b
♯m
αmp

[
ad

(n)
B(η)(b−p)− ηnp b

♯n
−αnp

]

can be written as the sum of the one term

M1 =
κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)ηm+n
p b♯mαmp





(
N −N+

N

)n+(1−αn)/2
2

(
N + 1−N+

N

)n−(1−αn)/2
2

− 1



 b♯n−αnp

(7.66)

and of 2nn!− 1 terms of the form

M2 =
κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)ηmp b
♯m
αmpΛ1 . . .Λi1N

−k1Π
(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕ−αℓ1
p) (7.67)
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where i1, k1, ℓ1 ∈ N, j1, . . . , jk1 ∈ N\{0} and where each Λr-operator is either a factor
(N −N+)/N , a factor (N + 1−N+)/N or a Π(2)-operator of the form (7.52). In every
term of the form (7.67) we have k1 > 0 or at least one of the Λ-operators must have the
form (7.52).

To estimate the expectation of (7.66) we proceed very similarly as we did in the proof
of Prop. 7.5, to show (7.34), (7.35). We obtain

|〈ξ,M1ξ〉| ≤ Cm+nκm+n+1(n+ 1)‖(N+ + 1)1/2ξ‖2 (7.68)

and also

|〈ξ,M1ξ〉| ≤ Cm+nκm+n+1(n+ 1)Nβ−1‖(N+ + 1)ξ‖2 (7.69)

Next, we bound the expectation of the term M2, defined in (7.67). If m+ ℓ1 ≥ 1, we
can use Lemma 7.1, part iii), to estimate

|〈ξ,M2ξ〉| ≤
κ

2

∑

p∈Λ∗
+

|V̂ (p/Nβ)||ηp|m‖(N+ + 1)1/2ξ‖

× ‖(N+ + 1)−1/2b♯mαmpΛ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕ−αℓ1
p)ξ‖

≤ Cn+mκn+m+1‖(N+ + 1)1/2ξ‖
∑

p∈Λ∗
+

|V̂ (p/Nβ)|

×
{
(1 +m/N)

|p|4 ‖(N+ + 1)1/2ξ‖+ 1

|p|2 ‖apξ‖+
1

N |p|2 ‖(N+ + 1)1/2ξ‖
}

≤ Cn+mκn+m+1‖(N+ + 1)1/2ξ‖2

Alternatively, again for m + ℓ1 ≥ 1, we can also use Lemma 7.1, part iii), to show the
bound

|〈ξ,M2ξ〉| ≤
κ

2

∑

p∈Λ∗
+

|V̂ (p/Nβ)||ηp|m‖(N+ + 1)ξ‖

× ‖(N+ + 1)−1b♯mαmpΛ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p ϕ−αℓ1
p)ξ‖

≤ Cm+nκm+n+1(m+ 1)

N
‖(N+ + 1)ξ‖

×
∑

p∈Λ∗
+

|V̂ (p/Nβ)|
[

1

|p|4 ‖(N+ + 1)ξ‖ + 1

p2
‖ap(N+ + 1)1/2ξ‖+ 1

p2
‖ξ‖
]

≤ Cm+nκm+n+1Nβ−1‖(N+ + 1)ξ‖2

If now m = ℓ1 = 0, we write

〈ξ,M2ξ〉 =
κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)〈ξ,D1(p)〉+
κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)〈ξ,D2 apa−pξ〉 (7.70)

58



with D1(p) and the operator D2 satisfying

‖(N+ + 1)−1/2D1(p)‖ ≤ Cnκn+1n

Np2
‖apξ‖ and

‖D∗
2ξ‖ ≤ Cnκn+1

N
‖(N+ + 1)ξ‖ .

(7.71)

Switching to position space to estimate the second term on the r.h.s. of (7.70), we
conclude that

|〈ξ,M2ξ〉| ≤
Cnκn+1n

N
‖(N+ + 1)1/2ξ‖2

+
Cnκn+1

N

∫

Λ×Λ
dxdyN3βV (Nβ(x− y))‖ǎxǎyξ‖‖(N+ + 1)ξ‖

≤ Cnκn+1

N
‖(N+ + 1)1/2ξ‖2 + Cnκn+1/2

√
N

‖V1/2
N ξ‖‖(N+ + 1)ξ‖

(7.72)

With (7.68) and (7.72), we can control the first sum on the r.h.s. of (7.65). The second
and third sum can be controlled similarly. We conclude that, if κ > 0 is small enough
(so that we can sum over n,m ∈ N),

|〈ξ, E(V )
3 ξ〉| ≤ Cκ‖(N+ + 1)1/2ξ‖2 + Cκ1/2‖(N+ + 1)1/2ξ‖‖V1/2

N ξ‖

Hence, for every δ > 0 we can find C > 0 such that

|〈ξ, E(V )
3 ξ〉| ≤ δ‖V1/2

N ξ‖2 + Cκ‖(N+ + 1)1/2ξ‖2 (7.73)

and (since the commutator with N+ of every term of the form (7.66), (7.67) is again an
operator with the same form, up to a constant bounded by C(n+ 1))

|〈ξ,
[
N+, E(V )

3

]
ξ〉| ≤ δ‖V1/2

N ξ‖2 + Cκ‖(N+ + 1)1/2ξ‖2 (7.74)

Combining (7.69) with (7.72), we arrive moreover with Lemma 7.3 at the bound

|〈ξ, E(V )
3 ξ〉| ≤ CNβ−1‖(N+ + 1)1/2(K + 1)1/2ξ‖2 . (7.75)

From (7.47), (7.48), (7.64) and from the definition (7.46), we obtain

E(V )
N,β = E(V )

1 + G(2,2)
N,β + E(V )

3

Hence, from the bounds (7.53), (7.62) and (7.75), we conclude that

|〈ξ, E(V )
N,βξ〉| ≤ CNβ−1‖(K + 1)1/2(N+ + 1)1/2ξ‖2

Furthermore, with the definition (7.45), we find that

Ẽ(V )
N,β = E(V )

0 + E(V )
1 + G(2,2)

N,β + E(V )
3
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with the additional term

E(V )
0 =

∑

p∈Λ∗
+

κV̂ (p/Nβ)[σ2p + σpγp − ηp] +
∑

p∈Λ∗
+

κV̂ (p/Nβ)(γp + σp)
2b∗pbp

+
κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)[(γp + σp)
2 − 1](bpb−p + b∗pb

∗
−p)

Since |σ2p + σpγp − ηp| ≤ Cκ2|p|−4, |γp + σp|2 ≤ C and |(γp + σp)
2 − 1| ≤ Cκ|p|−2, we

easily find that

|〈ξ, E(V )
0 ξ〉| ≤ Cκ‖(N+ + 1)1/2ξ‖2

|〈ξ,
[
N+, E(V )

0

]
ξ〉| ≤ Cκ‖(N+ + 1)1/2ξ‖2

for all ξ ∈ F≤N
+ . Together with the estimates (7.53), (7.54), (7.62), (7.63), (7.73), (7.74),

we conclude that for every δ > 0 there exists C > 0 such that

|〈ξ, Ẽ(V )
N,βξ〉| ≤ δ‖V1/2

N ξ‖2 + Cκ‖(N+ + 1)1/2ξ‖2

|〈ξ,
[
N+, Ẽ(V )

N,β

]
ξ〉| ≤ δ‖V1/2

N ξ‖2 + Cκ‖(N+ + 1)1/2ξ‖2

7.3 Analysis of G(3)
N

Recall from (3.3) that

G(3)
N,β = e−B(η)L(3)

N,βe
B(η)

=
1√
N

∑

p,q∈Λ∗
+:p+q 6=0

V̂ (p/Nβ)e−B(η)
[
b∗p+qa

∗
−paq + a∗qa−pbp+q

]
eB(η) (7.76)

In the next proposition, we show how to control the operator G(3)
N,β.

Proposition 7.7. Under the assumptions of Theorem 3.2, for every δ > 0 there exists
C > 0 such that, on F≤N

+ ,

±G(3)
N,β ≤ δVN + Cκ(N+ + 1)

±
[
G(3)
N,β, iN+

]
≤ C(Hβ

N + 1)

Furthermore, we have

±G(3)
N,β ≤ CN (β−1)/2(K + 1)(N+ + 1)
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Proof. With Lemma 2.6, we write

e−B(η)a∗−paqe
B(η)

= a∗−paq +

∫ 1

0
ds e−sB(η)[a∗−paq, B(η)]esB(η)

= a∗−paq +

∫ 1

0
e−sB(η)(ηqb

∗
−pb

∗
−q + ηpbqbp)e

sB(η)

= a∗−paq

+
∑

n,k≥0

(−1)n+k

n!k!(n + k + 1)

[
ηqad

(n)
B(η)(b

∗
−p)ad

(k)
B(η)(b

∗
−q) + ηpad

(n)
B(η)(bq)ad

(k)
B(η)(bp)

]

Inserting this identity in (7.76), we find

G(3)
N,β = G(3,1)

N,β + G(3,2)
N,β + G(3,3)

N,β (7.77)

with

G(3,1)
N,β =

∑

r≥0

(−1)r

r!

κ√
N

∑

p,q∈Λ∗
+:p+q 6=0

V̂ (p/Nβ)ad
(r)
B(η)(b

∗
p+q)a

∗
−paq + h.c.

G(3,2)
N,β =

∑

n,k,r≥0

(−1)n+k+r

n!k!r!(n+ k + 1)

× κ√
N

∑

p,q∈Λ∗
+,p+q 6=0

V̂ (p/Nβ)ηq ad
(r)
B(η)(b

∗
p+q)ad

(n)
B(η)(b

∗
−p)ad

(k)
B(η)(b

∗
−q) + h.c.

G(3,3)
N,β =

∑

n,k,r≥0

(−1)n+k+r

n!k!r!(n+ k + 1)

× κ√
N

∑

p,q∈Λ∗
+,p+q 6=0

V̂ (p/Nβ)ηp ad
(r)
B(η)(b

∗
p+q)ad

(n)
B(η)(bp)ad

(k)
B(η)(bq) + h.c.

(7.78)

Let us consider first the term G(3,3)
N,β . With Lemma 2.5, the operator

κ√
N

∑

p,q∈Λ∗
+,p+q 6=0

V̂ (p/Nβ)ηp ad
(r)
B(η)(b

∗
p+q)ad

(n)
B(η)(bp)ad

(k)
B(η)(bq) (7.79)

can be expanded in the sum of 2n+k+rn!k!r! terms having the form

P =
κ√
N

∑

p,q∈Λ∗
+,p+q 6=0

V̂ (p/Nβ)ηpΠ
(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p+qϕαℓ1
(p+q))

∗Λ∗
i1 . . .Λ

∗
i1

× Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; ηℓ2p ϕαℓ2
p)

× Λ′′
1 . . .Λ

′′
i3N

−k3Π
(1)
♯′′,♭′′(η

s1 , . . . , ηsk3 ; ηℓ3ϕαℓ3
q)

(7.80)
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for i1, i2, i3, k1, k2, k3, ℓ1, ℓ2, ℓ3 ∈ N, j1, . . . , jk1 ,m1, . . . ,mk2 , s1, . . . , sk3 ∈ N\{0}, αℓi =
(−1)ℓi and where each Λi,Λ

′
i,Λ

′′
i is either a factor (N−N+)/N , a factor (N+1−N+)/N

or a Π(2)-operator of the form

N−hΠ
(2)
♯,♭ (η

z1 , . . . , ηzs) (7.81)

for some h, z1 . . . , zh ∈ N\{0}. We bound the expectation of (7.80) by

|〈ξ,Pξ〉| ≤ κ√
N

∑

p,q∈Λ∗
+:p 6=−q

|V̂ (p/Nβ)|ηp

× ‖Λ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p+qϕαℓ1
(p+q))ξ‖

× ‖Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; ηℓ2p ϕαℓ2
p)

× Λ′′
1 . . .Λ

′′
i3N

−k3Π
(1)
♯′′,♭′′(η

s1 , . . . , ηsk3 ; ηℓ3ϕαℓ3
q)ξ‖

From Lemma 7.1, part i) and ii), we conclude that

|〈ξ,Pξ〉|
≤ Cn+k+rκn+k+r+2

× 1√
N

∑

p,q∈Λ∗
+:p 6=−q

1

p2

{ 1

(p+ q)2
‖(N+ + 1)1/2ξ‖+ ‖ap+qξ‖

}

×
{(1 + r/N)

p2q2
‖(N+ + 1)ξ‖+ (1 + r/N)

p2
‖aq(N+ + 1)1/2ξ‖

+
1

q2
‖ap(N+ + 1)1/2ξ‖+ ‖apaqξ‖

}

≤ Cn+k+r(1 + r)κn+k+r+2

√
N

‖(N+ + 1)ξ‖‖(N+ + 1)1/2ξ‖

Hence, for κ > 0 sufficiently small, we obtain

∣∣〈ξ,G(3,3)
N,β ξ〉

∣∣ ≤ Cκ2√
N

‖(N+ + 1)ξ‖‖(N+ + 1)1/2ξ‖ (7.82)

Next, we consider the term G(3,2)
N,β in (7.78) (we take its hermitian conjugate). Since

we will use the potential energy operator to control this term, it is convenient to switch
to position space. We write

κ√
N

∑

p,q∈Λ∗
+,p+q 6=0

V̂ (p/Nβ)ηq ad
(r)
B(η)(b−q)ad

(n)
B(η)(b−p)ad

(k)
B(η)(bp+q)

=
κ√
N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))ad

(r)
B(η)(b(η̌

1+ℓ1
x )ad

(n)
B(η)(b̌y)ad

(k)
B(η)(b̌x)

(7.83)

where we used the notation η̌s to indicate the Fourier transform of the sequence Λ∗ ∋
p→ ηsp, and η̌

s
x denotes the function (or the distribution, if s = 0) z → η̌sx(z) = η̌s(z−x).
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With Lemma 2.5, the r.h.s. of (7.83) can be written as the sum of 2n+k+rn!k!r! terms,
all having the form

Q =
κ√
N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))Λ1 . . .Λi1N

−k1Π
(1)
♯,♭ (η

j1 , . . . , ηjk1 ; η̌1+ℓ1
x )

× Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; η̌ℓ2y )

× Λ
′′

1 . . .Λ
′′

i3N
−k3Π

(1)

♯′′ ,♭′′
(ηs1 , . . . , ηsk3 ; η̌ℓ3x )

(7.84)

where i1, i2, i3, k1, k2, k3, ℓ1, ℓ2, ℓ3 ∈ N, j1, . . . , jk1 ,m1, . . . ,mk2 , s1, . . . , sk3 ∈ N\{0} and
where each operator Λi,Λ

′
i,Λ

′′
i is either a factor (N −N+)/N , a factor (N +1−N+)/N

or a Π(2)-operator of the form (7.81). To estimate the expectation of (7.84), we first
assume that (ℓ2, ℓ3) 6= (0, 1). Under this assumption, we bound

|〈ξ,Qξ〉| ≤ κ√
N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))

× ‖N−k1Π
(1)
♯,♭ (η

j1 , . . . , ηjk1 ; η̌ℓ1+1
x )∗Λ∗

i1 . . .Λ
∗
1ξ‖

×
∥∥∥Λ′

1 . . .Λ
′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; η̌ℓ2y )

× Λ
′′

1 . . .Λ
′′

i3N
−k3Π

(1)

♯′′ ,♭′′
(ηs1 , . . . , ηsk3 ; η̌ℓ3x )ξ

∥∥∥

(7.85)

With Lemma 7.2 we estimate

‖N−k1Π
(1)
♯,♭ (η

j1 , . . . , ηjk1 ; η̌ℓ1+1
x )∗Λ∗

i1 . . .Λ
∗
1ξ‖ ≤ Crκr+1‖(N+ + 1)1/2ξ‖ (7.86)

and, using the condition (ℓ2, ℓ3) 6= (0, 1),

∥∥∥Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; η̌ℓ2y )Λ
′′

1 . . .Λ
′′

i3N
−k3Π

(1)

♯′′ ,♭′′
(ηs1 , . . . , ηsk3 ; η̌ℓ3x )ξ

∥∥∥

≤ Cn+kκn+k
{
(1 + k/N)‖(N+ + 1)ξ‖+ (1 + k/N)‖ǎx(N+ + 1)1/2ξ‖

+ ‖ǎy(N+ + 1)1/2ξ‖+ ‖ǎxǎyξ‖
}
.

Inserting these bounds in (7.85), we arrive at

|〈ξ,Qξ〉| ≤ Cn+k+rκn+k+r+2(1 + k)‖(N+ + 1)1/2ξ‖

× 1√
N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))

×
{
‖(N+ + 1)ξ‖+ ‖ǎx(N+ + 1)1/2‖+ ‖ǎy(N+ + 1)1/2ξ‖+ ‖ǎxǎyξ‖

}

≤ Cn+k+rκn+k+r+2(1 + k)√
N

‖(N+ + 1)ξ‖‖(N+ + 1)1/2ξ‖

+ Cn+k+rκn+k+r+1(1 + k)‖V1/2
N ξ‖‖(N+ + 1)1/2ξ‖ .

(7.87)
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For (ℓ2, ℓ3) = (0, 1) we can proceed similarly. The only additional remark is that, in this
case, the the commutator

[ǎy, a
∗(η̌x)] = η̌(x− y)

between the annihilation operator associated with the second Π(1)-factor (the one con-
taining η̌ℓ2y ) and the creation operator a∗(η̌x) associated with the third Π(1)-operator,

gives a vanishing contribution to the expectation 〈ξ,Qξ〉, for all ξ ∈ F≤N
+ (because of

the assumption that ξ is orthogonal to ϕ0).
With (7.87) we conclude that, if κ > 0 is small enough,

∣∣〈ξ,G(3,2)
N,β ξ〉

∣∣ ≤ Cκ2√
N

‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖+ Cκ‖V1/2
N ξ‖‖(N+ + 1)1/2ξ‖ (7.88)

Finally, we consider the term G(3,1)
N,β in (7.78). From Lemma 2.5, each operator

κ√
N

∑

p,q∈Λ∗
+:p+q 6=0

V̂ (p/Nβ)ad
(r)
B(η)(b

∗
p+q)a

∗
−paq (7.89)

can be written as the sum of 2rr! terms having the form

R =
κ√
N

∑

p,q∈Λ∗
+:p+q 6=0

V̂ (p/Nβ)N−k1Π
(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1p+qϕαℓ1
(p+q))

∗Λ∗
i1 . . .Λ

∗
1a

∗
−paq

(7.90)
for i1, k1, ℓ1 ∈ N, j1, . . . , jk1 ∈ N\{0}, αℓ1 = (−1)ℓ1 , and where each Λj operator is either
a factor (N −N+)/N , a factor (N +1−N+)/N of a Π(2)-operator of the form (7.81). If
ℓ1 ≥ 2, we use Lemma 7.1, part iii), to bound

|〈ξ,Rξ〉| ≤ Cκ√
N

∑

p,q∈Λ∗
+:p 6=−q

|ηp+q|ℓ1 ‖aqξ‖

× ‖a−pΛ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ;ϕαℓ1
(p+q))ξ‖

≤ Crκr+1

√
N

∑

p,q∈Λ∗
+:p 6=−q

1

(p+ q)4
‖aqξ‖

{
‖a−p(N+ + 1)1/2ξ‖+ r

Np2
‖(N+ + 1)ξ‖

}

≤ Crκr+1(1 + r)√
N

‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖
(7.91)

If ℓ1 = 1, we commute the operator a−(p+q) (or the b−(p+q) operator) appearing in

the Π(1)-operator in (7.90) to the right, and the operator a∗−p to the left (it is important
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to note that [a−(p+q), a
∗
−p] = 0 since q 6= 0). Lemma 7.1, part iii), implies that

|〈ξ,Rξ〉| ≤ Crκr+1

√
N

∑

p,q∈Λ∗
+:p 6=−q

|V̂ (p/Nβ)| 1

(p + q)2

×
{ r

Np2
‖(N+ + 1)ξ‖‖aqξ‖+

1

N(p+ q)2
‖a−p(N+ + 1)1/2ξ‖‖aqξ‖

+ ‖a−pξ‖‖a−(p+q)aqξ‖
}

≤ Crκr+1

√
N

‖(N+ + 1)ξ‖‖(N+ + 1)1/2ξ‖

(7.92)

Finally, if ℓ1 = 0, we commute a∗−p to the left. With Lemma 7.1, we find

〈ξ,Rξ〉 = κ√
N

∑

p,q∈Λ∗
+:p+q 6=0

V̂ (p/Nβ)〈D1(p, q), aqξ〉

+
κ√
N

∑

p,q∈Λ∗
+:p+q 6=0

V̂ (p/Nβ)〈D2 a−pap+qξ, aqξ〉
(7.93)

where

‖D1(p, q)‖ ≤ Crκrr

Np2
‖ap+q(N+ + 1)1/2ξ‖

and ‖D2‖ ≤ Crκr. Switching to position space to control the second term on the r.h.s.
of (7.93), we conclude therefore that

|〈ξ,Rξ〉| ≤ Crκr+1r

N3/2

∑

p,q∈Λ∗
+

|V̂ (p/Nβ)|
p2

‖aq+p(N+ + 1)1/2ξ‖‖aqξ‖

+
Crκr+1

√
N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))‖ǎxǎyξ‖‖ǎyξ‖

≤ Crκr+1r√
N

‖(N+ + 1)ξ‖‖(N+ + 1)1/2ξ‖+ Crκr+1/2‖V1/2
N ξ‖‖(N+ + 1)1/2ξ‖

Together with (7.91) and (7.92), the last estimate implies that, if κ > 0 is small enough,

|〈ξ,G(3,1)
N,β ξ〉| ≤

Cκ√
N

‖(N+ + 1)1/2ξ‖‖(N+ + 1)ξ‖ + Cκ1/2‖V1/2
N ξ‖‖(N+ + 1)1/2ξ‖ (7.94)

Combining the last bound with (7.82) and (7.88) (and using the fact that N+ ≤ N on
F≤N
+ ), we easily obtain that for every δ > 0 there exists C > 0 with

±G(3)
N,β ≤ δVN + Cκ(N+ + 1)

As usual, we can show the same bound for the commutator of G(3)
N,β with N+ (simply

because the commutator of N+ with all terms of the form (7.80), (7.84) and (7.90) has
again the same form, up to a constant bounded by C(n+ k + r)), i.e.

±
[
G(3)
N,β, iN+

]
≤ δVN + Cκ(N+ + 1)
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Finally, combining (7.82), (7.88) and (7.94) with Lemma 7.3, we also obtain

±G(3)
N,β ≤ CN (β−1)/2(N+ + 1)(K + 1) .

7.4 Analysis of G(4)
N

From (3.3) we have

G(4)
N,β = e−B(η)L(4)

N,βe
B(η) =

1

2N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p,−q

V̂ (r/Nβ)e−B(η)a∗p+ra
∗
qapaq+re

B(η)

We define the operator E(4)
N through

G(4)
N,β = VN +

1

2N

∑

p,q∈Λ∗
+

V̂ ((p− q)/Nβ)ηpηq

+
1

2N

∑

p,q∈Λ∗
+

V̂ ((p− q)/Nβ)ηq(b
∗
pb

∗
−p + bpb−p) + E(4)

N,β

(7.95)

In the next proposition, we estimate the error term E(4)
N,β.

Proposition 7.8. Under the assumptions of Theorem 3.2, for every δ > 0 there exists
C > 0 such that, on F≤N

+ ,

±E(4)
N,β ≤ δVN + Cκ(N+ + 1)

±
[
E(4)
N,β, iN+

]
≤ C(Hβ

N + 1)

Furthermore, we find

±E(4)
N,β ≤ CN (β−1)/2(Hβ

N + 1)(N+ + 1)

Proof. We have

G(4)
N,β =

κ

2N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p,q

V̂ (r/N)e−B(η)a∗pa
∗
qaq−rap+re

B(η)

= VN +
κ

2N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p,q

V̂ (r/N)

∫ 1

0
ds e−sB(η)

[
a∗pa

∗
qaq−rap+r, B(η)

]
esB(η)

= VN +
κ

2N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/N)ηq+r

∫ 1

0
ds
(
e−sB(η)b∗qb

∗
−qe

sB(η) + h.c.
)

+
κ

N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=p,−q

V̂ (r/N)ηq+r

∫ 1

0
ds
(
e−sB(η)b∗p+rb

∗
qa

∗
−q−rape

sB(η) + h.c.
)

(7.96)
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Expanding again

e−sB(η)a∗−q−rape
sB(η) = a∗−q−rap +

∫ s

0
dτ e−τB(η)

[
a∗−q−rap, B(η)

]
e−τB(η)

= a∗−q−rap +

∫ s

0
dτ e−τB(η)

(
ηpb

∗
−pb

∗
−q−r + ηq+rbpbq+r

)
e−τB(η)

and using Lemma 2.6, we obtain

G(4)
N,β − VN = W1 +W2 +W3 +W4 (7.97)

where we defined

W1 =

∞∑

n,k=0

(−1)n+k

n!k!(n+ k + 1)

× κ

2N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηq+r

(
ad

(n)
B(η)(bq)ad

(k)
B(η)(b−q) + h.c.

)

W2 =
∞∑

n,k=0

(−1)n+k

n!k!(n+ k + 1)

× κ

N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=p,−q

V̂ (r/Nβ)ηq+r

(
ad

(n)
B(η)

(b∗p+r)ad
(k)
B(η)

(b∗q)a
∗
−q−rap + h.c.

)

(7.98)

and

W3 =

∞∑

n,k,i,j=0

(−1)n+k+i+j

n!k!i!j!(i + j + 1)(n + k + i+ j + 2)

κ

N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p−q

V̂ (r/Nβ)ηq+rηp

×
(
ad

(n)
B(η)(b

∗
p+r)ad

(k)
B(η)(b

∗
q)ad

(i)
B(η)(b

∗
−p)ad

(j)
B(η)(b

∗
−q−r) + h.c.

)

W4 =
∞∑

n,k,i,j=0

(−1)n+k+i+j

n!k!i!j!(i + j + 1)(n + k + i+ j + 2)

× κ

N

∑

p,q∈Λ∗
+,r∈Λ∗:r 6=−p−q

V̂ (r/Nβ)η2q+r

×
(
ad

(n)
B(η)(b

∗
p+r)ad

(k)
B(η)(b

∗
q)ad

(i)
B(η)(bp)ad

(j)
B(η)(bq+r) + h.c.

)

(7.99)

In W1, we isolate the contributions associated to (n, k) = (0, 0), (0, 1). To this end, we
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write

W1 =
κ

2N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηr+q(bqb−q + h.c.)

− κ

4N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηq+r(bq[B(η), b−q] + h.c.) + W̃1

=
κ

2N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηr+q(bqb−q + h.c.)

− κ

4N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηq+rηq +T+ W̃1

where we defined

W̃1 =

∗∑

n,k

(−1)n+k

n!k!(n + k + 1)

× κ

2N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηq+r

(
ad

(n)
B(η)(bq)ad

(k)
B(η)(b−q) + h.c.

) (7.100)

with the sum
∑∗

n,k running over all pairs (n, k) 6= (0, 0), (0, 1), and

T = − κ

4N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηq+r(bq[B(η), b−q] + h.c.)

+
κ

2N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηq+rηq

=: T1 +T2 +T3

(7.101)

with

T1 =
κ

N2

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηr+qηq(2N+ + 1 +N+/N +N 2
+/N)

T2 =
2κ

N2

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηr+qηqa
∗
qaq

(
1− N+ + 1

N

)

T3 =
κ

N3

∑

q,m∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηr+qηma
∗
ma

∗
−maqa−q

In the computation of T, we used the fact that

[B(η), b−q] = −ηq(1−N+/N)b∗q +
1

N

∑

m∈Λ∗
+

ηmb
∗
ma

∗
−ma−q

Comparing with (7.95), we arrive at

E(4)
N,β = T+ W̃1 +W2 +W3 +W4 (7.102)
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Let us start by analyzing the operator T, defined in (7.101). Using (3.10), we estimate

1

N2

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

|V̂ (r/Nβ)||ηr+q||ηq| ≤ CNβ−1


 1

N2

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

|V̂ (r/Nβ)|2
q2(q + r)2



1/2

Next, we observe that

1

N2

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

|V̂ (r/Nβ)|2
q2(q + r)2

≤ C

N2

∑

r∈Λ∗

|V̂ (r/Nβ)|2
|r|+ 1

≤ C‖V̂ ‖2∞
N2

∑

|r|≤Nβ

1

|r|+ 1
+
C‖V̂ (./Nβ)‖22

N2+β
≤ CN2(β−1)

Hence, we conclude that

1

N2

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

|V̂ (r/Nβ)||ηr+q||ηq| ≤ CN2(β−1) (7.103)

With this bound, we easily arrive at

|〈ξ,T1ξ〉|, |〈ξ,T2ξ〉| ≤ Cκ3N2(β−1)‖(N+ + 1)1/2ξ‖2 (7.104)

To bound T3, we switch to position space. We obtain

T3 =
κ

N3

∑

q,m∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηr+qηma
∗
ma

∗
−maqa−q

=
κ

N3

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))η̌(x− y)Dǎxǎy

where D =
∑

m∈Λ∗
+
ηma

∗
ma

∗
−m. Since ‖D∗ξ‖ ≤ Cκ‖(N+ + 1)ξ‖, we find

|〈ξ,T3ξ〉| ≤ Cκ2N−3‖(N+ + 1)ξ‖
∫

Λ×Λ
dxdy N3βV (Nβ(x− y))|η̌(x− y)|‖ǎxǎyξ‖

≤ Cκ3N−3+β‖(N+ + 1)ξ‖
∫

Λ×Λ
dxdy N3βV (Nβ(x− y))‖ǎxǎyξ‖

≤ Cκ5/2N−1‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖

Together with (7.104), we conclude that

|〈ξ,Tξ〉| ≤ Cκ3N2(β−1)‖(N+ + 1)1/2ξ‖2 + Cκ5/2N−1‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖ . (7.105)

Let us now consider the operator W̃1, defined in (7.100). According to Lemma 2.5,
the operator

κ

N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηq+rad
(n)(bq)ad

(k)(b−q)
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can be written as the sum of 2n+kn!k! term s having the form

X =
κ

N

∑

q∈Λ∗
+,r∈Λ∗:r 6=−q

V̂ (r/Nβ)ηq+rΛ1 . . .Λi1N
−k1Π

(1)
♯,♭ (η

j1 , . . . , ηjk1 ; ηℓ1q ϕαℓ1
q)

× Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯′,♭′(η

m1 , . . . , ηmk2 ; ηℓ2q ϕ−αℓ2
q)

where i1, i2, k1, k2, ℓ1, ℓ2 ∈ N, j1, . . . , jk1 ,m1, . . . ,mk2 ∈ N\{0}, αℓi = (−1)ℓi and where
each operator Λr,Λ

′
r is either a factor (N − N+)/N , a factor (N + 1 − N+)/N or a

Π(2)-operator of the form

N−hΠ
(2)
♯,♭ (η

z1 , . . . , ηzp). (7.106)

for h, z1, . . . , zh ∈ N\{0}. To bound the expectation of the operator X, we distinguish
two cases. If ℓ1 + ℓ2 ≥ 1, we use Lemma 7.1, part ii), to estimate

|〈ξ,Xξ〉| ≤ Cn+kκn+k+2

N
‖(N+ + 1)1/2ξ‖

×
∑

q,r∈Λ∗
+:r 6=−q

|V̂ (r/Nβ)|
(q + r)2

{
1

q4
(1 + k/N)‖(N+ + 1)1/2ξ‖+ 1

q2
‖aqξ‖

}

+
Cn+kκn+k‖(N+ + 1)1/2ξ‖2

N2

∑

q,r∈Λ∗
+:r 6=−q

|V̂ (r/Nβ)||ηq+r||ηq|

Here we used the fact that we excluded the pairs (n, k) = (0, 0), (0, 1) to make sure that,
if ℓ1 = 0 and ℓ2 = 1, then either k1 > 0 or k2 > 0 or at least one of the operators Λ or
Λ′ has to be a Π(2)-operator. From (7.103) and since, as we already showed in (7.18),

sup
q∈Λ∗

+

1

N

∑

r∈Λ∗:r 6=−q

|V̂ (r/Nβ)| 1

(q + r)2
≤ CNβ−1

we conclude that, for ℓ1 + ℓ2 ≥ 1,

|〈ξ,Xξ〉| ≤ Cn+kκn+k+2Nβ−1‖(N+ + 1)1/2ξ‖2 (7.107)

For ℓ1 = ℓ2 = 0, we use Lemma 7.1, part ii), to write

X =
κ

N

∑

q∈Λ∗
+,r∈Λ∗

V̂ (r/Nβ)ηq+r [D1(q) + D2 aqa−q] =: X1 +X2

where

|〈ξ,D1(q)ξ〉| ≤
Cn+kκn+kk

Nq2
‖(N+ + 1)1/2ξ‖2

and (since we excluded the term with (n, k) = (0, 0))

‖D∗
2ξ‖ ≤ Cn+kN−1κn+k‖(N+ + 1)ξ‖
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We immediately obtain, using again (7.103), that

|〈ξ,X1ξ〉| ≤
Cn+kκn+k+2

N2

∑

q∈Λ∗
+,r∈Λ∗

V̂ (r/Nβ)
1

(q + r)2q2
‖(N+ + 1)1/2ξ‖2

≤ Cn+kκn+k+2N2(β−1)‖(N+ + 1)1/2ξ‖2

Switching to position space, we also find

|〈ξ,X2ξ〉| =
∣∣∣ κ
N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))η̌(x− y)〈D∗

2 ξ, ǎxǎyξ〉
∣∣∣

≤ κ

N

∫

Λ×Λ
dxdyN3βV (Nβ(x− y))|η̌(x− y)|‖ǎxǎyξ‖‖D∗

2 ξ‖

≤ Cn+kκn+k+2

N2−β
‖(N+ + 1)ξ‖

∫

Λ×Λ
dxdyN3βV (Nβ(x− y))‖ǎxǎyξ‖

≤ Cn+kκn+k+3/2Nβ−1‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖

Combining the last two bounds with (7.107), and then summing over all n, k, we find

|〈ξ, W̃1ξ〉| ≤ Cκ2Nβ−1‖(N+ + 1)1/2ξ‖2 + Cκ3/2Nβ−1‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖ . (7.108)

Next, we consider the expectation of the operator W2, defined in (7.98). Since we
will need the potential energy operator to bound this term, it is convenient to switch to
position space. On F+, we find

W2 =

∞∑

n,k=0

(−1)n+k

n!k!(n+ k + 1)

× κ

N

∫

Λ×Λ
dxdyN3βV (Nβ(x− y))

(
ad

(n)
B(η)(b̌

∗
x)ad

(k)
B(η)(b̌

∗
y)a

∗(η̌x)ǎy + h.c.
)

(7.109)

with the notation η̌x(z) = η̌(x− z). With Cauchy-Schwarz, we find

∣∣∣ κ
N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))〈ξ, ad(n)B(η)(b̌

∗
x)ad

(k)
B(η)(b̌

∗
y)a

∗(η̌x)ǎyξ〉
∣∣∣

≤ κ

N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))

× ‖(N+ + 1)1/2ad
(k)
B(η)(b̌y)ad

(n)
B(η)(b̌x)ξ‖‖(N+ + 1)−1/2a∗(η̌x)ǎyξ‖

(7.110)

We bound
‖(N+ + 1)−1/2a∗(η̌x)ǎyξ‖ ≤ Cκ‖ǎyξ‖ (7.111)
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With Lemma 2.5, we estimate ‖(N++1)1/2ad
(k)
B(η)(b̌y)ad

(n)
B(η)(b̌x)ξ‖ by the sum of 2n+kn!k!

terms of the form

Z =
∥∥∥(N+ + 1)1/2Λ1 . . .Λi1N

−k1Π
(1)
♯,♭ (η

j1 , . . . , ηjk1 ; η̌ℓ1y )

×Λ′
1 . . .Λ

′
i2N

−k2Π
(1)
♯,♭ (η

m1 , . . . , ηmk2 ; η̌ℓ2x )ξ
∥∥∥

(7.112)

with i1, i2, k1, k2, ℓ1, ℓ2 ≥ 0, j1, . . . , jk1 ,m1, . . . ,mk2 ≥ 0 and where each Λi and Λ′
i opera-

tor is either a factor (N−N+)/N , (N+1−N+)/N or a Π(2)-operator of the form (7.106)
(here η̌ℓ1 indicates the function with Fourier coefficients given by ηℓ1p , for all p ∈ Λ∗

+).
With Lemma 7.2, we find

Z ≤ (n+ 1)Ck+nκk+n
{
‖(N+ + 1)3/2ξ‖+ ‖ǎy(N+ + 1)ξ‖+ ‖ǎx(N+ + 1)ξ‖

+Nβ‖(N+ + 1)1/2ξ‖+
√
N‖ǎxǎyξ‖

} (7.113)

Inserting (7.111) and (7.113) into (7.110) we obtain, for any ξ ∈ F≤N
+ ,

∣∣∣∣
κ

N

∫

Λ×Λ
dxdyN3βV (Nβ(x− y))〈ξ, ad(n)B(η)(b̌

∗
x)ad

(k)
B(η)(b̌

∗
y)a

∗(η̌x)ǎyξ〉
∣∣∣∣

≤ (n+ 1)!k!Cn+kκn+k+2

N

∫
dxdy N3βV (Nβ(x− y))‖ǎyξ‖

×
{
N‖(N+ + 1)1/2ξ‖+N‖ǎyξ‖+N‖ǎxξ‖+

√
N‖ǎxǎyξ‖

}

≤ (n+ 1)!k!Cn+kκn+k+2‖(N+ + 1)1/2ξ‖2

+ (n+ 1)!k!Cn+kκn+k+3/2‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖

Therefore, if κ > 0 is small enough, we find, for every δ > 0, a constant C > 0 such that

|〈ξ,W2ξ〉| ≤ δ‖V1/2
N ξ‖2 + Cκ2‖(N+ + 1)1/2ξ‖2 (7.114)

On the other hand, inserting (7.111) and (7.113) into (7.110), we also arrive at

∣∣∣∣
κ

N

∫

Λ×Λ
dxdyN3βV (Nβ(x− y))〈ξ, ad(n)B(η)(b̌

∗
x)ad

(k)
B(η)(b̌

∗
y)a

∗(η̌x)ǎyξ〉
∣∣∣∣

≤ (n+ 1)!k!Cn+kκn+k+2

N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))‖ǎyξ‖

×
{
(
√
N +Nβ)‖(N+ + 1)ξ‖ +

√
N‖ǎx(N+ + 1)1/2ξ‖

+
√
N‖ǎy(N+ + 1)1/2ξ‖+

√
N ‖ǎxǎyξ‖

}

≤ (n+ 1)!k!Cn+kκn+k+2N−min(1−β,1/2)‖(N+ + 1)ξ‖2

+ (n+ 1)!k!Cn+kκn+k+3/2‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖
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Therefore, for κ > 0 small enough and using Lemma 7.3 we obtain

|〈ξ,W2ξ〉| ≤ CN (β−1)/2‖(N+ + 1)1/2(Hβ
N + 1)1/2ξ‖2. (7.115)

Next, let us consider the term W3, defined in (7.99). As above, we switch to position
space. We find

W3 =
∞∑

n,k,i,j=0

(−1)n+k+i+j

n!k!i!j!(i + j + 1)(n + k + i+ j + 2)

× κ

N

∫
dxdy N3βV (Nβ(x− y))

×
(
ad(n)(b̌∗x)ad

(k)
B(η)

(b̌∗y)ad
(i)
B(η)

(b∗(η̌x))ad
(j)
B(η)

(b∗(η̌y)) + h.c.
)

(7.116)

With Cauchy-Schwarz, we have

∣∣∣∣
κ

N

∫
dxdyN3βV (Nβ(x− y))〈ξ, ad(n)

B(η)
(b̌∗x)ad

(k)
B(η)

(b̌∗y)ad
(i)
B(η)

(b̌∗(η̌x))ad
(j)
B(η)

(b̌(η̌y))ξ〉
∣∣∣∣

≤ κ

N

∫
dxdy N3βV (Nβ(x− y)) ‖(N+ + 1)1/2ad

(k)
B(η)(b̌y)ad

(n)
B(η)(b̌x)ξ‖

× ‖(N+ + 1)−1/2ad
(i)
B(η)(b(η̌x))ad

(j)(b(η̌y))ξ‖

Expanding ad
(i)
B(ηt)

(b(η̌x))ad
(j)(b(η̌y)) as in Lemma 2.5 and using Lemma 7.2, we obtain

‖(N+ + 1)−1/2ad
(i)
B(η)(b(η̌x))ad

(j)(b(η̌y))ξ‖ ≤ i!j!Ci+jκi+j+2‖(N+ + 1)1/2ξ‖ (7.117)

As for the norm ‖(N+ + 1)1/2ad
(k)
B(η)(b̌y)ad

(n)
B(η)(b̌x)ξ‖, we can estimate by the sum of

2n+kn!k! contributions of the form (7.112). With the bound (7.113), we can argue as in
the analysis of the term W2. Similarly to (7.115) and (7.114), we conclude that, if κ > 0
is sufficiently small, for every δ > 0, there exists C > 0 such that

|〈ξ,W3ξ〉| ≤ δ‖V1/2
N ξ‖2 + Cκ2‖(N+ + 1)1/2ξ‖2

|〈ξ,W3ξ〉| ≤ CN (β−1)/2‖(N+ + 1)1/2(Hβ
N + 1)1/2ξ‖2

(7.118)

The term W4 in (7.99) can be bounded similarly. First, we switch to position space:

W4 =

∞∑

n,k,i,j=0

(−1)n+k+i+j

n!k!i!j!(i + j + 1)(n + k + i+ j + 2)

× κ

N

∫
dxdy N3βV (Nβ(x− y))

(
ad(n)(b̌x)ad

(k)(b̌y)ad
(i)(b(η̌2x))ad

(j)(b̌y) + h.c.
)

(7.119)

73



The expectation of the operators on the r.h.s. of (7.119) can be bounded similarly as we
did for the operators on the r.h.s. of (7.116). The only difference is the fact that now
we have to replace the estimate (7.117) with

‖(N+ + 1)−1/2ad(i)(b(η̌2x))ad
(j)(b̌y)ξ‖ ≤ i!j!Ci+jκi+j+2

[
‖(N+ + 1)1/2ξ‖+ ‖ǎyξ‖

]

Hence, we obtain that, for every δ > 0,

|〈ξ,W4ξ〉| ≤ δ‖V1/2
N ξ‖2 + Cκ2‖(N+ + 1)1/2ξ‖2

|〈ξ,W4ξ〉| ≤ CN (β−1)/2‖(N+ + 1)1/2(Hβ
N + 1)1/2ξ‖2 .

(7.120)

Combining the bounds (7.105), (7.108), (7.114), (7.115), (7.118) and (7.120) we
conclude, by (7.102), that, for all δ > 0 there is C > 0 such that

± E(4)
N,β ≤ δVN + Cκ(N+ + 1) (7.121)

and that, furthermore,

±E(4)
N,β ≤ CN (β−1)/2(N+ + 1)(Hβ

N + 1)

As usual, the bound for the commutator of E(4)
N,β with N+ can be proven exactly as we

proved (7.121).

7.5 Proof of Theorem 3.2

Combining the results of Prop. 7.4, Prop. 7.5, Prop. 7.6, Prop. 7.7 and Prop. 7.8, we
conclude that

Gβ
N =

(N − 1)

2
κV̂ (0) +

∑

p∈Λ∗
+


p2η2p + κV̂ (p/Nβ)ηp +

1

2N

∑

q∈Λ∗
+

V̂ ((p− q)/Nβ)ηpηq




+Hβ
N +

∑

p∈Λ∗
+


p2ηp +

κV̂ (p/Nβ)

2
+

1

2N

∑

q∈Λ∗
+

V̂ ((p− q)/Nβ)ηq


[b∗pb∗−p + bpb−p

]

+ ẼN,β

where the error ẼN,β = E(0)
N,β + Ẽ(K)

N,β + Ẽ(V )
N,β + G(3)

N,β + E(4)
N,β is such that, for every δ > 0,

there exists C > 0 with

±ẼN,β ≤ δHβ
N + Cκ(N+ + 1)

±[ẼN,β, iN+] ≤ C(Hβ
N + 1)

Using the relation (3.12), we can rewrite

Gβ
N =

(N − 1)

2
κV̂ (0) +

κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)ηp +Hβ
N + E ′

N,β (7.122)
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with

E ′
N,β =

∑

p∈Λ∗
+

ηp

[
NλN,ℓχ̂ℓ(p) + λN,ℓ

∑

q∈Λ∗

χ̂ℓ(p− q)η̃q −
κ

2N
V̂ (p/Nβ)η̃0

]

+
∑

p∈Λ∗
+

[
NλN,ℓχ̂ℓ(p) + λN,ℓ

∑

q∈Λ∗

χ̂ℓ(p− q)η̃q −
κ

2N
V̂ (p/Nβ)η̃0

][
b∗pb

∗
−p + bpb−p

]

+ ẼN,β

Since, by Lemma 3.1, NλN,ℓ ≤ Cκ uniformly in N , since |η̃q| ≤ Cκ/(|q|2 +1) from (3.9)
and (3.11) and since |χ̂ℓ(p)| ≤ C|p|−2 (see (5.8)), we conclude easily that for every δ > 0
there exists C > 0 such that

±E ′
N,β ≤ δHβ

N + Cκ(N+ + 1)

±
[
E ′
N,β, iN+

]
≤ C(Hβ

N + 1)
(7.123)

Eq. (7.122) implies, in particular, that the ground state energy of the Hamiltonian (1.1)
is such that

Eβ
N ≤ 〈Ω,Gβ

NΩ〉 ≤ (N − 1)

2
κV̂ (0) +

κ

2

∑

p∈Λ∗
+

V̂ (p/Nβ)ηp + C

for a constant C > 0 independent of N . Inserting in (7.122) and using the first bound
in (7.123) (taking for example δ = 1/4) we conclude that, for κ small enough,

Gβ
N − Eβ

N ≥ 1

2
Hβ

N − C

Furthermore, (7.122) and the second bound in (7.123) immediately give

±
[
Gβ
N , iN+

]
≤ C(Hβ

N + 1)

which concludes the proof of part a) of Theorem 3.2. To show part b), we notice that
Prop. 7.4, Prop. 7.5, Prop. 7.6, Prop. 7.7 and Prop. 7.8 also imply that

Gβ
N =

(N − 1)

2
κV̂ (0)

+
∑

p∈Λ∗
+

[
p2σ2p + κV̂ (p/Nβ)(σ2p + σpγp) +

κ

2N

∑

q∈Λ∗
+

V̂ ((p − q)/Nβ)ηpηq

]

+Hβ
N +

∑

p∈Λ∗
+

[
2p2σ2p + κV̂ (p/Nβ)(γp + σp)

2
]
b∗pbp

+
∑

p∈Λ∗
+

[
p2σpγp +

κ

2
V̂ (p/Nβ)(γp + σp)

2 +
κ

2N

∑

q∈Λ∗
+

V̂ ((p− q)/Nβ)ηq

]

× (b∗pb
∗
−p + bpb−p)

+ Êβ
N
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where the error term Êβ
N = E(0)

N,β + E(K)
N,β + E(V )

N,β + G(3)
N,β + E(4)

N,β is such that

± Êβ
N ≤ CN (β−1)/2(N+ + 1)(K + 1) (7.124)

Comparing with (3.16) and (3.17), we obtain that

Gβ
N = Cβ

N +Qβ
N + Eβ

N

with

Eβ
N = Êβ

N + VN +
κη̃0
2N

∑

p∈Λ∗
+

V̂ (p/Nβ)η̃0(b
∗
pb

∗
−p + bpb−p) (7.125)

Switching to position space, we have

κ

2N

∑

p∈Λ∗
+

V̂ (p/Nβ)η̃0〈ξ, bpb−pξ〉 =
κη̃0
2N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))〈ξ, b̌xb̌yξ〉

Since |η̃0| ≤ C from (3.11), we find

∣∣∣ κ
2N

∑

p∈Λ∗
+

V̂ (p/Nβ)η̃0〈ξ, bpb−pξ〉
∣∣∣ ≤ C

N

∫

Λ×Λ
dxdy N3βV (Nβ(x− y))‖ǎxǎyξ‖‖ξ‖

≤ CN−1/2 ‖V1/2
N ξ‖‖ξ‖

≤ CN−1/2‖(N+ + 1)1/2(K + 1)1/2ξ‖2

where we used Lemma 7.3. Combining the last estimate with (7.124) and again with
Lemma 7.3, Eq. (7.125) implies that

±Eβ
N ≤ CN (β−1)/2(N+ + 1)(K + 1)

This completes the proof of part b) of Theorem 3.2.
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