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Abstract

We consider systems of N bosons in a box with volume one, interacting through
a repulsive two-body potential of the form kN38~1V(NPz). For all 0 < 8 < 1, and
for sufficiently small coupling constant « > 0, we establish the validity of Bogoliubov
theory, identifying the ground state energy and the low-lying excitation spectrum
up to errors that vanish in the limit of large V.

1 Introduction and main result

We consider systems of N bosons in the three dimensional box A = [—1/2;1/2]*3 with
periodic boundary conditions. The Hamilton operator is given by
N o
HY =Y A, + ~ > NBV(NF (2 — ) (1.1)
j=1 i<j

for some $ € [0;1] and acts on the Hilbert space L2(AY), the subspace of L2(AY)
consisting of all functions that are symmetric with respect to any permutation of the IV
particles. In (ILT]), V' is a non-negative, compactly supported and spherically symmetric
two-body potential. Later, we will require that V € L3(R®) and that the coupling
constant £ > 0 is sufficiently small. For § = 0, (ILI)) is the Hamilton operator of a
Bose gas in the so-called mean-field limit. If 5 = 1, on the other end, we recover the
Gross-Pitaevskii regime.

In this paper, we are interested in low-energy states of (1)), i.e. the ground state and
eigenstates with small excitation energy. The properties of low-energy states of dilute
Bose gases have already been studied in the pioneering work of Bogoliubov, see [3]. Bo-
goliubov wrote the Hamilton operator of a dilute Bose gas in Fock space, using standard
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creation and annihilation operators. Since low-energy states exhibit Bose-Einstein con-
densation, he proposed to replace creation and annihilation operators associated to the
zero momentum mode by commuting numbers and then to neglect all cubic and quartic
contributions to the resulting Hamilton operator. With this approximation, Bogoliubov
obtained a quadratic Hamilton operator, which he was able to diagonalize finding precise
expressions for the ground state energy and for excited eigenvalues.

Mathematically, the validity of Bogoliubov theory has only been established for a
limited number of systems, so far. In [15], Lieb and Solovej used a rigorous version of
Bogoliubov’s method to compute the ground state energy of bosonic jellium. Similar
ideas were used by Giuliani and Seiringer in [§] to show the Lee-Huang-Yang formula
for the ground state energy of a Bose gas in a simultaneous limit of weak coupling and
high density. In [23], Seiringer proved the validity of Bogoliubov theory for the Hamilton
operator (II]) in the case 8 = 0 (the mean field limit). More precisely, assuming V' to
be positive definite, he proved that the ground state energy of (ILI]) for § = 0 satisfies

B = Lz_ Vv~ 3 [pQ +a7(p) — /lplt + 2p2fﬂ7(p)] +o(1) (1.2)
pe2rZ\ (0}

as N — oo. Furthermore, he showed that the spectrum of H ]5\[:0 — E]BV:O below a fixed
threshold ¢ > 0 is given, up to errors vanishing in the limit N — oo, by finite sums of
the form

ST/ Iplt + 20267 () (1.3)

pe2rZ3\{0}

where n, € N for all p € A% = 27Z3\{0} (in fact, in [23] the threshold ¢ may grow with
N; ([L3) remains true as long as ( < N1/3).

The results of [23] were extended by Grech and Seiringer to mean-field systems of
bosons trapped by external potentials in [9]. Results similar to (L2), (L3]) for Bose gases
in the mean-field limit were also obtained, with different approaches, by Lewin, Nam,
Serfaty and Solovej in [I1] and by Derezinski and Napiorkowski in [5]. Furthermore, in
[20, 21], 22], Pizzo obtained, for § = 0 and imposing an ultraviolet cutoff, a convergent
series expansion for the ground state of (LT]) in powers of N 1.

The goal of our paper is to extend the results (I.2]), (I3]) and to prove the validity of
Bogoliubov’s prediction for the ground state energy and the excitation spectrum of (L)
in scaling limits with 0 < 8 < 1, where the range of the interaction potential shrinks to
zero, as N — oo. This is the content of our main theorem.

Theorem 1.1. Let V € L3(R3) be non-negative, spherically symmetric, compactly sup-
ported and assume that the coupling constant k > 0 is small enough. Fiz 0 < 8 <1 and
let mg € N be the largest integer with mg < 1/(1 — ) + min(1/2,8/(1 — B)). Then, in

the limit N — oo, the ground state energy Ejﬁ\, of the Hamilton operator H]BV defined in



(L) is given by
EY = 4n(N — 1)dy

_%Z

pEAi

k2V2(0)
2p?

(1.4)

P2+ KV (0) — \/\py4 + 2p26V (0) — +O(N™)

for all 0 < a < B such that o < (1 — 3)/2. Here we set A% = 2rZ3\{0} and we defined

o 1 K2V2(p/NP)
871'&?,:/{\/(0)—W T
peAi
n f: (=1)* KV (p/NP)
K 3
— (2N) el
KV ((p— N8 k72ﬁj7 P — Qi NB A
S (= a)/ )<H (o= ae)IN*) 0oy
41,92, qr—1E€EAY il im1 q;11

(1.5)

Moreover, the spectrum of H]BV — E]BV below an energy ¢ consists of eigenvalues given, in
the limit N — oo, by

pEEA:* np\/ 1Dl + 20267 (0) + O(N (1 + %)) (1.6)

for all 0 < a < B such that o < (1 — 3)/2. Here n, € N for all p € A% and ny, # 0 for
finitely many p € A% only.

Remarks:

1) The sum over p € A% appearing on the r.h.s. of (L.4) converges (a careful analysis
shows that the expression in the parenthesis decays as |p|~* for large |p|). It gives
therefore a contribution of order one to the ground state energy E) .

2) Ther.h.s. of (ILH]) is NV times a Born series expansion for the scattering length of the
potential kKN 35*1V(N B .). A simple computation shows that the k-th term in the
sum on the r.h.s. of (LI) (including the term on the first line, which is associated
with £ = 1) is of the order N k(B=1) for all k € N. Hence, it gives a contribution to
the ground state energy (IL4) of the order N*#~(=1) wwhich is negligible (vanishes,
as N — o0) if § < (k —1)/k or, equivalently, if £k > 1/(1 — 3). The truncation of
the Born series at k = mg ~ 1/(1— ) +min(1/2,3/(1—3)) is chosen to make sure
that the error we do in neglecting terms with k& > mg is of the order O(N~%), for
all @« < min(s, (1 — 5)/2) (and therefore it is negligible, compared to other errors
arising in the analysis). Notice that in the Gross-Pitaevskii regime 8 = 1, which



is not covered by Theorem [[LT] the situation is different. In this case, all terms in
the Born series are of order one; their sum reconstructs the scattering length ay of
the unscaled potential V. In this sense, (I4]) is consistent with the results of Lieb
and Yngvason in [16] and of Lieb, Seiringer and Yngvason in [14] which imply that
ER=Y = dragN + o(N).

3) As explained in 313} 8], the validity of Bogoliubov’s approximation is restricted to
regimes where the ratio u = a/R between the scattering length a of the interaction
and its range R is such that

1> >/ pad > i (1.7)

For the trapped gas described by (L)), we have a ~ N™!, R~ NS and p= N
Hence, (7)) is only satisfied if 8 < 1/2. In other words, for 1/2 < 8 < 1, Theorem
[[T] establishes the validity of the predictions of Bogoliubov’s theory in regimes
where Bogoliubov approximation fails (in fact, Bogoliubov theory is expected to
hold in any dilute limit, with pa® < 1).

4) Tt is worth noticing that the expression (L6]) for the excitation spectrum of (I.T])
has important consequences from the point of view of physics. It shows that
the dispersion of bosons described by (1) is linear for small momenta, in sharp
contrast with the quadratic dispersion of free particles. This observation was used
by Bogoliubov in [3] to explain the emergence of superfluidity, via the so-called
Landau criterion [10].

5) Theorem [[I] describes low-lying eigenvalues of the Hamiltonian (LI]). As a corol-
lary of (L4) and (L), it is also possible to describe eigenvectors associated to
low-lying eigenvalues of (IT]). Referring to arguments from [9], we provide a norm
approximation of these eigenvectors in a remark at the end of Section [6], after the
proof of Theorem [I11

To show Theorem [[1, we follow the strategy introduced in [2] to show complete
Bose-Einstein condensation for low-energy states in the Gross-Pitaevskii regime (and
also used in [4] to study the time-evolution of condensates in this scaling limit). We
start with an idea from [11]. Every ¢ € L2(A") can be represented uniquely as

N

n=0

for a sequence b, € L2 (A)®<", where L2 (A) is the orthogonal complement of ¢g(z) = 1
in L?(A) and L2 (A)®" is the symmetric tensor product of n copies of L2 (A). This
remark allows us to define a unitary map

U:L2(AN) — F=N @f? A)®=m (1.8)



through Uy = {9, ... M)} ( EN is the Fock space over L% (A), truncated to exclude
sectors with more than N particles). The map U factors out the condensate (particles
described by the wave function ¢g) and let us focus on its orthogonal excitations. Us-
ing U, we can define a first excitation Hamiltonian E?V = UH]%U* : .F_EN — .F_EN.
Conjugating with U, we effectively extract, from the interaction term in the original
Hamiltonian (L), contributions to Eﬁf that are constant (c-numbers) and quadratic in
creation and annihilation operators. This is very much in the spirit of the Bogoliubov ap-
proximation, where creation and annihilation operators involving the condensate mode
o are replaced by commuting numbers.

In the mean-field regime (i.e. for § = 0), conjugation with U is sufficient to extract
all contributions of the many-body interaction whose expectation in low energy states
survives, as N — oo. In other words, in the mean-field regime, the excitation Hamil-
tonian Eﬁf:o can be approximated by the sum of a constant and of a term quadratic in
creation and annihilation operators; the expected value of all other terms vanishes, as
N — 00, when we consider low-energy states.

For g > 0, the situation is different; some of the quartic terms in E?V that were
negligible for § = 0 are now important, in the limit N — oco. To better understand this
point, let us observe that

(N —1)V(0)
(2, L3 Q) = (U™Q HyUQ) = (of™, Hyof V) = ————
According to (4], the difference between (€2, E%Q) and the real ground state energy
of (L) is of the order N # and diverges, as N — oco. To make up for this error, we
have to take into account correlations among particles. In [1], this goal was achieved
by conjugating the excitation Hamiltonian with a unitary Bogoliubov transformation of
the form

T 1 * % —
T = exp 5 Z (npana® , — fpapa_p) (1.9)
pE2mZ3 ,p#£0

for appropriate coefficients 1, = n_, (the context of [I] was slightly different; it focused on
the time-evolution for approximately coherent initial data on the Fock space). In (L.9),
the operators a;, and a, create and, respectively, annihilate a particle with momentum
p € 2wZ3 (see Section @ below for precise definitions). While Bogoliubov transformations
of the form (9] work well on the Fock space, they do not map the space .F_EN into itself
(because they do not preserve the constraint N' < N).

To obviate this problem, we follow the strategy used in [4] 2]. We introduce modified
creation and annihilation operators by, b, for all p € 2773, The creation operator by
creates a particle with momentum p but, at the same time, it removes a particle with
momentum zero from the condensate. Similarly, b, annihilates a particle with momentum
p but, simultaneously, it creates a particles with momentum 0 in the condensate. Hence,
b, and b, create and annihilate excitations but they do not change the total number
of particles in the system. As a consequence, when transformed with U, they map the



Hilbert space ]—"EN into itself. Using these operators, we can therefore define generalized
Bogoliubov transformations of the form

1 >k 7 %k —
T = exp 3 Z (npbpb_p — npbpb_p) (1.10)
pE2TZ3

with appropriate coefficients 7, = 7_,. In contrast with (L3), generalized Bogoliubov
transformations leave the space ]—"EN invariant. This allows us to define a modified
excitation Hamiltonian having the form gfv =T*UHNU*T : ]—"EN — ffN.

With the right definition of the coefficients 7,, we can show that the modified ex-
citation Hamiltonian QJBV can be approximated by the sum of a constant and of a term
quadratic in creation and annihilation operators. To be more precise, we first prove, as
we recently did in [2] for the case § = 1, that, for sufficiently small x > 0, Q]BV satisfies
the lower bound

1
G — ES > N —C (1.11)

where Ay denotes the number of particles operator on .FEN. As we will show in
Prop. 4.1, Eq. (LII) easily implies that states ¢y € L2(A"Y) with bounded excitation
energy can be written as ¥y = UT¢y, for an excitation vector &y € .FEN satisfying

(v, Niéw) < C (1.12)

with a constant C' > 0 independent of N. In other words, (I.II]) shows that low-energy
states exhibit complete Bose-Einstein condensation in a very strong sense: the number
of excitations, that is the number of particles that are not in the condensate, remains
bounded, uniformly in N. Notice that Bose-Einstein condensation in the ground state
of the Gross-Pitaevskii Hamiltonian (i.e. (ILI) for 5 = 1) has been known since the work
[12] of Lieb and Seiringer; the novelty of (ILI2]) is the fact that it gives a bound, in fact
an optimal bound, on the number of excitations.
Combining (LIT]) with the commutator estimate

+ [GR,iNL] < C(HE +1) (1.13)

where ’Hﬁ, denotes the Hamiltonian (L), rewritten as an operator on the Fock space,
we show then that the excitation vector &5 € ffN associated with a low-energy state
also satisfy the stronger bound

(En, Ny + D(HE +1)en) < © (1.14)

for a constant C' > 0 independent of N. Eq. (LI4]) does not only provide control on the
expectation of the number of excitations, but also on their energy. It is worth noticing
that, like for (L12]), the improved estimate (I.I4]) does not require the assumption 8 < 1;
it also holds true for the Gross-Pitaevskii Hamiltonian obtained with g = 1.



Equipped with the bound (I.I4]) we go back to the excitation Hamiltonian gfv and
we show that, in low-energy states, the expectation of all terms that are not constant or
quadratic in creation and annihilation operators vanish, in the limit of large N. More
precisely, we prove that

Gy =Ch + 9% + &7 (1.15)

where C]BV is a constant (to leading order, the ground state energy of Hﬁ,), Q]ﬁv is

quadratic in creation and annihilation operators, and Eﬁ, is such that
+ EF <CN™Ny 4+ 1)(HE +1) (1.16)

for all 0 < a < B such that a < (1 — 8)/2. Combining (LI6) with the bound (LI2),
it follows that, on low-energy states, gfv is dominated by its quadratic part. As a
consequence, to conclude the proof of Theorem [I.T] we only have to conjugate QJBV with
a second generalized Bogoliubov transformation, diagonalizing the quadratic operator
of-

It is in the proof of (II6]) that the assumption 5 < 1 plays a crucial role. For g =1,
in the Gross-Pitaevskii regime, the error term Sﬁ, is not small; in this case, (LI6]) only
holds with o = 0. In other words, the excitation Hamiltonian Q]BV:l contains cubic and
quartic contributions that remain of order one in the limit of large N. This observation
is not surprising. Already in [7] and more recently in [17, [I8], it has been shown that
quasi-free states can only approximate the ground state of a dilute Bose gas up to an
error of order one. For this reason, when 8 = 1 we cannot expect to extract all relevant
terms from the Hamiltonian (L)) by applying Bogoliubov transformations. To prove
Theorem [Tl in the Gross-Pitaevskii regime, the Hamilton operator H ]@:1 must instead
be conjugated with more complicated maps. A first partial result in this direction is the
upper bound for the ground state energy obtained by Yau and Yin in [24].

The paper is organized as follows. In Section 2lwe introduce the formalism of second
quantization, defining generalized Bogoliubov transformations and studying their prop-
erties. The main results of this section are Lemma and Lemma [2.0] (taken from [4])
where we show how to expand the action of generalized Bogoliubov transformations in
absolutely convergent infinite series. In Section Bl we define the excitation Hamiltonian
gfv and we state its most important properties (namely the bounds (LII]), (II3]) and
(CI6)) in Theorem B2 whose long and technical proof is deferred to Section [l In
Section @ we show how (LII]) and (LI3) can be used to show the bounds (I.I2]) and,
more importantly, (LI4]) for the excitation vectors of low-energy states. In Section [, we
show how to diagonalize the quadratic part of Qjﬁv using a second generalized Bogoliubov
transformation. Using the results of Section Ml and Section [, we prove our main result,
Theorem [Tl in Section
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2 Fock space

Let

F=EPrinm =g rim="

n>0 n>0

be the bosonic Fock space over L%(A), where L2(A™) is the subspace of L?(A™) consisting
of wave functions that are symmetric w.r.t. permutations. We use the notation 2 =
{1,0,...} € F for the vacuum vector in F.

For g € L*(A), we define the creation operator a*(g) and the annihilation operator

a(g) by
* n 1 ¢ n—
(a (g)\Il)( )(1'1, R ,.%'n) = % Zg(xj)\p( 1)(1‘1, ey L1, Tl - ,.%'n)
j=1

(a(g) W)™ (21,...,2,) = Vn + 1/Ag(x)\11("+1)(x,x1, ey Tp) dx

Notice that a*(g) is the adjoint of a(g) and that creation and annihilation operators
satisfy canonical commutation relations

[a(g), a”(W)] = {g,h), lalg),a(h)] = [a*(g9),a”(h)] = O (2.1)

for all g, h € L2(A) (here (g, h) is the usual inner product on L2(A)).

Since we consider a translation invariant system, it will be convenient to work in
momentum space. From now on, let A* = 27Z3. For p € A*, we define the normalized
wave function ¢, (r) = e~ in L%(A). We set

a, =a’(gp), and ap=a(pp) (2.2)

In other words, a,, and a, create, respectively annihilate, a particle with momentum p.
In some occasions, it will also be important to switch to position space (where it is
easier to use the positivity of the potential V' (z)). For this reason, we introduce operator

valued distributions d,, @} defined so that
o) = [ F@arde. ()= [ f@)ards 23)

On F, we also introduce the number of particles operator, defined by (N \Il)(") =

n¥ (™), Notice that
N = Z a;ap:/d;dmdx.

pEA*

It is important to observe that creation and annihilation operators are bounded by the
square root of the number of particles operator, i.e.

la(HWI < SN2, fla* (DRI < ISV + 1) (2:4)



for all f € L%(A).
We will often deal with quadratic (and translation invariant) expressions in creation
and annihilation operators. For f € £2(A*), we define

AﬁlyﬁQ (f) = Z fp a’(ﬁlllpagfgp (25)
peEA*
where #1, 2 € {-, *}, and where we use the notation af = a, if § = -, and af = a* if § = *.
Also, a; € {£1} is chosen so that oy = 1, if f; =%, a1 = —1if fl =, ap =1 if §5 = -
and ag = —1 if o = *. Notice that, in position space

with the inverse Fourier transform
f(@) = Z fpe™®
PEA*

In the next simple lemma, taken from [4], we show how to bound quadratic operators of
the form (2.0)).

Lemma 2.1. Let f € (*(A*) and, if 41 = - and 2 = * assume additionally that j €
(Y (A*). Then we have, for any ¥ € F,

1As, 2 ()Y < V2N + 1) - { 1112+ 11/ if 1= = *

I1f1l2 otherwise

As already explained in the introduction, we will work on certain subspaces of F.
Recall that g € L%(A) is the constant wave function with ¢g(z) = 1 for all z € A. We

denote by Li(A) the orthogonal complement of the one dimensional space spanned by
¢o in L2(A). We define

Fy=EPriwme.

n>0

as the Fock space constructed over Li(A), i.e. the Fock space generated by creation and
annihilation operators aj, a,, with p € A% := 27Z3\{0}. On F,, we denote the number

p7
N+ = apap

of particles operator by
pEAi

We will also need a truncated version of 7. For N € N, we define
N
FN = rimer.
n=0

On .FEN, we construct modified creation and annihilation operators. For f € L% (A),

o) =, v = e B

9

we set



We have b(f),b*(f) : ]::N — ]-EN. As we will discuss in the next section, the impor-
tance of these fields arises from the application of the map U, defined in (L.§]), since, for

instance,
Ua*(f)a(po)U" =a*(f)/N — = VNb*(f (2.6)

Based on (2.0]), we can interpret b*(f) as an operator exciting a particle from the con-
densate into its orthogonal complement. Compared with the standard fields a*, a, the
modified operators b*,b have an important advantage; they create (or annihilate) exci-
tations but, at the same time, they annihilate (or create) a particle in the condensate,
preserving thus the total number of particles.

It is convenient to introduce modified creation and annihilation operators in momen-
tum space, setting

and b =da*

for all p € A% and operator valued distributions in position space

s N — ) N —
bx = TN dx, and b; = d; TM
for all x € A.
Modified creation and annihilation operators satisfy the commutation relations
. N 1
[bp, by = <1 - W) Opg — N@Zap (2.7)
[bp, bg] = [by, by] =0

and, in position space,

* N+ 1 *
o) = (1= 5 ) 8o = ) = i .
bz, by] = [b},b,] =0
Furthermore
[by, @3iz) = 6(x — y)bs, by, anaz] = —0(z — 2)b] (2.9)
It follows that [by, Ni] = by, [b%,N;] = —b% and, in momentum space, [b,, Ny] = by,
(b, Ny] = —bj. With (2.4]), we obtain
N + 1 —N 1/2
Ibrel <171 HW? () e
(2.10)
. N —N 1/2
16 (1)ell < 1151 H(M pare (M) e

10



for all f € L3 (A) and € € J:EN. Since N; < N on ]—"EN, b(f),b*(f) are bounded
operators with [[o()I], 15 ()] < (N + 1)V2| f]].

We will consider quadratic expressions in the b-fields. As we did in (2.5, we restrict
our attention to translation invariant operators. For f € ¢2(A%), we let

By, ¢, (f) = Z Job ﬁallpbgép
pEA*

Witha1 :11fﬂ1 = *, 1 = -1 lfﬁl = - 2—11fﬁ2—-anda2:—1 lfﬂQZ* By
construction, By, 4,(f) : }EN — ]:+N In position space, we find

By, 4 (f / f(x bﬁlbﬁ2 dzdy

From Lemma 2.1l we obtain the following bounds.

Lemma 2.2. Let [ € Ez(Aj_). If 41 = - and o = *, we assume additionally that
[ €LY (AY). Then
1Bt 2 ()€l <vz. L Iflz+ 11l iffr =l = *
I1f ]2 otherwise

v+ 1) (A5 ) e

for all ¢ € F=N. Since Ny < N on ffN, the operator By, 4,(f) is bounded, with

1 ll2 otherwise

H%mUWSﬁN{WMHmh it =ty ==

We will need to consider products of several creation and annihilation operators. In
particular, two types of monomials in creation and annihilation operators will play an im-
portant role in our analysis. For fi,..., fn € la(A%), 8 = (f1,...,8n),0 = (b0, ..., bp—1) €
{-, %}, we set

0 (f1,- . fa)

(2.11
- Z bb@i)opl 5311p1a5>}1pzaﬁ622p2a221?3 aﬁﬁ’; 11pn 1 ann 1Pn Bnpn Hf ¢(pe) )

D1y PnEA*
where, for every £ = 0,1,...,n, we set apy = 1 if by = %, ay = =1 if by = -, By =1
if 4 = - and By = —1if fy = *. In (2II), we impose the condition that for every
j=1,...,n—1, we have either §; = - and b; = * or §; = * and b; = - (so that the
product a%maf}f{m“ always preserves the number of particles, for all £ = 1,...,n —1).

With this assumption, we find that the operator Hﬁ)( fi,--.y fn) maps f =N into itself.

If, for some ¢ = 1,...,n, by_1 = - and fy = * (i.e. if the product aaz lplaﬁﬁ‘lm for

11



{=2,...,n, or the product bbofopl %1 ™ for £ = 1, is not normally ordered) we require

additionally that f, € ¢! (A%). In position space, the same operator can be written as
n
2 ~
HWﬂmJ)/@%%ﬁﬁ %;gwqpmrwmmg@m
=1

An operator of the form (ZI1]), (2.12]) with all the properties listed above, will be called
a II®)-operator of order n.

For g, fi,..., fn € La(AL), 8= (f1,. ... 8n) € {-, %}, b = (bo,...,bpn) € {-, %} we

also define the operator

Hé,lb)(fla N 7fnag)

_ bo til b1 fia ba fn—1 Dp_1 H
- Z ba07p1 51p1a0‘1p2a52p2aa2p3 aﬁnflpnflaan—lpn Bnpn fz pé

P1yeePrEA*
(2.13)

where oy and (5, are defined as above. Also here, we impose the condition that, for
all £ = 1,...,n, either fyf = - and by = * or ffyf = * and by = -. This implies that
H(l (f1,---, fn;g) maps ]—"EN back into ]—"EN. Additionally, we assume that f € ¢'(A%),

if bg,l = - and fy = * for some £ = 1,...,n (i.e. if the pair a%lillpzagfm is not normally
ordered). In position space, the same operator can be written as

nﬁmwwm>-/mg@;gz g aln ol H — ) daedy,
- (2.14)
An operator of the form (ZI3)), (ZI4) will be called a IIM-operator of order n. Operators
of the form b(f), b*(f), for a f € £2(A%), will be called TI(!)-operators of order zero.

In the next lemma we show how to bound II®@- and IIM-operators. The simple
proof, based on Lemma 27|, can be found in [4].

Lemma 2.3. Let n € N, g, f1,..., [, € (*(A%). Assume that H (fl,...,fn) and
H(1 (fi,--., [n;9) are defined as in (211), (213). Then

]

o\ 1/2
(N++1)"+1/2 <1_M> ¢

WﬁﬁmeﬂgmﬁKym
/=1

n

b—v

|08 Fusope| < 6719l TT 67
=1

where _
e [l Ml e = - and g =+
¢ Il fell2 otherwise
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Since Ny < N on }EN, it follows that

& (s f)]| < 28" H Ky

b I
| i) < a2) WHgHHK““

Next, we introduce generalized Bogoliubov transformations and we discuss their
properties. For n € ¢(A%) with n_, = n, for all p € A%, we define

1 LR —
B(n) = B Z (mpbypb™y, — Tpbpb—p) - (2.16)
PEAT
and we consider
1 - _
eBU) = exp 3 Z (mpbyb™ , — Tipbpb—p) (2.17)
pEAi

Notice that B(),eB® : ffN — f_fN. We refer to unitary operators of the form (ZI7])
as generalized Bogoliubov transformations. The name arises from the observation that,

on states with N < N, we have b, ~ a,, b, ~ a;, and therefore

D 1 * % —
B(n) ~ B(n) = 2 Z (npapa—p - Upapa*p) (2.18)
peAi

Since B(n) is quadratic in creation and annihilation operators, exp(B(n)) is a stan-
dard Bogoliubov transformation, whose action on creation and annihilation operators is
explicitly given by

e B0 a,eB0) — cosh(n,)a, + sinh(n,)a” . (2.19)

As discussed in the introduction, [ZI8]) does not map F<V into itself. For this reason,
in the following it will be convenient for us to work with generalized Bogoliubov trans-
formations of the form (ZI7). The price we have to pay is the fact that there is no
explicit expression like (2.19]) for the action of (2Z.I7). We need other tools to control the
action of generalized Bogoliubov transformations.

A first important observation is the following lemma, whose proof can be found in
[] (a similar result was previously established in [23]).

Lemma 2.4. Let n € (?(A*) and B(n) be defined as in (Z106). Then, for every ni,ny €
Z, there exists a constant C > 0 (depending on ||n||) such that, on f_fN,

PN+ 1)M(N + 1= NP0 <Oy + 1) (N +1 - Ny)™

13



Controlling the change of the number of particles operator is not enough for our
purposes. We will often need to express the action of generalized Bogoliubov transfor-

mations by means of a convergent series of nested commutators. We notice, first of all,
that for any p € A%,

1
d
o~ B b, eBm) — b, + /0 ds d_e—sB(n)b o5B()

S D
1
— by~ [ dse O B, by PO
0

1 s1
= b= (B bl / as1 / dsy e=*?P[B(n), [B(n), byle™ P
0 0

Iterating m times, we find

where we recursively defined
0 n n—1
adfy) (A)=A and ady) (4) = [B(y),ad}y ()
We will later show that, under appropriate assumptions on 7, the norm of the error term
on the r.h.s. of (220) vanishes, as m — oco. Hence, the action of eBM) on bp, by, can be
described in terms of the nested commutators ad!" (bp) and ad! (by) for n € N. In

B(mn) B(n)
the next lemma, we give a detailed analysis of these operators; the proof can be found

in [2, Lemma 2.5].

Lemma 2.5. Let n € fz(Ai) be such that n, = n_, for all p € (*(A*). To simplify
the notation, assume also n to be real-valued (as it will be in applications). Let B(n) be

defined as in (Z10), n € N and p € A*. Then the nested commutator adgl()n)(bp) can be
written as the sum of exactly 2"n! terms, with the following properties.

i) Possibly up to a sign, each term has the form
k(1) j
AAy...\; N kHé,b) (s R ap) (2.21)

for some i k,s € N, j1,...,5 € N\{0}, # € {-,*}*, b € {-,x}! and o € {1}
chosen so that o = 1 ifby = - and o = —1 if by, = * (recall here that p,(x) = e~ P<).
In (Z21), each operator A, : F<N — FSN w = 1,...,4, is either a factor
(N = N3)/N, a factor (N — (N4 —1))/N or an operator of the form
- 2 21 % z
NTMIE), (7 ) (2:22)

for some h, zy,...,z, € N\{0}, #,b € {-,*}".

14



ii) If a term of the form (2Z21)) contains m € N factors (N — N)/N or (N — (N} —
1))/N and j € N factors of the form (Z23) with TI®) -operators of order hy, ..., h;j €
N\{0}, then we have

m4+h+1)+-4hj+1)+(k+1)=n+1 (2.23)

i11) If a term of the form (M} contains (considering all A-operators and the TI() -
operator) the arguments n't,... . n' and the factor n, for some m,s € N, and
i1, .., 9m € N\{0}, then
i+t iy S =n.

iv) There is exactly one term having of the form (2.21) with k = 0 and such that all
A-operators are factors of (N — NL)/N or of (N +1—N,)/N. It is given by

_ n/2 _ n/2
(N ./\/'+> (N +1 N+> nb, (2.24)
N N p
if n is even, and by

(n+1)/2 _ (n—1)/2
(RS (MY oy
N N Tp O—p

if n is odd.

v) If the W -operator in (ZZ1) is of order k € N\{0}, it has either the form

k

i Ji

E : baom H aﬁlpl zp7.+1 fpknp apHn i
i=1

PLyesPk
or the form

i 2r+1 *
Z baopl H aﬁzpz zpz+1apknp Hn

P1yesPk
for some r € N, j1,...,j5k € N\{0}. If it is of order k = 0, then it is either given
by np”b or by 772”16*,],, for some r € N.

vi) For every non-normally ordered term of the form

Z ”;aqa; Z ”ébqa;

qeA” geA”
4 * i *
E NgQqby, OT E 14bqbq
qeEN* qeEN*

appearing either in the A-operators or in the W —operator in (2:21)), we have i > 2.

15



With Lemmal[2Z5] it follows that the series on the r.h.s. of (Z.20) converges absolutely,
if the £2-norm ||n|| is small enough. The proof of the next Lemma is a simple adaptation
of the proof of [4, Lemma 3.3]

Lemma 2.6. Let n € (?(A*) be symmetric, with ||n|| sufficiently small. Then we have

e BB = 3 =D

nl B(n)(bp)
"OOO( e (2.26)
—B(n)x B(n) _ - (n) (%
e B pre (n)_z — adp, (b;)
n=0

and the series on the r.h.s. are absolutely convergent.

3 The excitation Hamiltonian

We define the unitary operator U : L2(AN) — ]:_EN as in (L8). In terms of creation and
annihilation operators, the map U is given by

N—n

r a(yo)
U = g?o(l - |¢0><@0|)®nﬁ¢

for all ¢ € L2(AYN) (here we identify ¢ € L2(AN) with the vector {0,...,0,%,0,...} €
F). The map U* : }EN — L2(AV) is given, on the other hand, by
N

1 (0) Wy _ N )V
U, ey 2:; e

It is useful to compute the action of U on the product of a creation and an annihilation
operators. We find (see [11]):

UaSaoU*:N—N+
UayaoU* = ap/N — Ny

Uaja,U* = /N — Nya,

* * *
UapaqU = a,aq

(3.1)

for all p,q € A% = 27Z3\{0}. Writing (LI) in momentum space, we find
K ~
Hﬁ, = Z praja, + N Z V(T/Nﬁ)a;aZaq_raerr
peA* p,g,rEA*

where



denotes the Fourier transform of V, for all ¢ € R3. With (3I]), we can conjugate H ff
with the map U, defining £ = UHSU* : F=N — F=N. We find

R R a2
with
N-15 V(0
s = s VOV =N+ %NAN —Ny)
2 % ~ . 1 .
= 3 Faa+ 3 V0N |5 - o)

PEAT pEAT

1 i %7 %
+3 > Vip/NP) [, + byb_yp)

pEAL

(3.3)

5 1 .
Eg\’?ﬁ VN Z V(p/N?) (b1 40" yag + aga—pbpq]
P,gEAT p+q7#0
4 1 = .
L'S\,?ﬁ =on Z V(T/Nﬁ)apHaZapaqM

P,qEAY ;TEA TFE—p,—q

As explained in the introduction, for 8 # 0, conjugation with U does not yet pull all
important contributions for low-energy states into the constant and the quadratic parts
of the excitation Hamiltonian E]ﬁv- In other words, in contrast to the mean-field case
B8 =0, for B > 0 we cannot expect Eg\&;’)ﬁ and Egé?ﬁ to be small on low-energy states,

in the limit N — oo. For this reason, we need to conjugate E?V with an appropriate
generalized Bogoliubov transformation of the form ([Z.I7]).

To choose the function n € ¢?(A%) entering (ZI6) and (2I7), we fix a length 0 <
¢ < 1/2, independently of N, and we consider the solution of the Neumann problem

<—A + gN?’B_lV(NB?C)) fn(@) = Anef () (34)

on the ball [z| < ¢, with radial derivative J),fn () = 0 and with the normalization
fne(x) =1 for |z| = ¢ (we omit the S-dependence in the notation for fu ¢ and for Ay ).
The condition ¢ < 1/2 guarantees that the ball of radius ¢ is contained in A. We extend
then fy, to A, by setting fy¢(xz) =1 for all |z| > ¢. Then, for all z € A, we have

K _
(-2 + SNV (V) ) fvi(@) = Avafne()x(e) (3.5)
where yy is the characteristic function of the ball of radius ¢. It is also useful to define

wny =1 — fne (so that wy(x) = 0 if |x| > £). Since wy is compactly supported on
A, it can be interpreted as a periodic function. Its Fourier coefficients are given by

W (p) :/AwN,g(x)eip'xdx

17



for all p € A*. From (B.5]), we find that

PPy ep) + 55V /N7 — 5 2 V= /N dwa)

= AveRe(p) = Ane Y Xe(p — )ine(q)
qeEN*

(3.6)

for all p € A*. In the next lemma we collect some important properties of Ay, and of
the functions wy ¢, fn ¢; the proof can be found in [6], Lemma A.1] and in [4] (notice that
this lemma is the reason we require V' € L3(R3); for the rest of the analysis, V € L?(R3)
would suffice).

Lemma 3.1. Let V € L3(R3) be non-negative, compactly supported and spherically
symmetric. Fiz0 < ¢ < 1/2 and let fn, denote the ground state solution of the Neumann

problem (3.4]).
i) We have

~

3kV(0) _
dyg= ) (1 O(NFA1 )
Ne= g (1O )
ii) We have 0 < fn g, wne < 1.
i11) There exists a constant C' > 0 such that

Ck Ck

< < .
wne(x) < Nz + N7 and  |Vwpy ()] < N2+ N7 (3.7)

for all |z| < €. As a result

for all p € A%

Using the function wyy =1 — fn ¢ defined above, we define n : A% — R through

1y = —Nwn «(p) (3.8)
From Lemma Bl it follows that
Ck
|yl < el (3.9)

18



Hence n € ¢?(A%), uniformly in N. With Lemma B (part iii)), we also obtain

> Pl = Vil < ON7K? (3.10)
pEAT
Sometimes, it is useful to define 1 also at the point p = 0. We set 1j(p) = —Nwy(p) for
all p € A*. Then 7, = n, for all p # 0. By Lemma [B.1] part iii), we find
1m0 < N/ wy ¢(z)dr < Crl? (3.11)
A

From (3.0)), we obtain the following relation for the coefficients 7:

25 L 50 /NP) + 2N U(p — q) /NPT,
Py + QV(p/N ) + 5N ; V((p—q)/N")nq
q

= NAneXe(p) + Ane Y Xelp — 9)ilg
qEA*

(3.12)

With 7 € £2(A%), we construct, as in (ZI7), the generalized Bogoliubov transformation
eBm) . }EN — ]:_EN. Furthermore, we define the excitation Hamiltonian gﬁ, : ]:_EN —
ffN by setting (recall the definition (3.2)) of the operator Eﬁ,)

gJBV — e*B(n)gjﬁVeB(n) — ¢~ B UH]@U*QB(H) (3.13)

In the next theorem, we collect important properties of the self-adjoint operator gfv. We
will use the notation

2 % R 17 * *
K= Z piapap, and  Vy = IN Z V(r/NB)apMaqapaqH
pEAT P,gEA] rEA*IrE—p,—q

for the kinetic and potential energy operators on the excitation Fock space .FEN. We
also define H? = K + V.

Theorem 3.2. Let V € L3(R3) be non-negative, compactly supported and spherically
symmetric and assume that the coupling constant k > 0 is small enough.

a) Let E]BV denote the ground state energy of the Hamilton operator (I1]). There exists
a constant C' > 0 such that

1
Gy — ES > 5%7@ —C (3.14)

and
+ [z'gfv,/\a] <CHE +1) (3.15)
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b) For p € A%, we set o, = sinh(n,) and v, = cosh(n,). Let

N-1) -~
C]BV = ( )/<;V(O)
K ~
+ Z P02 + 6V (p/N) (0} + o) + 5= > V((p = ) /NP,
pEA* qEAi
(3.16)
Moreover, for every p € A%, we define
Fy, = pz(ap% + 'Vz%) + KV(P/NB)(UP + 'Yp)Q
~ K ~ ~

Gy = 2oy + KV (/N oy + ) + 2 S Vil —a)/NHyg, 317

geA*

We use the coefficients F,,, G, to construct the operator

=3 [pr;bp+%G (byb*, + byb )|

p —p
pEA:

quadratic in the b,b*-fields. We define the self-adjoint operator Sﬁ, through the
identity
Gy =Cy + Qx + &5

Then there exists a constant C' such that, on ]:fN,
€L <CONEDW +1)(K+1) (3.18)

In the last term in the definition of G), recall that 7, = —Nwy ¢(q) coincides with
nq for all ¢ # 0 (we find it more convenient to include the contribution with ¢ = 0 in the
definition of Gp). The proof of Theorem represents the main technical part of our
paper. It is deferred to Section [7 below. In the next three sections, on the other hand,
we show how to use the statement of Theorem to complete the proof of Theorem [I.11

4 Bounds on excitation vectors for low-energy states

In this section, we establish important bounds for excitation vectors of the form &y =
By € .FEN associated with low energy states ¢y € L2(AY). We begin with a
simple application of the bound (B8.14]) in Theorem

Proposition 4.1. Let V € L3(R3) be non-negative, compactly supported and spherically
symmetric and assume that the coupling constant k > 0 is small enough. Let E]BV be the
ground state energy of the Hamilton operator (I1). Let vn € L2(AYN) be a normalized
wave function, with

(Un, Hjﬁ\ﬂ/)m < Ejﬁv +¢
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for some ¢ > 0. Let &y = e BOUYN be the excitation vector associated with )y (so
that YN = U*eB(")gN). Then there exists a constant C > 0 such that

(En  Nién) < C(1+¢)

(En  HREN) < C(1+Q) (4.1)

Proof. Since, on ]-EN, Ny < (2m)72K < (2%)_27-[%, it is enough to show the second
bound in (&J)). From (314), we find
(En, HREN) < C +2(Ew, (GF — ER)EN)
—C+2 [@N, e BOUHNU*BMey) — E]BV]
=C+2 [<7,Z)N,HN7/)N> — B} <C(1+¢)
U

To control the expectation of the error term in ([B.I8]), we need stronger estimates on
excitation vectors associated with low-energy states. We prove the required bounds in
the next proposition, combining ([B.14]) with the commutator estimate (3.15). We remark
that the proposition also holds with the same proof in the case 8 = 1.

Proposition 4.2. Let V € L3(R3) be non-negative, compactly supported and spherically
symmetric and assume that the coupling constant k > 0 is small enough. Let E]BV be the
ground state energy of the Hamilton operator (I1). Let ¥y € L2(AN) with ||¢n] =1
belong to the spectral subspace of the Hamiltonian (I.1l), with energies below E]BV + ¢, for
some ¢ > 0. In other words, assume that

YN = 1(700;E1€,+C} (H]%)¢N

Let &y = e*B(")Ul/JN be the excitation vector associated with 1. Then there exists a
constant C > 0 such that

(Eny Vg + 1)K + 1)én) < (En, Ny + D(HE +1Dén) <01+ ¢?)

Proof. The first inequality follows from Vy > 0 and since K, Vy both commute with
Ny. We focus on the second inequality. From (3.I4]), we find

<§N=(N++1)(H]BV+1)§N> §N(N++1)1/2(H@+1)(N++1)1/2§N>

=
< 206N, (Mg + DGR + C) (Ve + 1)V 2¢y)

where we introduced the notation §§f, = gﬁ, — Eﬁ, Next, we commute the operator
(gfv + C) to the right, through the factor (N, + 1)1/2. We obtain

(En, Ny + D)(HY + Den) < 2(En, Vo + 1)(Gh + O)en)

42
+ 2<§N, Ny +1D)Y2[g8 (N, + 1)1/2}5N> (4.2)
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With Cauchy-Schwarz, the first term on the r.h.s. of (42]) can be estimated by
(v, Wi+ 1)(GR + O)n)
< {6, Wi+ 1D(GY +O) T Wy + e (6w, (G + O w2

Since, by (B.14), (@@ +C) > ¢(N; +1) for some ¢ > 0 (choosing C' > 0 large enough),
and since {y = e B (M U4y is in the spectral subspace of Q]BV, associated with the interval
[0; ¢], we conclude that

(En W+ 1)(GR + O)aw)]| < (6, (Vs + DENYAC+ O <01+ (D) (43)

where we used Prop. {11
As for the commutator term on the r.h.s. of (4£.2), we use the representation

1_1/001 L
Ve omlo Witttz o

We find
i |G W+ 1) :l/oodt\/iil iGN
N T Jo EAN +1 N N
1 [ 1 1
== | #tVt———— M+ D)VPAHE, + D)
77/0 \/t+N++1(HN+) Ay +1) t+ Ny +1

where we defined the operator A = (H]‘i, + 1)*1/22'[9]%,./\@](7-[% +1)~1/2. 1t follows from
BI5) that A is a bounded operator, with norm || A|| < C, uniformly in N. Hence, we
have (since [H%,J\@] =0)

(€ N+ DY2(G8 Vs + 1))
0 1/2 (248 1/2 B 1/2
l/ dt\/f‘<§N, Ny + 1) 72 (Hy +1) (Hy+1) £N>‘
0

=7 L+ N +1 t+ N +1
<[ 10 e o+ 0|

Therefore, for every 6 > 0 we find C' > 0 such that

[(en NV + DY2(G5, W+ )Y 2en)
< 5N, (N + 1)(HR, + 1)én) + Cléw, (HR + 1)én)
< S(En, N+ D)(HE +1)en) +C(1+C)
by Prop. Il Choosing 6 = 1/2, we conclude from (4.2]) and ([£3]) that

(Ens (Ng + D)(HE + 1)én) < C(1+¢P)
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5 Diagonalization of quadratic Hamiltonian

From Theorem B.2] we recall that the excitation Hamiltonian gfv —e BMUH NU*eP (n)
can be decomposed as

Gh=cf + 08 + &5 (5.1)

with the constant Cﬁi defined in (BI6]), the quadratic part

* 1 k7 %
Q= > | Fpbpby + SGolbybT, + byb-y)| (5.2)
peAj

with the coefficients Fj,, G}, defined in (3.I7) and with the error term 5]% satisfying
+ &8 <CONED2(N, +1)(K + 1), (5.3)

The goal of this section is to diagonalize the quadratic operator (5.2). To this end,
we will conjugate the excitation Hamiltonian QJBV with one more generalized Bogoliubov
transformation.

In order to define the Bogoliubov transformation that is going to diagonalize Q]ﬁv we
need, first of all, to establish some properties of the coefficients F},, G}, defined in (3.17).

Lemma 5.1. Let V € L3(R3) be non-negative, compactly supported and spherically
symmetric. If the coupling constant k > 0 is small enough, we find a constant C > 0
such that p?/2 < F, < C(1 + p?),

Ck
G| <& 5.4
|p|_p2 (5.4)
and G, C 1
PPl <z 5.5
F, SES2 (5:5)

for all p € A%

Proof. Since 03 + 772 > 1, and since there is a constant C' > 0 such that V(p/NP)| < C
and |op|,7p < C for all p € A% (using the boundedness ([3.9) of the coefficients 7,), we
easily find that F,, > p? — Ck > p?/2, if k > 0 is small enough (recall that |p| > (27) on
A%). To bound Gy, we write

~ K ~ . ~
Gy = 20"n, + £V (p/N”) + N > Vil —)/N)ig + Gnyp (5.6)
geN*

where CNJN,p is such that |C~¥N7p| < Ckp~2 for all p € A* . Here we used the fact that

lopyp — 1p| = | sinh(n,) cosh(n,) — 7|
1 22n+1 ’np’2n+1 CI<L3

< —
TS24 @)l P

1 .
=13 sinh(2n,) — np

23



and that, similarly,

Ck
|(Up+7p) -1 < p_

To estimate the other terms in (5.6]), we use the relation (8.12]). We obtain that

Gy =2NAneXe(p) +22ve > Re(p — @)iig + G (5.7)
qeEA*

From Lemma Bl part i), we have NAy, < Ck. A simple computation shows that

N LN
Sulp) = /W o = (T\ ‘ <e|p|>) (5.8)

which, in particular, implies that |X,(p)| < C|p|=2. Similarly, we find

AN Y Relp — )iy = Ny /A Xe(@)wy o(x)e” P dz = N)\N,E/ ‘ wne(x)e” P da
geEN* z|<l

Switching to spherical coordinates and integrating by parts, we find (abusing slightly
the notation by writing wy ¢(r) to indicate wy ¢(z) for |z| = 1),

0 g
/ wne(x)e” PPdr = 271/ dr rszj(r)/ d sin @ ¢~ Hlplrcos?
|z|<¢ 0 0

4 [t .
= m ; drrwy ¢(r) sin(|p|r)
47 47 d
- ’p‘z hmrng( )+ " ’2/ d?"d (rwn ¢(r)) cos(|p|r)

With (1) and using again the bound NAy; < Ck, we conclude that there is a constant
C > 0 such that

A Y Relp — @)ilg| < 5 (5.9)
qeEN*

for all p € A%. From (5.7), we obtain that there is C' > 0 such that |G,| < Ck/p*.
Together with the estimate |F,| > p?/2, we find the desired bound, choosing x > 0
sufficiently small. O

Since by Lemma [5.1] we know that |Gp|/F, < 1/2 for all p € A%, we can define a
sequence 7, by setting
G
tanh(27,) = ——2
anh(27,) F,
for all p € A%. Equivalently,

1 1-— F
—log 1=Gy/Fy (5.10)

T 1% 11 G,/F,
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This easily implies that
|Gyl _ Ck
7Pl - 7Y
F, — |p|*
for all p € A% . Let us stress the fact that the fast decay of 7 for large momenta (which
will be crucial below) is a consequence of the fact that the coefficients 7, satisfy the
relation (B.12).

We use the coefficients 7, (which are, by definition, real) to define a new generalized
Bogoliubov transformation. As in (2.I7]), we construct the antisymmetric operator

1 * 7 %
B(T) = 5 Z 7—p(bpbfp - bpb*p)
peAj

T <C (5.11)

and the generalized Bogoliubov transformation

1 k7 %
B0 — exp 5 > b, — bybyp) (5.12)
pEAi

With (5.12]), we define a new excitation Hamiltonian ./\/lﬁ, : ffN — }EN by setting
M?V — e BO =By g+ B B
= e*B(T)gjﬁveB(T) (5.13)
= CF 4+ e BN QE BT 4 =BT gh B(T)

In the next lemma we show that, with (5.10)), the action of the generalized Bogoliubov
transformation (B.I12]) approximately diagonalizes the quadratic operator Q]BV.

Lemma 5.2. Let V € L3(R3) be non-negative, compactly supported and spherically
symmetric and assume that the coupling constant k > 0 is small enough, so that the
bounds of Lemma[51 hold true. Let Q?\/ be defined as in (2.2) and 1, as in (5.10). Then

1
0G0 LS [ TG+ T TG+ s
pEA: pEA:
where the self-adjoint operator dn g is such that
+0np5 < CN Y NL+1)(K+1) (5.14)

Proof. For p € A%, we define a remainder operator d, through

e BB = cosh(r,)b, + sinh(7p)b”, + d, (5.15)
With (5.15) and using the short-hand notation ¥, = cosh 7,0, = sinh 7,,, we can write

POQRPM = N (B2 + GR) + D [Fp(E +52) + 265,75, | biby
pEA: pEA:

1 ~ ~ ~ ~ %7 % N
+3 - [2prypap + Gy + ag)] (bpbp + BEB™)) + O 5
peAj

(5.16)
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where

ong = Z Fydie BMp,eB0) Z Ey(Apbl + Gpbp)d,
peAi peAi
1 « —B(t)p*x _B(T) 1 ~ 7% ~ *
5 20 Gpldse POV P ne] 4+ 5 37 Gy (5 + Fpbop)ds, + b
pEAi pEAi
(5.17)

With the definition (5.10), (516]) simplifies, after a lengthy but straightforward compu-
tation, to

) -
ePOQLPD = N |~ [ -G+ Y\ - G b+ b

peAi peAi

From the bound F, < C(1 + p?) in Lemma [5.1] we obtain

‘ Z V -Gy [<5ab;bpf> - <£’a;ap£>” = ‘% Z \ - G2 (£,a;./\/'+ap£>‘

peEA”, peEA’

1
<% 2 PP+ DllapWe + 1)
pEA:
1

= 6 W+ DK+ 1)8)

for all £ € ]-EN. Hence, the claim follows if we can show that the operator gN,B defined
in (5.I7) satisfies (5.14)). To reach this goal we notice that, by Lemma [2.6]

—B(T T —1)" n
om0 )

n!
neN
and therefore
_ 1 (2n) on 1 (2n+1) 1
dp = ZN (2n)! [adB(r)(bp) —Tp bp] - ZN 2n+1)! [adB(T) (bp) =7, 70T,
ne ne

Let us now consider the expectation of the first term on the r.h.s. of (517)). We find

‘ Z Fp<dp§a€_B(T)bpeB(T)§>‘

pEAL
1 B " -—
<> ol > By 1)1 [adgg()ﬂ(bp) — 7ok €| (5.18)
n,meN pGA:
<N+ 1) 2ad(GE) (b, )¢
where ay, = 1 and #,, = - if n is even while o, = —1 and £, = * if n is odd.
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From Lemma it follows that, for any m € N, adgzi)(bp) is given by the sum of
2™m! terms of the form

Av A NTRIIE) (P ik (5.19)

where i1,k1,01 € N, j1,...,j5 € N\{0}, and where each A; is either a factor (N —
Ny)/N, (N +1—Ny)/N or a II®®-operator having the form

NP (70 ) (5.20)

'z

for some p,qi1,...,qp € N\{0}. Distinguishing the cases £; > 1 and ¢; = 0, this implies
that

I+ )12 (bp)ell < e mt | [p 4N + 1)E] + 1B,V + DM (5.21)

Similarly, the operator adgl()ﬂ(bp) can be expanded in the sum of 2"n! contributions

of the form (5.19). Part iv) of Lemma [2.5]implies that exactly one of these contributions

will have the form
NN\ /(N+1-N N\
N N ) by (5.22)

if n is even or the form

B (N_N+>(n+1)/2 <N+1_N+>(n—1)/2

n 1% ‘2
N ~ b (5.23)

P —p

if n is odd. All other terms will have either k; # 0 or at least one of the A-operator
having the form (5.20]). Notice that the main part of the contribution (5.22)), (5.23)
is exactly 7,0, if n is even and —7'b* ) if n is odd and it is canceled exactly by the

subtraction of T;b&nnp. We obtain

Iy + 172 [ad G (by) — i€l

b “anp

4 (5.24)
< CRm N [p N+ €]+ IV + 1)

Inserting the last inequality and (5.2I)) in (5.I8), and using the estimate F, < C(p®+1)
from Lemma 5.1 we conclude that the expectation of the first term on the r.h.s. of

(5I7) is bounded by

| > Byt e PP )| < ONTHE (V3 + 1)(K + 1)g)

pEAT

The expectation of the second term on the r.h.s. of (5.I7)) can be bounded similarly.
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To bound the expectation of the third term on the r.h.s. of (5.I7) we expand

( 3 Gp<dp§,e*B<T>b*,peB<T>g>(

PEAT
= Z Gl (V4 + 1) 2d &[NV + 1)1/2efB(T)b*7peB(T)£||
PEAT
1 : )
< RV + DN L 37 10l 72)| Vs + 072 [aa) (8y) - g

n>0 " peA’

where we used (twice) Lemma 2.4 and the bound |G,| < Cklp|™? from Lemma 5.1l
Inserting (5.24]), we find

|2 Gyldy e B P D) < ONTHI(V; + g2
pEAi

if kK > 0 is small enough. The last term on the r.h.s. of (5I7) can be controlled
similarly. O

Next, we prove precise estimates for the constant term and for the coefficients of the
diagonal part of ./\/lﬁ,, as defined in (B.13).

Lemma 5.3. Let V € L3(R3?) be non-negative, compactly supported and spherically
symmetric and assume that the coupling constant k > 0 is small enough, so that the
bounds of Lemma [31 hold true (with F,,G) defined as in (3.17)). Suppose that C’ff 18
defined as in (310). Then, for N — oo,

R T [+

pEAi

kV2(0)
2p?

— 47 (N — 1), + % > [—p2 — kV(0) + \/yp\4 +2[p|26V (0) + +O(N™%)

pEA’

(5.25)

with a?\, as defined in (I5) and for all 0 < oo < 8 such that o < (1—f3)/2. Furthermore,
on ffN, we have

Yo ER-Grapa, =Y \/pt+ 292V (0)aza, + O s (5.26)
pEAL PEAL

where
+n5 < CN™Ny + 1)

for all a < min(p, (1 — B)).
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Proof. From (3.16]) and from the definition of the coefficients F},, G in (B.17)) we obtain

1 (N-1) ~ 1 - K _
B _ = S S _ 2 B B8
Ch=5 > =gV (O0) =5 > [P+ eV /N + 5 3 Vio/N ),
pEAL peAy PgeA]

On the other hand, setting

A, = —2 [/ff/(p/NB)(’yp +0,)% + QPQ’YpUp] = Z V(lp- q)/N?)ilg

N
A*
) “ (5.27)
K =5 B>
-5 > Ve - o/
qeA*
we find that
F2— G2 = [p|* + 2p°kV (p/NP) + 4, (5.28)
Notice that with ([39]) and ([3.I1]), we have
K = - /{2 ‘//\' — Nﬁ B
‘N > V((p—q)/Nﬁ)nq‘ <Cx% > | ((p2 9)/N7)] < Cr*NP1 (5.29)
g +1
qeN* qeEN*
which implies that
|4,] < CNPTH (5.30)

for every fixed p € A*. Choosing £ > 0 so small that Ip[* + 2p%V (p/NP) and |p* +
2p%kV (p/NP) + A, are positive and bounded away from 0, uniformly in p € A%, we
observe that

\/Ipl4 +2p2kV (p/NP) + A, = \/Ipl4 +2p2kV (p/NF)
Ap

+
\/Ipl4 +2p?kV (p/NP) + Ay + \/Ipl4 +2p?kV (p/NF)

The denominator in the last term is such that

93p? < \/|p|4 +2p26V (p/NB) + A, + \/Ipl4 +2p26V (p/NP)
A V(p/NP
e (_,, N M)]

2
=2 Ip|* p

This implies that

e (Ap . W(p/Nﬁ))

|p|* p?

Ap

2p?

Ap <ﬂ

\/\p!4 + 226V (p/NB) + A, + \/\py4 + o2V (p/NB) 2P
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for all p € A%. Since, from (5.30),

A2 1 B
Z —P < CN2(6- ) and Z M < CNP-1

4 —
EA* p| pEAj |p|
we conclude that
o Fy+\/F2 — G2
N+§ Z pt p~ p
peA:
(N-1) ~ 1 9 ~ 5 =
- 5 —p" = kVI(p/N 4+ 2p2K5V (p/NP
5 wV(0)+ 35 S |- —wVip/ )+\/|p| + 2p26V (p/NP) (5.3
peAi
+ ] —+— > V((p—q)/N)mprg | + O(NP)
peEA] qEA*
We still have to compute
A 5
B=)_ FJF— > Vil —a)/N)mpng (5.32)
D
peAj EA*

To this end, we decompose A, = Ay, + Az, with

Avy = [T/ + 2y + 5 3 V(- 0N [ 3 Vi - 0/
qu* S

In other words, we define A; , by replacing, in (5.27), (7, + 0,)% by 1 and 7,0, by 7;
recalling the bound (5.29)), we conclude that the rest term A, ), is such that

Ap _
» =R <oNf (5.33)
peAj
From (5.32]), we obtain

B= -3 w3 Vi -0/

pEA: qeEN*

< RV (p/N?) + 9, + 5= D VP — /N7,
geA*
+O(NPY

Notice here that, in contrast with (5.32]), the sum on the r.h.s. includes the point ¢ = 0
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(which gives a contribution of order N®~1). Using the relation (3.12), we find
1 K = B\~
B=— > [ S Vi —a)/N)i]
p? L2N
pGA: qeEN*

R = —~ —~ ~
X [§V(p/NB) + NAneXe() + Ave > Relp - Q)Uq}
qeA*

+O(NPY

With (5.8) and the bounds (5.9) and (5.29), we can simplify the last identity to

KV P k ~
B=- % o) - 3 Vo= /)i + O
T - ! (5.34)
> %WZA V(0 — )/ Ny + OV

since the contribution from the term with ¢ = 0 is of the order N®~! (and since Ng = Mg
for ¢ # 0). The r.h.s. is of the order N26-1 (the sum over q is of the order NB=L but it
does not decay in p; summing over p produces an additional factor N%). For 8 < 1/2,
the whole r.h.s. is negligible, in the limit N — oco. For 8 > 1/2, on the other hand, we
have to expand it further. To this end, we use again the relation (8.12]) to write

R = K =5 ~
q277q = = EV(Q/NB) T 9N Z V(g — QZ)/Nﬁ)nqz
q2EA*

+ NAneXe(a) + Ane D> Xelq — a2)ig,
qaEN*

(5.35)

Inserting this identity in the r.h.s. of (5.34)) we notice that the contribution of the last
two terms on the r.h.s. is negligible, in the limit of large N (after summing over p, q, g2,
it is of the order N#~! < 1). Also the contribution associated with g2 = 0 in the second
term on the r.h.s. of (5.35) vanishes, as N — oo (it is of order N2(=5)). We arrive at

KV Py k ~ KV B
p= > W)L S (- gty Y

5 2
peEA’, 2P S .
KV (p/NP) & % il %
w3 D ST (- an) V) e S V@~ )/N P,
2p 2N 2N
peA’. Q1 EN* 2€AL
+O(NP

(5.36)

While the first term on the r.h.s. is of the order N?6~1 the second term is now of the
order N3%=2 If g < 2 /3, it is negligible. If instead 5 > 2/3, we iterate again the same
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procedure, expressing 7,, using (5.35]). After k iterations, we obtain

DI Vp/N?) Vi —a)/N?) V(@1 —a2)/N?)

poy CUw
]+2 J 2 2 2
j=1 2N Poq1, G EAY P gl 72
i 5.37)
V((gi—1 — q;)/NP) ~ (
B (( J q2 ])/ )V(qj/NB)
J

+ O(N(k:Jrl)Bfk) + O(Nﬁfl)

Choosing k = mg the largest integer with mg < 1/(1 — 8) + min(1/2,5/(1 — B)), we
obtain that (k+1)8 — k < —min((1 — 5)/2,8). Inserting (5.37) in (5.31]), we obtain

SEPNENCEE

PEAT

(N—-1) ~ 8 (1) i+
— 5 /<;V(O)+j: T

BYV(p — 8 Ul(ai s — a:)/NBY ~
<y Mt qc.ln>/N> "v<<qjlq2q]>/N )0 (43/N%)
Diq1,e-,q5 EAY J
+3 Z [ p* =KV (p/N”) +\/|p|4+2p KV (p/NB)| + O(N~)
peA*

for all @ < min(g, (1 — 5)/2). Adding and subtracting ZpeAj K2V2(p/NP)/(4p?) and
comparing with the definition (L5 of aﬁ,, we get

A} S -6

pEA:
= 47T(N - 1)a]€,
KV (p/N°)
B —a
23 3 [0 = PN =l 2e? (/v + S oy
pEA*
(5.38)
for every a < min(f, (1 — 3)/2). Expanding the square root in the last sum as
VIblt + 202 (o/9)
2l KV (p/NP) K2V (p/NP)
p? 2lpl*
3:3V3(p/NP) / 1
+——— dsy s / dsa s / ds
p|® 151 2 82 3 2H518283V( /NB)]5/2
p2
(5.39)
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it is easy to check that

K2V2(p/NP) C

|0t = kPN ol 2wl ) + R <

uniformly in NV and, comparing (5.39) with a similar expansion with T?(p/N B) replaced
by V(0), that

HZ?Q(p/Nﬁ)]

‘ [—pQ — KV (p/NP) + \/Ipl4 +2p2kV (p/NP) + 22

2v2

— {— P’ — KkV(0) + \/]p\‘l +2p26V (0) + } ‘ < ONPlp|~3
Here, we used the fact that x > 0 is so small that the denominator in the integral on
the r.h.s. of (B.39) is bounded away from 0, uniformly in p € A% . Separating the sum
in two regions [p| < N? and |p| > N, we conclude that

K2V (p/N?)

‘ > [—p2 — KV (p/N?) + \/Ipl4 +2p%6V (p/NP) + 22

peAj

K272 (0)
2p?

—p? — KV (0) + \/|p|4 + 2p26V (0) +

>

peAi

for every oo < §. Inserting in (5.38)), we obtain (5.25]).
Let us now prove (5.20). From (5.28]), we find

Z \/FpQ_Gz%a;ap

pEAT

= Z \/]p\‘l + 226V (p/NB) + A, Qi
peAj

= Z \/ Ip|* + 2p26V (p/NB) aa, (5.40)
PEAT

‘ <CN~©

A
4 *
+ a,ap

pEAT, \/Ipl4 +2p%6V (p/NP) + Ap + \/Ipl4 +2p26V (p/NP)
=:B1 + By

With (5.30), we find

A
(B < 3 _ 4 S— T
vere \/ oIt + 20KV (p/N) + A, + /bl + 20267 (o/N®) (5.41)

< ONP7Y(E,NLE)
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As for By, we write

1
B = Z \/\p!4 + 2p2kV (0) + 2N_5p2/<;/ dsp-VV(sp/NP) aja,
peEA®. 0

- Z \/|p|4 + 2p26V(0) iy

peAj
2N Pp?k fol dsp-VV(sp/NP)
vene \/Iplt + 25207 (0) + \/Iplt + 202V (p/N)

= Z \/|p|4 + 2p26V(0) ap,ayp + B,
peAj

*
(lp(lp

+

The expectation of the second term can be bounded by

(€.B1&) < ONTF 7 Pplllapé > < ONT7 )~ (14 ) [lapél* < ONP(E, (K + 1)€)

PEAT pEAT

Combining the last bound with (5.40]) and (5.41]) we obtain

S -Gy = 3 Vbl + 202V (0) ajay + 0

pEAi peA:

where ¥ 5 is such that
+ing < CN-*(HE + 1)V, +1)
for all o < min(g, (1 — 3)). O

To show that the error term £y appearing in the decomposition (B.1]) of Q]BV remains

negligible after conjugation with the generalized Bogoliubov transformation e?(™), we

use the following lemma.

Lemma 5.4. Let V € L3(R3) be non-negative, spherically symmetric, compactly sup-
ported and suppose that the coupling constant k > 0 is small enough. Suppose that, for
p € A, 7y is defined as in (Z10). Then there exists C > 0 such that

e PO, + 1)(HE + 1)ePT) < O, + 1) (HE, +1) (5.42)
Proof. We apply Gronwall’s inequality. For ¢ € F=" and s € R, we consider
0:(&, e PO (HY + DV + 1)eP0e) = —(£,e*POB(7), (MY + DV, + 1)]e*P )
We have

[B(), (M3 + DNy +1)] = [B(r), K]V +1)

, (5.43)
+ [B(7), UN]N+ + 1) + (Hy + 1)[B(7), N4 ]
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Consider first the last term on the r.h.s. of (5.43]). With

[B(r), Nyl = Y 7p(bpb—p + 0307 ,)

peAj
we find
(€ e PO + 1)[B(r), Ve P

= Z qu2 (€, e*SB(T)a:;aq(bpb_p + b;b*,p)eSB(T)Q
P,gEAT
+ Z (&, G_SB(T)VN(bpbfp + b;b*—p)GSB(T)@
pEA:
=I1+1I

(5.44)

where

< > malagVy + 1) B0

P,gEAT
X [[1(bpb—p + b= ) (N + 1) 720 PO + 8, 4|
<C Y mpdtllagWNe + 1)V PO 43 mp? lap (N + 1) 1€
P,gEAT P

< OIKYVANG + 1) 2esPOe|? 4 ||V + e P
< O(ePTE (Ne + 1) (K + 1)eP )

and, expressing the potential energy operator in position space,

< > / dedy N~ P3PV (NP (2 — y)) [(awaye P TE, agay (bpb_p + b5bT p)esB<T>g>(

pEA:
< Z Tp/dxdyN—Hsﬁv(Nﬁ(x — )|z dy, (N + 1)1/2€SB(T)§H
pGAj_
% [I1bpbp + B )N + 1) 200, PO + Jaye PO + [lage PO

< C/dxdy N—1+36V(N5(m — ) ||aady, (N + 1)1/2683(T)§H2

+ C||(N + 1)12esBg 2
< O, e PO Wy + 1) (Vg + 1)esBMg)

Here we used (B.11)) to conclude that > |7p| < 0o. From (5.44) we obtain that

peAj

(€, e PO S+ 1)[B(1), Ny]ePTe)| < O, e BO(HY +1)(WV4 +1)e*BOe) (5.45)
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Let us now consider the first term on the r.h.s. of (5.43). Since

[B(7),K] = Z P27y (bpbp + b))
peAj

we obtain by Cauchy-Schwarz that
(e PO B(r), IV, + 1)e"P M)

< PInlllbpbpet PO WV + 1)e P
peAj

1/2
< CIWG + DB [ 37 by (Vs + 1) 2eE0e 2]
pEAL

< C& e PIWL +1)%eP006) < O, e PO (MG + 1)V + 1)e P

(5.46)

Here, we used the estimate (5.I1]) (to make sure that >_ . A% p*r? < 00) and again the

fact that, on ffN, Ny < CH]BV.
Finally, let us consider the second term on the r.h.s. of (5.43]). It is convenient to
express the potential energy operator Vy in position space. We find

(€.e "B [B(7), Vn](N4 + 1)eBg)
K

= oN dady N3PV (NP (z — y))7(z — y)(ePTe, (bby, + baby ) (N4 + 1)esBe)
2N Jaxa

+ [ dedyNPV(N (@ = y)(e PO, [bibya (7)as + he ] (N + DeB0e)
AxA

=II+1IV

where we set 7(z) = ZpeAj; 7eP®. Since ||7]|oo < ||I7]}1 £ C < oo uniformly in N, it is

simple to estimate
1 < C(€ e PO (Vy + D)Wy +1)e*B )

Similarly, since ||7y]|2 = [|7]l2 = [|7]]2 £ C < oo independently of y € A and of N, we
find
11| < C(g e PP Wy + Wy +1)e P

We conclude therefore that
(6, e POB(), VWl + DePDe)| < Cle, PO 0y + DN + e

Combining this bound with (5.45]) and (5.46]), we obtain from (5.43]) that

0s(&, e PO MY + WG + DerPOg)| < Clg e PO + VG + 1DeB0g)

By Gronwall’s inequality, we arrive at (5.42). O
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In the next corollary, we summarize the properties of the excitation Hamiltonian
./\/l]‘i[ defined in (B.I3) that follow from Lemma (2] Lemma B3] and Lemma 5.4 above.
This corollary will be the starting point for the proof of Theorem [[[1lin the next section.

Corollary 5.5. Fiz 0 < 8 < 1. Let V € L3(R®) be non-negative, spherically symmetric
and compactly supported with sufficiently small coupling constant x > 0. Then the
excitation Hamiltonian M?V = e BBy HNU*eBM B . }EN — ]:_EN 18 such
that

1 ~ ~ /-@‘72 0
MB —4x(N —1)d3, + 5 > [—p2 — kV(0) + \/\py4 +2|p[26V (0) + 2p§ )
pehi (5.47)
4 Z \/p* + 2p2/<;‘7(0) apap + PN g

peAj
where, for all 0 < o < B such that o < (1 — (3)/2 there exists C' > 0 with
+pnpg < CNTHNL + 1)(HE +1)

Furthermore, let Ejﬁv be the ground state energy of the Hamiltonian H ]BV and let Y €

L2(R3N) with ||¢yn|| = 1 belong to the spectral subspace ofH]BV with energies below E]BV—l—C,
for some ¢ > 0. In other words, assume that

— B
wAf—‘l(_@%E§+d(E£V)wN
Let &y = e BOe By € .FEN. Then there exists a constant C' > 0 such that

(Ens (Ng + D) (H + 1)en) < C(1+¢P)

6 Proof of Theorem [1.1]

Let

kV2(0)
2p?

~ 1 - =
ES =ar(N —1)al + 5 ) [—p2 — K&V (0) + \/W‘ +2[p|*sV(0) +
peA’

with a]BV defined as in (L5)). To prove Theorem [[.T| we will compare the eigenvalues of

./\/lﬁ, - Eﬁ, (which of course coincide with the eigenvalues of H ﬁ, - E]BV) with those of the
diagonal quadratic operator

D= Z EpapQp, (6.1)
pEAi

acting on }EN. Here we defined €, = (|p|* + 225V (0))/2 for all p € A%, For m € N,
let A, denote the m-th eigenvalue of M]ﬁv — Ejﬁv and A, the m-th eigenvalue of D
(eigenvalues are counted with multiplicity). We will show that

Am — Am| < CN"*(1 4 ¢3) (6.2)
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for all 0 < a < 8 such that o < (1 — 8)/2 and for all m € N such that X, < C.
Since A\g = 0, ([6.2) implies first of all that E} = E]ﬁv +ON~ @), forall0 < a < f3
such that a < (1 — 3)/2. Furthermore, since the eigenvalues A, of (6.1I]) have the form

k
E njspj
j=1

for k € N, ny,...,nx € Nand p1,...,pr € A%, (€2) also implies the relation (6] for
the low-lying excitation energies of H ff

To show (6.2)), we first prove an upper bound for \,,, valid for all m € N with Am < C.
To this end, we use the min-max principle, which implies that

Am = inf  sup (¢, (./\/ljﬁv - Eﬁ,)@ < sup (¢, (M]BV — E’]BV)Q (6.3)
YcFSN. ¢ev: geyss:
dim Y=m lI€[=1 lell=1
where YJ' denotes the space spanned by normalized eigenvectors &1, ...,&y, of D, as-

sociated with the eigenvalues A\; < --- < A\, < (. Without loss of generality, since D
commutes with N\ we may assume that &, ...,&, are also eigenvectors of NVy; we de-
note the corresponding eigenvalue by ro,...,r, € N, i.e. Ny&; =r;€;. Since D > cNy,
we find r; < C(. From Lemma [Z.3] and since K < D we obtain

(& W +1)(Hy +1)8) < O Wy +1DP(K+1)6) < CE Wi + 12D +1)8) < C(1+C)
for all £ € Y7'. With (5.47), we conclude that

(€ (MY, — EQ)E) < (€D + CN (1 +¢)
for all £ € Y and all 0 < o < 8 such that a < (1 — 8)/2. From (6.3), we obtain

Am < sup  (§,DE) + CNT*(1+¢%) < Ay + CN (1 +¢)
gevphllél=1

again for all 0 < a < 8 such that a < (1 — 3)/2.
Next, we prove the lower bound for A;,. From the upper bound above and since we
assumed that A\, < ¢, we find that \,, < ¢ if N is large enough. Denoting by P the

spectral projection of M?V — E’]ﬁv associated with the interval (—oo; (], we find

A, = inf<N sup (¢, (M?V — Eﬁ;)@

YCF €Y
dim Y=m [€lI=1

> inf__ sup (¢, DE) —CN"*(1+¢%)
YCP(FEN): gev:

dim Y=m ll€lI=1

> inf  sup (¢, D) —CN*(1+¢%)
YC]-—EN: EeEY:
dim Y=m [I&ll=1

= A — CN~¥(1 4 ¢?)
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for all 0 < a < f such that o < (1 — /3)/2. This concludes the proof of (6.2]) and the
proof of Theorem [I[.T1

Remark: Theorem [[T]states the convergence of low-lying eigenvalues of the Hamilton
operator (LI towards the eigenvalues of the quadratic Hamiltonian

Qe = B} + 3 /bl + 26267 (0) ala, (6.4)
pEAi

In fact, using ideas from [9], one can also show convergence of the corresponding eigen-
vectors. More precisely, for a fixed j € N, let PY) denote the orthogonal projection
HY,

onto the subspace of L2(R3") spanned by the eigenvectors associated with the j small-
est eigenvalues of H ff Similarly, let Pg ) denote the orthogonal projection onto the
subspace of }EN spanned by the eigenvectors associated with the j smallest eigenvalues

Ejﬁ\, = p1 < pg < oo+ < pyoof the quadratic Hamiltonian Q.. Then, assuming that
M1 > pj, we find

HefB(T)efB(n) UP(Jg U*eB(n)BB(T) _ Pg) H2 < LN*Q (65)
Hy CUHS - Hj41 — Hy
for all 0 < a < f such that a < (1 — 8)/2. In particular, if 1/1]5\, denotes the ground

state of the Hamiltonian H ff defined in (1), then there exists an appropriate phase
0 € [0;27) such that

HT/’JﬁV —ewU*eB(")eB(T)QHQ < c
M1 — Mo

for all 0 < o < (8 such that a < (1 — )/2. The proof of (6.5 follows very closely the
arguments used in Section 7 of [9].

N*C\{

7 Analysis of the excitation Hamiltonian
The goal of this section is to show Theorem We decompose
0 2) 3 4)

with ' '

g](\ff’)ﬁ — B LE\J[?BBB(W)
and with L'S\jf?ﬁ as defined in (B3], for j = 0,2,3,4. We study the four contributions on
the r.h.s. of (7)) in the following subsections.

First, in the next three lemmas, we collect some preliminary results that will be used
later to analyze the operators gﬁ?ﬁ, j =0,2,3,4. In the first lemma, we show how to
bound typical operators arising from expansions of nested commutators, as described in
Lemma above.
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Lemma 7.1. Let £ € fSN, p,q € A*+, 1,19, k1, ko, 01,09 €N, j1,... yJkyy My, My €
N\{0} and let oy, = (—1)%, for i =1,2. For every s = 1,... ,max{iy, iz}, let Ag, A, be
either a factor (N — N)/N, a factor (N +1—N,)/N or a 1 -operator of the form

- 2)/ z z
NTMIE) () (7.2)

for some h € N\{0} and z,...,z, € N\{0}. Suppose that the operators

A1 e A“N_klné}b) (njl, cee anjkl ; 77;;1 SDazlp)

Ap A NTRRIIES (7™ g )
appear in the expansion of adg()n)(bp) and of adg()n)(bq)’ as described in Lemma 2.3, for
some n, k € N.

i) For any B € Z, let
B=WNp+ D) D2A A NTRI (70l ay )€ (7.3)

and
> — — 1 j j * Ak *
B = (N++1)(5 /2 k1H§7b)(W]17---anjh;nf;l@aglp) Af L AE

Then, we have B
IBII, | B]| < C™s™p~ 2 [|(V + 1)77%¢]| (7.4)

If £y is even, we also find
1B < C"w"p~ > |ap(Ny + 1)V (7.5)
it) For B €7, let

D= (N|+1)F-D/2p, AilN—’ﬂHé}b) (0 1 P )

! / —kop7(1) mi m 0o (76)
XA NG NI (0™ 0T Py, )€
Then, we have
|D]| < CrHERm R0 g2 (N 4 1) PO (7.7)
If 05 is even, we find
D] < Cm R Rp 20722 lag (N + 1)P72¢| (7.8)

If £y is even, we have

HDH < Cn—f—kkN—lKn+kp—2(€1+1)q—2£2 H(N+ + 1)(54_1)/25“
+ O R RO 6, IV + 1)PD2g (7.9)
+ Cn+kﬁn+kpf251 q7252 ||ap(N+ + 1)5/2£H
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where g, =1 if {9 is odd and pp, = 0 if o is even. If {1 is even and either ky > 0
or ko > 0 or there is at least one A- or A'-operator having the form (7.3), we
obtain the improved bound

HDH < C"+k/<:N_1/<;n+kp_2(£1+1)q_2€2 H(N—f— + 1)(64—1)/25”
+ C"JrkN*l/i”J“kp’w“Lb)Mg5p,—qH(N+ + 1)(5+1)/2§” (7.10)
+ CrnJrkKnJrkprZqu?ZgHap(NJr + 1)5/2£H

Finally, if {1 = €5 =0, we can write
D = Di(p,q) + D2 apasé (7.11)

where
ID1pya)l < C RN D2 0, (W + )72

and Ds is a bounded operator on }EN with
ID3CI < Cm R | + 1) (712)

for g € {-,x} and for all ¢ € ]:_EN. If k1 > 0 or kg > 0 or at least one of the A- or
A’-operators has the form (7.3), we also have the improved bound

IDECI < CMHEN TRV + D) B¢ (7.13)

forge {,*} and all ¢ € f_fN.

i11) All the bounds in part ii) remain true if, in the definition of D, we replace the
operator Aq ... AilN_’“Hélb) (71, ... ok 7751 gpallp) by the operator n"bha”np, where
in = - and o, = 1 if n is even while 4, = * and o, = —1 if n is odd (in this case,

Elzn).

The proof of Lemma [T1] part i) and ii) can be found in [2| Lemma 4.1]. The proof
of part iii) is very similar to the proof of part ii). Notice that part iii) states essentially
that all bounds in part ii) remain true if in the definition of D, we replace all operators
Ay, ..., Ay by the identity). We will use part iii) of Lemma [(I] in the proof of Prop.
and Prop. below. In some occasions, it will also be important to bound vectors
of the form (8], expressed as functions in position space. To this end, we will use the
following lemma, whose proof follows closely the proof of Lemma 5.2 in [4].

Lemma 7.2. Let £ € ]:§N, B €N, i1,i0, ki, ko, l1,02 €N, j1,..., 05, m1,...,my, €
N\{0}, For every s = 1,...,max{iy,iz}, let As, A, be either a factor (N — N1)/N,
(N +1—N,)/N or a TI®-operator of the form

NI () (7.14)
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for some h,z1,...,z, € N\{0}. Suppose that the operators
Ao A NTRIG i)
Ap A NTRRIIE (e )

appear in the expansion of ad (n) )(5 ), ad(k() )(5 ), respectively, for some n,k € N. Here

we use the notation 1% for the functwn 2z — 7 (x — 2), where 71 denotes the Fourier
transform of the function n“* defined on A% Let

S= Ny +1D)PPAL A NTRIG) (™)
X Ay A NI il )e
Then we have the following bounds. If {1,052 > 1,
18] < CrHERTHR[(N + 1) O (7.15)
If 61 =0 and ¢5 > 1,
IS < C™ R R lag (N4 +1)EFD %)
If /1> 1 and £5 = 0,

IS] < CHERM T RN TN + 1) g
+ ORI g |72 (2 — )|V + 1)7/%¢] (7.16)
+ C"+k/<;n+kde(./\f+ + 1)(B+1)/2§H
where py, = 1 if {3 is odd, while p1p, = 0 if o is even. If {1 > 1 and o = 0 and we
additionally assume that k1 > 0 or ko > 0 or at least one of the A- or A’-operators is a
I3 -operator of the form (7.13), we obtain the improved estimate
IS <C™HERmERNTY (N + 1)
+ ORIy, N2 (2 — )|V + D2 (7.17)
+ O lay, (VG + 1) PP

Finally, if 61 = ¢ =0,
18]l < C™HERM RN |ag (Ny + 1)EFD2E) 4 O R laga, (N + 1)P/%¢]

Finally, in the next lemma, we show that the expectation of the potential energy
operator is small, of the order N®~! on states with bounded expectation of (N, +
1)(K 4+ 1). This lemma will be important to show that, asymptotically the quadratic
part of the generator Qjﬁv is dominant.
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Lemma 7.3. Suppose V € L?(R®). Then there exists C > 0 such that

Y i * *
(€ Vne) = oN Z V(T/Nﬁ)ap-i-raqanrrap
P,qENT TEA*T£—p,—q

< CRNPH(K+ D)2 + 1) 2¢ 2

for every & € ffN. Here K =5 p2a;ap is the kinetic energy operator.

peA:
Proof. We observe that

. v lp+]| lg + 7]
(6 VvE) < 5 > 7 /N g€l g
P,gEN} TEA TFE—p,—q q P
; TN, 2
< — WV Ar/ANT)|

P.qENT ,TEN* TF—p,—q

1 V(r/NP
<edsp g Y AT <q(+/r>2)' V32K 2

The claim follows from the estimate

1 V(r/NB Vo 1
Ly \V(r/ )ISH I 3

2 2

reA*ir#—q (q+7“) reA*:|r+q|<NPB (’I“—{—Q)
1 ~ 1/2 1 /2 (7.18
xS wennE Y

N I+ q|
reA* reA*:|r+q|>NF
< ONP!

uniformly in ¢ € A% O

7.1 Analysis of g}?’
From ([3.3), we have

N—-1) A
60, = =P 29,050 = W21 op0) 1 £0)

where R R

© _ &V _gayar Bm _ EV(O0) _Buwy a2 Bm)
NyB_We WN+€ n —We nN+e n

We collect the properties of 5](\?)5 in the next proposition.

Proposition 7.4. Under the assumptions of Theorem[3.3, there exists C > 0 such that,
<N

on Fr
+

Ck
+E); < ~ Ve +1)7 < Or(N + 1) 19

HEN ) N < O+ 1)
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Proof. The first bound in (Z.I9) follows directly from Lemma [24] To prove the second
estimate in (ZI9), we write

1
e BN B = A7+ E / dse B [a;ap,B(n)]eSB(")
0

pEA:
1
=N+ D / ds e "B (byb_, + brb* )es B0
pEAi 0
With Lemma 2.6] we obtain
e BON LB = Ny 4 S (=pmm 3 (mﬁ">(b)ad““(b )4_hc>
+ o < nlml(n+m+1) < I \ 8B \"p /2 B () \P—p "
n,m> peEA®

+

(7.20)
It follows from Lemma that the operator

Z Tp adgl()n) (bp)adgz%) (b—p)
pEAT

can be written as the sum of 2"n! terms of the form

I ,
E= > nphi.. . AyN klﬂé,b)(nh,---,n”“l;nf?w%p)
PEA} (7.21)
x Aj .. AL NTRTT }b) (™, ... ™k, 77;;280701@2]))

v~

where 1,12, k1, ko, 01,02 € N, j1,..., jk,m1,...,mp, € N\{0}, ap, = (—=1)** and where
each A, A’ is either a factor (N — N;)/N, a factor (N +1 —N)/N or a II®)-operator
of the form

NﬁhHﬁ) (™, ... ,n™)

with h, z1,...,2, € N\{0}. Lemma [I] part ii), allows us to bound matrix-elements of
(Z21)) by
(ELES) < Y Wy + D24

PEAT

<N+ )AL AN TR Wt )
x A ... AQQN*’”HS; (n™ ... ke 775290—@[2;;)52”
< OR[N+ DY) {”PHH(M +1)2%| + !P\QH%&H}

pEAi

< O™ (VG + D2V + DV
(7.22)
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Since [N, E] has again the form E, up to a multiplicative constant bounded by (n+m),
the bound (7.22), with (7.20), also implies that

(€1, [ PONLPD N )] < ORIV + D2 |G + D20l (728)
for all &1,& € ffN. With Lemma [2.4] we obtain

‘@7 [efB(n)NieB(W)’N_i_} §2>‘ _ ‘@7 e B N7, B [e’B(")NjLeB(”),NJF} &)
6 [ PON D A B B0
< Ok||(Ny + 1)2e" BON B g|||(V, + D)Y2¢
< COr|(N3 + )PV +1)Y2%¢]
< CrN|[(Wy + 1)V

Together with (7.23]), this concludes the proof of the second estimate in (7.19)).

7.2 Analysis of Q](V2)
From (3.3), we have

|4 i * I, K i %7 %
Egv)ﬁ - Z “V(P/Nﬁ) [bpbp o Napap} + 2 Z V(p/Nﬁ) [bpb—p + bpb*p] (7.24)
PEAT
We study first the contribution arising from the kinetic energy operator K. We define

the operator g](VKg through

e~ B [ceBM) = k¢ 4 Z p277]2) + Z P’ [b;b*_p + bpb_p| + gJ(VI,(ﬁ) (7.25)

pEAT PEAT
To prove part b) of Theorem [3.2] we need to keep track of more order one terms arising
from the conjugation of K. We define the operator SJ(VKB) through

BP0 — K4 3 0202 + Doy (bybp + bbL,) + 2020 2b3by | + €V

7.26
e (7.26)

g oK)

In the next proposition, we study the properties of the error terms £y, 5 EN G-
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Proposition 7.5. Under the assumptions of Theorem [3.2, for every § > 0 there exists
C > 0 such that, on .FEN,

(K
+EJ) < OHR + Cr(Ny +1) 7o
+ [E0). ] < oo+ 1) '
Furthermore, there exists C' > 0 such that
+ EG) < ONPTYNL + 1)(K + 1) (7.28)
Proof. We compute
Lod
e~ BO)ceBO) _ i 4 / ds L osB®) 5B
0 dS
1
=K+ / ds e B[, B(n)]esBM
0
1
=K+ / ds > pPnpe B (bpb_p, + brb* ) B0
0 pEA’
With Lemma we find
— ! (_1)n+m n m
o~ BO) coBO) _ 4 / ds 30 L S g [adlpy (pad, (6-,) + e
O mm>0 T peAl
1 —1)ntm
:/C+/ ds Z =y n')m' Z P’
0 nm>0 T penr

X { [s"ngbﬁ;; + ads’g(n)(bp) - s”ngbg"n}
X [smnglbgjjn + adgrgzn)(bp) - Smnglbgjfn] + h.c.}

where we defined «,, = +1 and i, = - if n is even while i, = —1 and §,, = * if n is odd.
Integrating over s, and using

1
np/ (cosh?(smp) + sinh?(sn,)) ds = cosh(n,) sinh(r,)
0

1
277p/ sinh(sn,) cosh(sn,) ds = sinh?(7,)
0
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we easily find, with the notation v, = coshn, and o, = sinhn,,
e~ B e B(n)

=K+ Z pzai + Z pzwpap(bpb,p%—b;b* ) +2 Z pzazb*

peAL PEAL peA’
n+WL 2 +1 i (m) ﬁ
- Z n'm' (n —|— m+1) ZA Py by {adB(n)(b,p) Mp b,amp] +h.c.
e *
(1 (n) nptn | mA1ptm
- n; n!m!l(n+m+1) EZA {adB(n)(b ) = mp0a,, p} Ny %, +he
n+m ﬁ
n,m>0 EA*
(m) e fm
[ad (n)(b p) — Mp b_amp} + h.c.
=K+ ) [pQUf; + PP Yoy (bpb—p + b ,) + 2pza§b;bp]
peAi

+ &0 4 gl 4 gl
Comparing with (7.25) and (7.26)), we conclude that EJ(VK[; = SfK) + SéK) + SéK) and
gJ(VKB) - Z P’ [‘712) - 77122] + 2p20122b;bp + 0?0y — ] [bpb" + bpb—p]
pEAL
+ &M 4 el 4 gl
= &) 4 ) 4 ) 4 g

Since, by B3), |02 —na| < Ck?|p| 8, p?o2 < Ck* and |0y, — | < Ck?[p| 7, it is easy
to check that

e, E89) < Crll(N, + 1)M2¢|?
(€, (€5 NLIE)| < CrII(N + 1)V 2 ?

Hence, Proposition [L.5 follows if we can show that the three error terms EI(K), 52(1(), EéK)
satisfy the three bounds in (7.27)), (7.28]).
We consider first the term EI(K). According to Lemma [2.5] the operator
S ptapttvk  [ade) (0-p) — mpb ] (7.29)

pGA*
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is given by the sum of one term of the form

Fi = Z Pyt

pEA’.
) <N B N+> m+(1—2am)/2 (N L1 N+> m—(l—Qam)/Q » bﬁm
N N —amp
(7.30)
and of 2™m! — 1 terms of the form
Fy = Z pzngﬂb(ﬁx"np/\l . AilN_klﬂé}b) (... Pk 77;;190_0%11,) (7.31)

pEAT

where i1, k1,01 € N, j1,..., 5, € N\{0}, ay, = (=1)"* and where each A, is either a
factor (N — N, )/N, (N +1—N,)/N or a II®-operator of the form

N—hnﬁ’ 7, .. ™) (7.32)

with h, z1,...,2, € N\{0}. Furthermore, since we are considering the term (7.30) sepa-
rately, each term of the form (Z3I]) must have either k1 > 0 or it must contain at least
one A-operator of the form (.32]) for some p > 0.

To estimate (7.30]), we define

m+(1—am)/2 m—(1—am)/2
B N - N, 2 N+1-N,
FN) =1 - (—N ) (7N )

and we notice that
—Cm/N < f(N;) < COmNL/N (7.33)

Since f(N4) =0 when m = 0, distinguishing the two cases n+m >2and n=0,m =1
we conclude that

+1
(€ Fag)] < orim gt 3 {(m D+ DE + b+ 1)1/25||2}
pens L NIl Np

m
+ N+ 122 S o
pEA:

< Crrm L (m e DN+ DI + NPTV + 1))}
(7.34)

for all n,m € N (the second line bounds the term with the commutator [by, by] arising
when n =0 and m = 1). Since N3 < N on ffN, (34) also implies that

(€, F16)] < CMHmH R (m 4 1) |(V + 1)1 (7.35)
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Eq. (C34)) will be used in the proof of (7.28]), while (Z35]) will be used to show (7.27]).
Let us now consider the expectation of (Z31]). First, assume that ¢; +n > 1. Then,
Lemma [Tl part iii), implies that

(& F28) < > pPlmpl Wy + 1)1
pEA:
X NV + D720 A A NTRIE) (7o, ]
< Cn+mlﬁln+m+1H(./\/+ + 1)1/25”
1+m/N 7.36
« 3 {%nwﬁnmsnﬂ > ||ap5u} (7.36)

pEAT

Cm+m n+m— 1H(N +1 1/2§H2 Z p

pEA*
< O (m - 1|V + 1D)Y 2]

by (BI0), which will be used in the proof of (Z.27)). Also here we will need a slightly

different estimate to show (7.28]). Using again Lemmal[T] part iii), under the assumption
{1 4+n>1, we find

(& F6) < Y PPlmpl (N5 + 1)E]

pEAi

X NN+ 1) 0 A A NI 6P o, )]

Cner n+m-+1
< W+ e
1+ (7.37)

« 3 {( |p|T)||<N++1>5H+| |2||ap<fv++1>1/25||}

peAj

Cn+m n+m—1
IV + el Y o

peAi

< Cn+m/€n+m+1(m + 1)N571”(N+ + 1)5”2

In the case n = ¢; = 0, Lemma [T} part iii), allows us to write

(€ F28) = > p"np(&Di(p) + Y p*np(& Daapa_pf)

pEAT pEAT

where

|V + 1) Da)| < O mN T p| 2 (N 4+ 1)
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and [|D3¢|| < C™x™N|(NVy + 1)€]|. Hence, in this case,

Cﬁn m+1
(€ F26)| < =N+ + DIl Y ol Zllap (Vs +1)7%¢]
pEA:
+| 3 pPupl Daaya )
pEA:
< O mN W+ DER + | DD pPn, (D3¢ apa )]

pEA:

To control the last term, we use (B:12)) to replace

Ko K ~ ~ . R -
Py = —§V(p/NB) ~ 5N > Ve = a)/N)ilg + NAnaXe(p) + Ane D Relp — )
qeA* qeN*
R (7.38)
To bound the contribution proportional to £V (p/N?), we switch to position space. We
find

[ 3 Vo/N?) D5 € aya g

peAi

. / dedyN3 PV (NB (z — ) (DIE, daiy€)

AXA
Cﬂnﬁnv+1 35 5 oL
< [ NIV (V@ — )|V + DElfaayg]
AXA

< O N2V |(NV + 1)¢]|

The contribution of the other terms on the r.h.s. of (Z38]) can be bounded similarly. We

conclude that, for n = ¢1 =0,

(jnzﬁnr+1(7n_+_1)
N

(jnzﬁnp+1/2
VN

Since Ny < N on ffN, the last estimate also implies that

1N + DEN? + N5 + DENIVe]

(€, Fo€)] < C™h™F (m + D[V + 1Y) + O™ 2 (W + 1)V vy e
Combining the last two bounds with (7.36]) and (Z.37]) we obtain that, for every n,m € N,
(&, Fag)| < Ot (m o 1) (N + 1) Y22 Cmtmiemtm U2 (V1) Y2g|vy |

(7.39)
and, with Lemma [7.3]

(6, Fa&)| < O™t (m 4+ NOTL (A + D)E]? + CmHmentm V22

1 1/2 1/2¢#112 (7'40)
< O™ 4+ DN (N + DY+ 1)V 2¢)2.
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From (Z.35) and (Z.39) we conclude that, if x > 0 is small enough,
(€. &) < ORI + DY) + CRZIIN + 1)l vy el
Hence, for every § > 0 we can find C' > 0 such that
(€ &) < SNl + Onll (W + 1) ¢
From (740) and (7.35]), we can also estimate, if x > 0 is small enough,
(€. &)1 < ONTH Wy + DY2(K + 1) 2P

This proves that the error term Sl(K) satisfies the first bound in (Z27)) and (Z28]). In
fact, it also satisfies the second bound in (7.27]), because the commutator of every term of
the form (7.29]) with N, has again the same form, up to multiplication with a constant,
bounded by C(m + 1) (because the difference between the number of creation and the

number of annihilation operators in (Z.30]), (T3] is at most proportional to m).

(K) (K)

The error term £, ’ can be controlled exactly as we did with £ ’. Also the error

term E?EK) can be controlled similarly. The difference is that, now, the operator

Z P1p| adSB(n p) = Vi) [adg?%)(b p) — bﬁ—yr&mp]
pEAT
can be written as the sum of (2™m! — 1)(2"n! — 1) terms of the form
(D)
Fy= > pPnpAy .. A NI (0ol o, )
PEA} (7.41)
XAllA;2 k2ﬂé,i,( "",nka;n;;QSDfang)

of (2"™m! — 1) terms of the form

nt+(1— an)/2 n—(l—an)/2

N - N, N+1-N; 2
e ] (152) T (e
pEA’. (7.42)
XA&A;Q k2H§,i,( ,.._,nka’T}psp agyp )
of (2"n! — 1) terms of the form
B 0, s .
F5 = Z p277p A1 e A“N leé,b) (’I’]]l, e ’77-7/61 5 77;;1 Spazlp)
pEA:
mt(—am)/2 m—(l—am)/2 (7.43)
NN NN
N N I
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and of one term of the form
n—(1l—an)/2

nt(l—an)/2
N-N,\" 2  [(N+1-N 2
F6 = § pz,’,}p <T+> (T—F) -1 b(ﬁxnnp

A*
e (7.44)

mt-(1—am)/2 m—(1—am)/2

N —N+ 2 N+1 —N+ 2 Bm
X <T) (T -1 b—amp

where 41,149, k1, ko, 01,02 € N, j1,..., g, ma,...,m, € N\{0}, a,- = (=1)" and where
each A,- and A/-operator is either a factor (N — N, )/N, a factor (N +1—N,)/N or a
II®)-operator of the form (Z32). Furthermore, in (Z41)), we must have k; > 0 or at least
one A-operator of the form (2II)) and ko > 0 or at least one A’-operator of the form
(2II). Similarly, in (Z.42]) we must have ko > 0 or at least one A’-operator of the form
[(2I1) and in (Z43)) we must have k1 > 0 or at least one A-operator of the form (ZIT).
The terms (T.47)), (C42), (Z.43])) and (7.44]) can therefore be estimated using Lemma [Tl
as we did above with the terms F; defined in (7.30) and the terms Fy defined in (7.31)).
We omit the details. O

Next, we focus on the quadratic terms in (T.24]). We define the operator g](VV) through

KV (p/NP)

WV (/N7 + === (bpb—p + U3b)

P —p

e_B(")ﬁg‘,/’%eB(") _ Z
pEAT

+EV)  (745)

To prove part b) of Theorem B.2] we will need to keep track of more contributions to

EE\‘,/), so that the error has a vanishing expectation, in the limit of large N, on low-energy

states. We define therefore the operator EJ(VVB) through
e_B(")E%geB(") = Z [MA/(p/NB)JIZ) + /ﬁ?(p/Nﬁ)ap’yp]

pEAi

+ Z ﬁv(p/Nﬁ)(’YP + Up)2b;bp (7 46)
peEA’, '
1 % *7 % \4

+5 2 KVR/N) (o + 0) (b + B6,) + € )

pEAL

In the next proposition, we establish bounds for the error terms g](vvg and EJ(VV%.

Proposition 7.6. Under the assumptions of Theorem [33, for every § > 0 there exists
C > 0 such that, on .FEN,

+E ) < 0Vn + CR(NG +1)
£ [EV) NG| < R+ 1)
Furthermore,

+EY ) < CNTY|(Wy + DY2(C + 1)V 2¢) 2
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Proof. From the definition of V) in (7.24), we find

N7/B
ﬁ =K Z V(p/NP)e B by eBm = Z V(p/NP)eBm g Hpe —B()
pEA* peA*
+ = Z V(p/N?)e B [b,b_, + bib* ] B (7.47)
pEA,

2,1 2,2 2,3

From Lemma [2.6] the term g](\?’é) can be written (using again the notation -y, = coshn,,
op = sinhny,) as

@1 (_1yn+n % (m) * mpfm mpfm
gN’B B Z 7.'% Z V(p/Nﬁ) [adB(n)(bp) —p bﬁamp + 1 bﬁamp]

mln!
m,n>0 pe/\:L
(n) N pin npin
x [adB(m(b) M+ T
(=pmtn 1)’”“+ " e W) (7.48)
m7n>0 pGA*
=k > V(/N) b + opb_p] [y + 0pb" ] + &)
peAi
with oy, = 1 and f,, = - if n is even while a,, = —1 and f,, = * if n is odd (and §, = * if
#, = - and f#, = - if f,, = %) and with the error term
V) _ (=pm ) o
8= R ) V(p/NO )i [ad$) (by) — nibf )
m,n>0 peA*
( m+n m . m N
T Z ol Z V(p/N%)| dgg(%)(b ) =y bgffnp] My,
m,n>0 peA*
minl P B() amp] A4 (y) "lp Ocvp
m,n>0 peA:
(7.49)

According to Lemma 2.5 the operator

k> Vip/NOyvhe [adly) (b,) — v ]

() p Qnp
pEA:

o3



can be written as the sum of one term of the form

Gi=r Y V(p/NO)yymtnphe

ampP
pEA’,
(1— an)/ n—(1-an)/2
N-N, N+1-N, 2 L g
8 N N G
(7.50)

and of 2"n! — 1 terms of the form

Go=r Y Vp/NOWrvie Ay Ay NRIL) (7t fisfion, ) (7.51)

pozp
PEAT

with i1, k1,01 € N, j1,..., 5k, € N\{0}, a, = (—1)" and where each A, is either a factor
(N —N,)/N, a factor (N +1—N,)/N or a I -operator of the form

N‘hl'[ﬁ) ..., ™) (7.52)

for h, z1,..., 2, € N\{0}. Furthermore, each operator of the form (Z5]]) must have either
k1 > 0 or at least one A-operator having the form (7.52]).
Noticing that G; = 0 if n = 0, the expectation of (Z50]) can be bounded by

Cn—i—mmn—l—m—i—l

(6, Gre)| < =

IV + 1

V N 1
« 3 A p/ [uapm 1)V + G+ D]
pEA*

Cn—i—mﬁn—l—m—i—l

< T s+ 1R

As for the term Gy defined in (Z.5)), its expectation can be bounded with Lemma [7.]
part iii) by

Cn-l—m n+m+1 1 2
€, Ga8)]| < S V(N {Hap(M 12+ VG + 1>s|r}
pEA*
Cn-l—m n+m+1
< I+ el

for all £ € ]:_EN. The expectation of the operators appearing on the second and third
line in (7.49) can be controlled similarly, using again Lemma [T.Il Therefore, if £ > 0 is
small enough, we can sum over m,n € N, and from (Z.49]) we conclude that

C
(€, &) < —” IV + DE? < Orl(Ny + 1), (7.53)
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Since commutators of Ny with operators of the form (7Z.50), (Z.51)) have again the same
form (up to a multiplicative constant bounded by C(n + 1)), we also find

(€, [N, €16 < Crll (N + 1)V %2, (7.54)

Let us now consider the second contribution to gﬁ)ﬁ on the r.h.s. of (T47). We
observe that

K 17 — *
_g](\?’é) =~ Z V(p/NP)e B0 g% q,eB0

1
5 3 V0N g+ [ dse P 0laja Bl
0

K = * —s * 7% s
=N Z V(p/Nﬁ)apap / ds = Z V(p/N®)e B (bb_, + bbZ,)e Bn)
pGA: peA:

V(p/NP) [adg_;g (bpad () (b_y) + h.c.]
(7.55)

The first term on the r.h.s. of (C5A) is clearly bounded by CkN,/N. Let us focus now
on the sum over m,n. By Lemma 2.5 the operator

K 5 n m
5 2{\: V(p/N?)adly) (by)adly) (b-p)
peEAL

can be written as the sum of 2"1n!m! terms of the form
K ~ 7 N, .
=5 2 VO/NIAL A NI 0 g )
pEAL (7.56)
1
X NG AL NTRIS (7™ e 2o, )
with i1,79,k1,k2, 01,00 € N, J1,. 00 Jky, M1y, Mgy € N\{O}, ay = (_1)r and where

each A, and Al-operator is either a factor (N — N, )/N, a factor (N +1—Ny)/N or a

I®)-operator of the form (Z52).
If 41 + 03 > 1, Lemma [T1], part ii), implies that

Cn—l—m n+m+1 V N
(€. 18)] < > PR v + 1122

PEAT
<m0V 1)1 3¢

(7.57)

95



If instead ¢1 = ¢9 = 0, we use Lemma [Tl part ii), to write

(€18 =5 > V/N)EDID) + & > V/N)(EDaagya ) (7.58)

pEA* peAi

with

m
IV +1)72Di(p)| < lap€ll  and  [[Dof| < C™FE™T. (7.59)

Switching to position space to estimate the second term on the r.h.s. of (Z.58)) we find,
for 61 = 52 = 0,

Cm+n Km—l—n-‘,—lm

N
Cm-i—nﬁm-i-n-i-l
<
- N

Cm+n/€m+n+1 38 38 . o
L e / N3V (NP (2 — ) |||/l yé ]
N AXA

< Cm-l—nﬁm-‘rn-‘rl
- N

(6, LE| < I+ 1)2¢)? +

u /A NIV (@ = )6 Dattady€)

T+ )2

C+nm++

VN

2+ 1)M2e)2 + HV1/2§H|!§H

(7.60)
Combining (7.57)) with (7.60) we conclude that

Cm-l—nﬁm-‘rn—i—l /2
vIN

Hence, for x > 0 small enough (so that we can sum over m,n € N), (T.53]) implies

(6, < Ot (4 NFL( + 1)V 22 + lenvyel

(6,056 < CRNPT (N + 1)V + V| (7.61)

\/— H§HHV

This shows, on the one hand, that for every § > 0 there exists C' > 0 such that
(E.GN5 €] < SIVN eI + ORIl + 1)V (7.62)

and, since as usual the commutator of Ny with operators of the form (7.56) has again
the same form,

2,2 1/2
(&, (9875 N4 < STV eI + Orll(N + 1)1 (7.63)
On the other hand, taking into account Lemma [7.3] (T.6I]) also proves that

(€.G55 6| < ONPTY|(Ne + DY (K + 1)1 %2
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Finally, let us consider the third contribution to Q](\?)B on the r.h.s. of (T47). We
have, with Lemma 2.6]

Gy = Z V(p/NP)e B0 [bb_, + b ]P0
pEA*
( m+n m n
=¥ m'n' Tk Y V(p/N?) [d( ) (bp) dfg())(b_,,)Jrh.c.]
m,n>0 PEAT (7 64)
=5 > V(p/N?
pEA:
x {[wbp + opbZ,] b + opby] + [1b) + 0pbp] [1pZ, + opbp] }
+ &)
with the error term
|4 ( )m+n miltim n npfin
&) = 3 g 2 VN i, [ad ) (o) - b,
m,n>0 pEA*
m+n i m m npfn
oy S G g ) )
m,n>0 pEAi (7 65)
m+n N 5 :
T Z mlnl Z V(p/N%)
m,n>0 pEAi
X [adgr(?,)(bp) o) [adgl()n)(b*p) p bﬁ—nanp]

+ h.c.

We consider the first sum on the r.h.s. of (L65]). According to Lemma [2:6] the operator

5 Z V(p/NB)Tlp b(ﬁlmp [adB(n) (b ) p b_anp]
PEAT

can be written as the sum of the one term

Z V(p/NPypmtnpie
pGA*

+(1—ap)/2 n—(l—an)/2 (7.66)

<N—N+>%<N+1_N+>f_1 bﬁ"
N “onp

and of 2"n! — 1 terms of the form

K = _ 1), . ;
My =5 > Vo/NOmpbln A Ay NTRIE o™i ooa, ) (T.67)
pEAi
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where i1, k1,41 € N, j1,..., 5k, € N\{0} and where each A,-operator is either a factor
(N —Ny)/N, a factor (N +1—N,)/N or a II®-operator of the form (Z52). In every
term of the form (Z.67]) we have k1 > 0 or at least one of the A-operators must have the

form (7.52]).

To estimate the expectation of (.60]) we proceed very similarly as we did in the proof
of Prop. [[.5 to show (7.34]), (Z.35]). We obtain

(€, Mi&)| < O™ (n 4 1)[|(N + 1)) (7.68)

and also
(€, M1&)| < O™ (n 4 D)NPY (VL + 1)¢]| (7.69)

Next, we bound the expectation of the term Ma, defined in (Z.6T). If m+¢; > 1, we
can use Lemma [Z.] part iii), to estimate

K i m
(& Ma)| < 5 > Vp/N)np™I(NVy + 1)
pEAi
X H(M+1)*1/%%1&1...AilN*klnéfg(nﬁ,...,njkl;np — e, )€

< CMmEE V)2 Y (T (/NP
peAT

N
" {%uwﬁm%u + Tl + gl + >”2€H}

< O (N 4 1)1/ 2

Alternatively, again for m + ¢; > 1, we can also use Lemma [Tl part iii), to show the
bound

(€M < 5 D7 [V (/N Imp|™ [ (N + )¢
pEAi
[N+ D)7 Ay A NTRIT

Cm+nﬁm+n+1 (m + 1)

) ,
é,b)( R oy p)E

< K IV + el
~ 1 1 1
< X P | v + el -+ 5 lan + 126 + e
pens p p p

< NI (V4 1)

If now m = ¢, = 0, we write

(6, Ma¢) = Z V(p/N®)(&,Di(p Z V(p/NP) (& Doapa &) (7.70)

pEA* peA*

o8



with D1 (p) and the operator Do satisfying

B CnﬁnJrl
[Ny +1)72Di(p)]| € ——5—llapéll  and

Cn - (7.71)

D3¢l < Vs + 1]

Switching to position space to estimate the second term on the r.h.s. of (ZX70), we
conclude that

C"k n+1
(&, Mag)| < 7\\(1\/ +1)2¢)?
C"k n+1
+ dzdyN*V(N?(z — y))llazayé|[[|(Ny + DEI - (7.72)
AXA
Cn n+1

V2
THVN EINING + 1)é]]
With (Z.68) and (T.72]), we can control the first sum on the r.h.s. of (Z.65]). The second

and third sum can be controlled similarly. We conclude that, if x > 0 is small enough
(so that we can sum over n,m € N),

IV + 1)1 +

1€, ESVE) < CrIl(V 4+ D)V2¢)% + CrM2 (N + 1)Y2¢)||vil%e||
Hence, for every 6 > 0 we can find C' > 0 such that
(€, &576)] < SV eI + Crll(Ny +1)2¢) (7.73)

and (since the commutator with AV of every term of the form (7.66), (Z.67) is again an
operator with the same form, up to a constant bounded by C(n + 1))

(&, [N E8716)] < SIWPel® + Crll (N + 1)) (7.74)

Combining (7.69) with (7.72]), we arrive moreover with Lemma [7.3] at the bound

(€. £576)1 < ONP W+ 1)12 00+ 1) ¢ 2. (7.75)

From (7.47)), (748), (7.64) and from the definition (7.46]), we obtain
es) =&+ 67 + el

Hence, from the bounds (7.53)), (7.62) and (.75]), we conclude that

€ £8P < ONPH U + )YV + 1) 2P
Furthermore, with the definition (T.45]), we find that

EV) =) 1) 4 gl 1 gV

29



with the additional term

14 <5 =5 *
) = 3" kN2 + oy —ml + S &V (0/NO) (v + 0,) 2050,
peAj peAj

K i *7 %
+5 0 VO/N)[(p + o) = Ubyb—p + bib" )
peAj

Since |op + 0y —1mp| < OR?[p|™*, |7 + 0pl* < C and |(vp + 0p)* = 1| < Crklp| 2, we
easily find that

1€, €86) < Cr|(V, + 1))
€, [N, €516 < OR|(WV + 1)V 2¢ )2

for all ¢ € F=V. Together with the estimates (7.53), (T54), (7.62), (7.63), (T.73), (7.74),

we conclude that for every d > 0 there exists C' > 0 such that

(6, ESAE)] < SIIVAZEN? + Ol +1)2¢]?
(€, [N EN 6 < SIVAZEN? + ORIl + 1)1/%¢)2

O
7.3 Analysis of Q](\‘;’)
Recall from (B3] that
3 — 3
g](\/,)ﬁ =e€ B(n) EEV,)ﬁeB(n)
: v “BO) [t g* - 7.76
= 7% S V/NO)e B0 5, a ag + ala_ybysg) P (7.76)

P,qEAL :p+q#0

In the next proposition, we show how to control the operator gﬁ’)ﬁ.

Proposition 7.7. Under the assumptions of Theorem [33, for every § > 0 there ewists
C > 0 such that, on ]—"EN,

+G\); < 6VN + Cr(Ny +1)
+ 00 Ny | < oo+ 1)

Furthermore, we have

+G\; < ONC=DR(K 4 1) (W, +1)
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Proof. With Lemma [2.6] we write

e—B(n)a*_paqu(n)
1
=a paq—i—/ ds e~ B [a*_paq,B(n)]eSB(")
0
1
=a’ a,+ /0 e B (nyb* b* , + npbeby)e B

*
= afpaq

(=1)"tF M) x vaq®) (n) (k)
+ Z ARG+ R (a5 (b7 )ad () (b7) + mpad 5 (b, Jadiy, (5)]

Inserting this identity in (7.76l), we find

GV =Gy +Gvd + iy (7.77)
with
3,1) (-1)" & N 5 s
Gy —;O N AZ ¢OV(p/NB)ad(())(bp+q) 0q + hoc.
rz P,qEA] :pt+q
g(32 _ Z (_1)n+k+r
b0 nlklrl(in + k + 1)
VN PPN )0 245 () Ppa) 20 5(5) O =p)2Cp ) (O—g) D0
p,q€A ,p+q7#0
(3.3) (_1)n+k+r
gN’ﬁ B Z nlklrl(n +k+1)

n,k,r>0

R 5 r * n k
e 2 VN mpadiy (e, (padig, (b) + e
p,gEAY p+q#0

(7.78)
Let us consider first the term 9(3 3 With Lemma 2.5] the operator
K 0 (r) (p= (n) (k)
\/—N Z V(p/NB)np adp B(n )(bp+q) dB(n)(b )a dB(n)(b ) (7.79)
p,gEAY ,p+q#0
can be expanded in the sum of 2"**+7plk!r! terms having the form
K i 1 j j * A K *
P=— Y V/N L) ol e, prg) AL - A
P,q€AY ,p+q7#0

(7.80)

1
X All A;2 k2H§/ i/( 7--'777mk27np (paegp)
X All/ e A;/S kSHt(i/l/)b//( 81, cee ,USkS ) 77 @043 )
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for il,’iQ,ig, k‘l, k?g, k?g,gl,fg,fg € N, jl, .. ,jkl,ml, vy My, S1y+ -5 Sk; € N\{O}, Qy, =
(—1)% and where each A;, A}, A is either a factor (N —N)/N, a factor (N +1-N,)/N
or a II®®-operator of the form

N*hnf; ..., 7%) (7.81)

for some h, z; ...,z € N\{0}. We bound the expectation of (Z.80) by

(&, P&)| < \/—N > [Ve/N)n,
P,gENY:pF—q
_ 1 i j
X AL A NTRIIE) (P g, ()
1 m
x Ay AL N k2H§')b’( ™2 Py p)

1
X Alll oo A;; kSHé//)b//( 817 c 7778k3 ? T’ ()00%3(1)5“

From Lemma [T} part i) and ii), we conclude that
(&, P&

< Cn+k+rﬁn+k+r+2

e S e+ 1+ et

P,qENY :p£—q

(1 —i—r/N)

(v + el + Jag (A + 1)V

+ 3Ny + 2]+ layaé]
Cn+k+r(1 + T)Kn+k+r+2
. VN

Hence, for £ > 0 sufficiently small, we obtain

IV + DENIN + 1) 2|

(6,06 < —=l(Ny + DENIN + 1)V %] (7.82)

\/— H
Next, we consider the term gﬁ”;) in (78] (we take its hermitian conjugate). Since

we will use the potential energy operator to control this term, it is convenient to switch
to position space. We write

K =5 r n k
T~ 2 V/Ngadi, (0-adgy, (bp)adisl (bprg)
P.qEAL p+a#0 (7.83)

dzdy N*PV (NP (z — ))ad( )

oy (a5 (byadsy ()

B(n)

K
_\/N AxA

where we used the notation 7° to indicate the Fourier transform of the sequence A* >
p — 1, and 7j; denotes the function (or the distribution, if s = 0) z — 7;(2) = 17°(2 — 7).
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With Lemma 5] the r.h.s. of (Z83) can be written as the sum of 2"+ nlk!r! terms,
all having the form

Q= dudy N¥V(N(z = y)) Ay ... Ay N“RTI (e )

K
\/N AXA
1 ,
X AL AL NTRII (e ) (7.84)
X A/l A SN kgﬂé,l,)b,,( Sl,...,nsk:’);ﬁi?’)
where 2‘171.272‘37 kla k27 k37€17€27£3 € N7 j17 cee 7jk17m17 s s Mgy 815+ -+ 5 Skg € N\{O} and
where each operator A;, A}, A is either a factor (N —N})/N, a factor (N +1—Ny)/N
or a II®-operator of the form (Z8I). To estimate the expectation of (Z.84]), we first
assume that (f2,¢3) # (0,1). Under this assumption, we bound

R edy N3PV (NP (z —
|<£,Q£>|§\/N/Amd dy NPV (NP ( — 1)

s [IN“R® (i e P AY L
X(Ag...Ag2 Rty (" ,---,n’”’%ﬁ@)
X Alll .. .A;;N_ka]:[;/l/)b// (7781, oo 7778k3 Vﬁ?’ é‘”
With Lemma [7.2] we estimate
INTRT () AL L ATE < ORIV + DY (7.86)

and, using the condition ({9, ¢3) # (0, 1),

|

NG AN TR (™ AT AL NI G g
< C"+kﬁn+k{(1 + k/N) [N+ DEI| + (1 + k/N)llaz (N + 1) 2]
Ny Wy + )26 + flapayél }
Inserting these bounds in (7.85]), we arrive at
(€, QE)| < CHHRHTRMERTIER (L 4 R) (VG + 1)V2¢)
— / dzdy N*°V (NP (z — y))
AxA

x LN+ D€l + W+ 1Y)+ lay N+ 1)Y2€] + laeaygl |
Cn+k+r/€n+k+r+2(1 + k)

<
> \/N
ORI ) VIV + 1)1

IV + DENTN +1)2¢]|

(7.87)
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For (¢,¢3) = (0,1) we can proceed similarly. The only additional remark is that, in this
case, the the commutator

[ay, a” ()] = (z —y)
between the annihilation operator associated with the second II()-factor (the one con-
taining 7752) and the creation operator a*(7,) associated with the third II(!)-operator,

gives a vanishing contribution to the expectation (£, Q¢), for all £ € .F_EN (because of
the assumption that £ is orthogonal to ).
With (Z8T) we conclude that, if £ > 0 is small enough,

.08 6] < fuuw+1>1/25||\|<N++1>5u+c RV N + D)2 (7.88)

Finally, we consider the term Q](\‘?’é) in (C178). From Lemma [2.5] each operator

= 2 VeINDad, Gt (7.89)

P,qEN :p+g#0

can be written as the sum of 2"r! terms having the form

R = % S VNN I 0l pa, pra) AL - A
P,qEAY :p+g#0
(7.90)
for iy, k1,1 € N, ji,...,jr, € N\{0}, ap, = (—1)©*, and where each A;j operator is either
a factor (N —N,)/N, a factor (N +1—N,)/N of a II®-operator of the form (Z.81). If
01 > 2, we use Lemma [(T], part iii), to bound

C
EROI< = 37 Ipsal llogé]

P,qEN] :pF—q
— 1), 4 ,
X la—pAy... Ay N k1H§7b) (P, .y (pael(p—i—q))gu
C’T’KT’-H 1 . ,
- /2
< Y el a0 107+ I+ el

P,gENL :p#—q
C's™ Y1 +7)
R

7N I + 12V + 1)

(7.91)

If £, = 1, we commute the operator a_,, (or the b_(ptq) operator) appearing in
the II(M-operator in (ZA0) to the right, and the operator a*, to the left (it is important
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to note that [a_(,14),a”,] = 0 since ¢ # 0). Lemma [T} part iii), implies that

CrﬁrJrl

(&, RE)| < > VN
P,qEAY :pF—q (p+ q)2
_r 1 1/2
X {sz\l(/\& + D¢l aqgs |l + N(erq)Qllafp(/W + 1) %[ [lag|l (7.92)
+ lla-péllla—sq)aqcl }
< E0 N + Dl + 1]
S /5
Finally, if £; = 0, we commute a*, to the left. With Lemma [.1], we find
(€, RE) = f > Vp/N?)Di(p,q),aq8)
p,qEA’ :p+q#0
(7.93)

K ~
+ N Z V(p/N%) (D2 a—papq€, agé)
P,qEAL :p+q#0
where O
K
[D1(p, @)l < N—p2||ap+q(/\/'+ +1)M%|

and ||D2|| < C"k". Switching to position space to control the second term on the r.h.s.
of (Z.93)), we conclude therefore that

CTr" 1y

(&, RE)| < NI

p/N

> MHaqﬂo(M+1>1/2£||Haq€\|
. p?

P,gEA’

L O / dady NV (N? (x — y))llasay,é||ay]|
\/N AXA i '

CrﬁrJrl

WTII(M + DENIIN + DV2¢) + CTw 2V e[V + 1))

Together with (Iﬂﬂ]) and (7.92]), the last estimate implies that, if £ > 0 is small enough,
3 1)

(6. anel < I

\/_

Combining the last bound with (7Z.82]) and (Z.88)) (and using the fact that Ny < N on
}"EN), we easily obtain that for every § > 0 there exists C' > 0 with

<

(N + D2 [N+ DEN + ORIV + 1Y€ (7.94)

+Gy)s < 6VN + Cr(Ny +1)

As usual, we can show the same bound for the commutator of gﬁ’)ﬁ with N} (simply
because the commutator of Ay with all terms of the form (7.80), (7.84]) and (7.90) has
again the same form, up to a constant bounded by C'(n + k + 1)), i.e.

+[G0) NG ] < 0V + CR(NG +1)
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Finally, combining (7.82]), (Z.88]) and (.94)) with Lemma [.3] we also obtain

+G\V; < ONCDR(W L+ 1)(K +1).

]
7.4 Analysis of Q](é)
From (3.3)) we have
1 ~
gj(é)ﬁ — e’B(")E%?BeB(") = o 3 V(r/N®)e B®g*, a%ayaq ™
P,gENT TEA*T£—p,—q
We define the operator 5](\?) through
4 1 -
v =Yyt 55 > V(e —a/N
Pashy (7.95)
1 > - (4) '
tox 3 V= a/N s+ yb) + 4
p,qei

In the next proposition, we estimate the error term 5](\;1)5.

Proposition 7.8. Under the assumptions of Theorem [T, for every § > 0 there exists
C > 0 such that, on ]—"EN,

+E); < 0V + Or(N +1)
+[E0) N | < COR + 1)
Furthermore, we find
+E); < ONCD2(HE L 1) (W + 1)
Proof. We have

K ~
g](é?ﬁ = 5N Z V(T/N)e*B(")a;aZaq_raerreB(”)
P,qENT  TEA*ITFE—p,g
1
K > —S * % S
=Vn + N Z V(r/N)/ ds e 5B layatag—rapir, B(n)] e B(n)
PgENT FEA* £ —pg 0
1
K % —s *1% S
=VN+ IN Z V(T/N)anrr/O ds (e B(")bqb_qe Bn) 4 h.c.)

qENY reA*:ir#£—q
. N 1
+ N Z V(T/N)anrr/O ds <e_SB(77) b;+rb;a*_q_rapeSB(") + h.c.)

P,qEAT ,TEA*TFED,—q
(7.96)
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Expanding again

efsB(n)a* a esB(n) %

S
* g—rlp =a’, ,ap+ dr e 7B [a’iq,rap, B(n)] e~ TB)

_ *
=a’, ,ap+

J
J

dr "B (npb" by + Mgarbpbar) €T

and using Lemma [2.6], we obtain

G\ — VN = W1+ Wa + W3 + W,y (7.97)

where we defined
=y
W p—
! Zo nlkl(n+k+1)

o % 3 (n) ()
xow o2 VN (adB(n)(bq)adB(n)(b,q) +h.c.)
qEAi,rEA*:r#—q

)

Wo — i (_1)n+k
2T nlkl(n+k+1)

K % (n) 1+ (k) 1%y, *
X Z V(r/N)ngr (adB(n) (prrr)adB(n)(bq)a,q,,,ap + h.c.)
P,gENT TEA T #ED,—q

n,

(7.98)

and
0 (_ 1)n+k+i+j

Y. ARG —
A0 nklill G+ i+ Dn+k+i+5+2)

K ~
Y TN e,
p,geA reATrFE—p—q
(M) e g8 e g0 e v g6 g
X <adB(n)(bp )adl) ()adly (67 )adS) (6, -,) + h.c.)
o (_1)n+k+i+j

> T —
i MR T+ D0t kit +2)

K ~
<Y VN,
P.gENY ,TEA* irFE—p—q

X <ad§5,()n)(bp sad) (b)adly  (by)adY) (ber) + h.c.)

(7.99)
Wy =

In Wy, we isolate the contributions associated to (n,k) = (0,0),(0,1). To this end, we
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write

R ~
Wi = IN Z V(T/NB)Ur—kq(bqb—q +h.c.)
gqEN] rEA*r£—q
K

— Y VN e (b [B)b g+ he) + W
qeN’ reA*ir#£—q

K ~
= on Z V(r/NP)isq(bgb_q + hoc.)
quj_,TGA*:r;éfq

Ii 5 —
B W Z V(T/Nﬁ)nlﬂ—rnq + T+ W1
qeNy reA*ir#£—q

where we defined

*

. (_1)n+k
W pu—
! Zk: nlk!(n+ k+1)
" . (7.100)
> k
xoe > VN <adg(>n)(bq)ad;(>n)(b,q) n h.c.)
qEAi,rEA*:r;é—q
with the sum Z;k running over all pairs (n, k) # (0,0),(0,1), and
K ~
T=-+ > V(r/NP)ngsr(bg[B(n),b_g] + h.c.)
qGAj_,rEA*:r;éfq
K ~
ton 2 VN (7.101)
qGAj_,rEA*:r;éfq
=:T1 +Ts+ T3
with
K ~
T =5 > V(r /NPy qng NG + 1+ Ny /N +N?Z/N)
qENT rEA* T #£—q
2K = Ni+1
Ty = 3 Z V(r/Nﬁ)nr+q77qaZaq <1 - +N >
qEN TEA* T #£—q
K 7 *
Ts =13 > V(r /NPyt qim@, 0”1 aqa—q
g,mENY ;rEN*r£—q
In the computation of T, we used the fact that
>k 1 >k
[B(n)a b*q] = _77(](1 o N+/N)bq + N Z nmbmaima*q
meAy
Comparing with (7Z.95]), we arrive at
£V =T+ Wi+ Wa+ Wz + W, (7.102)
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Let us start by analyzing the operator T, defined in (Z.I01]). Using (3.10]), we estimate

R 1/2
V(r/N%)P

(g +r)?

2 LT Tl < ON - A};#
Next, we observe that

1 3 |f/(r/N Z |V(r/NP)P?

N? qGAereA*:r;éfq ¢*(q +r) N2 reA* |T| +1

CIVIA 3 1 CH‘A/(-/Nﬁ)H%SCNz(B—l)

- 2 Ir] +1 N2+8
|r|<NB
Hence, we conclude that
1 =~ _
N2 > [V (r/NP)r4qlIng] < CN?ED (7.103)
qEN rEAT T #E—q
With this bound, we easily arrive at
(6 T1€)1, (€, T2)| < CRNFD (W + 1)1 2 (7.104)

To bound T3, we switch to position space. We obtain

K - .
Ts = N3 Z V(T/Nﬁ)nqunma,’;afmaqa_q
gmENY rEA*r£—q

G [ dedy NOV(NE @~ p)ite - p)Dasa,
AxXA

— m
where D = ZmeAi Nmar,a*,,. Since |D*¢|| < Ckl|[(Ny + 1)£]|, we find

(€, T5€)| < CRENTI[|(N, + 1] /A | dedy NPV(N (@ = )iz = y)llas|
< RN TN+ 16 [ dady NV = )]
»
< CKOPNTH(N + DY) VY
Together with (ZI04), we conclude that
(€, TE)| < CRIN2EDI(Ny + 1)2¢)2 + CHY2IN (W, + 1)V2¢ Vi %ell. (7.105)

Let us now consider the operator /VI71, defined in (ZJ00). According to Lemma 2.5,

the operator
K

N Z V(T/Nﬁ)nq-i-rad(n) (bq)ad(k) (b—g)
qEN rEAT T #E—q
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can be written as the sum of 2"t*nlk! term s having the form

K = 1 ;
X == 3 V(r/NoYng ey - Ay NTRTID P e, )
qENT ;rEA* T #E—q

1
XA/\/IA/X;2 k2H§/)b/( m7"'7nmk27nqu 0422(1)

where i1, 42, k1, k2, 01,02 € N, j1,. .., jky,m1, ..., mp, € N\{0}, ay, = (=1)% and where
each operator A,, Al is either a factor (N — N;)/N, a factor (N +1 — Ny)/N or a
@ -operator of the form

N hné D). (7.106)

for h,z1,...,2z, € N\{0}. To bound the expectation of the operator X, we distinguish
two cases. If £1 + ¢ > 1, we use Lemma [[[T] part ii), to estimate

CnJrk Kn+k+2

e.xe)] < S v+ 1172
o
S w{%<1+k/N>H<N++1>1/25||+ 2||aq£u}

q,r€A} r#—q (q T T)
Cn+kﬁn+k|’(./\/'+ + 1)1/2§H2 N
+ 5 ST V0N ngreling
q,rEAi:r;é—q

Here we used the fact that we excluded the pairs (n, k) = (0,0), (0,1) to make sure that,
if /1 =0 and ¢5 = 1, then either k; > 0 or ko > 0 or at least one of the operators A or
A’ has to be a II®-operator. From (ZI03) and since, as we already showed in (ZI5)),

1 ~ 1 _
sup Z |V (r/NP)| P < CNP-L

qeAL reN*ir£—q ( T)
we conclude that, for ¢ + 05 > 1,
(€, X&) < CMHERMTFENATL (W + 1) ? (7.107)

For ¢ = {5 = 0, we use Lemma [[T] part ii), to write

K

X=2 > VO/N g Di(0) + Daaga ) = X1 + X,
quf‘HrEA*

where
Cn+k Kn—f—k k

|<£’D1(Q)£>| < Nq2

and (since we excluded the term with (n, k) = (0,0))

IS + 1)1 2¢)?

ID3¢] < CMHENTIRHE VG + 1)€]
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We immediately obtain, using again (Z.I03]), that

Cn+kﬁn+k+2

~ 1
N2 V(T/Nﬁ)m“(/\@ + 1)1

qui,reA*

< Cn+kﬁn+k+2N2(Bfl)”(N+ + 1)1/2£||2

Switching to position space, we also find

(€ Xa8) =[5 [ dody NV @ = )it = ) (D5€,0,6)

K - . *
<5 dedyN*V (NP (z — y))li(z — y)|l|azay&]l|D5 €|
AxA
Cn+kﬁn+k+2 o
<IN+ Vgl [ dedyN* V(N (z — y))l|asiyé]|
N AxA

< ORISR NTL (A + 1) e[V e
Combining the last two bounds with (Z.I07]), and then summing over all n, k, we find
(&, W1€)| < CRENPTY|(W +1)V2¢]2 + CR¥PNPTY (W + 1)V [vi el (7.108)

Next, we consider the expectation of the operator Wy, defined in (T.98]). Since we
will need the potential energy operator to bound this term, it is convenient to switch to
position space. On F,, we find

Wo i (_1)n+k
2T nlkl(n+k + 1)

)

K 38 B ) (ix (k) /7%y *
x| dedyNPV(N(@ - y)) (ad [ (B3)adl)  (B2)a* (7 )ay—i—hc)

B(n
AxA
(7.109)
with the notation 7, (z) = 7(z — z). With Cauchy-Schwarz, we find
R n * T%\ k[~ \x
3 dndy NV @ ) ad) (B)ad ), (e ()a,6)
AxA
<= [ dedy N¥V(N(z —y))
N Jaxa
X [V +1)2ad) (by)ad(s) (Ba)elllIN +1)72a" (i )ay€]|
(7.110)
We bound
[N+ 1)1 20" () ay€]| < Orllayg] (7.111)

71



With Lemmal[ZF], we estimate ||(N +1)'/2 dg()n)(f) ) dg(n (bz)€|| by the sum of 27 Fn!k!
terms of the form

‘= H(N+ F YRR A NTRIG P ) (7.112)
]

with i1, 42, k1, k2, 01,02 > 0, j1, ..., Jk,, M1, ..., My, > 0 and where each A; and A} opera-
tor is either a factor (N —Ay)/N, (N+1—N,)/N or a lT®-operator of the form (ZI08)
(here 1 indicates the function with Fourier coefficients given by nﬁl, for all p € AY).
With Lemma [Z.2] we find

Z< (n+ 1)Ck+"ﬁk+”{ll(/\/+ + 1Y€ + llay (Ve + DEI + llaw (Vs + 1E]

(7.113)
+ N+ DY)+ VN a6 |

Inserting (ZI11)) and (ZII3) into (ZII0) we obtain, for any & € F5™

n n * k TR\ /% \x
'ﬁ AXAdmdyNSﬁv(Nﬁ(m y)) (&, d;(n (b )ad( (> ) (by)a (nx)ay@‘
n 4+ kICntE gntk+2 )
= | | /dxdyNgﬁV(Nﬁ(w —y))llayé|l

- N
X A NI + 10126 + Nayéll + Nang ] + VN ljaoa,€l |
< (TL + 1)!]{;!C”+k/§n+k+2||(_/\/'+ + 1)1/2£||2
+ (n+ DIRIC™ TR W 1 1) 2|V %€
Therefore, if k > 0 is small enough, we find, for every § > 0, a constant C' > 0 such that
(€ W) < SV + RN + 1)V (7.114)

On the other hand, inserting (C.I11]) and (ZI13]) into (ZII0)), we also arrive at

'N/Amd””dywvwﬁ(“ y)(€ adfy)) <b§>ad§§2m<b;>a*<m>ays>\

n 4 1)k Otk gntk+2 .
NUES) S / dzdy N3V (N®(z — y))||ay€|
AxA

x {(VN + NNy + 1)€] + VN |anWy + 1))
+ VN |y (Vs + 112+ VN eyl |
< (n RN A (V4 1)g)®
+ (n + 1)”{:! C"+k1{"+k+3/2”(j\/'+ + 1)1/2£||HV]1V/2£H
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Therefore, for x > 0 small enough and using Lemma [(.3] we obtain
(€, Wag)| < CNE=D2||(W, + )Y (H5, + 1)V, (7.115)

Next, let us consider the term W3, defined in (7.99]). As above, we switch to position
space. We find

o (_1)n+k+i+j
Wa =
3 nmzjzon!k!i!j!(i—i—j—i—l)(n—i—k—i—i—i—j+2)

X % /dxdy N3BV(NP(z — y)) (7.116)

x (ad®™ (B3)ad ) By )adyy,) (67 () Jad 3, (0 () + e

With Cauchy-Schwarz, we have

hal 38 Bl ) 7 vaq®)  (ixyaq@ ik () (i
& [ NIV @ = ), (B, (e (1), ()6

< 25 [ iy NV @ = ) OV, + 1) 20 (b)), 6l
X [V + 1)~ 2adly  (b(1))ad ) (b))

Expanding adg)(m)(b(ﬁx))ad(j )(b(13,)) as in Lemma 23 and using Lemma [7.2, we obtain

IV +1)72adl) (b(77a))ad D (b(i,))&]| < it CTHEHH2||(N + 1) 2] (7.117)

B(n)

As for the norm ||(NVy + 1)V Qadg()n)(éy)adg()n)
2" +kplk! contributions of the form (ZI12). With the bound (ZII3]), we can argue as in
the analysis of the term Wy. Similarly to (TI15]) and (Z.I114]), we conclude that, if k > 0

is sufficiently small, for every 6 > 0, there exists C' > 0 such that

(b2)€||, we can estimate by the sum of

(€, W3€)| < 8|V €l + OR[N + 1))

7.118
(&, Wa&)| < ONED2| (W + 1)V (HE + 1)1 2¢)? (T

The term Wy in (7.99) can be bounded similarly. First, we switch to position space:

o0 (_ 1)n+k+i+j

W, =
! kzOn!k!z’!jl(z’+j+1)(n+k+z'+j+2)
n,R,1,)=

X % / dzdy N3V (NB(z — y)) (ad(”)(éx)ad(k)(l;y)ad(i)(b(ﬁﬁ))ad(j)(l;y) + h.c.)
(7.119)
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The expectation of the operators on the r.h.s. of (ZII9]) can be bounded similarly as we
did for the operators on the r.h.s. of (ZIIG). The only difference is the fact that now
we have to replace the estimate (ZII7) with

14 + 1)1 2ad® (b(777))ad D) (b, )&]| < IO 2| (N + 1)V + HaySH]
Hence, we obtain that, for every J > 0,

(€, Wab)| < BV €I + OR[Ny + 1)V2¢)?
(6, W48)| < CNB=D2||(W + )V2(HE, +1)V2%¢) 2.

Combining the bounds (ZI05), (ZI08), (CI114)), (ZI115), (ZII8) and (ZI20) we
conclude, by (ZI02)), that, for all 6 > 0 there is C' > 0 such that

(7.120)

+ () < 0VN + Cr(Ny +1) (7.121)
and that, furthermore,
L&)y < ONCDR(N, 4+ 1)(HE + 1)
As usual, the bound for the commutator of EJ(VA")B with NV} can be proven exactly as we
proved (TI27]). O
7.5 Proof of Theorem

Combining the results of Prop. [T Prop. [[.5 Prop. [[.6] Prop. [[7] and Prop. [I.8, we
conclude that

N-1) ~
gjﬁv:( 5 )/<;V(0)+ > anernV(p/Nﬁ)anr > Vil —a)/N)mpng
pGA: qEA*

KV p/N 1 PN . x
+HY Y P+ % +ox 2o V(0 —a)/NPyg | [03b%, + byby)]
pGA: qu:

+—é§m5

where the error gNﬁ = EJ(\(,])ﬁ + g](\,Kﬁ) + E(V + QNB + 5](\?)6 is such that, for every ¢ > 0,
there exists C' > 0 with

+En,5 < OHY + Cr(Nt + 1)
+[En, g, iNL] < C(HE +1)
Using the relation ([B12]), we can rewrite

N-1) ~ K 5
gl = %KV(O) +5 S Vp/NPyny +Hy +Ex g (7.122)

PEAT
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with

~ ~ ~ K = ~
Eng= > Tp [N/\N,m(p) +Ane Y Relp — )ig — ﬁV(p/Nﬁ)no]

pEAi qeEN*
~ ~ ~ Kk & ~ %7 %
+ 30 [VANR) + Ave D el — 0y - oV (0/N° Jito| [B3b~, + byb—)
pEAi qeEN*
+'5Nﬂ

Since, by LemmaBdl, NAy ¢ < Ck uniformly in N, since |7,| < Cr/(|q|*+ 1) from (3.9)
and (B.I)) and since |X¢(p)| < Clp|~2 (see (B)), we conclude easily that for every § > 0
there exists C' > 0 such that

& 5 < THY + Cr(Nt + 1)

5 (7.123)
+[En g, iNG] < C(Hy +1)

Eq. ({122) implies, in particular, that the ground state energy of the Hamiltonian (I.1])
is such that

(V-1)
2

ES < (9,650) < WO +5 Y Vo/N),+C

pEAi

for a constant C' > 0 independent of N. Inserting in (7122 and using the first bound
in (CI23) (taking for example 6 = 1/4) we conclude that, for x small enough,

1
Gy — By > 5Hy ~C
Furthermore, (.122]) and the second bound in (ZI123]) immediately give
+[GRiN] < C(HR +1)

which concludes the proof of part a) of Theorem To show part b), we notice that
Prop. [L4] Prop. [ZA] Prop. [L.6, Prop. [7 and Prop. [Z.8] also imply that

N-1) =
g]ﬁv = ( )I{V(O)
~ K ~
+ Y [P wV NG 4 o) + e D V(2 = )Ny
peEA®. qeEN’,
+ H]‘i/ + Z [2]920;2; + “?(p/NB)(’Yp + Up)Q]b;bp
pEAT
2 L2y B 2, K Vi((n— B
+ Y [PPon+ SV + 00 + 5 Y Ve —a)/NP)
pEAi qEAi
x (Db, + bpb_p)
+ &y
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where the error term gﬁ, = 51(\(7))6 + EJ(VK[; + SJ(VV% + gﬁ’)ﬁ + 51(\;1)6 is such that

)

+ &0 <CONB V2N, +1)(K+1) (7.124)
Comparing with (3.16) and (3I7), we obtain that
Gy =Cy + QX + &5

with

ol ’{770 T7 ~ ry%7%
E8 —EF +Vn + N S Vip/NO)io(bib*, + byb_p) (7.125)
pEA:

Switching to position space, we have

R 7% B _ Ko 3BV (NB (g — b i
QNE%WWwa@ﬂﬁw@NAMmWN'WNW )€, bby€)

Since |fg] < C from B.I1), we find

. _ c
o 3 VO i bbop)| < 5 [ dedy NOVOV @ = )lasa €l 1€]
pEA] g

+

< ONT2 e ]
< ONTY2|(NG + DYV + 1)V 2¢)?

where we used Lemma [(.3l Combining the last estimate with (7.124) and again with
Lemma [(3] Eq. (ZI25]) implies that

+88 <NV, +1)(K +1)

This completes the proof of part b) of Theorem
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