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Abstract

The Lipkin–Meshkov–Glick (LMG) model was devised to test the validity of

different approximate formalisms to treat many-particle systems. The model

was constructed to be exactly solvable and yet non-trivial, in order to capture

some of the main features of real physical systems. In the present contribu-

tion, we explicitly review the fact that different many-body approximations

commonly used in different �elds in physics clearly fail to describe the exact

LMG solution. With similar assumptions as those adopted for the LMGmodel,

we propose a new Hamiltonian based on a general two-body interaction. The

new model (extended LMG) is not only more general than the original LMG

model and, therefore, has a potentially larger spectrum of applicability, but also

the physics behind its exact solution can be much better captured by common

many-body approximations. At the basis of this improvement lies a new term

in the Hamiltonian that depends on the number of constituents and polarizes

the system; the associated symmetry breaking is discussed, together with some

implications for the study of more realistic systems.

Keywords: solvable models, symmetry breaking, nuclear structure

(Some �gures may appear in colour only in the online journal)

A complete microscopic study of quantum many-body systems with realistic Hamiltonians

is the central problemof different �elds in physics such as atomic physics, condensedmatter, or

nuclear physics among others [1–6]. The systems under study are, in general, very complicated

to tackle and different many-body approximations have been proposed along the years in order
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to understand the diverse phenomenology: from pairing in superconductors or super�uidity in
3He to collective states in nuclei. However, to test, compare and better understand state-of-

the-art formalisms may become unpractical, especially when originating from different �elds.

One way forward is to simplify the problem under study by proposing a more simple albeit

non-trivial Hamiltonian. That is, a Hamiltonian that contains some of the relevant features of

the physical system under study. Then, testing and learning from the very complex many-body

techniques available in the literature may become a manageable alternative [7–10].

With this aim, the Lipkin–Meshkov–Glick (LMG) model was proposed [7]. Such a model

considers a system of N fermions distributed on two levels, each of them M-fold degenerate

and separated by an energy ε. Each state is described by two quantum numbers: σ speci�es the

level (we will refer to the upper and lower levels by using+ and−, respectively) and p speci�es

the particular degenerate state within a given level. In this schematic model, fermions interact

by a monopole interaction that does not change the p quantum number. The interaction has

two channels. The �rst scatters pairs of particles in the same level to the other level while the

other scatters one particle to the upper level and, at the same time, another to the lower level.

Since each particle has only two possible states, the model can be also understood as a system

of spins. In absence of interaction, the model will predict all spins aligned along the same

direction while other more complex con�gurations will be only favoured when the interaction

is switched on. As it can be easily understood from this analogy, the power of the LMGmodel

arises from the fact that it mimics some features of different physical many-body systems and,

in addition, it admits an exact solution: using a quasi-spin formulation, the Hamiltonian can be

written in terms of the operators that generate the SU(2) algebra.

To date, the LMG model [7] has been applied and extended in a variety of �elds and for

the study of different phenomena. An introduction to the LMG model has been given in the

context of the many-body nuclear problem in reference [8]. The LMG has been studied at

�nite temperature within the mean-�eld approximation [11], applied to the study of quantum

phase transitions [12, 13], spontaneous symmetry breaking [14–21], �nite size effects [22–25],

long-range interacting spin-chains [26], quantum metrology [27], optical cavity QED [28],

Bose–Einstein condensation [29], quantum spin squeezing [30, 31] or quantum entanglement

[32, 33], among others [34, 35]. It has been extended to three level systems [36, 37] and used

to test different many-body approaches such as the random phase approximation (RPA) [38,

39], the coupled-cluster method [40] or density functional theory [41]. Nevertheless, the mod-

i�cation of the Hamiltonian that we discuss below, and that is called for by the comparison

with a full two-body Hamiltonian, has not been previously studied.

For the two-level system described above, the most general Hamiltonian that does not

change the quantum number p, written in second quantization, reads

H =
1

2
ε
∑

pσ

σa†pσapσ +
1

2

∑

σ1,σ2,σ3,σ4

∑

p,p′

Vσ1σ2,σ3σ4a
†
pσ1
a
†
p′σ2

ap′σ4apσ3 . (1)

Here, for convenience, we have introduced a shorthand notation for the matrix elements

Vσ1σ2,σ3σ4 ≡ 〈pσ1, p
′σ2|V|pσ3, p

′σ4〉. Expanding the sums in equation (1), and with very mild

assumptions (see below), one can arrive at the following expression for the Hamiltonian:

H = εJz −
V

2
(J2+ + J2−)−

W

2
(J+J− + J−J+)

− G(J+ + J−)(N − 1)+
W

2
N −

F

2
N(N − 1). (2)
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The various steps to derive equation (2) are described in the appendix. We have de�ned the

quasi-spin operator J and the particle number operator N as follows,

Jz =
1

2

∑

pσ

σa†pσapσ, N =
∑

pσ

a†pσapσ ,

J+ =
∑

p

a
†
p+ap−, J− =

∑

p

a
†
p−ap+.

(3)

The components of the quasi-spin operator J follow the usual SU(2) algebra, namely

[J+, J−] = 2Jz and [Jz, J±] = ±J±. The particle number operator commutes with all of them.

Hence, the Hamiltonian (2) can be solved exactly using the angular momentum representa-

tion. The coupling constants V ,W,G and F in equation (2) are de�ned in terms of the matrix

elements in equation (1) as follows,

−V ≡ V++,−− − F ≡ V+−,+− = V++,++ = V−−,−−

−W ≡ V+−,−+ − G ≡ V++,−+ = V−−,+−. (4)

The equalities (4) between the matrix elements de�ning F and G in our model are repre-

sentative of physical cases in which V++,++ and V−−,−−, as well as V++,−+ and V−−,+−,

can be expected to be of the same order. Hence, one may also assume V+−,+− = (V++,++ +

V−−,−−)/2. These considerations allow us a factoring of the terms
∑

pa
†
p+ap+ and

∑

pa
†
p−ap−

that otherwise will remain separated and form the number operator, and this enables a compact

and convenient representation of the Hamiltonian (2) (see the appendix for the details).

For systemswith a �xed number of particles, the last two terms in equation (2) produce just a

constant shift in the energy and, thus, can be dropped without losing generality. Then, the term

in G in the Hamiltonian (2) becomes a one-body term. Without it, one immediately recovers

the original LMG model proposed in reference [7]. In the present work, we propose instead to

keep the more general formulation of the Hamiltonian within the two-level assumption of the

LMG model, that is,

H = εJz −
V

2
(J2+ + J2−)−

W

2
(J+J− + J−J+)− G(J+ + J−)(N − 1). (5)

We will call this extendedLMG (ELMG)Hamiltonian. The new term proportional toG(N − 1)

scatters one particle upward or downward. It is important to note that this term:

(a) has its origin in the general form of the two-body interaction [cf Equation (1)], and yet it

has been turned into a one-body term;

(b) produces a fundamental difference in the energy dependence on the particle number, when

compared to the LMG model; and,

(c) introduces an explicit symmetry breaking.

In order to clarify the last point, we recall that in the LMG Hamiltonian the unperturbed

term depends on Jz, the term inW is proportional to J2 − J2z , and the term in V is proportional

to J2x − J2y . These facts are re�ected in the symmetries displayed by the original LMG model,

that can be found in section 2 of reference [7]. If V = 0, J2 and Jz are conserved. If W = 0 a

discrete symmetry exists, namely a rotation of π about an axis in the xy-plane at an angle of π
4

to the x and y axes changes H into −H. Such limiting cases do not exist in the ELMG model

any longer. The only symmetry which is common to the LMG and ELMGHamiltonians is that

they commute with J2 for all values of the parameters.

3
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To the best of our knowledge, a study of the symmetry breaking term that we have just

introduced, motivated by the comparison with a general two-body Hamiltonian, has not been

yet performed. Within the context of the three-level Lipkin model, the authors of reference

[42] have introduced a different kind of symmetry-breaking term, which actually breaks the

degeneracy of the levels but does not change the structure of the interaction terms. In the case

at hand, we should at this point notice that it would be possible to diagonalise the one-body

part of the ELMG Hamiltonian (5).

Let us introduce a new set of fermion operators b†p,σ , that are related to a†p,σ by a unitary

transformation, namely

(

b
†
p,+

b
†
p,−

)

=





cos
α

2
− sin

α

2

sin
α

2
cos

α

2





(

a
†
p,+

a
†
p,−

)

. (6)

Without loss of generality,α can be restricted to the interval−π < α 6 π. This transformation,

in general, turns the SU(2) set of operators into a new one. It can be easily shown to generate a

diagonal one-body Hamiltonian out of (5), if one picks up the speci�c value α = artg 2G(N−1)
ε

.

Under such particular transformation, the two-body sector of theHamiltonian changes in a non-

trivial manner. Then, we can claim that the model associated with the new ELMGHamiltonian

(5) cannot be trivially mapped onto either the original LMG model or the model introduced in

reference [42].

We now move to the analysis of the results that can be obtained by solving the new ELMG

model, by comparing with well-known LMG results. In �gure 1, we show some exact and

approximate results for the LMG model (left panels) and for the ELMG model (right panels).

For details on the exact solution and some approximate solutions of the LMG model, we refer

the reader to references [7, 38]. The methodology to solve the ELMG model is fully analo-

gous to that for the LMG model. In the �gure, we explore the behaviour of the ground state

energy, as well as of the lowest excited state energies, as a function of the model parameters,

by comparing exact results for a system with N = 20 particles with three different approx-

imations of common use in many-body physics [8]: the Hartree–Fock (HF) approximation,

the one-particle one-hole RPA, and the two-particle two-hole RPA or second RPA (SRPA). In

the �gure, we have rede�ned the coupling constants as v ≡ V(N − 1)/ε,w ≡ W(N − 1)/ε and
g ≡ G(N − 1)/ε, and the total energy as e ≡ E/εwhereE is the total energy associatedwith the

solution of the Hamiltonian.We have chosen to show the results for some speci�c values of the

parameters, but the general features displayed in �gure 1 lead to similar conclusions for other

choices.

In the left panels, the results for the LMG model are shown. Two regions are highlighted

since the LMG model predicts the existence of two different HF ground states depending on

the value of the parameters v and w: v + w < 1 produces a non-degenerate, and v + w > 1 a

degenerate, ground state (cf �gure 2). In both regions, the HF ground state (left lower panel)

deviates from the exact solution by a few % with a maximum deviation around the border

between the two regions (v + w ≈ 1). A similar trend is also found for the RPA ground state,

although it is more accurate than the HF prediction. Regarding excited states, the approximate

solutions of the LMG model gives a reasonable description of the exact one in the �rst region

v + w < 1, while they completely fail in the second region.

In the right panels, we show the results for the ELMG model. In this case, the HF ground

state is unique (cf �gure 2) and no regions are highlighted. From the upper panel one can see

that the excitation spectrum is different than in the case of LMG but, also, that the accuracy

of approximate many-body theories is remarkable, at variance with the case of LMG. For the

4
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Figure 1. Relative energy of the ground state with respect to the exact result [%], and
energy e ≡ E/ε of the �rst and second excited states, for a system with N = 20 par-
ticles as a function of the model parameters v ≡ V(N − 1)/ε, w ≡ W(N − 1)/ε and
g ≡ G(N − 1)/ε. The exact solution is compared to HF, RPA and SRPA (this latter only
for excited states). The left panel corresponds to the LMGmodel for v = w and the right
panel to the new ELMG model for v = w = g.

Figure 2. Energy e(α) ≡ E(α)/ε (de�ned in the text) as a function of the variational
parameter α, for different values of the coupling constants, as predicted by the LMG
model (left panel) and the ELMG model (right panel).

ground state, the deviation of HF and RPA is below 0.05% (note the different vertical scale in

the lower-right and lower-left panels), while the approximate excited states follow closely the

exact solution. It is interesting, though, to note that for v = 0.2 the exact ground-state displays
the largest differencewith the HF ground-state. In fact, we have checked that RPA ground-state

correlations reach a maximum for that value of v.
Therefore, it is clear from �gure 1 that the addition of the term in the Hamiltonian propor-

tional to G produces a fundamental difference in the ground state of the system when solved

within the simplest many-body approximation, that is, within the HF approach. The HF ground

state can be used as a basis for higher-order approximations, like RPA and SRPA, in a conceptu-

ally similar way in which it serves as a basis for second order—and higher orders—many-body

perturbation theory. In this regard, we have noticed by performing SRPA calculations that the

5
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LMG model lacks contributions from the coupling of 1p–1h to 2p–2h states, which is a con-

sequence of the simplicity of the Hamiltonian. This has been already emphasised in point

(a) below equation (5). As a consequence, many-body methods beyond the RPA should not

be expected to be accurate in the LMG model. This problem is overcome by the new ELMG

Hamiltonian. In short, we can stress that this newHamiltonian is more general than the original

LMG Hamiltonian and, therefore, has a potentially larger spectrum of applicability; moreover,

commonmany-body approximations capturemuch better the physics behind the exact solution

of the ELMG model.

Let us now inspect, in some detail, the HF ground state in the two models. A Slater deter-

minant has the general form |α〉 ≡ Πpb
†
p,−|0〉, where the b

†
p,σ are related to a†p,σ by the unitary

transformation, characterised byα, that we have already introduced in equation (6). The energy
of the state |α〉 can be easily found, and reads

E(α)

ε
= −

N

2

(

cos α+
w

N − 1
+

v + w

2
sin2 α+ 2g sin α

)

. (7)

By treating α as a variational parameter, one can write

EHF = min
α

E(α). (8)

This minimum energy, associated with the HF ground state, is found (cf left panel of �gure 2)

for α = 0 if v + w < 1 (grey shaded area), and for cosα = 1/(v + w) if w + v > 1, in the

LMG model (g = 0). Instead, for the case of the ELMG model (cf right panel of �gure 2),

the HF ground-state energy evolves as a function of the parameters in a continuous way. The

symmetry of the curve in the left panel with respect to changing the sign of α, and the exis-

tence of a degenerate ground-state for w + v > 1 in the LMG model, can be easily seen from

equation (7). One could notice that if cosα = φ2, the energy given by (7) with g = 0 assumes

the famous ‘Mexican hat’ shape, and recognise the mechanism for spontaneous symmetry

breaking. On the other hand, in the ELMG model with g 6= 0, the symmetry with respect

to changing the sign of α is explicitly broken. Thus, the ELMG model shows two different

types of transitions: one with g = 0 (LMG model) between a non-degenerate ground state

with v + w < 1 and a degenerate ground state with v + w > 1; the other, between a degener-

ate ground state with g = 0 and v + w > 1 to a non-degenerate ground state with g 6= 0 and

∀v, w.
From our discussion, one realizes that the HF approximation for the ground state works

much better for deformed states in both models. We stress that we obviously use α as a defor-

mation parameter, namely deformed solution means here α 6= 0. In the lower panels of �gure 1

one sees in fact that, the better the exact solution of the LMG model is described in HF, the

larger the value of the parameters (v and w) is. This, in turn, corresponds to a larger value of

α at the minimum of E(α). In nuclear physics, there is a widespread tendency among practi-

tioners to advocate that mean-�eld methods work better for deformed systems (this may stem,

intuitively, from the idea that a deformed system has already absorbed many correlations that

would impair the effectiveness of the mean-�eld). Although transferring our present conclu-

sions to realistic nuclear deformationwould require further investigation,we still think that our

work highlights the appropriateness of mean-�eld methods for deformed systems in a sound

and pedagogical manner. In particular, the comparison between the ELMG Hamiltonian and

its LMG limit appears to serve this purpose quite well. In this attempt to connect the ELMG

model to the structure of the nuclear ground-state, we can remind that the matrix elements−G
in equation (4) may be seen as a proxy for the interaction with nucleons outside closed shells

that polarize the system.
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In summary, we have presented a new exactly solvable model (ELMG), inspired by the

LMG model, that has been shown to be useful for applications in different �elds in physics.

The spectrum of applicability of the new model is, in principle, broader than that of the LMG

model. The new term that has been introduced in the ELMG Hamiltonian is responsible for

an explicit symmetry breaking leading, in general, to a non-degenerate HF ground state, char-

acterised by a variational parameter α that is associated with the description of the system

in terms of a superposition of bare particles in the upper and lower levels. This new term in

the Hamiltonian also enables other important differences: for instance, the coupling between

1p–1h and 2p–2h is non zero at variance with what happens for the LMG in SRPA calcula-

tions. We have shown that many-body approximations of common use, such as the HF, RPA or

SRPA, describe remarkablywell the exact ELMG solution for the ground state and the �rst two

excited states. This shows in a quite transparent manner that deformed systems are amenable

to a mean-�eld description. Mean-�eld methods should be able to provide a simple and yet

reliable description of complicated real physical systems when similar conditions are ful�lled.

The case of real systems deserves, evidently, further consideration.
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The data that support the �ndings of this study are available upon reasonable request from the

authors.
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Appendix

We start from the general two-bodyHamiltonian of equation (1) and we focus on its interaction

term,

V =
1

2

∑

σ1,σ2,σ3,σ4

∑

p,p′

Vσ1σ2,σ3σ4a
†
pσ1
a
†
p′σ2

ap′σ4apσ3 . (9)

As written in the main text, we explicitly write the various terms corresponding to the two

values of σi = ± in the sum. The results read

V =
V++,−−

2

(

J2+ + J2−
)

+
V+−,−+

2

(

J+J− + J−J+ − J0− − J0+
)

+ V+−,+−J0+J0− +
V−−,+−

2

(

J−J0− + J0−J+
)

+
V−−,−+

2

(

J−J0− + J0−J+
)

+
V++,−+

2

(

J+J0+ + J0+J−
)

+
V++,+−

2

(

J+J0+ + J0+J−
)

+
V++,++

2
J20+ +

V−−,−−

2
J20−

−
V++,++

2
J0+ −

V−−,−−

2
J0−, (10)

7
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where we have the introduced two additional operators with respect to those in equation (3),

namely:

J0+ =
∑

p

a
†
p,+ap,+, J0− =

∑

p

a
†
p,−ap,−. (11)

These latter operators satisfy the commutation relations
[

J0±, J+
]

= ±J+, [J0±, J−] = ∓J−. (12)

We can write V++,−− and V+−,−+ as −V and −W, following the original LMG model. Since

the interaction must be symmetric under the exchange of particles, V takes the following

compact form:

V = −
V

2

(

J2+ + J2−
)

−
W

2

(

{J+, J−} − J0− − J0+)
)

+ V+−,+−J0+J0−

+ V−−,+−

(

J−J0− + J0−J+
)

+ V++,−+

(

J+J0+ + J0+J−
)

+
V++,++

2
J20+ +

V−−,−−

2
J20− −

V++,++

2
J0+ −

V−−,−−

2
J0−. (13)

This expression is still dif�cult to handle because of the presence of operators J0±. Therefore,

we assume the validity of the following approximation which is also brie�y discussed in the

main text:

V+−,+− = V++,++ = V−−,−− = −F (14)

V−−,+− = V++,−+ = −G. (15)

This leads to

V =−
V

2

(

J2+ + J2−
)

−
W

2

(

{J+, J−} −
(

J0− + J0+
))

−
F

2

(

J0+ + J0−
)2

+
F

2

(

J0+ + J0−
)

− G
(

J−J0− + J0−J+ + J+J0+ + J0+J−
)

. (16)

The term proportional to G can be rewritten by exploiting the commutation relations in

equation (12), and one obtains

V = −
V

2

(

J2+ + J2−
)

−
W

2

(

{J+, J−} −
(

J0− + J0+
))

−
F

2

(

J0+ + J0−
)2

+
F

2

(

J0+ + J0−
)

− G(J+ + J−)(J0+ + J0− − 1). (17)

Since the sum of J0+ and J0− is the number operator, the total Hamiltonian can be written in

the form of equation (2).
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