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The exchange of information between an
open quantum system and its environment al-
lows us to discriminate among different kinds
of dynamics, in particular detecting memory
effects to characterize non-Markovianity. Here,
we investigate the role played by the system-
environment correlations and the environmen-
tal evolution in the flow of information. First,
we derive general conditions ensuring that two
generalized dephasing microscopic models of
the global system-environment evolution re-
sult exactly in the same open-system dynam-
ics, for any initial state of the system. Then,
we use the trace distance to quantify the dis-
tinct contributions to the information inside
and outside the open system in the two mod-
els. Our analysis clarifies how the interplay
between system-environment correlations and
environmental-state distinguishability can lead
to the same information flow from and toward
the open system, despite significant qualitative
and quantitative differences at the level of the
global evolution.

1 Introduction
Whenever we want to describe the time evolution of
a quantum system taking into account the effects of
the surrounding environment, we can rely on the tools
provided by the theory of open quantum systems [1, 2].
The latter, in fact, allows us to model physical phe-
nomena, such as dissipation and decoherence, that
are inherently associated with the open-system nature
of the quantum system at hand. Generally speaking,
quantities that would be conserved under a closed-
system unitary evolution will rather change in time
as a consequence of the action of the environment.
In somehow more abstract terms, the interaction be-
tween a quantum system and its environment induces
a mutual exchange of information, which would be
prevented if the system were closed.

Besides discriminating closed-system and open-
system evolutions, the exchange of information be-
tween an open quantum system and its environ-
ment also provides us with a powerful way to dis-
tinguish different open quantum system dynamics,

associated with qualitatively and quantitatively dis-
tinct behaviours. In certain dynamics, the informa-
tion flows unidirectionally from the open system to
the environment, so that, once leaked out of the open
system, it is irremediably lost. In other dynamics, in-
stead, there is a bi-directional flow of information, im-
plying that some information previously flown from
the reduced system to the environment can later fol-
low the opposite path; in other terms, the environ-
ment, as well as the system-environment correlations,
can act as a memory storage, giving back to the open
system some information that was previously con-
tained in it. Relying on this intuition, the backflow
of information to a reduced system can be regarded
as the distinctive sign of the presence of memory in its
evolution. This, in turn, leads to the identification of
open-system dynamics having a two-fold exchange of
information between the open system and the environ-
ment with quantum non-Markovian dynamics, that is,
dynamics where memory effects cannot be neglected
(analogously to the corresponding notion for classical
stochastic processes [3–7]). This is precisely the route
that has been established in [8, 9], where the picture
above has been defined in rigorous terms by means of
the trace distance, used as a quantifier of quantum-
state distinguishability [10]: The variations in time of
the trace distance detect the direction of the infor-
mation flow between the open system and the envi-
ronment and then the Markovian or non-Markovian
nature of the corresponding dynamics.

Despite the relevant theoretical [6, 7, 11–13] and
experimental [14–19] progresses in understanding the
differences between Markovian and non-Markovian
quantum dynamics, several key questions remain to
be addressed. In particular, it would be desirable to
connect the possible occurrence of memory effects in
open system dynamics with general features of the
underlying microscopic description of the open sys-
tem, its environment and their interaction. Within
the trace distance approach, it is possible to ascribe
any backflow of information towards the open sys-
tem to either the generation of system-environment
correlations, or changes in the environmental state
due to the interaction with the open system, or both
[7, 20]. Even more, quantitative links between the
trace distance variations and the influence of both
system-environmental correlations and environmental
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changes, as measured via the trace distance, have been
derived [21–23], and a similar result has recently been
obtained also for entropic distinguishability quanti-
fiers [24]. In addition to their quantitative content,
these links suggest further evidence that the possible
quantum nature of the system-environment correla-
tions, in terms of the presence of entanglement [25]
or non-zero discord [26–28], does not play any spe-
cial role in producing memory effects, compared to
mere classical correlations [29, 30]. Indeed, the key
point is that the state of an open quantum system,
and then any information-content associated with it,
is the result of an average over the environmental de-
grees of freedom, mathematically described by the par-
tial trace [1, 2]. As a consequence, different system-
environment correlations and environmental states
might well result in exactly the same reduced system
evolution.

Role and relevance of correlations with ancillary
degrees of freedom in the characterization of non-
Markovian dynamics has also been the object of many
recent investigations [31–34]. In the present contribu-
tion, we instead concentrate on the role of the corre-
lations between system and environment arising due
to the microscopic interaction. The latter, together
with the impact of the interaction on the environment,
should be the ultimate cause of memory effects. More
specifically, we investigate by means of the trace dis-
tance to what extent different evolutions of the in-
formation lying outside the open system – being in
the system-environment correlations or in the envi-
ronmental state – can lead to the same information
flow from and toward the open quantum system. This
analysis will help clarify the non-trivial interplay be-
tween the features of the global evolution that can
provoke non-Markovian open system dynamics.

We first consider the generalized pure-dephasing dy-
namics [1] of a d-dimensional open quantum system
interacting with a generic environment and, relying on
the exact analytical solution, we derive general condi-
tions ensuring the equivalence between two open sys-
tem dynamics. These dynamics result from two dis-
tinct microscopical models, for which the type of the
environment, the initial environmental state and the
interaction between the system and the environment
may differ. After moving to the simplest scenario in-
volving a two-level system and two-level environments,
we show that the reduced system dynamics can coin-
cide even though in one case the global state is clas-
sically correlated, while in the other it is (almost) al-
ways entangled (see Fig.1), and even maximally en-
tangled at isolated instants of time. By means of the
bound derived in [20], we compare the strength of the
system-environment correlations and environmental
changes in the two global evolutions, showing that rel-
evant qualitative and quantitative differences among
them can still result in the same exchange of informa-
tion between the open system and the environment,

and thus in the same non-Markovian behavior.
The rest of the paper is organized as follows. In

Sec.2, we recall the features of the trace distance char-
acterization of quantum non-Markovianity that are
relevant for our analysis. In Sec.3, we derive explicit
conditions on the environmental initial states and in-
teraction operators guaranteeing that different gener-
alized pure dephasing microscopic models lead to the
same open system dynamics. Sec.4 contains the main
part of our paper, where the qualitative and quan-
titative differences between the system-environment
correlations and environmental states in the two mod-
els are studied in relation with their influence on the
occurrence of memory effects, as signaled by an in-
crease of the trace distance. Finally, the conclusions
and possible outlooks are given in Sec.5.

2 System-environment information ex-
change and quantum Markovianity
In order to fix the notation and introduce the notions
that will be relevant for the rest of the paper, we start
by briefly recalling the mathematical characterization
of quantum Markovianity in terms of the trace dis-
tance, along with its physical interpretation in con-
nection with the exchange of information between an
open quantum system and its environment [7–9].

Given the Hilbert spaceHS associated with an open
quantum system and the set of statistical operators
S(HS), i.e., the self-adjoint, positive, trace-one oper-
ators acting on HS , we denote as ρS(t) ∈ S(HS) the
state of the open system at time t. Under the assump-
tions that the open system and the environment can
be treated overall as a closed system and that they
are uncorrelated at the initial time t0 = 0, i.e., the ini-
tial global state is ρSE(0) = ρS(0)⊗ ρE(0) with ρE(0)
a fixed environmental state (within the set S(HE) of
statistical operators on HE), the state ρS(t) is given
by the completely positive trace preserving (CPTP)
map Λ(t) defined as [1, 2]

ρS(t) = Λ(t)[ρS(0)]

:= trE
{
USE(t)(ρS(0)⊗ ρE(0))U†SE(t)

}
. (1)

Here and in the following, trE (trS) denotes the partial
trace over the environmental (open system) degrees of
freedom and USE(t) is the unitary operator describ-
ing the global closed-system evolution from the initial
time to the time t.

The family of CPTP maps at the different times,
{Λ(t)}t>0, fixes the open system dynamics and en-
closes all the predictions related with measurements
performed on the open system, at any single time t
and for any initial condition ρS(0)1. As a consequence,

1In general, instead, the family of CPTP maps is not enough
to fully characterize the statistics associated with multi-time
measurements, for which different mathematical objects are
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the different features of open system dynamics are
preferably formulated in terms of properties of the
corresponding families of maps. Indeed, this is the
case also for quantum Markovianity, which aims at
introducing the notion of memoryless evolutions in
the quantum realm, analogously to what happens for
classical stochastic processes [1, 3]. Among the dif-
ferent, and not necessarily equivalent, definitions of
Markovian quantum dynamics [6, 11, 31, 32, 40–47],
the one based on the trace distance [7–9] stems from
a quantitative definition of memory effects, linked to
the information exchange between the system of inter-
est and its environment.

The trace distance between two quantum states ρ1

and ρ2, which is defined as

D(ρ1, ρ2) = 1
2
∥∥ρ1 − ρ2∥∥

1 = 1
2
∑
i

|xi| (2)

with ‖ · ‖1 the trace norm and hence xi the eigenval-
ues of ρ1 − ρ2, quantifies their distinguishability [10],
that is, the ability to discriminate between ρ1 and ρ2

if it is known that one of the two states has been pre-
pared with probability 1/2; note that a more general
quantifier of distinguishability can be introduced, in-
cluding a possibly biased probability of preparation
[7, 48, 49]. Now, if we consider the evolution of the
trace distance D(ρ1

S(t), ρ2
S(t)) between two open sys-

tem states ρ1
S(t) and ρ2

S(t), evolved from two different
initial conditions ρ1

S(0) and ρ2
S(0) via Eq.(1), the de-

crease in time of D(ρ1
S(t), ρ2

S(t)) can be traced back to
a loss of information from the open system, due to the
interaction with the environment. On the same foot-
ing, an increase in the trace distance means that some
information is flowing back to the open system, lead-
ing to an increased capability to discriminate between
the two possible states by performing measurements
on the reduced system only. Such a backflow of infor-
mation is precisely what is identified as memory effect
in the definition of quantum Markovianity introduced
in [8, 9]. Following that definition, we say that non-
Markovian dynamics are those where there is at least
a pair of initial states and a time interval [s, t], with
t ≥ s, such that

∆S(t, s) := D(ρ1
S(t), ρ2

S(t))−D(ρ1
S(s), ρ2

S(s)) (3)

is larger than zero. Importantly, by integrating the
time derivative of the trace distance over the time in-
tervals where ∆S(t, s) > 0 and optimizing the integral
over the pairs of initial conditions, one can introduce
a measure of non-Markovianity that is univocally as-
sociated with the family of CPTP dynamical maps.
At the same time, the detection of an increase in
the trace distance for a single pair of initial states

needed; suitable notions of quantumMarkovianity can be defined
also for such objects and are indeed not equivalent to the notions
referred to the open-system dynamics [7, 11, 35–39].

and interval of time is enough to witness the non-
Markovianity of the dynamics, which then does not
call for the full reconstruction of the dynamical map,
nor for an explicit microscopic model of the underly-
ing system-environment interaction [8, 9].

Besides the rigorous definition of quantum (non)-
Markovian dynamics rooted in the information ex-
change between the open system and the environment,
the trace distance also provides us with a clear physi-
cal picture motivating the possible occurrence of mem-
ory effects. The contractivity of the trace distance un-
der CPTP maps, along with the triangular inequality,
allows us to upper bound the trace distance variation
in Eq.(3) via [7, 20]

∆S(t, s) 6 ISE(s) (4)

with

ISE(s) :=D(ρ1
E(s), ρ2

E(s)) +D(ρ1
SE(s), ρ1

S(s)⊗ ρ1
E(s))

+D(ρ2
SE(s), ρ2

S(s)⊗ ρ2
E(s)); (5)

here ρS(s) = trE {ρSE(s)} (ρE(s) = trS {ρSE(s)})
denotes the reduced system (environmental) state
at time s obtained from the global state ρSE(s) ∈
S(HSE). The terms at the right hand side (r.h.s.) of
the previous inequality describe, respectively, the dif-
ference between the two environmental states ρ1

E(s)
and ρ2

E(s) at time s and the total correlations in the
two global states ρ1

SE(s) and ρ2
SE(s); the labels 1 and 2

refer to the two different initial reduced system states
ρ1
S(0) and ρ2

S(0). Crucially, Eq.(4) relates the trace
distance between open system states with quantities
that refer to the system-environment correlations and
the environmental state, and that are thus associated
with some information lying outside the open system
itself. On the one hand, this provides us with an ex-
planation of the physical origin of memory effects in
quantum dynamics, as an increase in the trace dis-
tance at time t, ∆S(t, s) > 0, is necessarily linked
to the presence, at the previous time s, of system-
environment correlations and/or to differences in the
environmental states due to the different initial con-
ditions. On the other hand, in a complementary way,
we can use the bound in Eq.(4) as a starting point to
gain some quantitative information about the system-
environment correlations and the changes in the envi-
ronment established by the interaction, via measure-
ments performed on the reduced system only [21–23].

3 Locally indistinguishable micro-
scopic models
The correlations between an open system and its en-
vironment and the dependence of the environmental
state on the reduced system initial condition neces-
sarily feed any backflow of information to the open
system. However, one should keep in mind that the
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reduced system state is related to the global state via
the partial trace in Eq.(1), which unavoidably washes
out the details about the global dynamics that do not
have an impact on the open-system evolution. To fully
appreciate in what respect system-environment corre-
lations and environmental states affect the flow of in-
formation from and toward the reduced system, it is
thus important to understand to what extent different
global evolutions can lead to similar, or even to the
same open-system dynamics. More specifically, as il-

𝒮(ℋSE)

𝒮(ℋSE)

ρS(0) ρS(t)

separable

separable

𝒮(ℋS)

ρSE(t)
ρSE(0)

ρSE(0)

ρSE(t)

Figure 1: Sketch of two different global system-environment
evolutions sharing the same reduced system dynamics ob-
tained by taking the partial trace as in Eq.(1). Note that
while the lower evolution involves system-environment entan-
gled states, the upper evolution takes place within the set of
separable states. In particular, we depict it as a straight line
to suggest that these states are actually zero-discord states,
a subset of states that has measure zero within the set of
separable states [50] (compare with the example in Sec.4).

lustrated in Fig.1, we are going to define two different
unitary evolutions associated with the global states,
respectively, ρSE(t) ∈ S(HSE), and ρSE(t) ∈ S(HSE),
which share the same reduced system state at any
time t, ρS(t) = ρS(t). Hence, the reduced system dy-
namics is exactly the same and therefore the global ex-
change of information between the open system and
the environment, despite the difference between the
two global evolutions. Even more, we will show in the
next section that the two global states can be charac-
terized by radically different kinds of correlations and
environmental evolutions; in particular, as sketched in
Fig.1, it is possible that one global state is a separa-

ble state at any time, while the other global state is
entangled at (almost) any time.

3.1 Generalized dephasing models

We consider the generalized pure dephasing micro-
scopic model [1], in which a d-dimensional open sys-
tem interacts with an environment, according to the
global Hamiltonian H = HS + HE + HI , where
HS and HE are the free Hamiltonians of, respec-
tively, the open system and the environment, HI =∑d
n=1|n〉〈n|⊗Bn is the interaction Hamiltonian, with

{|n〉}n=1,...d an orthonormal basis of HS , and Bn =
B†n are arbitrary self-adjoint operators on HE ; cru-
cially, [HS , |n〉〈n|] = 0 so that the free system Hamil-
tonian commutes with the interaction term and the
model can be solved exactly. To do that, one can intro-
duce the environmental interaction-picture operators
Bn(t) = eiHEtBne

−iHEt, along with the correspond-
ing unitaries Vn(t) = T← exp

(
−i
∫ t

0 dsBn(s)
)
, where

T← is the chronological time-ordering operator. Given
the generic initial product state ρSE(0) = ρS(0) ⊗
ρE(0), we express the initial system state with respect
to the basis {|n〉}n=1,...d, ρS(0) =

∑d
n,m=1 cnm|n〉〈m|,

while the initial environmental state with respect to
its spectral decomposition, ρE(0) =

∑
α λα|φα〉〈φα|,

where the index α runs from 1 to the (possibly in-
finite) rank of ρE(0). Then, exploiting the linearity
of the global unitary evolution and partial trace, the
global state at time t in the interaction picture with
respect to HS +HE can be written as [1]

ρSE(t) =
d∑

n,m=1

∑
α

cnmλαVn(t)|nφα〉〈mφα|V †m(t)

(6)
and, by taking the partial trace over the environment
(see Eq.(1)), the open system state at time t is

ρS(t) =
d∑

n,m=1

∑
α

cnmλαFα,n,m(t)|n〉〈m|, (7)

Fα,n,m(t) := 〈φα|V †m(t)Vn(t)|φα〉. (8)

It is now clear how to define two global unitary
evolutions along with two initial environmental states
such that the corresponding open system states co-
incide at any time t. In fact, let {λα, |φα〉, Bn} and{
λβ , |φβ〉, Bn

}
be two sets with the eigenvalues and

eigenvectors of the initial environmental states ρE(0)
and ρE(0) (possibly on two different Hilbert spaces
HE and HE), and the environmental interaction op-
erators appearing in two generalized dephasing uni-
taries USE(t) and USE(t). A necessary and sufficient
condition to have ρS(t) = ρS(t) for any initial condi-
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tion ρS(0) = ρS(0) is thus2

∑
α

λαFα,n,m(t) =
∑
β

λβFβ,n,m(t), (9)

for any n > m and t ≥ 0, where Fα,n,m(t) and
Fβ,n,m(t) are both defined as in Eq.(8), but with quan-
tities referred, respectively, to the first and to the sec-
ond environment; note that Eq.(9) holds for n > m
if and only if it holds for n < m, since F∗α,n,m(t) =
Fα,m,n(t) and λ∗α = λα. Moreover, Eq.(9) is satisfied
automatically for n = m, due to the unitarity of each
Vn(t) and to the identity

∑
α λα =

∑
β λβ = 1; in-

deed, this traces back to the fact that we are dealing
with generalized pure dephasing dynamics, so that the
populations in the eigenbasis of the free system Hamil-
tonian do not change in time.

We stress that we did not assume any specific form
of the initial states of the environments, so that the
equivalence between the open system evolutions guar-
anteed by Eq.(9) does not follow from the recent equiv-
alence theorems among different dynamics with initial
Gaussian bosonic or fermionic environmental states
[51–56].

3.2 Two-level system and environment
The condition in Eq.(9) guarantees the equivalence be-
tween two open system dynamics in two generalized
pure-dephasing models. To further work out analyt-
ically this equality, as well as the related quantities
referred to the global system-environment evolution,
we now restrict the dimensionality of both the open
system and the environment. This will also allow us
to better grasp the physical meaning associated with
Eq.(9), relating it to the different action of the uni-
taries Vn(t) in Eq.(6) on populations and coherences
in the eigenbasis fixed by the initial environmental
state.

First, we assume that the open system is a two-
level system, HS = C2, (with a slight change of no-
tation we make the corresponding index n run over
{0, 1}) and we set B0 = −B1 =: −B, so that the
interaction Hamiltonian is simply the standard pure-
dephasing term, HI = σz⊗B, with σz = |1〉〈1|−|0〉〈0|
and B = B† a generic self-adjoint operator on HE ;
furthermore, we also assume that [HE , B] = 0, so
that V (t) = e−iBt. As done before, we can now
compare two different pure-dephasing global evolu-
tions, characterized by the environmental interaction
operators B and B and initial environmental states
ρE(0) =

∑
α λα|φα〉〈φα| and ρE(0) =

∑
β λβ |φβ〉〈φβ |;

the condition in Eq.(9) ensuring the coincidence be-
tween the two corresponding open system dynamics

2We assume that the free Hamiltonian HS is the same in the
two cases, so that the equality among the open system dynamics
is preserved by moving back to the Schrödinger picture.

reduces to∑
α

λα〈φα|e−iBt|φα〉 =
∑
β

λβ〈φβ |e−iBt|φβ〉 (10)

for any t ≥ 0. The validity of Eq.(10) only depends
on how each pure state in the spectral decomposition
of the initial environmental states, {|φα〉} and

{
|φβ〉

}
,

is mapped into itself by the unitary operators fixed
by the environmental interaction operators, e−iBt and
e−iBt. On the other hand, the global state in Eq.(6)
does depend on how each pure state in the spectral
decomposition of the initial environmental states is
mapped into the other pure states in the decomposi-
tion; such a dependence is precisely what is washed
out by the partial trace. This is the key mechanism
guaranteeing that we can have two different global
evolutions, with the same open system pure dephas-
ing dynamics.

Furthermore, Eq.(10) can also be expressed as∑
α

λα〈φα|Bk|φα〉 =
∑
β

λβ〈φβ |B
k|φβ〉 ∀k = 1, . . . ;

(11)
i.e., the equivalence of the two reduced system dy-
namics is fixed by the moments of any power of the
interaction operators B and B on the initial environ-
mental states ρE(0) and ρE(0). This condition might
be more convenient to check [57], especially if the envi-
ronment has finite dimension dE , so that it is enough
to verify its validity for k = 1, . . . d2

E − 1, due to the
Cayley-Hamilton theorem.

Moving further, we now also restrict to the case
where both pure-dephasing dynamics are referred to
two-level-system environments, HE = HE = C2, so
that B and B can be seen as two spin-1/2 operators
associated with two different directions η and η, i.e.,

B = gη · σ B = gη · σ, (12)

where σ is the vector of Pauli matrices, η and η are
two real unit vectors, |η| = |η| = 1, and g = g∗ is
the coupling constant (that is the same for the two
interaction Hamiltonians). Moreover, the two initial
environmental states ρE(0) and ρE(0) are fixed by
two vectors α and α, with |α|, |α| 6 1, according to
the Bloch-ball representation [58]

ρE(0) = 1
2 (1+ α · σ) , ρE(0) = 1

2 (1+ α · σ) .
(13)

Thus, the two open system states are the same,
ρS(t) = ρS(t), at any time t and for any initial condi-
tion ρS(0) = ρS(0) if and only if

(α,η) = (α,η), (14)

as follows from Eq.(11) and the equality (see also
Eqs.(12) and (13))

tr
{

1
2 (1+ α · σ) (η · σ)

}
= (α,η),
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Figure 2: Geometrical meaning of the condition in Eq.(14),
ensuring two equal open system pure dephasing dynamics,
in the presence of two two-dimensional environments. The
environmental interaction operators are fixed by the vectors
η and η – see Eq.(12) – with |η| = |η| = 1, while the
initial environmental states are fixed by the vectors α and α
– see Eq.(13) – |α|, |α| ≤ 1; in particular, we consider here
α = (0, 0, c),η = (0, 0, 1) and |α| = 1.

as well as from B2k = B
2k = g2k1, B2k+1 = g2k+1B

and B
2k+1 = g2k+1B for any k ≥ 1. In particular, we

will focus on the case where α and η are two vectors
with the same direction, but different length; explic-
itly, α = (0, 0, c) and η = (0, 0, 1), with c = (α,η) < 1.
Note that we are excluding the value c = 1, which
would imply α = η, as Eq.(14) would then be satis-
fied only if also α = η; in other terms, the second
pair of (equal) vectors would simply be the rotation
of the first pair of (equal) vectors, which would corre-
spond to a trivial rotation on the Hilbert space of the
environment.

The geometrical meaning of Eq.(14) for the chosen
α and η is illustrated in Fig.2, under the further con-
straint that |α| = 1, i.e., ρE(0) is a pure state: in this
case, the projection of the vector η into the direction
fixed by α has to be equal to the length of the vec-
tor α. In the next section, we are going to investigate
the qualitatively and quantitatively different features
of the global system-environment evolutions fixed by
the conditions above, leading to the same open system
dynamics.

4 System-environment correlations,
environmental states and information
flow
As recalled in Sect.2, the exchange of information
between an open system and its environment pos-
sibly inducing a non-Markovian evolution is deter-
mined by the system-environment correlations and
the changes in the environmental state due to the in-
teraction between the two subsystems. The bound in
Eq.(4) makes this statement quantitative, via the sum
of three contributions representing different kinds of
information lying outside the open system, i.e., the
distinguishability between the global state and the
product of its marginals for two different initial con-

ditions and the environmental-state distinguishability
related with the latter. Starting from the two equiva-
lent pure-dephasing dynamics introduced in the previ-
ous section, we investigate now how qualitatively and
quantitatively different contributions to the informa-
tion related with the global evolution can result in the
same system-environment exchange of information.

4.1 Zero-discord vs entangled global states
First, we compare the system-environment correla-
tions and the environmental states in the two pure-
dephasing dynamics; in the next subsection, we will
finally discuss the connection of these quantities with
the system-environment information flow.

Recall that we are looking at two global evolu-
tions where the environments are two two-level sys-
tems, both interacting with the open system of in-
terest via a pure dephasing term, but fixed by two
different directions, η and η, see Eq.(12), and ini-
tially in two different states, fixed by α and α, see
Eq.(13). For the sake of concreteness, we are setting
α = (0, 0, c),η = (0, 0, 1) and α = (0, 0, 1), with
c < 1. This means that the initial environmental state
is the mixed state ρE(0) = 1+c

2 |1〉〈1|+
1−c

2 |0〉〈0| in the
first model and the pure state ρE(0) = |1〉〈1| in the
second model. Finally, the validity of Eq.(14) guaran-
teeing the equivalence between the two open system
dynamics, ρS(t) = ρS(t) for every ρS(0) = ρS(0) and
t ≥ 0, implies that η = (

√
1− c2 − d2, d, c), for any

−1 6 d 6 1. Note that due to the invariance of the
trace distance under unitary operations we can set
d = 0 without loss of generality.

Evaluating the two global states via Eq.(6), the dif-
ference in their system-environment correlations ap-
pears immediately clear, showing that we are indeed
in the situation illustrated in Fig.13. In the first model,
the global state at time t is

ρSE(t) = 1 + c

2

(
c11 c10e

−2igt

c01e
2igt c00

)
⊗ |1〉〈1|+

1− c
2

(
c11 c10e

2igt

c01e
−2igt c00

)
⊗ |0〉〈0|, (15)

which is a zero-discord state, indicating the classical
nature of the correlations between the open system
and the environment [26–28]; zero-discord states are
a proper subset of the set of separable states. On the

3Eq.(6) refers to the global state in the interaction picture
with respect to HS + HE ; on the other hand, the latter is
related to the state in the Schrödinger picture via the factorized
unitary operator e−iHSt ⊗ e−iHEt, which does not affect the
system-environment correlations. For future convenience we
also note that the three terms at the r.h.s. of Eq.(4) do not
change when moving from the interaction to the Schrödinger
picture or viceversa, due to the invariance of the trace distance
under unitary operations. Finally, the comparison between states
related to different dynamics performed in Fig.3 is the same
in the interaction and Schrödinger picture, due to the specific
choice of the initial states.
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other hand, in the second model the global state at
time t can be written as

ρSE(t) = c11|1〉〈1| ⊗
(
|`t|2 `∗tκt
`tκ
∗
t |κt|2

)
+

c00|0〉〈0| ⊗
(
|`t|2 −`tκt
−`∗tκ∗t |κt|2

)
+ (16)

c10|1〉〈0| ⊗
(

`∗2t −`∗tκt
`∗tκ
∗
t −|κt|2

)
+ h.c.,

where h.c. denotes the Hermitian conjugate of the
term at its own left and

`t = cos(gt) + ic sin(gt); κt = i
√

1− c2 sin(gt).
(17)

This state is easily shown to be an entangled state
at almost every time t, e.g., by means of the partial
transposition criterion [59, 60]. More generally, any
pure-dephasing evolution will generate entanglement
between the two-level system and its (generic) envi-
ronment if and only if the initial state of the envi-
ronment does not commute with the environmental
unitary interaction operator V (t) (see the definition
at the beginning of Sec.3.1) [61]. In addition, we stress
that two unitary dilations for the same pure dephas-
ing CPTP map, one associated with a global entan-
gled state and one with a zero-discord state have been
derived in [62].

Actually, one can also quantify explicitly the
amount of entanglement of ρSE(t) by using the con-
currence, according to [63]

C[ρSE(t)] = max {0, λ1(t)− λ2(t)− λ3(t)− λ4(t)} ,
(18)

where λ1(t) ≥ λ2(t) ≥ λ3(t) ≥ λ4(t) are the square
root of the eigenvalues of ρSE(t)(σy ⊗σy)ρ∗SE(t)(σy ⊗
σy), with σy = −i|0〉〈1|+ i|1〉〈0| and ρ∗ the complex
conjugate of ρ. In fact, the interaction between the
open system and the environment leads to the pres-
ence of entanglement for any time t > 0, apart from
isolated instants of time, as quantified by C[ρSE(t)];
noticeably, maximally entangled states, for which the
value of concurrence is equal to 1, can be generated
by the global evolution.

The difference between the two global evolutions
is further illustrated in Fig.3, where we report the
evolution of the trace distance between the two cor-
responding global states, D(ρSE(t), ρSE(t)), and the
two environmental states D(ρE(t), ρE(t)). At the ini-
tial time the two quantities coincide, since both ini-
tial system-environment states are product states.
Then, while D(ρSE(t), ρSE(t)) takes values greater or
equal to its initial value, D(ρE(t), ρE(t)) oscillates be-
tween its initial value and zero; the contractivity of
the trace distance under CPTP maps implies that
D(ρE(t), ρE(t)) 6 D(ρSE(t), ρSE(t)). Interestingly,
we also note that when the global-state distinguisha-
bility increases the environmental-state distinguisha-
bility decreases and viceversa, so that when the two

environmental states coincide, D(ρE(t), ρE(t)) = 0,
the two global states have reached their maximum
value of distinguishability, which is then fully due to
the different correlations in the two global states.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
gt

0.2

0.4

0.6

0.8

1.0

D(ρSE,ρSE)

D(ρE ,ρE)

Figure 3: Time evolution of the trace distance between the
global states, D(ρSE(t), ρSE(t)) (solid line), and the envi-
ronmental states, D(ρE(t), ρE(t)) (dashed line), for the two
pure dephasing models fixed by the vectors (α,η) and (α,η)
respectively – see Fig.2. In both cases the system starts in
the pure state |ψ+〉 = 1/

√
2 (|0〉+ |1〉), while the initial

states of the environments are given in Eq.(13). We take
α = (0, 0, 0) and η = (0, 0, 1), together with α = (0, 0, 1)
and η = (1, 0, 0).

4.2 Different contributions to the system-
environment exchange of information
We have thus seen that different evolutions of the
global states and the system-environment correlations
can still lead to the same open system dynamics,
meaning in particular that the quantum or classical
nature of the system-environment correlations is not
crucial for the presence of memory effects in the dy-
namics at hand [21–23, 29, 30].

Figure 4: Trace distance variation ∆S(t, s) (green surface)
for t = π/2 as a function of the time s and the parameter r
determining the initial condition. The pair of initial states for
the system is given by the pure states ρ1

S(0) = |ψ+〉〈ψ+| and
ρ2

S(0) = |ψr
−〉〈ψr

−|, with |ψr
−〉 =

(
r|0〉 −

√
1− r2|1〉

)
. The

black and red meshed transparent surfaces correspond to the
bounds ISE(s) and ISE(s) respectively, according to Eqs.(4)
and (5). The other parameters are as in Fig.3.
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We now move one step forward and use the three
contributions at the r.h.s. of the bound in Eq.(4)
to quantify the different kinds of information lying
outside the open system and their relation with the
system-environment information flow. In Fig.4, we de-
pict with a green surface the open system trace dis-
tance variation ∆S(π/2, s) defined in Eq.(3), which by
construction is the same for the two pure-dephasing
models we are dealing with; indeed ∆S(π/2, s) is al-
ways larger than zero for the chosen time interval, in
accordance with the strong non-Markovian character
of the open system pure dephasing dynamics due to
the interaction with a two-level system environment.
The overall amount of information contained in the
system-environment correlations and environmental-
state distinguishability, as quantified via the sum of
the three contributions at the r.h.s. of Eq.(5), is rep-
resented by the meshed trasparent black and red sur-
faces. In Fig.5, we consider a section of Fig.4 corre-
sponding to a fixed pair of initial system states. It
clearly appears that the sum of system-environment
correlations and environmental-state distinguishabil-
ity in the model characterized by the presence of en-
tanglement exceeds the corresponding sum for the
classically-correlated model, so that the bound on the
open system trace distance given by Eq.(4) is tighter
in the latter case and one can consider a choice of
initial pure states such that the bound is actually sat-
urated at some intermediate point of time. This is
exactly the choice we have made in Fig.5.

Despite the different amount of information associ-
ated with system-environment correlations and envi-
ronmental states distinguishabilities in the two mod-
els, the open system dynamics that results after av-
eraging out the environmental degrees of freedom is
exactly the same. The mentioned differences do not
affect in any way the information exchange between

ΔS

ISE

ISE

0.2 0.4 0.6 0.8 1.0 1.2 1.4
s

0.5

1.0

1.5

Figure 5: Section of Fig.4, for the value r = 1/
√

2. The
plot shows the bounds ISE(s) and ISE(s) (dashed black
and red lines respectively) together with the trace distance
variation ∆S(t, s) for t = π/2 (solid green line). It clearly
appears saturation of the upper bound for the considered pair
of initial system states.

Figure 6: Trace distance variation ∆S(t, s), see Eq.(3), as
a function of s and t − s for the two pure-dephasing mod-
els fixed by (α,η) and (α,η) – see Fig.2. The green solid
line in the transparent plane corresponds to fixing t = π/2.
The black and red lines in the background correspond to
the three distinct contributions of ISE(s) (left,black) and
ISE(s) (right,red) respectively. For the model fixed by (α,η)
(left) the dashed lines correspond to the total amount of
system-environment correlations as a function of the time s,
while the solid line depicts the distinguishability between the
two environmental marginals, which always remain the same.
The same quantities are plotted for the model fixed by (α,η)
(right). It clearly appears that in this case the information
initially contained in the open system state is later stored also
in the environmental degrees of freedom. For both dynam-
ics the initial reduced system states are ρ1

S(0) = |ψ+〉〈ψ+|,
ρ2

S(0) = |ψ0.4
− 〉〈ψ0.4

− |, while the other parameters are as in
Fig.3.

the open system and the environment and therefore
the relevance of memory effects in the open system dy-
namics, as quantified by the magnitude of the trace
distance revivals. Interestingly, relevant differences
can be observed also if we look at each of the three
contributions at the r.h.s. of Eq.(4) individually. The
latter are represented by the lines on the two planes
in the background of Fig.6, where each plane refers
to one of the two pure-depashing models, while the
3D plot depicts the identical trace distance variation
∆S(t, s) for the two models, as a function of s and t−s.
We can see that for the first dynamics (black lines) the
environmental states remain the same for both chosen
initial states. On the other hand, in the second model
(red lines) the environmental states do depend on the
initial open system states, showing that in this case
the environmental degrees of freedom have an impor-
tant role in storing information that was previously in
the reduced quantum system. In addition, the amount
of information contained in the correlations for both
initial conditions differs significantly in the two micro-
scopic models. Hence, Fig.6 yields a direct illustration
of how different contributions to the information con-
tent outside the open system – being in the system en-
vironment correlations or in environmental-state dis-
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tinguishability – can result in the very same flow of
information towards the reduced system.

5 Conclusions and outlook
In this paper, we have investigated the microscopic ori-
gin of the exchange of information between an open
quantum system and its environment. To do so, we
have considered two generalized pure dephasing mi-
croscopic models, with different environmental states
and system-environment interaction terms, leading
to the same reduced system dynamics. In this way,
we have shown how quantitatively and even qualita-
tively different features of the information contained
in system-environment correlations and environmen-
tal states might well result in the same flow of informa-
tion towards the open system, implying the same in-
crease in the trace distance and thus the same amount
of non-Markovianity in the dynamics. In particular,
the first model is characterized by classical system-
environment correlations (that is, the global state has
always zero discord), while the second generates en-
tangled global states at almost any time; in addition,
for a specific choice of the initial conditions, in the
first model the environmental states do not depend
on the open system initial state, while in the sec-
ond model significant information is contained in the
environmental-state distinguishability.

Indeed, it will be important to investigate to which
extent the results we obtained in the presence of pure
dephasing can be extended to more complex system-
environment microscopic models. As a first step, one
could consider higher dimensional open systems where
the equality in Eq.(9) still ensures the equivalence be-
tween the reduced dynamics of different models; as an
example, dealing with multi-qubit open systems [62]
might also allow us to study the interplay between
the system-environment exchange of information and
the correlations within the open system itself. More
in general, to go beyond (generalized) pure dephasing
models, one could resort to approximate solutions of
the dynamics and to numerical methods. While giving
access to a much larger class of systems, this kind of
approaches would however inevitably weaken the ex-
act equivalence between the reduced dynamics of dif-
ferent microscopic models, which is instead one of the
main motivations of our analysis. An alternative path
could then be to compare the open system dynamics
due to an overall unitary evolution with the dynamics
induced by a non-unitary evolution, by means of the
so-called Lindbladian embedding methods [51–56, 64–
67]. Here, the global system is complex enough to ac-
count for a large variety of realistic models and would
possibly require the use of approximated or numeri-
cal techniques to evaluate global system-environment
quantities; on the other hand, crucially, the equiva-
lence between the reduced dynamics of different mod-
els would still be guaranteed a-priori in an exact way.

In conclusion, we hope that our results, along with
future investigation initiated by them, will provide a
useful reference point to understand the general physi-
cal mechanisms ruling the origin of non-Markovianity,
identifying those global features that unavoidably im-
pact on the behavior of proper quantifiers of the infor-
mation accessible via the open quantum system evo-
lution.
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