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Highlights 

 A proteomic workflow system to perform protein quantification after multi-search 

engines peptide identification. 

 Protein inference and quantification done after combination of de novo, database 

assisted search and consensus spectral search. 

 Benchmark with two different proteomic tools for studies. 
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ABSTRACT 

In this study we investigated the performance of a computational pipeline for protein identification 

and label free quantification of LC–MS/MS data sets from experimental animal tissue samples, as 

well as the impact of its specific peptide search combinatorial approach. The full pipeline workflow 

was composed of peptide search engine adapters based on different identification algorithms, in the 

frame of the open-source OpenMS software running within the KNIME analytics platform. Two 

different in silico tryptic digestion, database-search assisted approaches (X!Tandem and MS-GF+), de 

novo peptide sequencing based on Novor and consensus library search (SpectraST), were tested for 

the processing of LC-MS/MS raw datafiles obtained from proteomic LC-MS experiments done on 

proteolytic extracts from mouse ex-vivo liver samples. The results from proteomic LFQ were 

compared to those based on the application of the two software tools MaxQuant® and Proteome 

DiscovererTM for protein inference and label-free data analysis in shotgun proteomics. Data are 

available via ProteomeXchange with identifier PXD025097.
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1. Introduction 

Currently, high resolution mass spectrometry (HRMS) is considered as the most powerful applicable 

tool for proteomic analysis. The popularity of this technique is due to its high sensitivity and capacity 

to collect fast and reliable structural information [1]. 

In this context, shotgun proteomic studies are of great interest to researchers from different 

scientific fields, especially for those involved in biological disciplines, experimental and clinical 

medicine and in pharmaceutical science and biopharmaceutics [2]. 

In these experiments, protein samples are usually digested into peptides by incubation with one 

protease, typically trypsin [3]. The produced peptides are then analyzed by LC−MS analysis in which 

a subset of the available precursor ions is sampled by the MS instrument, isolated, and further 

fragmented in the gas phase to generate fragment ion spectra (MS/MS spectra).  The detected 

peptide sequences and their relative MS data are submitted to computational techniques aimed at 

determining the identity of their parent proteins (protein inference) as well as their relative or 

absolute amounts through different computational approaches.  

To enhance quantitative MS accuracy, methods based on sophisticated experimental designs such as 

stable isotope labeling by amino acids in cell culture (SILAC) [4] and isobaric labeling methods 

including tandem mass tags (TMT), isobaric tags for absolute and relative quantification (iTRAQ) and 

dimethyl labeling have been introduced [5]. 
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However, due to the additional time needed to carry out sample processing coupled to the elevated 

costs to perform these procedures, label free quantification (LFQ) strategy remains the prominent 

option for the analysis of proteomics-based studies [6]. 

Different search engines employed for peptide identification, including database search engine 

assisted Mascot [7], the de novo peptide sequencing softwares Peaks and Novor [8], or 

freeware/open-source search engines such as the Andromeda tool included in MQ [9], OMSSA (open 

mass spectrometry search algorithm) [10], X!Tandem [11], MS-GF+ [12 ,13] and SpectraST [14, 15] 

have been created, tested and applied in several studies.  

In this context, the application of combined multiple engines presents technical and computational 

challenges, including their heterogeneity in terms of scoring for identification quality control, the 

propagation of false discoveries, as well as conspicuous informatics challenges related to the 

different data formats employed by each software. To tackle these hindrances, integration tools like 

iProphet and Scaffold have been developed [16,17]. 

In this context, Vaudel et al. reported SearchGUI, an open-source graphical user interface that allows 

to configure and run the freely available search engines OMSSA and X!Tandem [18], and 

PeptideShaker, a search engine platform for the interpretation of results from multiple search 

(X!Tandem, MS-GF+, MS Amanda, OMSSA, MyriMatch, Comet, Tide, Mascot, Andromeda, 

MetaMorpheus) and de novo (Novor, DirecTag and mzIdentML) engines [19]. 

Kwon et al. (2011) published MSBlender, a statistical method for the integrative analysis, which is 

based on the conversion of raw search scores from different database-assisted search engines 

(InsPecT, Myrimatch, SEQUEST and X!Tandem) into a probability score for every possible PSM, thus 

accounting for correlation between search scores and estimating false discovery rates, leading to 
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more PSM identifications than any single search engine at the same false discovery rate [20]. The 

authors showed that increased identifications improved spectral counts for most proteins and 

allowed the quantification of proteins that would not have been quantified by individual search 

engines. Of note, they also demonstrated that enhanced quantification contributes to improved 

sensitivity in protein differential expression analyses [20]. On a similar line, Zhao et al. (2017) 

reported an efficient identification strategy based on the application of multiple peptide search 

engines, highlighting the similarity between their proteomic results with those of highly accurate 

RNA-seq quantifications [21]. Audain et al. (2017) reported a bioinformatics solution based on the 

KNIME/OpenMS platform to compare the performance of protein inference procedures like PIA, 

ProteinProphet, Fido, ProteinLP, and MSBayesPro using three database search engines Mascot, 

X!Tandem, and MS-GF+ [22]. 

On the same line, taking a conceptual step forward, recently Mohammed and Palmblad (2018) 

developed a theoretical framework and an automated data processing workflow including different 

peptide identification methods based on a bioinformatic platform known as Taverna [23]. In this 

study, the scoring results generated by sequence database search (X!Tandem), were compared and 

combined with those from spectral library search (SpectraST) and de novo sequencing (PepNovo) 

algorithms, helping the discrimination of corresponding correct and incorrect peptide identifications.  

The aim of this study was to evaluate the protein quantification performance of a proteomic pipeline 

for LFQ analysis based on the concept of combining multiple peptide search engines which work on 

different theoretical and applicative principles. The sequential combination of the de novo peptide 

sequencing approach (Novor algorithm), of two in silico tryptic digestion assisted database-searching 

assisted parsers (X!Tandem and MS-GF+), and of the consensus library search-based peptide 

identification (SpectraST), were tested through their adapter node versions in the open-source 
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OpenMS software available in the analytics platform KNIME (Konstanz Information Miner) [24,25]. 

We will refer to the workflow based on this approach as DDASSQ (De novo, Database Assisted, 

Spectral Search and Quantification). 

Seeking for further insight into the behavior of proteomic workflows in generating LFQ results, we 

first tested the performance of search engine combinations and evaluated the quantitative result. 

Then, the corresponding protein LFQ computed on different proteomic datasets was benchmarked 

and compared with that obtained using two extensively tested and popular software tools, 

MaxQuant® (MQ) [9] and Proteome DiscovererTM (PD).  

 

2.  Results 

 

2.1. DDASSQ accuracy: spike-in protein datasets 

The general structure of the DDASSQ workflow in which LFQ is achieved applying the four peptide 

search engines X!Tandem, MS-GF+, Novor and SpectraST, is shown in Fig. 1. 

The precision and accuracy of the DDASSQ workflow was tested using two datasets published by 

Pursiheimo et al. (D1) and by Tabb et al. (D2), respectively [26,27]. These datasets were generated 

from LC-MS/MS analysis of samples in which different amounts of UPS standard protein set 

(equimolar amounts of n=48 H. sapiens proteins) have been added to a background proteome from 

the yeast S. cerevisiae. The corresponding protein-level results are summarized in Fig. 2 and the 

relative data reported in Supplementary material files. In good accordance with the lower 
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concentration range tested in D2 (0.25-20 fmol/µL) compared to that used in D1 (0.2-50 fmol/µL), 

almost all UPS proteins were quantified (n=47/48) in dataset D1, while a lower number of US 

proteins was identified in dataset D2 (n=25/48).  

In both cases, the human protein identified based on the highest number of quantitative peptides 

was transferrin (gene name: TR; Uniprot accession code: P02787). The identified proteins showed a 

concentration-dependent intensity increase (Fig. 2A and Fig. 2F, and Fig. 2C and Fig. 2D for log10-

tranformed results, respectively), with median correlation coefficient values calculated for their 

pairwise variation-ratio (R, Pearson’s correlation coefficient) of RD1=0.9354 and RD2=0.896 (Fig. 2B 

and Fig. 2G, respectively). The proteins with the lowest R-values were those identified based on a 

low number of spectra (proteins less susceptible to trypsinization) comparing with those showing 

high correlation. 

Regarding the contribution of yeast background proteome, the corresponding LFQ results trends 

indicated a progressive decrease of their mean intensity negatively associated with the increasing 

presence of human UPS proteins. This effect was already detectable in D1, in which a significant 

difference between the mean intensity of yeast proteins was significantly higher in samples with 2 

and 4 fmol/µL of added UPS proteins compared with those with 10-50 fmol/µL of spike-in UPS mix 

(Fig. 2D). This effect was more evident in D2, with a non-significant difference between the lowest 

tested concentrations only (Fig. 2I). Accordingly, the pairwise variation-ratios corresponding R-values 

moved partially toward negative values (Fig. 2E and Fig. 2L). 

The mean percent coefficient of variation (CV%) of the proteins quantified by DDASSQ, MQ and PD 

workflows in D1 and D2 datasets are reported in Table S1 and Fig. S1. When evaluated based on the 

corresponding individual and mean CV% of the quantified proteins, the performance of the different 
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tools appeared to be dependent on the level of spike-in protein amount. In the sample with the 

lowest spike-in level (0.25 fmol/µL), the highest number of LFQ intensity CV% was computed based 

on data generated by PD (n=37; mean CV%=34.5 %), followed by DDASSQ (n=20; mean CV%=97.44 

%), and by MQ (n=4; mean CV%=113.4 %). Starting from 10 fmol/µL concentration, the workflows 

performance in term of quantified proteins and of their CV% distribution was substantially 

equivalent (Fig. S1).  

Quantitative accuracy was evaluated through pairwise comparison-based analysis of the quantified 

UPS protein experimental-to-theoretical fold increase across the tested spike-in amounts (Fig. S2). 

MQ results were not included due to a significantly smaller dataset size comparing to those of 

DDASSQ and MQ. 

The analysis evidenced a similar level of accuracy (Fig. S2A and Fig. S2D), with better performance of 

PD at lower spike-in amount range (Dataset D2, Fig. 2SA-C) and higher overall sensitivity of DDASSQ 

in the higher spike-in amount range (dataset D1, linear regression slope value: 0.5601, Fig. S2E) 

compared to PD (linear regression slope value: 0.3776 Fig. S2F).  

 

2.2. Characteristics of in-house input files 

The LC-MS chromatographic profiles from duplicate analysis of proteolytic peptides obtained from 

fraction F1 and F2 are reported in supplementary material Fig. S3-S6. The chromatograms intensities 

of peaks falling across almost the entire retention time window indicated that the fractionation 

process led to the recovery of a lower quantitative amounts of peptides in F2 comparing to fraction 
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F1. Under these conditions, it was reasonable to expect differential LFQ values higher in F1 

compared to F2. 

 

2.3. Proteomic tools performance: general outcomes 

The collective results of total number of quantitative proteins and the total number of quantitative 

peptides identified and selected for LFQ by DDASSQ, PD and MQ are reported in Table 1. 

The results showed that DDASSQ outperformed those of both the tools PD and MQ in terms of 

almost all parameters, identifying around a double total number of quantifiable proteins (DDASSQ: 

3083, PD: 1422 and MQ: 1427) as well as for the number of total identified peptides (DDASSQ: 

21287, PD: 9789 and MQ: 10392). 

The presence of zero values within a dataset (intensity=0) is one of the most important LFQ 

computational problems, especially when statistics of proteins in the low abundance range should 

be considered. PD was the tool that generated the lowest number of zero values comparing to those 

generated by DDASSQ and MQ (fraction F2/fraction F1 186/1 vs. 1025/20 and 1123/38, 

respectively).  

MQ ranked first also in terms of mean number of identified quantitative peptide/proteins (7.29 

peptides/protein), with 6.90 peptides/protein of DDASSQ and 6.88 peptides/protein of PD 

(P=0.00007, DDASSQ vs. PD, Student’s T-test). The corresponding median values were identical 4 

peptides/protein for DDASSQ and 5 peptides/protein for MQ and PD. 

The unique and shared identifications are reported as Venn diagram in Fig. 3. Out of the n=3083 

proteins quantified by at least one software, n=1294 proteins were quantified by all three softwares. 
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The DDASSQ pipeline showed the highest share of proteins quantified by a single tool (1573 

accessions), while less than 4% of the total proteins were quantified by PD or MQ only. 

In Fig. 4 are reported the LFQ peptides/protein data for the n=1573 protein accessions included in 

the LFQ computed by DDASSQ, PD and MQ, ranked by quantitative peptides per protein selected by 

DDASSQ.  

Interestingly, examining the individual results from the graph left-hand side to the right-hand side, it 

emerges that the DDASSQ tool generates a higher number of quantitative peptides per protein 

compared to PD and MQ. On the other hand, for proteins quantified by DDASSQ based on n=15 

peptides and below, PD and MQ often selected a higher number of quantitative peptides.   

 

2.4. Impact of search engines combination on protein selection for LFQ 

To better understand the contribution of each search engine (i.e. peptide search criteria/approach) 

to the overall DDASSQ pipeline performance, the workflow was modified by sequential exclusion of 

the peptide search nodes according to the results layout reported in Table 2. The corresponding 

individual LFQ and protein inference results are reported in Supplementary material files.  

Novor quantified only n=52 protein accessions, corresponding to the 1.70% of the total identification 

hits. Out of the n=3114 overall unique accessions identified across the protein lists, n=1586 

accessions were common to the other tested search engine combinations (31.0 %) (Fig. 5).  

The introduction of SpectraST in the pipeline was responsible for the 43.7% of the protein 

identifications reported in the LFQ list.  
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The X!Tandem and MS-GF+ contributions were similar, with MS-GF+ increasing the number of 

identified peptides per proteins (maximal increment +9 peptides for Carbamoyl-phosphate synthase 

[ammonia], mitochondrial; entry Q8C196), simultaneously reducing the total number of 

identifications due to a lower number of proteins identified based on at least n=2 unique peptides.  

The increase in overall number of protein identifications was paralleled by a significant increase in 

the corresponding total estimated intensities in both fractions F1 and F2, with F1 fraction total 

intensities higher than those computed for fraction F1 (Table 2). 

Taken all together, these results confirm the capacity of the combined peptide search strategies (de 

novo peptide sequencing, database-assisted search and spectral searching) to yield higher numbers 

of identified peptides as well as improved identifications, which ultimately should lead also to 

significant improvements in terms of protein LFQ-generated quantitative data. 

 

2.5. DDASSQ/PD/MQ LFQ correlation results 

The concordance of protein LFQ computed by the three proteomic tools DDASSQ, PD and MQ 

(n=1294 shared proteins) is visualized in Fig. 6, both in terms of LFQ intensity variations for each 

individual protein quantified (LFQ-Δ, IF1-IF2, Fig. 6A-E), and of the corresponding log2-fold variations 

(Fig. 6F-H). 

The scatter plots showed satisfactory correlation between the DDASSQ LFQ-Δ values of the 

individual proteins with those computed by PD and MQ, with most datapoints falling in the first 

upper-right quadrant (concordant positive signs), and with similar datapoint distributions (Fig. 6A 

and Fig. 6B, respectively).  
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The log-transformed data showed significant correlation between the DDASSQ LFQ-Δ values with 

those from PD (R=0.948, P<0.001, Pearson product-moment, two-sided, Fig. 6C) and MQ (R=0.907, 

P<0.001, Pearson product-moment, two-sided, Fig. 6D), respectively. 

The observed positive variations were in good accordance with what expected based on the adopted 

sample treatment procedure, in which the original liver protein extract was eluted on a cartridge for 

specific enrichment of glycoproteins providing a non-glycosylated protein fraction F1 and a 

glycoprotein-enriched fraction F2. Hence, the positive LFQ intensity variations are well explained by 

the major proportion of non-glycosylated proteins present in the first washing step, with an average 

reduction of non-glycosylated proteins in fraction F2.  

LFQ-Δ values generated by PD and MQ showed excellent correlation (R=0.969, P<0.001, Pearson 

product-moment, two-sided, Fig. 6E). 

When expressed as log2-fold variation, the LFQ results showed significant differences in the 

distribution of those computed by the DDASSQ comparing to those of PD and MQ (Fig. 6D-F). 

However, data visualization was hindered by the presence of zero values for proteins in F2 fraction 

in all datasets, with the highest prevalence in the MQ dataset and the lowest in that of PD (see Table 

1 for details).  

A minor proportion of discordant DDASSQ and PD variations found positive by one tool LFQ and 

negative by the other one, were observed into the second (n=28 accessions) and fourth (n=9 

accessions) graph quadrants (Fig. 6F). Most of these proteins ranked in the lower range of 

quantitative peptides. Hence the apparent discrepancy can be attributed to the random 

inclusion/exclusion of few peptides implicating discordant intensity variations, an effect similar to 
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that recently reported by Barkovits et al. while working on a quantification procedure based on 

spectral library-based procedure for the processing of data independent acquisition [27]. 

Of note, and above all, the best fit linear curves for PD/DDASSQ data showed intercept value close to 

zero (Fig. 6D), while those for MQ/DDASSQ (Fig. 6E) and MQ/PD (Fig. 6F) showed corresponding 

negative intercepts, suggesting that in both cases the OpenMS and PD proteomic workflows produce 

values with n=+2 incremental LFQ log2 units in respect to those generated by MQ. According to these 

results, to all the proteins in this range with positive log2-fold value (namely an up-regulation) found 

by DDASSQ and PD will correspond a negative value (down-regulation) assigned by MQ 

(downregulation). The origin of this apparent systematic error remains to be established. 

 

3. Discussion 

In the present study, the performance of an LFQ proteomic workflow, based on the combination of 

three different peptide identification approaches, was evaluated on two different previously 

reported LC-MS proteomic datasets as well as on in-house available dataset obtained from mouse 

liver protein extracts. 

The proposed workflow was built using the OpenMS/KNIME adapters of the peptide search engines 

Novor, X!Tandem, MS-GF+ and SpectraST, all working through their specific nodes developed in the 

KNIME platform [24,25]. 

Recent studies reported the impact of the combination of some database-assisted peptide search 

tools, working independently within online or in installation-based computational platforms on the 

identification of different peptide sequences. This approach increased peptide identification and 
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protein amino acid sequence coverage, thus providing a relatively simple but efficient way to 

maximize the utilization of mass spectra through the combination of such combined peptide search 

engines [18-23].  

From the quantitative point of view, the results reported support the concept that the improvement 

obtained by the application of multiple search engines strategy translates in a more accurate protein 

quantification, taking advantage of the higher number of proteins identified, with a performance 

similar to that of highly accurate RNA-seq approaches [21]. 

Based on these aspects, we aimed to test a composite proteomic workflow according to the 

hypothesis that its overall identification and quantification capacity at the proteome level can be 

improved by the combination of multiple peptide search tools based on radically different 

theoretical and informatic backgrounds, in line with the hypothesis proposed by Mohammed and 

Palmblad [23]. 

One of the goals was to design a flexible, user-friendly computational system allowing the 

management of several parameters involved in proteomic pipeline nodes without requiring deep 

knowledge of their underlying informatic grounds. From this point of view, the OpenMS tools built in 

the KNIME platform seemed to be an ideal starting point. 

Therefore, among those available in the OpenMS/KNIME platform, we first selected the adapter of 

Novor, one of the commercial software packages working on an algorithm which allows de novo 

peptide sequencing: i.e., peptide sequencing is deduced directly from MS/MS data without requiring 

reference sequence database(s) [8]. 
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The de novo peptide sequencing was combined with two database-assisted search algorithms 

(X!Tandem and MS-GF+). X!Tandem, as reported in its original version by Craig and Beavis (2004) 

[11] searches peptide structures starting from tandem MS/MS spectra with the aid of in silico tryptic 

digestion of target protein sequences. Beside X!Tandem, the more recent sequence database-

assisted sequencing search engine MS-GF+ tool was included in the combination [12, 13]. One 

significant advantage of this search engine relies in its insensitiveness to the individual experimental 

set-up (low/high resolution, fragmentation mode), improving the identification performance 

compared to that of other informatic tools designed for specific instrumental solutions [13].    

The fourth approach selected was that of SpectraST, a search tool developed by Lam and colleagues 

that employs spectral searching of the experimental data against a library of experimental annotated 

MS/MS spectra [14]. According to the authors, this procedure vastly outperforms the identification 

capacity of the sequence search engine SEQUEST, both in terms of computational speed and of 

ability to discriminate good and bad hits [14, 15].  

The combined identifications were used in the workflow for spectral features definition using the 

FFId algorithm reported by Weisser and colleagues [29] and subsequent protein inference for 

protein groups determination, and in parallel for PSMs extraction using the algorithm PIA described 

by Uszkoreit and colleagues [30,31]. The choice of FFid over other spectral feature identifiers was 

done based on its higher capacity in producing quantifiable proteins and its higher speed compared 

to other analogue tools in OpenMS environment, such as FeatureFinderCentroid. Protein 

quantification was then achieved through the ProteinQuantifier node, with an approach similar to 

that described by Silva et al. 2006 [32]. 
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In all considered cases, computational descriptors (e.g. total number of identified peptides and 

proteins) of the LFQ were generally comparable or superior to those obtained using two common 

proteomic tools such as PD and MQ and X!Tandem, MS-GF+ in combination with Novor.  

The obtained results agreed with previous findings on the determination of liver proteome of mouse 

strains with different genetic background [33]. 

On the other hand, the quantification accuracy evaluated through individual and mean quantified 

protein CV% suggested a substantial equivalence of DDASSQ, PD, and MQ results when applied to 

datasets with target proteins in the higher concentration range, leading to similar CV% value 

intervals and quantified protein numbers. By contrast, in the lower concentration range, PD seemed 

to generate the higher level of sensitivity and accuracy based on the highest observed number of 

quantified proteins associated to the lowest mean CV% values. 

Indeed, these variations may originate from the different peptide identification procedures adopted 

by the different proteomic tools, as well as from their different criteria of peak area extraction and 

subsequent data treatment involved in the quantification algorithms. For this reason, further 

research for the better understanding of the relative contribution of these two factors, alone or in 

combination, to the increase of uncertainty in the quantification of less responsive proteins, is 

warranted. 

The significant increase of identified peptides/proteins observed in the present study agreed with 

that reported by Shteynberg et al., that reported an increase in the number of correctly identified 

peptides when SpectraST results were included in the iProphet combination of those from seven 

different database-assisted search engine algorithms [34]. Taken altogether, these results confirm 
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the high sensitivity of SpectraST peptide identification in case of datasets for which high-quality 

spectral libraries are available [34, 14]. 

Recent and excellent studies on the effect of combinatorial approaches involving different types of 

search algorithms have been reported. However, to the best of our knowledge no study evaluating 

the impact of spectral searching inclusion on proteomic LFQ, is reported in the literature.  

For this reason, to better define the role of spectral searching in the performance of DDASSQ 

approach, future work will focus on expanding the application of this tool to a wider set of raw data 

with particular emphasis on the different tissue and cell type, the sample processing procedure and 

datafile dimension. 

 

4. CONCLUSIONS 

In recent years, admirable advances in LC-HRMS techniques, together with the availability of more 

powerful informatic hardware, increased the demand for bioinformatic tools for the efficient 

management of MS-based peptide sequencing, protein inference and LFQ methods which is also 

impacted by the massive and increasing size of the raw data files associated to the results of shotgun 

proteomic experiments. 

In the present study, a combination of peptide identification engines has been evaluated through 

the flexible OpenMS adapters built in the KNIME environment (an open-source platform in 

continuous evolution and optimization).  
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The results confirm the additional benefit of combining peptide search engines in terms of 

identification number and robustness, implying that the application of tools based on different 

theoretical and applicative rules, such in the case of our DDASSQ, results in a further boost of the 

identification capacity.  

Nevertheless, the results of the present study highlight the need for further work and investigations 

in this specific area of proteomics. In addition to the possible implementation of the available 

peptide search proteomic nodes in terms of adherence to the MS acquisition experimental 

conditions (e.g., acquisition mode and fragmentation system), increasing the availability of spectral 

consensus databases currently limited to a small number of species, will allow more feasible the 

application of algorithms such as that used by SpectraST; this calls for further extensive work of 

spectra collection and compilation.  

 

5. Experimental section 

Chemicals and reagents: All chemicals and supplies used for LC-MS sample processing were of MS-

grade purity. Water and acetonitrile (ACN) both containing 0.1% formic acid or aqueous 

trifluoroacetic acid (TFA), were purchased from Carlo Erba Reagents (Carlo Erba Reagents S.r.l., 

Milan, Italy).  Acetone, proteomic grade trypsin (code T7575), dithiothreitol (DTT), iodoacetamide 

(IAA), ammonium bicarbonate (ambic), urea 8.0 M solution and 0.1 M Tris-HCl buffer were all 

purchased from (Sigma-Aldrich, Milan, Italy). ZipTips were from Thermo Scientific (product code 

87784, Thermo Scientific, Rodano, Italy).  
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Data sets: Computations were run on dataset representing the LC-MS analysis of tryptic digests of 

protein extracted from mice liver fed a cholesterol enriched diet [35] and processed as described in 

the next paragraphs. 

Animals: Wild type (WT), male mice on C57BL/6J background were purchased from Charles River 

(Italy) and The Jackson Laboratory (USA). Old mice (6-8 weeks old) were fed a high cholesterol diet 

(western type diet - WTD, E15775-34 ssniff® Spezialdiäten GmbH, DE) for 8 weeks [35]. Mice (n=4 

per group) were housed in cages kept in a temperature-controlled environment (20 ± 2°C, 50 ± 5% 

relative humidity) with a 12-hour light/dark cycle and free access to food and water [36]. Mice were 

sacrificed at 20 weeks, after isoflurane (2%) inhalation and cervical dislocation. Livers were 

explanted and weighted. All animal procedures performed, were done in agreement to the 

guidelines from 2010/63/EU directive of the European Parliament on the protection of animals used 

for scientific purposes and were approved by the local Ethical Committee (Progetto di Ricerca 

2012/02, Autorizzazione Ministeriale 811/2017). 

Sample preparation: Liver segments from WT mice (n=2) were cleaned with sterile ice-cold PBS 1× 

and approximately 10 mg were lysed in the presence of binding buffer, protease inhibitor cocktail 

and detergent solution at room temperature using Qproteome Total Glycoprotein Kit® (Qiagen S.r.l., 

Milan, Italy).  Samples were homogenized with TissueRuptor® for 30s at the lowest speed, followed 

by incubation of the lysate for 15 min at 4°C. Subsequently, samples were centrifuged at 10000×g for 

20 min at 4°C and the supernatant was collected. The lysate was transferred to a spin column and 

processed according to the manufacturer instructions 

(http://wolfson.huji.ac.il/purification/PDF/Lectins/QIAGEN_GlycoproteinFractionHandbook.pdf) to 

obtain non glycosylated protein in flow through solution (F1) and the enriched glycosylated protein 

fraction (F2). The protein content was measured as described [37]. Cold acetone was added to 
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samples in proportion 4:1 (v/v) and incubated for 15 min in ice. Samples were then centrifuged 

(12000 g, 10 min at 4°C), the supernatants were discarded, and the protein pellets resuspended in 

urea 8.0 M solution and 0.1 M Tris-HCl buffer (pH 8.5). An additional Lowry protein assay was 

performed to confirm the protein content after precipitation. Samples were then dried completely 

using a vacuum concentrator (45°C, 45 min) and resuspended in 5.0 mM DTT in 50 mM ambic buffer 

(pH 8.5, 30 min at 50°C under mechanical agitation). Samples were then cooled down to RT and 

alkylation performed by addition of 150 mM IAA in ambic buffer 50 mM (15 mM final concentration) 

and incubated in the dark for 20 min at RT [38]. Trypsin was added at an enzyme-to-protein ratio of 

1:20 and the digestion was performed overnight at 37°C, under agitation under mechanical agitation 

(600 rpm). Medium pH was in the range 8-8.5 pH units. The digestion was stopped by sample 

acidification with 50% TFA (final concentration: 1%). Final protein concentration was 0.33 μg/μL. The 

proteolytic peptide mixtures were purified by C18 pipette tips (ZipTip) and analysed in duplicate by 

nano-liquid chromatography MS/MS (nLC-MS/MS). 

LC-MS/MS analysis: Samples were analyzed at Unitech OMICs (University of Milano, Italy), using a 

Dionex Ultimate 3000 nano-LC system (Sunnyvale CA, USA) connected to an Orbitrap Fusion™ 

Tribrid™ Mass Spectrometer (Thermo Scientific, Bremen, Germany) and equipped with a nano-ESI 

ion source. Peptide mixtures were pre-concentrated onto an Acclaim PepMap C18, 5 µm, 100 Å, 100 

µm ID x 2 cm (Thermo Scientific) and separated at 35°C on an EASY-Spray PepMap RSLC C18 column 

(3 µm, 100 Å, 75 µm ID × 15 cm; Thermo Scientific). Elutions were run in gradient mode from 96% 

buffer A (0.1% formic acid in water) to 40% buffer B (0.1% formic acid in water/acetonitrile (20/80 

v/v). Total gradient: 110 min. Flow rate: 300 nL/min. Total run time: 144 min. MS acquisition was 

done in in positive ion mode over an m/z range of 375 – 1500 Da at 120000 resolution in the data 
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dependent mode, cycle time 3 s between master scans. MS/MS spectra were collected in centroid 

mode. Higher collision decomposition (HCD) energy: 35 eV. 

DDASSQ workflow: Prior to data analysis, each LC-MS raw file was converted from raw to mzML 

format in centroid mode using the MSconvert tool of the software ProteoWizard (version 3.0.1957) 

[39]. The mzML files were analyzed using a pipeline adapted from Weisser et al. (2013) [40], built 

using OpenMS [25] (version 2.5.0) operating within the open-source software platform KNIME® 

(version 4.1.3, available at https://www.knime.com/). Spectral search with SpectraST was run using 

the NIST_mouse_IT_2012-04-21_7AA.splib, NIST_human_IT_2012-05-30_7AA.splib and 

NIST_yeast_IT_2012-04-06_7AA.splib files were appropriate and downloaded at the URL 

http://www.peptideatlas.org/speclib/. Human and yeast spectral libraries were concatenated in a 

single consensus library using the specific command lines in available in SpectraST 

(http://tools.proteomecenter.org/wiki/index.php?title=Software:SpectraST). Peptide identification 

was done using a multiple search engine pipeline combining X!Tandem algorithm [11], 

(XTandemAdapter node), MS-GF+ [12,13], Novor (for peptide de novo identification) [8] and the 

MS/MS spectral search tool SpectraST (SpectraSTSearchAdapter node) [14,15]. X!Tandem, MS-GF+ 

search and peptide indexing were done against a mouse FASTA Swiss-Prot reviewed protein 

sequence database (uniprot-filtered-organism_Mus.musculus-(Mouse)-[10090] (n=17046 entries), 

downloaded at www.uniprot.org (October 2020), including in the protein database a list of common 

contaminant proteins (n=179, 

https://github.com/pwilmart/fasta_utilities/blob/master/Thermo_contams.fasta). To this database, 

for subsequent FDR computation, a decoy reverse sequence database was appended by application 

of the DecoySequence OpenMS node.  For all search engines except SpectraST, cysteine 

carbamidomethylation was set as fixed modification and methionine oxidation was set as variable 
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modification.  Fragment mass tolerance was set at 0.02 Da and precursor mass tolerance at 5.0 ppm. 

Peptide sequences were indexed through the OpenMS Peptide Indexer node, setting 

leucine/isoleucine equivalence. Protein inference was carried out using the Protein Inference 

Algorithms (PIA, version 1.3.11) node [31,32]. The parameters settings of all individual nodes are 

reported in Appendix 1 in supplementary material. Protein abundance estimates were calculated 

with prior generation of spectral features by the node FeatureFinderIdentification (FFid) [29] 

followed by PIA-assisted FDR estimation and filtering at PSM level (PSM combined FDR score > 0.01, 

equivalent to FDR<1%) with subsequent further filtering at peptide and protein group level through 

IDfiter node options (FDR<1%), their ID mapping and combination with peptide IDs, their subsequent 

grouping and normalization (e.g. FeatureLinkerUnlabeledQT and ConsensusmapNormalizer nodes) 

[38]. Proteins and peptides label free quantification (LFQ) was then computed with the OpenMS 

ProteinQuantifier node based on intensities of all quantitative proteotypic peptide intensities 

(quantitative peptide number equal/greater than n=2) [32]. 

The relative output files, read as tables of the CSVreader node output, exported in Microsoft Office 

Excel 2016 for further formatting and statistical elaboration. Detailed pipeline parameters are shown 

in appendix 1 of the supplementary material file, and the full DDASSQ pipeline is available for 

downlod at the Github.com website at the URL: https://github.com/giangiacomoberetta1/GBeretta. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

via the PRIDE [41] partner repository with the dataset identifier PXD025097. 

Benchmark proteomic softwares: Proteomic data analysis was done using the softwares Proteome 

DiscovererTM (PD, version 2.2, Thermo Fisher Scientific, Waltam, MA, USA) and MaxQuant® (MQ, 

version 1.6.7.0) [9]. The PD corresponding data processing workflow is described in the Appendix 2 
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in supplementary material file. Both PD and MQ analyses were run using a precursor mass tolerance 

of 5 ppm and fragment mass tolerance of 0.02 Da, carbamidomethyl as fixed modification and 

methionine oxidation as variable modification, with the same sequence database used for X!Tandem 

and MS-GF+ in the OpenMS workflow. Decoying was done in reverse sequence mode. Trypsin was 

selected for in silico protein digestion, n=2 maximum number of missed cleavages, peptide length for 

unspecific search between n=8 and n=25 amino acids, and MQ LFQ and stabilize large LFQ options 

on. MQ iBAQ was not activated. 

Datasets from PRIDE repository: The DDASQ workflow identification and quantification performance 

was tested using the datasets from two different studies.  The first one was published by Pursiheimo 

et al. and consisted of 2, 4, 10, 25 and 50 fmol/μL UPS spiked to 100 ng of yeast S. cerevisiae 

background proteins analysed by HPLC-MS/MS using an LTQ Orbitrap Velos MS (n=3 technical 

replicates of each concentration) [26]. An LTQ Orbitrap Velos MS was used to analyze three technical 

replicates of each concentration. The corresponding raw data are available from the PRIDE archive 

with the identifier PXD002099 (http://www.ebi.ac.uk/pride/archive/projects/PXD002099). The 

second dataset, published by Tabb et al., included triplicate LC-MS analyses of 0.25, 0.74 2.22, 6.67 

and 20 fmol/ UPS μL added to 60 ng of S. cerevisiae background proteins [27]. Raw data are available 

for download at the URL https://cptac-data-portal.georgetown.edu/cptac/study/showDetails/10424 

(sample set Orbi2). 

Statistics: For simplicity, the final quantitative LFQ results from duplicate analyses were averaged. 

Missing intensity values in PD output were converted to zero values. Statistical analysis and graphical 

data presentation were done using the software Graph Pad-Prism8 (GraphPad Software, San Diego, 

CA, USA). Venn diagrams were built with aid of the dedicated tool published online by the 
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Bioinformatic and Evolutionary Genomics group (VIB, Ghent University) available at the URL 

bioinformatics.psb.ugent.be/webtools/Venn/. 
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Fig. 1. Layout of the tested multiple search engines proteomic OpenMS-based pipeline. 
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Fig. 2. Results of LFQ analysis in DDASSQ workflow. Box-plot graphs on the left-hand side: UPS 

standard proteins (A, F) and S. cerevisiae background proteins (D, I) individual intensities 

quantified in samples Pursiheimo et al. (ref. [26]) and Tabb et al. (ref. [27], respectively). Graphs C 

and D: log-transformed LCMS UPS protein intensities. The number of identified spike-in UPS 

standard protein and of S. cerevisiae background proteins are reported in the corresponding 

graphs. Side box-plot graphs (B, E, G, L): pairwise comparison-based distribution of the correlation 

coefficients between experimental/theoretical UPS ratios across the tested dilutions for the two 

sets of proteins, UPS (B, F) and S. cerevisiae (E, L) (R-value computed from experimental data 

versus best R-value=1). 



www.proteomics-journal.com Page 39 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

39 

 

 



www.proteomics-journal.com Page 40 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

40 

 

Fig. 3. (A) Venn diagram showing the intersection of LFQ protein accessions quantified by DDASSQ, 

MaxQuant® (MQ) and Proteome DiscovererTM (PD). 
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Fig. 4. Comparison of DDASSQ, Proteome DiscovererTM (PD) and MaxQuant® (MQ) LFQ quantitative 

peptides/protein. Protein number n=1294 (shared protein accessions), ranking: DDASSQ. 
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Fig. 5. (A) Venn diagram showing the intersections of proteins quantified by the four peptide 

search engine combinations (see Table 2). 
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Table 1. Comparison of the main output characteristics of the proteomic tools run of mouse liver 

protein extracts. Statistics are representative of proteins quantified based on at least n=2 unique 

peptides. OpenMS, PD: Proteome DiscovererTM, MQ: MaxQuant® 

 

Tool  DDASSQ PD MQ 

    

Quantified proteins 3083 1422 1427 

Total peptides selected for 

quantification 

21287 9789 10392 

Peptide number (mean) 6.90 6.88 7.29 

Peptide number (median) 4.00 5.00 5.00 

Peptides/protein (max) 106 80 83 

LFQ zero values (shared 

proteins, fraction F2) 

1025 186 1123 

LFQ zero values (shared 

proteins, fraction F1) 

20 1 38 
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Table 2. Comparison of the main outputs generated by the OpenMS tool with different peptide 

search engine combinations from LC-MS data of trypsinized mouse liver protein extracts. IF: total 

intensity. 

 

Search 

engine(s) 

Novor MSGF + Novor X!Tandem + MSGF+ + 

Novor 

SpectraST + X!Tandem + 

MSGF+ + Novor 

Proteins     

     

Quantified 52 1607 1742 3083 

Mean score 3.27 20.92 20.25 22.33 

     

Peptides     

Total number 153 12111 13616 21287 

mean 2.94 7.54 8.01 6.90 

median 2 5 5 4 

max 14 87 93 106 
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IF1 (×1011) 0.08803 2.422 2.52 2.720 

IF2 (×1011) 0.0001316 0.1083 0.124 0.1736 

     

 

 

 


