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ScienceDirect
As climate-related crises increase globally, climate risk

financing is becoming an integral part of financial protection

and resilience building strategies of African countries. Drought-

induced crises result in devastating human impacts and high

costs for vulnerable countries, threatening longer-term

investments and development efforts. While earth observation

(EO) has been widely used for drought early warning, new

opportunities emerge from integrating EO data and methods

into index-based drought risk financing (IBDRF) instruments.

Such instruments aim at supporting an effective and timely

response during drought shocks and improving the resilience

of small-holder farmers and livestock keepers. This review

documents the current status, and discusses future prospects

and potential challenges for EO utilization in IBDRF

applications in sub-Saharan Africa. We focus on pastoral

systems, which are hotspots in terms of vulnerability to climate

and environmental change, food insecurity, poverty, and

conflicts. In these systems, EO-based IBDRF interventions are

rapidly scaling up as part of national and international risk

management strategies.
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Introduction
Crisis risk financing refers to mechanisms that aim at

reducing adverse socio-economic or ecological impacts of

potential crises [1�]. This can include paying to prevent
3 This terminology originates from insurance literature: adverse selection o

about their risk exposure that is not available to the insurance provider. Mora

their exposure to risk, leaving the insurer exposed to higher risk than had 
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and reduce the risk, or to prepare for and respond to a

shock. Climate risk financing (CRF) targets climate-

related shocks (e.g. drought, floods and heat waves)

and is becoming an integral part of climate risk manage-

ment frameworks as key components of financial protec-

tion strategic planning for low and middle income coun-

tries [2]. Multiple CRF approaches exist, including

market-based instruments (e.g. insurance schemes, cata-

strophic bonds and swaps), contingent financing (e.g.

credit), or budgetary tools (i.e. dedicated reserve funds

or contingency budgets). These approaches are all

designed to increase financial resilience to climate-related

crises, linking the response actions to pre-defined mech-

anisms for timely release of financial resources. In this

way, they aim at ensuring rapid and cost-effective prepa-

ration, assistance, recovery or reconstruction efforts.

Droughts, defined as periods with water deficit relative to

normal conditions, are one of the most disrupting natural

disasters, each year affecting millions of people world-

wide with devastating impacts [3,4]. Severe droughts

cause massive disruptions to national economies and

dramatic impacts on the livelihood and food security of

small-holder farmers and livestock keepers. Standard

responses to drought in African countries, such as human-

itarian support in the form of cash or food transfers, are

important instruments to support drought-affected vul-

nerable populations. However, these responses have

proven to be often too slow, cost-ineffective, and to foster

dependency rather than resilience, especially when not

integrated into holistic risk management strategies [2].

Among the different CRF instruments, index-based

approaches have gained considerable traction over the last

two decades, particularly for targeting drought shock

impacts on African small-holder farming systems. Index-

based drought risk financing (IBDRF) uses trigger mecha-

nisms that rely on a transparent and objectively measured

indicator of drought (i.e. the index). The underlying index

must be highly correlated with drought-related economic

losses to be useful in tracking, and, therefore, transferring,

the risk. Payouts are made when the index values fall below

a pre-defined threshold, normally derived from historic

index realizations. When compared to ex-post loss verifica-

tion (e.g. traditional insurance), IBDRF limits information

asymmetry issues, such as adverse selection and moral

hazards,3 reduces transaction and verification costs, and
ccurs when potential policyholders make decisions based on information

l hazard occurs when the policyholders engage in activities that increase

been assessed for premium rate determination.
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enables more effective and timely distribution of payouts.

However, these advantages come at the cost of the inher-

ently imperfect correlation between index and actual loss,

also known as basis risk [5].

Pastoral production systems dominate the African dry-

lands, cover about 43% of Africa’s land mass, and are the

main livelihood for about 268 million people in these

areas [6]. Drought is a distinctive feature and over mil-

lenia the pastoral livelihood developed to deal with this

[7]. However, particularly in SSA, the combination of

increasing rainfall variability [8] and other pressures (e.g.

changes in land use and tenure, population growth,

rangeland degradation [9]) is weakening the resilience

of pastoral communities and the effectiveness of tradi-

tional drought coping mechanisms (e.g. mobility, re-

stocking). Severe droughts can lead to catastrophic herd

losses in pastoral regions, and as such cause food insecu-

rity and poverty trap dynamics, and dramatically reduce

national GDPs of SSA countries [5]. Consequently, the

development and implementation of drought risk man-

agement strategies for pastoral regions, including IBDRF

initiatives, is a key component of the policy agendas of

development institutions and national governments.

The scarcity and poor quality of ground data and national

statistics in SSA pastoral regions [10] has made in most

cases Earth observation (EO) by satellites the only viable

option for designing IBDRF instruments for large-scale

implementation. The growing availability and increased

quality of long-term EO datasets of rainfall products and

vegetation indices [11�] have been instrumental in

designing indices that are thought to reliably represent

drought risks. Furthermore, the close interlinkage

between rangeland condition and impacts on productive

assets (i.e. livestock) and livelihoods has facilitated the

design of financial triggering mechanisms that link impact

to payouts. Therefore, datasets obtained through multi-

temporal satellite imagery are currently a key component

of IBDRF initiatives in pastoral regions.

However, whilst the scientific literature on drought mon-

itoring is vast, only a few studies reviewed the contribu-

tion of EO to insurance [12,13�], and currently no over-

view exists of the IBDRF initiatives, challenges, and

prospects in sub-Saharan Africa.

Evolution of IBDRF in pastoral Africa
During the last decade IBDRF initiatives in African

pastoral drylands have gained significant momentum, also

thanks to large international initiatives such as the InsuR-

esilience Investment Fund [14] and the Global Index-

Insurance Facility (GIIF). While for several years IBDRF

schemes have largely remained at the pilot level, con-

strained by the limited demand for retail micro-insurance

products [15,16], these schemes are now gradually cover-

ing larger areas, given their growing integration in
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country-wide social protection and drought risk manage-

ment programs. This caused a significant increase in

volume of financial transactions and a growing participa-

tion of international re-insurance companies, which facil-

itates risk transfer toward international financial markets,

and promotes larger investments by governments and

international organizations.

Table 1 summarizes operational IBDRF initiatives in

SSA.. These initiatives, initially launched as retail

micro-level index-insurance schemes (IBLI), more

recently have expanded their scope and modality of

implementation, including fully subsidized insurance

programs targeting vulnerable pastoralists (KLIP, SIIPE),

sovereign-level insurance schemes (ARC), and scalability

mechanisms of shock responsive safety nets programs

(HSNP, NUSAF). At the same time, IBRDF product

design evolved from indices designed to assess an

observed loss (i.e. the IBLI livestock mortality scheme),

thus triggering when drought is already impacting pasto-

ralist assets, to indices designed to identify deteriorating

forage condition, thus triggering at the earlier drought

stages, with the aim of supporting pastoralists to protect

their assets (i.e. livestock or livelihood) or countries

implementing early response actions.

While fully operational initiatives in pastoral areas are

concentrated largely in East Africa and, to a lesser extent,

in the Sahel, several insurance providers and organiza-

tions are launching similar IBDRF solutions on a retail

basis across SSA, including in Niger, Zambia and South

Africa. In addition, feasibility studies are being conducted

in Somalia, Senegal, Burkina Faso, and Mali. Thus les-

sons gathered from early implementation efforts are of

key relevance for sustainable scaling of IBDRF in SSA.

EO-based index design in operational IBDRF
schemes
Similar to most drought early warning systems [e.g. Refs.

17�,18,19], existing IBDRF schemes for pastoral systems

predominantly use vegetation indices or rainfall estimates

(RFE) as input (Table 1). These EO products should

meet the fundamental operational requirements for

IBDRF, which include 1) full transparency and accessi-

bility of the source data, 2) availability of historical records

for financial risk modelling and pricing of ideally 20 years

or more, 3) near real-time availability, and 4) an expected

remaining lifetime of at least a few years. Satellite-

derived RFE can provide a direct indication of meteoro-

logical drought, which largely determines water availabil-

ity in rangelands. While availability of drinking water is

important for livestock health, monitoring this for large

areas is cumbersome, given that much water for livestock

comes from wells or small water bodies that cannot easily

be monitored with EO data. RFEs are instead typically

used in IBDRF to estimate the available water for vege-

tation, for example using simple water-balance models.
Current Opinion in Environmental Sustainability 2021, 48:44–52
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Table 1

Summary of operational IBDRF programs targeting pastoral drylands, ordered chronologically with insurance programs listed first and

non-insurance programs at the bottom

Programa Years Scope Satelliteb

sensor/indicator

Indexc Area Households (nr)

IBLI 2010�2015 Retail micro-

insurance for

drought related

livestock mortality

AVHRR NDVI Livestock mortality Marsabit (Kenya),

Borana (Ethiopia)

5983

IBLI 2015 – present Retail micro-

insurance for

asset protection

MODIS NDVI z-score seasonal NDVI Northern Kenya

and Borana

(Ethiopia)

7000

KLIP 2015 – present Subsidized

insurance for

asset protection

MODIS NDVI z-score seasonal NDVI Northern and

Eastern Kenya

18 000

SIIPE 2017- present Subsidized

insurance for

asset protection

MODIS NDVI z-score seasonal NDVI Somali region

(Ethiopia)

5000

ARC 2017- present Sovereign level

insurance

RFE – multiple

datasets

WRSI (RFE based) East Africa and

Sahel

N/ad

ARC 2019- present Sovereign level

insurance

MODIS NDVI z-score NDVI or VCI East Africa and

Sahel

N/ad

HSNP 2015- present Social protection

scalability

mechamism

MODIS NDVI VCI running average Northern Kenya >100 000

NUSAF 2017- present Social protection

scalability

mechanism

MODIS NDVI NDVI percent anomaly Karamoja

(Uganda)

25 000

a IBLI = Index-based Livestock Insurance, KLIP = Kenyan Livestock Insurance Program, SIIPE = Satellite Index-Insurance for Pastoralists in Ethiopia,

ARC = African Risk Capacity, HSNP = Hunger Safety Net Program, NUSAF = Northern Uganda Social Action Fund.
b AVHRR = Advanced Very High Resolution Radiometer. MODIS = Moderate Resolution Imaging Spectroradiometer, NDVI = Normalized Difference

Vegetation Index, RFE = Rainfall Estimates (using satellite data).
c Z-score is sometimes referred to as standard score, WRSI = Water Requirement Satisfaction Index, VCI = Vegetation Condition Index.
d As ARC is a sovereign-level insurance scheme, the recipient of the payout is the country and the number of households covered will depend on the

country’s contingency plans. ARC is offering insurance cover for rangelands in the entire Sahel and Horn of Africa and plans to offer it also in Central

and Southern Africa. The NDVI product has been launched in Chad, Niger, Mali, Mauritania, and Kenya.
The water requirement satisfaction index (WRSI) used

by ARC is such a model; it estimates evapotranspiration

demands of vegetation and compares this with a simple

‘bucket’ model of the soil that gets filled with rainfall

[20,21]. Two main drawbacks exist when using rainfall-

based indices for large-scale pastoral IBDRF: 1) despite

the growing availability of gridded rainfall products, the

quality, accessibility, and density of rainfall station data

in pastoral SSA is generally low [22,23], resulting in

unknown or poor accuracies in these areas [24]; 2) the

link between rainfall and the vegetation’s water avail-

ability is complex, and depends on vegetation character-

istics, soil, and rainfall distribution [25,26], which cannot

be characterized sufficiently with 10-daily rainfall sums

[27].

For extensive pastoral systems, forage availability is a

key determinant of livestock health, as alternative feed

resources are largely unavailable or inaccessible. To

overcome drawbacks of RFEs, optical sensors onboard

satellites can be used to measure the vegetation’s reflec-

tance. Dense healthy vegetation reflects much in near

infrared (NIR), and little in red wavelengths, and spec-

tral vegetation indices, like the normalized difference
Current Opinion in Environmental Sustainability 2021, 48:44–52 
vegetation index (NDVI), use this to monitor vegetation

condition. For drought monitoring, NDVI images from

coarse-resolution satellites (250 m and up) are generally

used, because 1) long time series exist to describe long-

term variability in forage conditions, 2) their daily data

collections allow for more cloud-free observations to

describe vegetation changes throughout the season,

and 3) documented evidence exists for a strong relation-

ship between rangeland biomass and NDVI [28,29].

Required pre-processing steps to effectively use NDVI

for anomaly analysis include temporal compositing

[transforming daily to, e.g. 10-day data, keeping the

best-quality observation for each pixel; 30], and smooth-

ing to further reduce atmospheric effects [31].

To transform NDVI or alternative drought indices into a

useful index for pastoral IBDRF schemes, three steps are

required:

1) Spatial aggregation; geographic units are normally

larger than grid cells, both for operational reasons

and to reflect that herds move. Aggregation within

units generally incorporates a mask of where range-

lands occur.
www.sciencedirect.com
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2) Temporal aggregation; most schemes aim to assess

seasonal forage scarcity, requiring expert or EO-

derived [32] knowledge on rainfall/vegetation

seasonality.

3) Normalization to compare the current index value

against historic index realizations in past years. Multiple

options exist, such as for example z-scoring (subtract

mean and divide by standard deviation), linear scaling

between minimum and maximum historic values

[i.e. the vegetation condition index, or VCI; 33], or

percentile calculation.

The term ‘index design’ in IBDRF refers to: a) the choice

of input data, b) the precise methods for performing the

above-mentioned three steps, c) the sequencing of these

steps, and d) the testing of the resulting index against

drought-related loss estimates. Eventually, the choice for

a design will at least partly depend on the IBDRF

instrument’s purpose, satisfaction of stakeholders on his-

toric and current index readings, and (scientific) back-

ground of the ‘designers’. Given that droughts normally

affect large regions and are simultaneously characterized

by reduced precipitation and vegetation growth, it is well

possible that alternative designs provide similar index

outcomes during main drought events.

Opportunities and challenges for EO
contribution to IBDRF
Recent targeted research efforts for EO support to inno-

vative design of IBRDF solutions, made in the framework

of the programs listed in Table 1, helped to remove

critical barriers for scaling IBDRF initiatives in pastoral

drylands. Here, we discuss four emerging trends in

IBDRF where the demand for innovative solutions from

EO research is strong. While we argue that the quality of

IBDRF product design differs and that EO-aided solu-

tions can play an important role to improve operational

programs, we also emphasize that each solution is con-

text-specific and needs to consider the trade-off between

a) timing and accuracy of the assessment, b) cost-effec-

tiveness of the response action, and c) the complexity of

the interaction between drought shocks and the socio-

ecological pastoral systems (Figure 1) with the goal of

mitigating impacts and speeding-up recovery in the short

term, while building long-term social and environmental

resilience.

Emerging EO data products for IBDRF

EO data products used for IBDRF index design in

pastoral areas have evolved over time in response to

stakeholder feedbacks and with emerging technologies.

For example, the ARC product for extensive rangelands

has recently transitioned from WRSI to NDVI (Table 1),

meeting the demand of key stakeholders. However,

besides vegetation index (e.g. NDVI) products that pro-

vide a direct measure of forage status, drought character-

istics can be obtained, for example, from EO-derived
www.sciencedirect.com 
precipitation [35], soil moisture [36,37], or evapotranspi-

ration [38] products [for reviews on EO drought monitor-

ing options see also Refs. 11�,39]. A variety of these

products have already been proposed and in some cases

integrated into drought index-insurance pilot projects for

crops in Africa, for example, through data service provi-

sion by commercial EO companies [e.g. Refs. 40–43].

These efforts provide promising alternative drought indi-

ces for innovative IBDRF design by addressing multiple

phases of drought progression and thus merit further

analysis.

IBDRF design could also take advantage of the continu-

ous stream of free 10�30 m resolution EO data that are

provided by satellites such as Sentinel-1, Sentinel-2, and

Landsat-8. Given their high observation frequency,

timely fine-scale estimates of seasonality and forage con-

ditions can be provided [44], even if cloud cover remains a

concern for short vegetation seasons [45]. Arguably pas-

toral IBDRF may not require fine-scale data because

droughts generally affect large areas, but where drought

impacts differ due to greater landscape variability (e.g. in

agro-pastoral systems) they could prove beneficial. As

historical archives of 10�30 m resolution data are build-

ing, and tools to analyze resulting large data amounts

become commonplace [46], finer-scale drought analysis

will likely find its way into IBDRF.

Remote sensing advances for improved product design

The spatial component of basis risk (i.e. impacts are not

equally distributed within a geographic insurance unit) is

a recurrent issue for IBDRF products in pastoral areas, as

administrative units cannot fully reflect the agro-ecologi-

cal variability and herd mobility patterns. This type of

basis risk has been reported for some insurance units in

Kenya and Ethiopia, especially at the fringe between

agro-pastoral and extensive pastoral systems. To deal

with this issue, administrative units could be replaced

by more meaningful ecological units, for example,

defined based on similar temporal behavior of NDVI

[47]. In addition, high resolution EO data can help to

improve rangeland mapping and characterization [48],

allowing to better spatially focus coarser-resolution

drought indices on the areas within insurance units that

matter most for forage production.

Payout timing and temporal aggregation is another critical

component of product design. Triggering early action for

expected adverse events can make disaster response more

cost-effective [49�,61]. Because drought is a slow-onset

shock, indicators can be designed that detect early stages

of the drought progression [11�]. EO has supported the

anticipation of the response by effectively characterizing

between-year variability of forage conditions earlier in the

season through shortening temporal aggregation win-

dows, with the aim of designing asset protection insur-

ance products [49�,62,63]. This has been a fundamental
Current Opinion in Environmental Sustainability 2021, 48:44–52
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Figure 1

DROUGHT
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TRIGGER TIMING

Current Opinion in Environmental Sustainability

Ground and satellite EO applications can contribute to monitor drought progression and its ecological and socio-economic impacts to support

context-specific design of IBDRF instruments. The upper part of the Figure illustrates the progression of drought impacts following Mishra and

Singh [34]. While drought evolves from meteorological to socio-economic, IBRDF design needs to consider trade-offs to maximize the social-

ecological benefits, while accounting for economic costs to ascertain long-term sustainability of the instruments. For example, an EO-based index

designed with an early trigger is expected to be more accurate in detecting meteorological or agricultural drought, but might be less effective in

assessing socio-economic impacts. This source of basis risk may (or may not) be counterbalanced by the savings in economic costs associated

with asset protection and early response. These assumptions are context-specific and product quality assessment is thus fundamental to evaluate

trade-offs.
step for the IBLI and KLIP programs to increase the

uptake and gain political support toward geographic scal-

ing. However, indices that allow for early triggering must

also be backed by efficient payout delivery mechanisms

to avoid negative impacts on program sustainability.

More recently, forecasting approaches based on time series

analysis and machine learning techniques have been devel-

oped to predict time-integrated (seasonal) NDVI anomalies

from lagged NDVI, rainfall, and climate indices [64–68].

While research on drought forecasting models is gaining

momentum, particularly for early warning systems (e.g.

HSNP, Table 1), the implementation of forecasts into

IBDRF instruments ischallenging given the forecasts’ large

uncertainty at local scales and longer time lags [69]. Using

forecasts as a triggering index could thus increase basis risk

and lead to operational implementation challenges (e.g. in

case of false alarm and unneeded response) [61,70]. More-

over, deciding on thresholds for response triggering could

be complex because this relates not only to the level of the

impact, but also to its probability. A different challenge

emerges when forecasts are not directly used but could

nonetheless affect IBDRF instruments such as insurance.
Current Opinion in Environmental Sustainability 2021, 48:44–52 
For example, since insurance premiums are based on his-

torical realizations of the index, reasonably accurate fore-

casts made before insurance sales [possibly through indige-

nous indicators: 71] could lead to adverse selection if

prospective purchasers have information about expected

payouts that the product’s pricing does not account for [e.g.

Ref. 15]. Overall, while anticipatory risk financing based on

forecasts is a promising innovation in IBDRF, its opera-

tional implementation would require a careful assessment

of associated risks and effective harmonization with other

IBDRF instruments.

Quality assurance of IBDRF

Basis risk remains a critical concern for the quality and

sustainability of IBDRF schemes. For operational initia-

tives a few recent studies compared results from multiple

index designs [41,47,49�,50]. Notwithstanding, these

studies highlighted that evaluation of the resulting indi-

ces remains complex given the scarcity of and/or difficulty

to collect good-quality in-situ data on drought outcomes.

While EO product development and improved index

design have potential to reduce basis risk, ultimately it

remains an empirical question whether this potential is
www.sciencedirect.com
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realized. This question goes beyond the traditional accu-

racy assessment approaches in the EO domain (e.g. an

evaluation if soil moisture is accurately represented in a

soil moisture product), as it should encompass also the

socio-economic value of the proposed solution [49�], and

be formalized through quality metrics, minimum stan-

dards and robust assessment frameworks [1�,51]. The

overarching goal should be to design rigorous quantitative

metrics and approaches to assess and compare the utility

of IBDRF interventions.

A main challenge is collecting and analyzing relevant

reference data on drought outcomes, given the limited

formal data sets [52]. Potential data sources include

multi-year forage biomass measurements [53], drought

recall exercises [52], and repetitive household surveys on

drought outcomes such as livestock mortality [49�] or child

nutrition [54]. Given the cost-intensive and labor-intensive

nature of collecting such data, ground-based EO

approaches can provide a useful addition. A good example

is the repetitive observation of the same vegetation, either

by permanent cameras [55,56], or through crowdsourcing

platforms [57]. For crops, this has already led to the idea and

implementation of ‘picture-based-insurance’ whereby

farmers repeatedly collect pictures of their fields for verifi-

cationof insurance claims [58].This ideacouldbeextended

to rangeland and livestock conditions, possibly taking

advantage of computer-vision based automation of body

scoring techniques [59,60]. Increased efforts in reference

data collection are urgently needed to answer the empirical

question and provide quality insurance products.

Socio-economic and environmental impact evaluation

With the geographic expansion and growing number of

households covered, the need for impact evaluation of

IBDRF initiatives has increased. Traditionally impact eval-

uation of drought crises on small-holder farmers and live-

stock keepers largely focused on socio-economic factors

through mixed qualitative-quantitative household-level

surveys [72]. However, the high costs and complexity of

such surveys have prevented a systematic integration of

impact assessment studies inIBDRFinitiatives, so thatonly

few robust assessments are available in pastoral regions [e.g.

Ref. 73�]. In addition, environmental impacts have been

poorly consideredsofar,whilescaling IBDRF interventions

to a large number of households might have relevant

ecological impacts. For example, reduced herd losses

may result in increased grazing pressure on rangelands

[74�,75], although empirical studies suggest on the contrary

that insured pastoralists keep smaller herds because they

reduce their use of livestock as precautionary savings [76].

EO approaches for rangeland health monitoring are well

established [e.g. Ref. 77]. However, only few studies,

focused on land restoration, have integrated these

approaches into impact assessment of large programs in

drylands [78,79]. Recent literature also showed potential
www.sciencedirect.com 
for assessing food security and household wealth

[80,81�,82], but pointed out that satellite EO capacity

to directly monitor socio-economic indicators of house-

hold wellbeing and rapid land use dynamics during

drought events (e.g. land accessibility, land tenure

changes, migration) is limited. Impact evaluation could

be improved by combining satellite EO information with

in-situ collected environmental and social-economic data

[83], which are increasingly available via mobile and

crowdsourcing platforms also in rural Africa [e.g. Refs.

84�,85,86]. This can be supported by advances in machine

learning algorithms, allowing to extract patterns and

understand spatial connections from diverse data sources

[87]. Data driven approaches should be, however, used

with caution and framed within a robust set of causal

hypotheses, taking into account the cross-scale interac-

tions between physical and socio-economic factors [81�].

Conclusions
IBDRF initiatives are scaling up as part of the policy

agendas of SSA countries and development organizations

on resilience building, poverty reduction, and sustainable

development. EO plays a key role in sustaining this trend

in pastoral drylands, with the potential of significant

societal and policy impact in the region. Innovations from

ground and satellite EO technologies could contribute to

design more accurate, cost-effective, and harmonized

drought risk financing programs, as well as to assess their

effectiveness during shocks and their longer-term

impacts. However, this can only be achieved if the EO

community does not limit its role to providing technolog-

ical solutions and services, but rather becomes an integral

part of the interdisciplinary framework to address drought

risk management in complex socio-ecological systems,

understanding synergies and trade-offs between research,

operational implementation, and policy formulation.
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