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Despite the increasing knowledge of pathophysiological mechanisms underlying the onset
of type 1 diabetes (T1D), the quest for therapeutic options capable of delaying/reverting
the diseases is still ongoing. Among all strategies currently tested in T1D, the use of
hematopoietic stem cell (HSC)-based approaches and of teplizumab, showed the most
encouraging results. Few clinical trials have already demonstrated the beneficial effects of
HSCs in T1D, while the durability of the effect is yet to be established. Investigators are
also trying to understand whether the use of selected and better-characterized HSCs
subsets may provide more benefits with less risks. Interestingly, ex vivo manipulated
HSCs showed promising results in murine models and the recent introduction of the
humanized mouse models accelerated the translational potentials of such studies and
their final road to clinic. Indeed, immunomodulatory as well as trafficking abilities can be
enhanced in genetically modulated HSCs and genetically engineered HSCs may be
viewed as a novel “biologic” therapy, to be further tested and explored in T1D and in other
autoimmune/immune-related disorders.

Keywords: type 1 diabetes, hematopoietic stem cells, autoimmune response, NOD mouse model,
genetic modulation
INTRODUCTION

Hematopoietic stem cells (HSCs) have been extensively used as an effective therapeutic approach in
hematological malignancies and have demonstrated to be safe in human subjects (1). Over the last
10 years, several studies documented the extraordinary immunoregulatory properties of HSCs,
which render them a potential useful tool in the fight for immune-mediated diseases (2). Despite
being in limited number in the circulating blood of healthy individuals, HSCs are extremely potent
and able to suppress the immune system response, as several in vitro and in vivo studies have shown
(2). Based on these premises, the use of HSCs has been tested in numerous autoimmune diseases
such as type 1 diabetes (T1D), multiple sclerosis (MS), systemic sclerosis, systemic lupus
erythematosus and Chron’s disease, with relevant benefits (3–6). Indeed, HSCs may reset the
immune response, thus reshaping the chronic derangement of the immune system to a more self-
tolerant state (7, 8). Interestingly, it has been also demonstrated that the bone marrow-derived and
blood HSCs are altered in some autoimmune conditions such as T1D and MS, with HSCs being
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scanty in the circulation and often unable to exploit their
immunoregulatory function (9–11). Here we are presenting
major advances in the preclinical and clinical studies of HSCs
in T1D. We report recent insights coming from novel T1D in
vivo research and provide an update on the most relevant clinical
studies that have been performed by using HSCs in human
subjects with T1D. In this perspective, we envision to consider
HCSs as a novel “biologic”, which can be personalized and
modeled, as a novel relevant therapeutic option in T1D.
HSCs IN TYPE 1 DIABETES: THE
MURINE SCENARIO

The rationale behind the use of HSCs in autoimmune disease
such as T1D has been extensively studied in the last decade by
taking advantage of the NOD mouse model. This mouse
spontaneously develops autoimmune diabetes at the age of 12–
15 weeks, with severe hyperglycemia (12, 13). However, signs of
activation of the immune system against pancreatic islets are
already visible at 8–10 weeks of age when the NODmouse shows
insulitis with an abundant T cell infiltrate (12). Over the last two
decades, two major HSCs-based strategies have been pursued to
prevent the onset of experimental autoimmune diabetes in
murine models: (i) HSCs have been infused to induce mixed
chimerism and to re-establish the peripheral deletion of
autoreactive T cells, (ii) HSCs have been genetically engineered
to reshape the immune reservoir and facilitate tolerance towards
auto-antigens. The use of HSCs infusion was extremely
successful in preventing diabetes onset in NOD mice through
the induction of a mixed chimerism. Indeed, a deletion of
autoreactive T cells generated at the thymus level (14) as well
as the re-establishment of immune tolerance in the periphery
were obtained. Furthermore, in the presence of a tolerogenic
network between donor Regulatory T cells (Tregs) and host-
donor dendritic cells (DCs), costimulatory pathways, particularly
PDL-1, play a major role (15). However, the HSC-mediated
chimerism, despite effective in reshaping the autoimmune
response, requires the use of myeloablative agents/approaches,
which may further limit translational applications (16, 17). Given
that common polymorphisms exist in MHC class II in T1D
patients and in NOD mice, which confer a higher risk of
developing T1D, genetically engineering of single HSCs to
express the proper and protective MHC class II, held great
promises in the new therapies in T1D (18). Indeed, the
introduction of new protective MHC class II through lentiviral
delivery in HSCs of NOD mice was able to prevent the onset of
T1D, mainly through the deletion of autoreactive T cells which
did not engage in the MHC class II-mediated response (19, 20).
While this approach was again limited by the need of immune
ablation for the HSCs infusion, which is feasible in NOD mice
but at high risk in humans, it paved the way for exploring genetic
engineering of HSCs to better exploit their multiple properties in
autoimmunity. Ex vivo genetic manipulation of NOD HSCs, to
encode proinsulin and transgenically target MHC class II,
successfully prevented T1D onset (21, 22). Also, HSCs can be
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engineered for tolerogenic purposes such as those aimed at
inducing tolerance to autoantigens or at replacing genetic
alleles associated with increased disease susceptibility (23). In
view of this, some studies explored whether HSCs in diabetic
NOD mice are altered and might be fixed through genetic
engineering or pharmacological modulation. Elevated levels of
CXCL12 (SDF-1) in bone marrow-HSCs of NOD mice have
been suggested to alter trafficking of HSCs and Tregs in the
periphery, thus favoring the onset of T1D (24). The use of
ADAM3100, which antagonizes the CXCL12 receptor SDF-1,
was associated with increased mobilization of HSCs and T cells,
and delayed onset of experimental autoimmune diabetes in
NOD mice (24). Recently, a defect in PDL-1 expression has
been demonstrated in HSCs of NOD mice, which was
associated with a reduced immunomodulatory function (9, 25).
Genetic and pharmacological modulation of PDL-1 on HSCs
restored the HSCs immunomodulatory properties, reset the
immune balance and prevented the onset of T1D. In summary,
all the aforementioned studies support the use of ex vivo
manipulation of HSCs in the NOD mouse model as a
successful tool to delay the onset of autoimmune diabetes.
Genetic engineering of HSCs has been recently employed in a
humanized mouse model in which ex vivo manipulated human
HSCs successfully restored the development of functional Tregs
and rescued the autoimmune IPEX syndrome (26). Recently, the
introduction of the NOD-Rag1null IL2rgnull Ins2Akita (NRG-
Akita) mouse, a humanized mouse model available in diabetes
research which develops spontaneous hyperglycemia, fostered
studies in the field (27, 28). This model, in which human
immune cells can be infused without being rejected, may be
extremely useful in testing the potency of newly genetically
engineered human HSCs in the diabetes prevention.
HSCs IN TYPE 1 DIABETES:
THE HUMAN LANDSCAPE

In the last 20 years, autologous hematopoietic stem cells
transplantation (AHSCT) has been used in several clinical
trials to treat refractory autoimmune disease such as multiple
sclerosis (MS), systemic sclerosis (SSc), systemic lupus
erythematosus (SLE), Crohn’s disease (CD), type 1 diabetes
(T1D) and a range of other immune-mediated disorders (29).
With regard to patients with T1D, the use of AHSCT obtained
significant insulin independence and a well-preserved
glycometabolic control in the short and mid-term follow-up
(Figure 1A and Table 1) (17, 31, 34, 35). Also, an increase in C-
peptide levels and C-peptide area under the curve (AUC)
measurement were detectable in AHSCT-treated T1D patients
as compared to baseline, and only minor adverse events were
registered in the mid-term (25, 36). A reduction of the T-helper-
1 and T-helper-17 subsets was also observed in the short-term
(37). Interestingly, a cost-effectiveness analysis conducted in
patients with T1D undergoing AHSCT as compared to patients
with T1D remaining on insulin therapy demonstrated that
AHSCT provides some benefits over time depending on the
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duration of preserved glycated hemoglobin levels achieved with
AHSCT, but overall being cost-effective for treatment of T1D if
the AHSCT lasts from 3 to 8 years (38). Long-term follow-up
analyses for AHSCT-treated T1D patients were only reported for
a few studies, due to the high number of patients lost at follow-up
and the worldwide spreading of the studies, which also
accounted for a small sample size, missed randomization
process, lack in standardized procedures and enrolment of a
heterogenous patients’ population (39). Despite all these
limitations, a minor percentage of relapse in the autoimmune
disease was evident between 4 and 6 years of follow-up after the
AHSCT, which varied among centers and lead few patients to
resume insulin treatment (40, 41). Moreover, a subgroup of
AHSCT-treated patients exhibited a prolonged remission and
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remained insulin independent for more than 4 years, thus
leading to hypothesize that the response to the AHSCT
treatment may differ in patients with T1D (17, 35, 42). Indeed,
Malmegrim and Colleagues demonstrated that a different
immune profile exists between patients experiencing short and
prolonged remission, with the latter exhibiting lower frequencies
of effector-memory CD4 T cells and islet-specific autoreactive
CD8 T cells, paralleled by a detectable expansion of
immunoregulatory T cells (35). Moreover, the favorable
outcome of AHSCT in T1D was also associated with a less
islet-specific autoreactive immune profile at baseline, thus
delineating a subgroup of patients with T1D who may benefit
the most from an AHSCT-based strategy (43, 44). This also
emphasized the importance of the conditioning regimen, which
TABLE 1 | Summary of main characteristics, clinical outcomes and results obtained in the clinical studies conducted in T1D and registered in ClinicalTrials.gov.

Clinical Study N of pts Follow-up
Type of study

Clinical outcomes Main results

Autologous Hematopoietic Stem Cell Transplantation for Early
Onset Type 1 Diabetes (NCT00807651)

28 pts T1D 3 years
Monocentric
prospective

EIR, HbA1c, C-peptide and
anti-GAD level

Insulin independence: 53.6% Increased
C-peptide level (30)

Safety and Efficacy Study of Autologous Stem Cell
Transplantation for Early Onset Type I Diabetes Mellitus
(NCT00315133)

23 pts T1D 5 years
Monocentric
prospective

C-peptide level Morbidity/
mortality EIR changes HbA1c
level

Insulin independent: 52% Low EIR: 35%;
C-peptide AUC increase, HbA1c <7% (31)

Hematopoietic Stem Cell Transplantation in Type 1 Diabetes
Mellitus (NCT01121029)

15 pts T1D 3 years
Monocentric
prospective

EIR C-peptide and HbA1C Insulin independent: 44% HbA1c decrease:
2.3% Mortality: 0% (32)

Efficacy and Safety Study of Autologous Hematopoietic Stem
Cell Transplantation to Treat New Onset Type 1 Diabetes
(NCT01341899)

13 pts T1D 4 years
Monocentric
prospective

C-peptide and HbA1C Islet
autoantibodies Immune profile
Survival

3/13 pts: no insulin 11/13 pts low EIR,
reduced HbA1C low autoantibodies increased
C-peptide (33)

Stem Cell Mobilization (Plerixafor) and Immunologic Reset in
Type 1 Diabetes (T1DM) (NCT03182426)

60 pts T1D 2 years
Monocentric
prospective

C-peptide AUC, EIR HbA1C
<7% Hypoglycemia
Autoantibodies titer

Not available
pts, patients; T1D, type 1 diabetes; AUC, area under the curve.
A B

FIGURE 1 | Complete/partial remission of type 1 diabetes obtained with AHSCT in the long-term. Proposed genetic engineered HSC-based approach to target type
1 diabetes. (A) Proportion of patients with T1D undergoing AHSCT who achieved complete remission (insulin independence) and partial remission (low dose
exogenous insulin requirement) at the latest timepoint analyzed within each clinical study registered in ClinicalTrials.gov available as publication. (B) Use of genetically
engineered HSCs to target T1D: proposed approach. T1D, type 1 diabetes; AHSCT, autologous hematopoietic stem cell transplantation.
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may need to be employed in association with AHSCT in patients
with a high level of autoimmune response. In summary, results of
the use of HSC-based approach, primarily the AHSCT, in
patients with T1D (Table 1), suggest two major observations:
(i) AHSCT treatment has to be limited to a subgroup of T1D
patients and it requires high-level immunosuppression to
obtain long-term effect, and (ii) the immune profile of T1D
patients plays a central role in the achievement of long-term
insulin-independence when using HSC-based strategies.
Therefore, the infusion of a subset of HSCs, rather than the
whole HSCs pool, such as in AHSCT, endowed with
immunoregulatory properties may provide additional benefits
in terms of balancing autoimmunity and achieving the proper
clinical and metabolic outcomes.

CONCLUSIONS AND FUTURE
DIRECTIONS

The use of HSCs has hold great promises in the treatment of
autoimmune diabetes, however, in the last decade. The results
obtained in clinical trials with the use of AHSCT in T1D suggest
a potential novel approach to treat autoimmune diseases, despite
all the aforementioned limitations. The use of a selected subset of
HSCs endowed with immunoregulatory properties, without the
need of additional immunosuppressive agents remains
unexplored so far and deserves more investigation and testing
from the scientific community. Patients with T1D who may
benefit the most from this therapeutic approach need to be
carefully identified, probably based on disease stages, degree of
cellular and humoral autoimmune response, presence or not of
diabetic ketoacidosis (17). The recent findings on the use
of teplizumab in patients at risk for T1D (45) confirmed that
immune ablation aimed at preventing T1D onset is a hot topic.
HSCs, endowed with immunomodulatory properties, may offer a
potent immunoregulatory effect without inducing T lymphocytes
depletion, which is commonly observed with teplizumab. Indeed,
several studies demonstrated that in absence of “healthy” HSCs
central tolerance may be difficulty obtained. Autoimmune
Frontiers in Immunology | www.frontiersin.org 4
disorders, particularly type 1 diabetes, are associated with
altered HSCs, which fail in exerting their immunomodulatory
properties. Strategies aimed at targeting this defect successfully
delayed diabetes onset in murine models. Feasibility and
effectiveness in of the ex vivo manipulation and genetic
engineering of HSCs are well-established in mouse models,
while studies on safety for translational purposes are still
required. In view of this, the use of humanized mouse model
may accelerate the translation from murine experiments to
human studies. The outstanding results collected in the past
and ongoing clinical trials are encouraging in pursuing the
research around the use of genetic engineered-HSCS in type 1
diabetes. Therefore, in our opinion, genetic modulation to reset
HSCs physiological function, may find an interesting field of
application not only in type 1 diabetes (Figure 1B) but in other
autoimmune conditions too. Finally, in the era of the
development of biologic therapy to treat immune-mediated
diseases, we envision genetically engineered HSCs as a novel
“biologic” agent and a “natural immunosuppressant” to be
considered in the portfolio of alternative therapeutic options in
type 1 diabetes and autoimmune diseases.
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