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A B S T R A C T

The cultivation of marginal lands for bioenergy production has recently become a topic of research interest for
the agronomic and agricultural economy scientific communities. The growing availability of arable land in the
Mediterranean regions, as a consequence of the decline of cereal cropping systems and grain legume, provides
ample opportunities for performing successful feedstock production on unmanaged areas. This paper seeks to
capture and analyze ongoing and emerging questions concerning bioenergy production on marginal lands in the
Mediterranean area in a framework of sustainability indicators. A qualitative methodology was adopted to
evaluate the effectiveness of eight critical issues that bio-energy developers, scholars and policymakers should
consider in terms of agronomic, techno-economic and methodological practices for growing bioenergy feedstock.
The issues investigated on selected case studies are: Greenhouse gas emissions; soil quality; land restoration and
phytoremediation capacity; water use and efficiency; biodiversity; land use/cover changes; farmers’ willingness
and acceptance of new agro-system, and profitability of value chain. Starting from an in-depth analysis of the
definition of marginal land from the perspective of ecosystem service cascade, we synthesize how these chal-
lenges are nowadays addressed and which are the key bottlenecks, trends and potential directions for guiding
future research into bioenergy production in the Mediterranean regions. The findings of this study suggest that
dedicated energy crops can be grown on marginal lands with substantial positive effects in terms of sustainability
aspects, although more efforts should be carried out through agronomic research especially on water use effi-
ciency and biodiversity conservation, as well as by national and EU institutions and policies for promoting
economic opportunities and integration with surrounding agro-ecosystems and farmers’ involvement.
Developing a site-specific landscape design with the use of Life Cycle Assessment and certification schemes with
sustainability indicators is of primary importance for the effective bioenergy production on marginal lands.

1. Introduction

As a resource base for the bioeconomy, agricultural biomass pro-
duction plays a pivotal role in the production of food and feed, as well

as raw materials for a number of end-products in biorefineries [1]. In
recent years, several international organizations, governmental in-
stitutions, researchers and experts have advocated and promoted the
cultivation of biomass for energy purposes (bioenergy) on marginal
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lands, as a compromise for resolving the competing claims on tradi-
tional food production on agricultural land, and a viable pathway to-
wards a sustainable and low-carbon society [2–9]. In this sense, gov-
ernments promoted ambitious policies and development programs
designed to foster and adapt dedicated bioenergy crops by increasing
their yield, quality, and ability to adapt to the conditions found on
marginal lands [10]. Meanwhile, driven by these mandates, the crop-
land footprint area related to European Union (EU) bioenergy is pro-
jected to grow to 14.3 Mha in 2020 [11]. Whereas EU farmers increased
rapeseed area to 6.7 Mha in 2017/18 (mainly biodiesel driven) [12]
and over 3 million tonnes palm oil feedstock are expected to be im-
ported in 2020, mainly from Malaysia, China and Indonesia [13].

Nonetheless, there is a particular concern for the so called ‘food,
energy, and environment trilemma’ [14] that the production of bioe-
nergy will have on global greenhouse-gas emission, in a post-fossil-fuel
world with an increasing demand and competition for land resources
[15]. In addition, questions have been raised about the trade-offs be-
tween food production and bioenergy (food vs. fuel controversy), in a
common debate regarding food security and uncertain availability,
access, use, and stability of food to sustain humanity [16]. Furthermore,
significant challenges have emerged on the transitions to bioenergy
crops in relation to environmental issues such as the impact on land use
changes (and indirect land use changes), water resources, biodiversity
and habitat conservation [17,18].

A key open issue concerns how to best allocate these crops within
traditional agricultural systems, resolving at the field scale the con-
troversies on land use scenarios (land sharing vs. land sparing) [19], but
at the same time preserving and enhancing ecosystem services in a
framework of new nature-based solutions [20], to turn environmental,
social and economic challenges into innovation opportunities. Although
this is a global debate, new and smart opportunities and solutions are
urgent, especially for the Mediterranean agricultural systems and
farmers, considering that the expected effects of climate change to 2050
could result in much lower farm net incomes in Southern regions
compared to Northern regions [6,21].

Despite the growing momentum in support of marginal lands for
producing biomass in Mediterranean regions, landscape planners, pol-
icymakers and decision-makers are still poorly equipped to evaluate
and thoughtfully integrate bioenergy crops into sustainable farming
projects on drought-prone environments.

Up to now, previous efforts have been driven mainly by prevailing
economic analyses and potential feedstock production evaluations
covering temperate climates [5,22–24]. In these contexts, a suite of
effective indicators and institutional frameworks were developed for
assessing and measuring the sustainable production of bioenergy. They
are intended to provide stakeholders with a set of analytical tools for
policy decision making, management strategies’ design and alternative
value chains comparative analyses. The most widely known and re-
cognized tools for supporting the decision-making process include in-
dicators proposed by the Global Bioenergy Partnership (GBEP) [2], the
Roundtable on Sustainable Biomaterials [25], the Council on Sustain-
able Biomass Production [26], the International Organization for
Standardization Sustainability criteria for bioenergy [27], and the In-
ternational Sustainability and Carbon Certification [28].

At the same time, the increasing need to account for linkages among
dedicated energy crops on under-utilized land, ecosystem services (or
disservices) and environmental impacts, has stimulated in recent years
a growing number of cross-sectional studies and reviews [5,17,29].
These studies suggest in most cases positive outcomes in terms of bio-
mass potential and input management, biodiversity and ecosystem
service provision, while in other studies discrepancies or neutral effects
are reported [30–33]. However, the majority of research studies on
feedstock production to date have focused on Atlantic and continental
environments (e.g., USA, Canada, North and Central Europe). In addi-
tion, these studies mainly considered environmental and agronomic
aspects, paying too little attention to relevant social and economic

perspectives. On the contrary, only few studies have investigated and
synthesized the key challenges and issues on sustainable developing
feedstock supply chain in traditional cropping systems in Southern
Europe, which are mainly based on cereal based rotations, forage and
horticultural crops [34]. In fact, the expansion of monoculture planta-
tions in drylands could represent a serious threat specifically for water
use and availability, soil erosion and land degradation. In relation to
energy crops, recent EU projects such as OPTIMA, FORBIO, SEEMLA,
WATBIO, and extensive scientific evidences suggest that ‘second-gen-
eration’ lignocellulosic feedstock production systems (e.g. switchgrass
(Panicum virgatum L.), Miscanthus (Miscanthus× giganteus Greef et
Deuter), cardoon (Cynara cardunculus L. var.altilis), giant reed (Arundo
donax L.), and removal of crop residues) are the most promising can-
didates to be grown on less favorable agricultural lands [35–37]. In
summary, skepticism, divergent points of view and controversial debate
on second-generation bioenergy crops [38,39] raise many open re-
search questions that shall be addressed concerning the technology-
driven transition to a new bio-based energy system.

The purpose of this study is to explore and discuss ongoing and
emerging critical questions for supporting realistic lignocellulosic
feedstock production on marginal agricultural lands within a frame-
work of science-based and technically-sound sustainability indicators.
The study examines in particular the challenges regarding European
Mediterranean countries, considering their unique and complex land-
scape characteristics influenced by topography, soils and surface water
conditions [40]. The overall structure of the study is articulated in four
sections. The first section investigates the paradigm definitions of
marginal land in a vision of context and scale in which they are used.
The concept was then contextualized for the bioenergy sector in an
ecosystem services perspective. The second section gives an overview of
the relevant indicators to evaluate the sustainable bioenergy produc-
tion. The third section outlines the main challenges and issues for
biomass cultivation, with a selection of studies linked with the sus-
tainability indicators relevant for the Mediterranean regions. The final
section serves as a platform for setting the context, to share and em-
phasize strengths, recommendations and strategic suggestions for
planners, practitioners and policymakers for better designing and
managing of sustainable bioenergy supply chains on marginal lands.

2. The paradigm of marginal lands

The concept and definition of marginal lands have different mean-
ings depending on the reference discipline and context and varies ac-
cording to the scope and purpose in which is used. The term ‘marginal’
was originally used under the umbrella of economic theorizing to de-
scribe an area, under given conditions, where cost-effective production
is not remunerated [41,42]. Table 1 lists a set of available definitions of
the concept of marginal land that, over time, was further developed and
improved by many international organizations and institutions within
their policies, legislations and activities.

For example, OECD defined marginal land as an area with poor
agronomic characteristics, and unsuitable for housing and other uses.
Similarly, CGIAR emphasized the concept of limitations of land for
sustained application of a given use, while USDA-NRCS stressed poor
combination of physical and chemical characteristics of the soils for the
productivity potential. Remarkably, The World Bank pointed out also
the untapped potential of areas (less favored) that are farther from
markets (e.g. lack of transport infrastructure), although with crop
production potential. In an investigation into degraded land and sus-
tainable bioenergy feedstock production Wiegmann et al. [51] con-
cluded that marginal land, “……defined as an area where a cost-effective
production is not possible” might supply food, feed or bioenergy feed-
stock, “…… but not through a structured, market-based approach”.

Taken together, these definitions suggest foremost a pertinent role
for the physical limitation of the soil capacity for land use productivity
and management on a static imaginary. Further meanings may also
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refer to terms such as fragile, degraded, contaminated, reclaimed,
abandoned, under-utilized, barren and idle lands [52], although may be
very rich on biodiversity (e.g. priority species) with key ecosystem
processes.

Marginal lands are conceptualized in a vision of anthropogenic use-
value attribution of the nature, in line with the concept of ecosystem
service proposed by Haines-Young and Potschin [53]. In this cascading
approach, biophysical structures generate ecosystem functions and
consequent services and values for human well-being. Thus, marginal
lands are those that, in a given place, generate ecological functions and
services or benefits for humans ‘below’ certain expectations (for a given
use), where the ‘degree of intensity’ is linked to the opportunity cost of
this land [54]. This is clearly a context and temporal scale concept,
adaptive and flexible, where the human intentions and activities in
these lands are intended to maximize the provision of specific services.
Considering all of these evidences and following the framework pro-
posed by Richards et al. [55], in this study the concept of marginal
agricultural lands to produce bioenergy have been framed in four main
academic disciplines covering geomorphology, agronomy, economy
and socio-cultural aspects (Table 2). Within each discipline, a context
scale of application and a set of key indicators for a rigorous and ob-
jective measurement analysis have been identified.

Table 2 definitions might suggest that starting from limited or de-
graded geomorphological conditions (e.g. stoniness), marginal lands
are located on soil types with low agronomic potential (e.g. water-
holding capacity) that are consequently unable to support satisfactory
biomass production and profitability for landowners and farmers, and
ultimately, the well-being of the local community living in these places.

Therefore, marginality is a cumulative phenomenon derived from
the combination of several related factors that can be related to ver-
ifiable and observable disadvantages (sometimes transient) or use re-
strictions. Of course, this is just a general scheme as the anthropogenic
pressures and modification of the environment with input materials and
technical improvements, energy and labor can change these dynamics
and the resulting intended or perceived marginal state. For example,
territories with so-called ‘heroic’ viticulture, characterized by severe
limitations for agriculture (steep slope, stoniness) are today conducted
by professional and competitive winemakers that produce top wines of
excellence for niche markets [60] with high economic returns. Despite
the harsh agro-ecological conditions of these environments, these vi-
neyard landscapes have a high level of real estate income and are not
seen as marginal lands from a socio-cultural and economic point of
view. The human driving forces are able to successfully manage these
limiting conditions, moving up the profitability of the ‘biomass value-
web system’ [61] and moving down the line of marginality (with re-
spect opportunity cost). The concept of the biomass value-web takes
into account the interlinkages and networks of different value chains in

the bioeconomy [62]. As an illustration of these concepts, Fig. 1 pre-
sents an overview as a possible pathway for the bioenergy system on
marginal lands in the Mediterranean area. The x-axis represents the
transition of ecosystem functions and services of biomass generation,
while the y-axis represents the intensity of these transitions modified by
human intervention (e.g. payments for biomass, monetary units, private
or public goods), explicitly expressed as profitability.

In summary, the potential use of marginal lands for bioenergy
feedstock production starts with an implicit assessment that a land unit
has an under capacity to maximize profitability in the market (in ab-
sence or distance to market) at a breakeven point with production costs
[22]. As recently suggested by Spangenberg et al. [63] landscape
planning processes for promoting bioenergy could benefit from the
reverse application of the cascade model as ‘stairways’ for generating
and allocating ecosystem services. The human demand for service-or-
iented products is the starting point that lays down the pathway of the
supply side management.

Therefore, the residual production capacity of marginal land can be
upgraded in the context of bioeconomy sector, where new business
models (e.g. biorefineries, processing technology, new ways of re-
cycling, new bio-products) exploit the use of renewable resources and
their conversion into value-added products. In this sense new agro
technologies can unlock new opportunities, for example using breeding
and new genome editing (improved yield, disease resistance) [64] as
well as wild germplasm, flex crops (with multiple uses) and orphan
crops (important where they are grown), promoting agro-ecological
approaches (e.g. use of biochar, digestate, strip tillage) and im-
plementing smart tools for farmers and companies (e.g. big data and
smart farming, drones, traceability systems, sensing technologies) [65].
Ultimately, the challenge for the bioenergy production in marginal land
is to scale up, in a sustainable way, an economically attractive and
flexible biomass ‘value-web’ [66], by contrast to the narrow value chain
that increases services, values and benefits for landowners, stakeholders
and local communities.

3. Bioenergy production and sustainability indicators

Sustainability indicators play a pivotal role for monitoring pro-
gresses towards the achievement of policy goals, be it the EU-set of
policy objectives, the Sustainable Development Goals or any other
local, national, regional, and/or global compendium of policy targets.
Progress toward sustainable bioenergy systems requires reliable and
well-recognized indicators to assess performances of an existing bioe-
nergy value chain at multiple scales. When sustainability indicators
results are checked against performance measures (e.g. as set by a given
standard or threshold) these can compose the cornerstone of a certifi-
cation scheme. To date, many organizations, institutions and various

Table 1
Overview of marginal land definitions usually reported in the international institutions. The list is not exhaustive, but suggestive of different definitions and visions of
marginal land.

Institution Definition of marginal land Reference

People's Republic of China, MOA Winter-followed paddy land and waste land that may be used to cultivate energy crops [43]
Government of India, MNRE Degraded or wastelands that are not suited to agriculture, used for non-edible feedstock [44]
OECD Land of poor quality with regard to agricultural use, and unsuitable for housing and other uses [45]
EEA Low quality land the value of whose production barely covers its cultivation costs [46]
APEC Lands characterized by poor climate, poor physical characteristics or difficult cultivation [47]
CGIAR Land having limitations which in aggregate are severe for sustained application of a given use. Increased inputs to maintain

productivity or benefits will be only marginally justified
[48]

USDA-NRCS As opposite of prime farmland, marginal land has poor combination of physical and chemical characteristics of the soils for
producing food, feed and forage

[49]

World Bank Interchangeably used with fragile and less favored land (with poor market access), arid and semi-arid regions characterized by
frequent moisture stress that limits agricultural production

[50]

MOA: Ministry Of Agriculture; MNRE: The Ministry of New and Renewable Energy; OECD: the Organization for Economic Co-operation and Development; EEA:
European Environmental Agency; APEC: The Asia-Pacific Economic Cooperation; CGIAR: the Consultative Group for International Agricultural Research; USDA-NRCS:
the United States Department of Agriculture, Natural Resources Conservation Services.
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international initiatives have attempted to promote the production of
biomass for bioenergy in a coherent and sustainable way. A recent lit-
erature review on the subject was presented by Fritsche and Iriarte [67]
that presented an overview of sustainability initiatives and efforts re-
lated to requirements, criteria and indicators for biomass used for
bioenergy. Among these, this study adopted the indicators proposed by
GBEP and published by the Food and Agriculture Organization of the
United Nations (FAO) in 2011 [2] (Table 3) to promote and provide a
mechanism for Partners (mainly national governments and interna-
tional organizations) for the sustainable development and use of bioe-
nergy. The indicators are intended to provide information about the
environmental, social and economic aspects of the bioenergy sector, to
monitor impacts and trends, and to guide policymakers towards policies
that foster sustainable development.

In the specific case of assessment of sustainability to be performed
on Mediterranean marginal lands, a strength of the GBEP indicators is
that they are explicit with regard to the specific purpose and framework
of the analysis [68]. Furthermore, these indicators present the pathway
for assessing the sustainability of modern bioenergy production with a
scientifically sound manner, applicable and adaptable in a broad range
of contexts and scales. In fact, the indicators are inter-related and
transdisciplinary, practical to implement, sufficiently sensitive and ea-
sily recognizable for all relevant stakeholders [69], including non-sci-
entific communities and civil society.

Applied to all types of biofuels (e.g. liquid, solid, and gaseous for
electricity, heat and transport), and “…… measured over time, they will
show progress towards or away from a targeted sustainable development
path [2]”. The GBEP indicators are mainly designed and selected for ex-
post assessment of a country's bioenergy sector, thus aggregating per-
formances of individual operators into an average national value. The
indicators were selected to be “…… value-neutral and do not feature
directions, thresholds or limits and do not constitute a standard [2]”.

Each indicator was presented with three parts: 1) the name; 2) short
description; 3) methodology sheet. The first part of the methodology
sheet describes how the indicator relates to relevant themes of sus-
tainability and how the indicator contributes towards assessing sus-
tainability at the national level. The second part describe the metho-
dology in a scientific way, for collecting and analyzing the data needed
to evaluate the indicator, as well as for making relevant comparisons to
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Fig. 1. Schematic framework of the bioenergy system in the vision of the
ecosystem service cascade, as illustrated by Haines-Young and Potschin [53].
The line of marginality is flexible, where human driving forces (e.g. planning,
management, investments) mediate the breakeven point with the value-web
system (e.g. economic return), on the base of societal needs and expectations.
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other energy options or agricultural systems. In addition, potential
limitations and bottlenecks in the methodology are provided, as well as
possible ways to reduce uncertainties. The third part describe detailed
data requirements, data sources, strategies for data gap filling, and a
link with other international processes that provide similar measure-
ments and procedures. Finally, useful references to collect data and
information (i.e. scientific literature, international reports and elec-
tronic sources) are provided.

In the case of sustainability assessment on Mediterranean lands, the
GBEP indicators require ad-hoc adaptation to describe sub-national
features of the studied value chain. In fact, the case of bioenergy
feedstock production on Mediterranean marginal lands, brings about
aspects that are not directly but only indirectly captured by the GBEP
indicators, while some indicators are clearly irrelevant to the context of
Mediterranean countries. Moreover, indicators of sustainability can be
useful also as a predictive tool, thus as an aid to make future projections
of sustainability characteristics of a given value chain that at present is
not established, in a scenario where such value chain exists. The need
for developing new methodologies and tools for assessing the impacts of
bioenergy at local (regional or sub-regional) and site-specific (munici-
pality) level on under-utilized and marginal lands, encouraged FAO to
develop a user-friendly and tailored set of sustainability indicators
based on the GBEP ones but specifically made for their use on local, ex-
ante context of marginality.

4. Challenges and issues for bioenergy production in
Mediterranean regions

This study carried out an analysis of recent studies that deeply
analyze and discuss the relevant indicators for bioenergy production in
the Mediterranean regions to understand to what extent they have been
used by the research community to measure impacts and effects of
feedstock production on marginal lands. The indicators analyzed are
linked to the conceptual framework for indicators of marginality re-
ported in Table 2 and partially with the GBEP indicators in Table 3. The
ISI Web of Science and Google Scholar were used to search and collect
relevant papers published in English in peer-reviewed journals. Original
papers published in the period 2014–2017 were selected to capture

recent progress, following the advanced search for the individual terms
‘GHG emission’, ‘carbon sequestration’, ‘phytoremediation’, ‘biodi-
versity’, ‘water use efficiency’, ‘land use’, ‘profitability’, ‘farmers will-
ingness’, using the connectors (AND, OR, AND NOT) for ‘feedstock
production’ and ‘bioenergy’ on titles, abstracts or keywords. The great
amount of publications was filtered out, focusing in particularly on
studies on a farm and landscape scale, prioritizing empirical and ori-
ginal analysis addressing bioenergy production. The choice of the re-
search papers was led by the following criteria:

• indicators, data used, methodology and main findings are clearly
described and justified;

• different dedicated energy crops suitable for marginal lands were
analyzed;

• case studies representative of the broad EU Mediterranean regions
was presented.

The literature review was categorized, and eight seminal studies
were selected as the most relevant to illustrate our key discussion ele-
ments, organized around key indicators. Overall, the aim was to create
a qualitative and exhaustive picture of the topic based on non-idio-
syncratic judgments, rather than to perform a formal, systematic re-
view. The work reports a range of research approaches, crops, and
spatial scales, representative for scientific advances on marginal land
across EU Mediterranean countries (Fig. 2). The analysis of the selected
papers begins by highlighting the main impacts and challenges asso-
ciated with the biomass cultivation in marginal lands from an ex-post
perspective to frame the usefulness in using these indicators in a sci-
ence-based manner. Then an evaluation was performed by extracting
quantitative results and reporting on key questions with a discussion
and comparison along comparable studies, to flag up key insights and
outstanding issues for sustainable bioenergy feedstock production.

Table 4 reports for each paper the key findings, while the final key
insights summarize the lessons learned, aiming at comparable in-
formation for translating the results into operational implementation.
Our analysis identified perennial grasses and annual crops as targeted
bioenergy feedstock, considering the main results of the research pro-
jects underlined in the introduction (e.g. SEEMLA, OPTIMA) that

Table 3
Overview of 24 sustainability indicators developed by GBEP [2].

Pillars
GBEP’s work on sustainability indicators was developed under the following three pillars, noting interlinkages between them:

Environmental Social Economic
Themes
GBEP considers the following themes relevant, and these guided the development of indicators under these pillars:

Greenhouse gas emissions (GHG), Productive capacity of
the land and ecosystems, Air quality, Water
availability, use efficiency and quality, Biological
diversity, Land-use change, including indirect effects

Price and supply of a national food basket, Access to
land, water and other natural resources, Labor
conditions, Rural and social development, Access to
energy, Human health and safety

Resource availability and use efficiencies in bioenergy
production, conversion, distribution and end-use,
Economic development, Economic viability and
competitiveness of bioenergy, Access to technology and
technological capabilities, Energy security/Diversification
of sources and supply, Energy security/Infrastructure and
logistics for distribution and use

Indicators
1. Lifecycle GHG emissions 9. Allocation and tenure of land for new bioenergy

production
17. Productivity

2. Soil quality 10. Price and supply of a national food basket 18. Net energy balance
3. Harvest levels of wood resources 11. Change in income 19. Gross value added
4. Emissions of non-GHG air pollutants, including air

toxics
12. Jobs in the bioenergy sector 20. Change in the consumption of fossil fuels and

traditional use of biomass
5. Water use and efficiency 13. Change in unpaid time spent by women and

children collecting biomass
21. Training and requalification of the workforce

6. Water quality 14. Bioenergy used to expand access to modern energy
services

22. Energy diversity

7. Biological diversity in the landscape 15. Change in mortality and burden of disease
attributable to indoor smoke

23. Infrastructure and logistics for distribution of
bioenergy

8. Land use and land-use change related to bioenergy
feedstock production

16. Incidence of occupational injury, illness and
fatalities

24. Capacity and flexibility of use of bioenergy
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suggest their adaptability and low environmental impact due to lower
amounts of input demands [70]. Although various tree species (e.g.
Eucalyptus spp.) and row crops (e.g. maize) are cultivated on marginal
land for bioenergy (despite potential environmental drawbacks), their
actual adoption depends on local factors or by the public support
system with incentive mechanism to meet EU's energy targets as in the
case of biogas [71], hence were considered not relevant and therefore
excluded from the evaluation. It is widely recognized that biomass
yields are affected by management strategies (e.g. fertilization, irriga-
tion) as well as site specific conditions (e.g. weather, soil); conse-
quently, landscape design for bioenergy networks in marginal lands
could benefit from a local and context-specific view which considers the
variability of sustainability indicators. See Dale et al. [72] and Negri
and Ssegane [73] for more details and further explanations on in-
tegrating bioenergy production into sustainable landscape designs.

4.1. Impacts on GHG emissions

Bioenergy feedstock production and use of marginal soils in the
Mediterranean region could reduce GHG emissions and promote fossil
energy savings, and may represent a cost-effective way to counter-
balance land use competition, food production and environmental
preservation [36]. A recent systematic literature review that analyzes
more than one hundred case studies [83] found a clear GHG emissions
reduction and a positive energy balance using second generation
feedstock for bioethanol production. Using a cradle-to-plant gate Life
Cycle Assessment (LCA), Bosco et al. [75] analyzed GHG emissions,
energy balance and impacts on air, soil and water of two giant reed
systems cultivated in a marginal and fertile soil in Pisa, Italy. In this
study the functional unit is taken as 1 ha and 1 t of dry biomass, con-
sidering the cultivation phase and biomass transport to the plant gate.
The inputs considered include rhizomes nursery, fertilizer, herbicide
and diesel consumption for farm tractors. The impact assessment was
performed using the GaBi LCA software package [84] and EcoInvent
database [85].

Total GHG emission in both systems overcome 2500 kg CO2eq ha-1

y-1, but the more interesting finding is that soil carbon sequestration
(calculated as the difference between plots a the establishment year and
at the end of growth) was more than twice the total GHG emitted,
which are -6464 and -5757 CO2eq ha-1 y-1 for fertile and marginal soil,
respectively. In fact, the quantification of long-term soil organic carbon
changes on the GHG balance is a key element of the cited study and
confirmed that giant reed is a carbon negative crop, or a net GHG sink,
since they sequestered more CO2 than the GHG emitted. Recent re-
search in the Mediterranean regions are consistent with these data
[86,87], further supporting the ability of the giant reed to mitigate GHG

emissions and improve carbon sequestration. Notably, emissions di-
rectly related to fertilizer use exceed half of the total emissions, posing a
challenge for further investigation on long-term nutrient cycles and
management. Priorities for future research should perform LCA ap-
proach with different energy cropping systems, using site-specific data
derived from field experiment with standardized greenhouse gas ac-
counting procedure. One interesting example was carried out in the
OPTIMISC project where a LCA was performed to identify the en-
vironmental performance of the Miscanthus-based value chains in dif-
ferent climates and on marginal land [88].

4.2. Impacts on soil quality

Perennial rhizomatous crops have great potential to maintain and
improve soil quality on land used for biomass production through soil
organic carbon accumulation, increasing nutrients availability, and
more generally enhancing soil structure, water retention, pH and soil
microbial community [36,89,90]. Furthermore, at landscape level these
factors are inextricably interlinked and proximate drivers of soil ame-
lioration, helping to prevent soil compaction, erosion and soil de-
gradation in the long-term. Nine years after conversion from annual
crop systems (maize and wheat), Gioacchini et al. [76] argue that
Miscanthus and giant reed were able to significantly increase the
amount of carbon accumulation in the soil profile in an experimental
farm in Bologna, Italy. Authors assessed the carbon distribution within
soil aggregates fractions (macro and micro, silt and clay) in the upper
(0–0.15m), intermediate (0.15–0.30m) and lowest layer
(0.30–0.60m). The percentage of carbon derived from perennial crops
was calculated by using mass spectrometry and the isotope mass bal-
ance equation to discriminate the proportion of carbon resulting from
the cultivation of cereals.

These findings confirmed that no tillage management promoted the
stabilization of the soil and carbon accumulation, approximately 60%
more than cereal crops, although differences occurred between
Miscanthus and giant reed due to their vertical root biomass in the soil.
In the same vein, Monti and Zegada-Lizarau [91] documented an ac-
cumulation of organic carbon in the whole soil profile on long-term
giant reed plantation, thanks to its homogeneous root apparate. A
complete soil organic carbon budget with LCA approach, including
GHG balance as highlighted in the previous section, is the appropriate
approach to depict these impacts.

Creating an inventory of the impacts of long-term soil management
for different energy crops systems could be an important step to im-
prove bioenergy management practices, also considering different soil
types and interactions with agronomic management (e.g. tillage and
agrochemicals) to evaluate runoff, erosion and nutrient leaching.

Fig. 2. The climate of the countries adjacent to
the Mediterranean Sea. The Mediterranean
climate is warm temperate with dry and warm/
hot summer (Csa, Csb), based on Köppen-
Geiger climate classification [74]. Labels on
the map indicate the test sites location of the
selected seminal studies analyzed. Map created
using the KML file of Köppen-Geiger map
freely available at: http://koeppen-geiger.vu-
wien.ac.at/.
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Further open research questions can be raised concerning the use of
digestate, animal slurry, biochar or food waste to replace synthetic
fertilizers (e.g. in biogas production systems), as well as the evaluation
of the effects of rapid residue decomposition and mineralization on
drought-prone environments in the Mediterranean regions.

4.3. Impacts on land restoration

The cultivation of lignocellulosic crops is a cost-effective technology
that can be effectively used to improve the soil properties of con-
taminated land with toxic heavy metals and organic pollutants through
the process of phytostabilization [92,93]. Moreover, phytoextraction
helps to reducing heavy metal leaching into groundwater. Reporting on
2-year pot experiment carried out in Lisbon, Barbosa et al. [77] tested
the adaptability and phytoremediation capacity of giant reed and Mis-
canthus spp. on contaminated soil (under the exposure of 450 and
900mg kg-1 dry matter for Zn and Pb; 300 and 600mg kg-1 dry matter
for Cr), showing their suitability for phytoextraction and accumulation.
In particular, the results confirms that bioaccumulation occurs mainlyin
the hypogeal part (i.e. rhizomes and roots), especially Pb and Cr, while
Zn is easily transported and accumulated in the aerial fraction. Fur-
thermore, contamination levels did not significantly affect the biomass
production if within a certain concentration. Although authors argu-
ment that these grasses have a slow removal capacity, these findings
have important implications for developing operational protocols re-
garding the harvesting and removal of above-ground and below-ground
biomass in the field.

These findings are encouraging considering that up to now only few
sources have reported on phytoremediation using second generation
perennial crops on marginal land in Mediterranean countries. Similarly,
Fiorentino et al. [94] set up a 2-year open-air experiment aimed at
assessing the giant reed potential for phytoextraction and soil fertility
restoration, confirming the ability of this crop to grow on polluted soils.
Overall, these studies outline a critical role for long-term studies to
explain the dynamics of absorption and translocation on different pedo-
climatic conditions and therefore the quality of biomass for industrial
processing.

4.4. Impacts on water use efficiency

Water availability, use, and efficiency are probably the major lim-
iting factors for feedstock production in the semi-arid Mediterranean
area, but at the same time a challenging opportunity to accommodate
dedicated energy crops with phenotypic plasticity in terms of drought
tolerance, water demand and evapotranspiration rate in drought-prone
areas [95]. Yet, bioenergy production has interlinkages on the land-
water-energy-food nexus [96], thus, performing a water accounting
system is crucial to contain overexploitation of water resources. In a
recent LCA study carried out in Spain, Escobar et al. [78] investigated
whether switchgrass production fulfils the sustainability criteria, re-
porting on the impacts of freshwater consumption taking into account
both green and blue water (surface and ground water). In the study sites
only ground water has been used for irrigation (blue water), while
rainfall consumption (green water) has been estimated using the crop
evapotranspiration and the Penman-Monteith equation. Overall, blue
water consumption is 309m3/ton and 3500m3/year in the fourth year
in Moncofar (Mediterranean climate), while in Orihuela (semi-desert
climate, sandy soil) blue water consumption is very high, 963m3/ton
and 18,444m3/year. Switchgrass could be eligible for bioenergy pro-
duction, but site-specific evaluation is crucial to fulfil sustainability
criteria and ensure competitiveness relative to fossil fuels. In the same
vein, Giannoulis et al. [97] investigating the response of switchgrass
under different agronomic management regimes in Greece, argues that
biomass productivity was significantly affected by water availability,
fertilization level and soil-climatic conditions.

Water consumption and water efficiency strongly depend on site

location and soil water holding capacity, confirming that agronomic
management (i.e. irrigation inputs) play a key role in measuring effi-
ciency and performances of bioenergy crops on dry environments. This
view is supported by Núñez et al. [98] who concluded that in Spain
energy crop rotations (e.g. barley, rapeseed, maize) were most suitable
in basins in the northeast, whereas freshwater consumption in the
southeast were associated with the greatest environmental impacts.
Similarly, Berger et al. [99] highlighted that irrigation of sunflower
seed in Spain causes 50% of the impacts resulting from biodiesel, while
Fokaides et al. [100] showed that in Cyprus limited water resources of
the island are unavailable for irrigate energy crops, whereas there are
eligible non-irrigated areas that could potentially be cultivated with
indigenous energy crops. Collectively, these studies outline a critical
role for water availability at local or watershed level, and consequently
the need to deeply evaluate the most resilient crops and cultivars, in-
tegrated rotations and agronomic management prior to the bioenergy
crop establishment. For example, many recent studies promoted the use
of Cardueae species as multi-purpose and versatile crops with high
water use efficiency that maximize biomass growth during the rainy
seasons [101–105].

On the other hand, the inclusion of dedicated bioenergy crops on
land reclamation consortia equipped for irrigation (see for example
Fig. 3) could open up the opportunity for context-specific landscape
design where bioenergy feedstock can be grown on marginal soils (i.e.
land capability classes III-IV) so to mitigate competition with food
production. The juxtaposition into the best capability classes not strictly
marginal (i.e. intercropping, buffer zone, crop displacement) is another
option, depending on financial analyses that consider profitability or
return on investment, as well as favorable market conditions or policy
incentives (cross-compliance with EU Common Agriculture Policy
(CAP) support).

4.5. Impacts on biodiversity, ecosystem services and disservices

A number of cross-sectional studies suggest that second generation
crops positively impact biodiversity and many ecosystem services if
compared to first generation ones in bioenergy landscapes [30,33]. The
benefits might contribute to landscape heterogeneity and connectivity
with natural habitats, buffer zones around vulnerable areas and pro-
tection of riparian areas as well. Investigating the species richness in the
low input cardoon plots in Velestino, Greece, Solomou et al. [79] found
that carabid beetle communities and abundance of herbaceous plants
were positively correlated with the soil organic matter and nitrogen and

Fig. 3. An example of Mediterranean landscape and soil catena within a Land
Reclamation and Irrigation Consortia in Sardinia, Italy. The toposequence of
land capability classes, from summit to footslope, shows the increasing soil
depth down the slope that affects the suitability for supporting vegetation
cover. In the foreground, artichoke cultivation at the end of the growing cycle
in spring. Photo credit: Giuseppe Pulighe.
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concluded that carabid species richness and plant species diversity was
an adequate biodiversity indicator in the study area. The carabid spe-
cies were sampled by using pitfall traps while herbaceous plants were
randomly selected in plots. In addition, soil temperature, soil samples
for laboratory analysis, weather data, GPS measurements and statistical
analyses were performed to account for correlations between variables
as well. Regarding biodiversity on perennial crops, Cattaneo et al. [106]
reported increased soil biochemical activity and microbial diversity
under Miscanthus and giant reed in South European soils, positively
correlated with soil carbon and nitrogen contents.

However, although many scholars have recently emphasized the
role of different bioenergy crops in supporting biodiversity [33,107], it
should not be overlooked that the length of most of these studies was
temporarily limited, especially to perennial crops. To extend the posi-
tive effects on biodiversity as a win-win scenario for the Mediterranean
regions it is advisable to consider long-term effects of direct and in-
direct land use changes on biodiversity and habitat loss, even if the
comparison with first generation crops would seem to be understood.
As stated in the introduction, it is assumed that the expansion of
bioenergy crops will take place only on marginal lands or under-utilized
arable land, avoiding expansion into pastures, permanent meadows,
riparian ecosystems, and protected and fragile areas, in compliance
with the EU Renewable Energy Directive and certification schemes [8].
According to the ecosystem service cascade model, bioenergy produc-
tion implies dynamic flows (e.g. nitrogen, phosphorous, GHG and non-
GHG emissions, other chemicals) into the soil, water, and air, thus the
magnitude of measured impacts on biodiversity and related ecosystem
services or disservices (e.g. nutrient leaching, increasing evapo-
transpiration, loss of habitat) depends on how bioenergy landscapes are
established and managed [108].

In summary, further research should be undertaken to investigate
the linkage between bioenergy production and biodiversity at different
hierarchical levels (i.e. landscape, ecosystem, species, genetic) [109],
including compositional, structural and functional components (e.g.
richness and abundance, heterogeneity and connectivity, dispersion,
disturbance, colonization, population dynamics). Research priority-
setting in the Mediterranean area should be toward small mammals,
birds, insects and soil biota, since there is a lack of investigations in
comparison with the United States and Northern Europe.

4.6. Impacts on land use and land use change

Growing bioenergy crops on marginal or under-utilized land has
significant potential to avoid competition with food production and
reduce direct and indirect land use changes of the most productive soils
[6110]. A recent study by Allen et al. [111] estimated that about 1.35
Mha are available for growing energy crops in the EU, of which 0.2 Mha
is fallow land and 0.05 Mha are represented by suitable contaminated
sites. In a study aimed at determining surplus saline land in Spain,
Sánchez et al. [80] found that about 34,412 ha are available for bio-
mass production using giant reed, with a potential production of lig-
nocellulosic biomass of 597,338 t/dry matter/year. The study was
carried out using Geographic Information System (GIS) analysis based
on a soil database, agro-climatic data, electrical conductivity mea-
surements, irrigation water requirements, Corine Land Cover 2006, and
geostatistical analyses. Regarding land use implications, the authors of
the study suggested that the cultivation of bioenergy crops on saline
soils would contribute to decreasing the abandonment of agricultural
land and its progressive degradation, avoiding competition with food
production and water resources. Similarly, Pulighe et al. [37] used GIS-
based techniques, remotely sensed data and a multi-criteria decision-
making approach to assess the land suitability for growing energy crops
on marginal and polluted areas in Sardinia, Italy, finding that about
1000 ha are available on the most polluted soils with heavy metals, and
a further 5700 ha in the surrounding area equipped for irrigation. Some
of the issues emerging from these studies relate specifically to the scale,

spatial data and methodologies followed for mapping the potential
areas [112], but also the future need to disaggregate the results by
groups of crops, and to consider the effects of land use transitions in
conjunction with GHG emissions, water use, water quality, soil organic
carbon and biodiversity. Especially in EU agricultural landscape con-
text, scenarios of land use management for integrating energy crops and
food crops (e.g. catch crops after harvest of the main crop) into
agroecosystems need to consider sustainability aspects [113].

4.7. Farmers’ willingness and acceptance

To date, several studies have attempted to evaluate farmers’ and
landholders’ willingness to grow and supply dedicated bioenergy
feedstock in marginal lands, showing that attitudes and perceptions are
affected by concerns about environmental impacts, sociocultural factors
and rental disamenities [114–118]. In general, growing bioenergy crops
is perceived as an uncertain and risky investment option due to the long
establishment period. A recent study by Giannocaro et al. [81] in Apulia
region, Italy, found that more than half (57%) of the farmers are willing
to sell straw to the bioenergy feedstock market (they prefer a one to
three-year contract with an average of 15.15 € ha-1, straw in swath), but
at the same time the authors outline that about one-third (31%) would
not trade biomass on feedstock market. The research used farmers’
stated preferences and an econometric regression to investigate the
price that farmers demand for cereal straw. In summary, the current
straw uses and agronomic practices (i.e. on-field burning), sale to
market and soil incorporation under EU CAP determine a ‘break-even
point’ price for farmers preferences higher than the price paid by the
established (i.e. traditional) local straw market.

Although financial and economic returns are important drivers in
decision making, interestingly Convery et al. [119] highlighted that a
‘follow the leader’ mentality is an important factor that oriented
farmers choices, where the farming community showed a much higher
willingness to adopt new farming practices whether a successful farmer
adopt new approaches and technologies. However, it is important to
bear in mind that farmers and landowners are substantially unfamiliar
with new bioenergy crops (e.g. variability in yields, crop failure risk,
market price) and their uncertain market. Much of the available lit-
erature on farmers’ willingness to grow alternative bioenergy crops
suggests a pertinent role of governments, institutions and big en-
terprises for encouraging targeted support policies (e.g. monetary in-
centives, feed-in tariffs, tax credits and subsidized crop insurance)
avoiding market distortions [81] and conflicting goals. A recent study
[120] used game theory modeling to resolve the so called ‘Chicken and
Egg’ situations regarding the amount of monetary incentives for pro-
moting the farmers' participation in switchgrass production in an un-
known potential biofuel market in the US. The study shows that
farmers' risk-taking attitudes become more favorable when cost of
biomass production decreases or with flexible personalized incentive
mechanism in the emerging bioenergy industry.

One interesting example in this sense is the pricing agreement be-
tween the Italian Agricultural Entrepreneurs Association (Coldiretti)
and the biorefinery at Porto Torres (Sardinia) for the supply chain of
thistle (Cynara cardunculus L. var. Altilis) seeds and raw material cul-
tivated in marginal land in a radius of 70 km from the plant [121]. The
agreement should guarantee farmers a fixed price over a three-year
period for the supply of seeds and biomass, for with price adjustment
mechanisms starting from the fourth year onwards. Further work needs
to be done among local stakeholders about farmers’ concerns and risk
perceptions toward dedicated energy crops, taking into account pecu-
liar cropping pattern of the Mediterranean marginal areas that is cereal-
agropastoral system oriented (strongly financially supported by the
CAP in EU countries).
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4.8. Impacts on profitability

Ultimately, given the role of farmers’ willingness to grow dedicated
energy crops discussed above, the key question to be explored is whe-
ther farmers get marginal profits growing bioenergy crops on under-
utilized land as well. Recent studies suggest that the introduction of
dedicated energy crops on marginal cropping systems could have a
positive economic impact for farmers [122,123], partially replacing
cereal crops without jeopardizing durum wheat trade balances [124]. In
an economic feasibility study evaluating giant reed production as an
energy crop in Sicily, Testa et al. [82] reported that woodchip and si-
lage production with this crop shows the highest profitability (up to 617
€ ha-1), especially with respect to annual crops such as melon (310 € ha-
1) and tomato (280 € ha-1). Testa and colleagues performed a financial
analysis through a discounted cash flow method, collecting techno-
economic data from interviews with farmers, biomass markets, and
literature. In contrast to other crops, the highest profitability was at-
tributable both to the current market prices (up to 50 € Mg-1 dry matter
for woodchip production) and lower production costs. Similarly, the
economic performance of giant reed as silage biomass feedstock for
biogas plants in Sicily was undertaken by Sgroi et al. [125], who con-
cluded that this perennial plant is an effective alternative energy crop in
Mediterranean areas respect to other crops (i.e. maize and sorghum),
given the current market conditions.

According to Soldatos [54] who examined the profitability of per-
ennial grasses in marginal lands of South Europe, giant reed seems the
most profitable and suitable crop. In contrast with perennial grasses,
agro-forestry species such as black locust (Robinia pseudoacacia L.),
poplar (Populus spp.) and eucalyptus (Eucalyptus spp.) cultivated as
‘short rotation coppice’, giant reed seems to give mixed opportunities to
guarantee a positive profit for farmers in Southern Europe with respect
to more secure options such as wheat [126,127]. This essentially de-
pends on the sale prices of biomass need to achieve the break-even
point in the future market. As recently stressed by Giannoulis et al.
[128] farmers’ income from switchgrass production in Greece largely
depends on site location (especially soil type and water availability),
that ultimately affects production costs and agronomic management.
Thus, the verification of the profitability in the marginal land should be
accurately verified based upon these preconditions.

However, despite encouraging results of most former studies, the
cultivation of energy crops still remains uncertain and less attractive
without incentive mechanisms, tax credits and exemptions or long-term
pricing schemes as stressed in the previous section. Thus far, a broad
range of policies provided direct and indirect support for energy from
renewable sources in EU countries, essentially divided into ‘regulatory
policies’ and ‘fiscal incentives and public financing’ [129]. Among
these, the most important comprises premium tariffs, feed-in tariffs, and
tender schemes. Generally, the amount of financial support decreases
with increasing power plant capacity. In light of the aforementioned, in
the future support schemes (e.g. CAP supports) and business models for
mobilizing financing and attracting investors should be more aligned
with GHG emissions, ecosystem services and sustainability indicators,
avoiding criticism raised for the biogas sector in the EU regarding trade-
offs on land use pressure for biomass production, market distortions
and environmental impacts [130,131].

4.9. Practical implications of this study

Overall, this study strengthens the idea that energy crops can be
successfully grown on marginal lands providing substantial benefits in
terms of environmental impacts and socio-economic issues and sup-
porting ecosystem services compared to intensive monocropping sys-
tems. Regarding the bibliography analyzed it clearly emerges that a full
landscape design analysis with field research data is needed prior to
cultivating a specific crop at a specific location, considering the com-
plex and fragile landscape of the Mediterranean ecoregion. Main

challenges include environmental risks associated with the agronomic
practices (e.g. soil management, irrigation practices, biodiversity, GHG
emissions, land use competition with food), as well as uncertainty about
economic sustainability and integration with surrounding agro-ecosys-
tems and farmers’ needs.

Regarding the agronomic management, more research is especially
needed to raise the ambition on water use and efficiency, with tailored
applications for energy crops in terms of resilience or adaptability to
future climate scenarios. It is important to note that detailed informa-
tion about evapotranspiration rate, life-cycle water requirements,
drought tolerance, as well as water stewardship strategies (technolo-
gies, methods, scheduling, watershed delivery) for second generation
energy crops have been barely investigated and is scarce. On the other
hand, the application of irrigation practices coming from traditional
crops is risky (e.g. could encourage the growth and spread of unknown
disease, weeds and pests) and is probably inefficient.

The use of certification schemes, analytical tools and context-spe-
cific measurable indicators such as those developed by the GBEP can
inform farmers, industry representatives and stakeholders on how to
achieve sustainability goals for ex-post assessment or for ex-ante suit-
ability evaluation. To unlock the opportunities and ambitions for
bioenergy production in the marginal lands, further work needs to be
carried out to resolve uncertain and controversy points for aforemen-
tioned agronomic practices and socio-economic aspects. As suggested
by Whitaker et al. [132], spatially explicit ecosystem process-based
modeling integrated with land-use management analyses can positively
inform about impacts and challenges of bioenergy systems. In addition
to LCA methodology, model's application can be run on single solutions
(e.g. EPIC, SWAT, DSSAT, DayCent, CropSyst), or within modeling
frameworks platforms (e.g. BioMA, FACE-IT, APSIM) [133] for ana-
lyzing, parametrizing and finding solutions regarding agronomic prac-
tices, agro-chemicals, pest diseases, water use, crop growth and pro-
ducts quality.

5. Conclusions

The use of marginal lands for addressing the growing demand of
renewable feedstock resources for bioenergy production raises several
poorly addressed research questions with regards the sustainability is-
sues of agro-bioenergy systems. In this study we analyze the concept of
marginal land from the perspective of ecosystem service cascade model,
fostering the use of tailored sustainability indicators developed by The
Global Bioenergy Partnership for bioenergy production in the EU
Mediterranean basin. The main emerging challenges regarding the
cultivation of energy crops were framed by eight selected case studies,
through an in-depth analysis and discussion of key insights of quanti-
tative results related to the sustainability indicators.

Bioenergy production is a long-term and relative complex tech-
nology with complexities of fragmented regulations and markets.
Looking to the coming years more should be done by national and EU
institutions to reinforce and better guide the development of the bioe-
nergy sector in Mediterranean regions with clear benefits for sustain-
able development in rural territories. For instance, coherent agri-
cultural, energy and environmentalpolicies should affect the economic
attractiveness of bioenergy production engaging investors on long-term
energy strategies for viable markets, connecting fiscal incentives,
feedstock prices, grant programs and CAP with the compliance of en-
vironmental and social criteria, avoiding detrimental land use changes,
land grabbing or intensive cultivation. For example, under the future
CAP reform post-2020 direct support schemes could be expanded in-
cluding bioenergy under the Pillar I with direct payments for specific
crops most suited on marginal lands. Furthermore, under the ‘greening
measures’ and ‘agri-environment schemes’, bioenergy crops (e.g. per-
ennial) can be inserted under agricultural practices and management
commitments beneficial to the climate and the environment care since
could have a significant impact on marginal land (e.g. carbon
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sequestration, water quality, biodiversity). In addition, under the Pillar
II, Rural Development Programmes could support the web value chain
(i.e. farmers, processors and investors) with tailored initiatives in-
cluding technical support, business models and financial guidance for
making bioenergy projects bankable, in the purpose of removing
market uptake barriers.

Arguably, the challenge for investors and stakeholders is to reverse
the conventional approach, moving beyond biomass value chain legacy,
linking sustainable bioenergy production in the framework of bior-
efinery systems by fully exploiting the global value of bioenergy crops
and raw materials into commercially competitive and sustainable pro-
ducts.
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