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Abstract

®

CrossMark

We propose an atomistic model for correlated particle dynamics in liquids and glasses
predicting both slow stretched-exponential relaxation (SER) and fast compressed-exponential
relaxation (CER). The model is based on the key concept of elastically interacting local
relaxation events. SER is related to slowing down of dynamics of local relaxation events as a
result of this interaction, whereas CER is related to the avalanche-like dynamics in the
low-temperature glass state. The model predicts temperature dependence of SER and CER
seen experimentally and recovers the simple, Debye, exponential decay at high temperature.
Finally, we reproduce SER to CER crossover across the glass transition recently observed in

metallic glasses.
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(Some figures may appear in colour only in the online journal)

1. Introduction

As a matter of general principle in physics, correlations tend
to decay in time and space. Persisting currents are an excep-
tion and operate in special cases such as superconductivity or
superfluidity. The most common time decay function is the
exponential decay:

¢=dope T (1)

where 7 is relaxation time which quantifies the time of return
to equilibrium.

In disordered systems such as glasses, low-temperature vis-
cous liquids and biological systems, time decay is notably
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different and is commonly described by stretched-exponential
relation (see, e.g., references [1-9, 11]):

6 =dpe () @

where 0 < 3 < 1.

Stretched-exponential relaxation (SER) describes slow
dynamics: in an intermediate data range, the decay of ¢ can
be approximated as a logarithm of time as seen experimentally
[12].

Since SER was introduced by Kohlrausch in 1854 [13],
understanding it has remained one of the oldest problems
in physics [6, 7]. Several mechanisms of SER have been
proposed. One class of models involves axiomatic theories
of SER involving sinks and traps [6, 7]. Another popular
class assumes that a disordered system has a distribution of
local relaxation times or local activation barriers, and aims to
derive SER as an integral over the distribution (see, e.g., ref-
erence [14]). Depending on model details, this approach can

© 2021 The Author(s). Published by IOP Publishing Ltd Printed in the UK
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reproduce the asymptotic behaviour of SER at long waiting
times but not in the range where SER varies most [15]. A
different approach [16] puts an emphasis on non-ergodic irre-
versible nature of relaxation where activation barriers evolve
during the relaxation process. In this process, an activation bar-
rier of a local relaxation event (LRE) is set by previous LREs
through a feed-forward elastic interaction mechanism.

More recently, a surprizing result emerged [17] showing
that 5 can be larger than 1 in supercooled liquids below
the glass transition, prompting the term ‘compressed expo-
nential relaxation’ (CER). This is an intriguing result show-
ing that relaxation can be faster than exponential, Debye,
relaxation. Furthermore, a crossover from SER to CER has
been experimentally observed across the glass transition
[17, 18], while CER has also been observed in soft glasses [19].
There is currently no theoretical explanation of these effects
in general terms. A theoretical model for colloidal gels gives
B = 3/2[20]. Experimentally, 5 varies with temperature, and
a continuous spectrum of 3 > 1 values in CER have been mea-
sured [17, 21]. Hence of particular importance is understand-
ing (a) the microscopic mechanism of CER on the basis of a
generic mechanism and its temperature dependence and (b) the
mechanism of the crossover from SER to CER.

In this paper, we show that CER follows from a kinetic
equation governing the dynamics of elastically interacting
LREs. This involves two main steps. First, we discuss the key
physical process related to the cooperative, non-independent,
nature of relaxation of local events. In equilibrium viscous lig-
uids, the cooperativity arises from the re-distribution of local
stresses and resulting elastic interaction between LREs. This
slows down the LRE dynamics and gives SER as a solution
of the rate equation for LREs in the supercooled liquid. Sec-
ond, we observe that relaxation in highly non-equilibrium sys-
tems below the glass transition temperature 7', is related to
the avalanche-like dynamics [22, 23]. Assuming that the relax-
ation of later LREs is promoted in this process, we write the
corresponding rate equation and show that it gives CER. The
two processes can be combined into a unifying description
that provides the experimentally observed crossover from SER
above T, to CER below T.

2. Elastic interaction between local relaxation
events

2.1. Concordant relaxation and stress redistribution

In this and next section, we discuss the mechanism from
which either SER or CER follows depending on the nature of
interaction between LREs.

Let us consider a low-temperature viscous liquid or glass
under fixed external perturbation such as constant shear or
compressive stress. In the case of compressive stress, the
response of a relaxing system is the sum of the viscous and
elastic components [24]. The viscous component discussed
here decays to zero after the relaxation is complete, and the
elastic component remains. Notably, LREs are not indepen-
dent but elastically interact as discussed below.

Earlier work considered LREs in glasses and related elas-
tic effects [25-29]. Under sufficiently high stress, each LRE
in glasses can involve an atom leaving its surrounding cage
with associated bond-breaking and bond-forming atoms in
the nearby local environment [30, 31]. Orowan introduced a
‘concordant” LRE accompanied by a strain agreeing in direc-
tion with the stress field [27] and reducing the energy and
local stress. This has led to the result that stress relaxation
by earlier concordant events leads to the increase of stress on
later relaxing regions in a system. Goldstein applied the same
argument to a viscous liquid [32]: consider a system under
external stress. Initially, the external stress is counter-balanced
by a network of stress-supporting local regions. When a local
concordant rearrangement to a potential minimum, biased
by the external stress, occurs, this local region supports less
stress after the event than before; therefore, other local regions
in the vicinity should support more stress after that event
than before (in this process, nearby regions are affected
more by stress-redistribution due to stress decay) [32]. Gold-
stein proposed that ‘the least any model of the flow process
must acknowledge is that the extra stress must be supported
elsewhere’.

Each LRE carries a microscopic change of a macroscopic
quantity (e.g., microscopic stress). Consequently, the number
of events governs the dynamics of a relaxing macroscopic
observable. Let us consider the current number of LREs n(t),
induced in a system by an external perturbation such as fixed
shear or compressive stress or by a long-range internal stress
field. This number n(f) comes in addition to thermally-induced
LREs. When n(¢) tends to its limiting value n, at long times,
the perturbation is relaxed to zero.

As discussed by Orowan and Goldstein, because the per-
turbation field introduces bias towards concordant relaxation
events supporting less stress after relaxation, later LREs
should support more stress in order to counterbalance. There-
fore, the increase of stress on a local region, Ap, increases with
n. This affects the activation barrier for an LRE, V, which is
governed by the elastic energy [11, 24]. This picture is con-
sistent with glassy relaxation in supercooled liquids, where
the system trickles down towards lower states in the energy
landscape, characterized by higher barriers [10].

2.2. Feed-forward interaction mechanism

At a fixed cage volume, the energy needed for the central atom
to leave the cage is very high due to strong interatomic repul-
sion, resulting in very long waiting times. On the other hand,
a temporary increase of the cage volume (e.g. due to thermal
fluctuations) promotes the LREs [24]. However, this increase
is opposed by elasticity of the surrounding system. Therefore,
Frenkel calculates V as the work done to expand the cage in
order for an LRE to take place [24]. This work changes as a
result of the increase of stress on a local region due to stress
redistribution as discussed in the previous section. This, in
turn, changes V as discussed below.

Loading additional stress Ap on the current local region
increases V. In the case of external shear stress, this is seen
by noting that V is set by the stored elastic shear energy
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in the surrounding of the local region as discussed in the
shoving model [11]. Since the additional shear stress Ap
increases the elastic shear energy, V increases. The same
applies to the case of external compressive stress: loading addi-
tional compressive stress Ap increases the work needed to
expand the cage and, therefore, V. In either case, the increase
of V is given by the increase of work needed to overcome
the additional barrier created by the elastic force due to the
additional stress Ap as AV = [ Apdg, where g is the cage
volume. If g is a characteristic cage volume, AV = Apg,,
giving

V(n) = Vo + qoAp, 3)

where V| is the initial value of the barrier.

Equation (3), together with Ap increasing with n as dis-
cussed above, imply that V(n) increases with n. This describes
the feed-forward interaction mechanism between LREs, in that
activation barriers increase for later events. We note that this
mechanism is related to the ability of liquids to support stress,
a property ascertained in theory and experiments [33—36]. The
mechanism is similar in spirit to dynamic facilitation in kinet-
ically constrained models of liquid—glass transition where
relaxation of one event is affected by others [37-39].

We now introduce a dynamical variable n(¢), the current
number of LREs in a sphere of radius d¢, where d, is the elas-
ticity length d; = c7, the length over which stress propagates
in the liquid [35, 43] (here c is the speed of sound and 7 is relax-
ation time). n(¢) starts from zero and increases to its final value
n: n(t) — n, at long times. Let us consider the current LRE,
about to relax, to be in the centre of the sphere. All previous
concordant LREs that are located within distance d from the
centre, participate in the feed-forward interaction, increasing
stress on the central region and hence the activation barrier for
the central LRE.

Let Ap;(0) be the reduction of local stress due to a remote
concordant LRE i. Then, Ap; decays with distance, hence
we denote Ap,(r) as its value at distance r from the centre.
We assume, for simplicity, that Ap;(0) are constant, Ap;(0) =
Ap,. The increase of stress on the central rearranging region,
Ap, can be calculated by integrating Ap;(r):

de)

Ap= p/ 47rr2Api(r)dr, 4

do/2

where d is on the order of the size of a local region and p is
the density of LREs, p = 6n/(rd3).

In elasticity, stresses decay as Ap(r) « r% [49]. Since
Ap(r) = Apy atr = do /2, Ap(r) = Apo(dy/2r)®. Integrating
equation (4) and combining it with equation (3) gives

V=Vo+ L
n

T

2@y )

T
Vi= EprCIOAPOdS In ( &

where p, = 6n,/(rd3) is the density of the final number of
events in the sphere. We assume small external perturbations

(small external stress and, consequently, small Ap,), resulting
in Vi < V.

3. Exponential, stretched and compressed
relaxation from the rate equation for LREs

We are now set to derive both SER and CER as well as
simple exponential relaxation on the basis of LRE dynam-
ics. The rate of LREs, dn/dt, is proportional to the num-
ber of unrelaxed events, (n, — n), and the event probability,
p = exp (—%) (kg = 1). Introducing ¢ = n/n,, we write:

dg _ AR _
i exp ( T) (I — g) exp(—aq), (6)

where o = %, t is dimensionless time = * and 7 is the

characteristic time. When dg is small at high tgmperature, and
equal to half of the cage size, dy/2, Vi = 0 in (5). This implies
no elastic interactions between LREs because this interaction
does not propagate beyond nearest neighbours. Then, « = 0 in
(6), and the rate equation is

dg _ A
E_“diT%Iq) (7)

Equation (7) results in the exponential relaxation ¢ = n/n,
=1 — exp(—1t/7), where T = 7 exp(V/T). This is consistent
with SER becoming exponential at high temperature [3, 11].
At low temperature, (6) gives SER as discussed below.

Therefore, our theory predicts a physically transparent
crossover from SER at low temperature to simple exponential
at high as is seen experimentally. The crossover corresponds
to dey = cT = d, giving 7 at the crossover as 7 = dTO. Taking
dy~ 10 A and ¢ ~ 1000 m s~ gives 7 at the crossover of
about 1 ps, in agreement with several experiments [40—43].

At low temperature, de; > dy, V1 # 0 in (5) and « # 0 in
(6). Consequently, the relaxation governed by equation (6)
becomes non-exponential. We note that d. reaches system size
L at the dynamical crossover corresponding to liquid relax-
ation time 7 = £ of about 107 s for L typically L ~ 1 mm
[43]. This takes place well above the glass transition tem-
perature. Hence, V| in (5) becomes temperature-independent
at low temperature when deg = L: V) = 7 PrqoA podg In (%),
and we will assume below that V| is constant. We note that
this picture predicts (a) a crossover of § at dg = L at low
temperature where 7 increases with L as a power law due to
equation (5) [43], in agreement with experimental data [44] (a
caveat here is that whereas d,; = ¢7 describes the dominant
mechanism of wave dissipation in liquids, other mechanisms
are present as well, including the usual interatomic potential
anharmonicity present in solids, the disordered structure and so
on [45] and, consequently, the experimental size effect tends to
be weaker as compared to theory [44]), (b) less sensitive tem-
perature dependence of [ after the crossover at low tempera-
ture because V| become constant, consistent with experimental
results [46—48] and (c) the decrease of 3 with L at low tem-
perature after the crossover because 7 and 3 are anti-correlated
[46].
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Figure 1. (a) Solid lines show the solution of the SER equation (6)
(solid line) at two different temperatures corresponding to

VO = Z—T a~ 1and 2.5 (Vy =V, is set for simplicity and

1llustrat10n purposes). Dashed lines show the fit of the solutions to
equation (8) with the fitted values (5 = 0.81, 7 = 4.04) and
(B = 0.62, 7 = 33.9). (b) Solid lines show the solution of the CER
equatlon (9) at two different temperatures corresponding to

0 = ,‘:‘ = a ~ 0.8 and 1.5. Dashed lines show the fit of the
solutlon to (8) with (8 = 1.21, 7 = 1.67) and (5 = 1.42, 7 = 2.62).

We integrate equation (6) numerically and, using the least-
squares method, fit the result to

g=1-c & )

reflecting the fact that all LREs have taken place at long times
and the fraction of LREs g = n% — 1fort > 7.

We plot ¢ at two different temperatures in figure 1(a) and
observe a good agreement with SER and 5 < 1. Lowering the
temperature decreases 3, consistent with experimental results
[3, 11].

We now discuss the mechanism of CER. The Orowan—
Goldstein stress redistribution mechanism assumes that elas-

1.4 1 B

%
124 2 CER

%OO
° o
© o
1.0 1 3 5
o © °

oOO
0.8 1 ié? SER
0.6 4 T/V1

0 2 4 6 8 10

Figure 2. [ for SER and CER as a function of reduced temperature
VL, obtained from solving equation (6) for SER and equation (9) for
CER and fitting the results to equation (6).

tic quasi-equilibrium is established after each LRE. On the
other hand, in systems such as metallic glasses where CER
is seen, relaxation below the glass transition temperature is
suggested to proceed via avalanches of local events [22, 23].
In this process, LREs are considered to take place in highly
non-equilibrium stressed states where one LRE weakens its
surrounding and promotes other LREs. This implies the reduc-
tion of activation barriers for later events, the opposite of the
Orowan—Goldstein mechanism, and can therefore be repre-
sented as V = V) — V{nir (V) < Vy as before), and with the
sign in front of the time-dependent term nl, opposite to that in
(5). Then, the rate equation becomes

dg

_ Yo\ Z '
E = exp ( T ) (1 — g)exp(a’'q), )

where o = VT; and, differently to (6), the sign in the exponent
exp(a/q) is positive. We integrate (9) numerically for differ-
ent temperatures, assuming V; = V) and o = o/ for simplicity
and for the purpose of comparing SER and CER. The result of
integration is shown in figure 1(b). We fit g to equation (8) and
observe a good agreement with CER with 8 > 1. This is seen
in figure 1(b) where we plot g at different temperatures. Lower
temperature increases 3, consistent with experimental results
[21].

In figure 2 we plot 3 for both SER and CER in a wider
range of temperature and observe that 3 decreases for SER
and increases for CER away from 1. The decrease of 3 in the
SER regime at low temperature is consistent with experiments
[3, 11] as mentioned earlier. In contrast, we observe that 3
increases in the CER regime at low temperature. This is also
consistent with the experimental data [21].

4. SER-CER crossover

We now demonstrate that our model can reproduce the
crossover from SER to CER. As discussed above, the feed-
forward ‘slow-down’ interaction between LREs operates in
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Figure 3. Open circles show /3 obtained from fitting the solution of
equation (10) (Vo = 0.3, V| = 0.115) to (8). The dashed line shows
function f in equation (10). The horizontal dotted line shows 3 = 1.

the liquid above the glass transition temperature 7y, whereas
the avalanche-like LREs take place at and below T,. We
can therefore assume that around T,, both processes oper-
ate, but the intensity of the first and second process decreases
and increases, respectively, as T, is approached from above.
The activation energy barriers in the two processes depend
on the relative number of LREs as Vsgr = Vo + V¢ and
Veer = Vo — Viq as discussed above. Therefore, we write the
rate equation as

dg Vv

Mg _7

o en().

V=1~ f)Vser + fVcer,

Vser = Vo + Vig; Veer = Vo — Vig,

(10)

where function (1 — f) defines the fraction of SER processes
related to the Orowan—Goldstein mechanism and f defines the
fraction of CER processes related to avalanches in the non-
equilibrium glass structure.

V in (10) reflects the change in the system’s energy land-
scape, from SER- to CER-dominated. The purpose of the func-
tion f is to vary between O at high 7 and 1 at low T to result
in the SER—CER crossover. A convenient choice is to use the
analogy with thermal two-level systems and represent f as
f= ﬁ, where A and T are parameters. f is shown

+1

T~ T,
in figure 3 as a dashed line.

We numerically integrate ¢ in equation (10), fit it to
equation (8) and show the result in figure 3. We observe that,
starting from high temperature, 3 decreases from 1 to about
0.8 and up to the point where the fraction of SER processes
remains dominant. At lower temperature, where CER pro-
cesses dominate, (3 starts increasing back to 1 and above. We
therefore find that our model reproduces the experimental data
of reference [17], where 5 < 1 above the glass transition tem-
perature T'; but increases above 1 below T,. The typical values
of 3 measured experimentally in [17] are also reproduced. We

note that the available experimental data [17] do not indicate
whether 3 of CER reaches a plateau at low 7. This remains an
interesting open question for future work.

5. Glassy relaxation: from slow dynamics to
avalanches and Gardner physics

Our model gives the following picture of relaxation in lig-
uids and glasses. The SER phenomenon in the supercooled
liquid state is due to the slow dynamics of LREs. The acti-
vation energy barrier for LREs increases with time due to
the elastic feed-forward mechanism, and is related to slow
relaxation [50-52] where the system moves down the energy
landscape towards deeper minima. In the glass state below
T, LREs proceed in an avalanche-like manner as seen exper-
imentally [22], and the decrease of energy barriers for succes-
sively triggered LREs is related to the cascade-like propaga-
tion of LRE avalanches. This consistently explains why CER
is experimentally observed in dynamical regimes of metallic
glasses which are characterized by intermittent avalanche-like
events [22]. This picture also explains why CER is observed
in metallic glasses and not in network glasses: the internal
stresses in metallic glasses are much larger due to very fast
cooling, leading to lower energy barriers for rearrangements
as shown in [23] and enabling the avalanche-like events. How-
ever, our model is general enough to predict CER in systems
other than metallic glasses as long as these systems contain
highly non-equilibrium states giving rise to avalanches.

Although the above picture is intuitive, the important point
is that we derive both SER and CER on the basis of an
atomistic model. This model also reproduces the CER-SER
crossover observed experimentally across the glass transition
[17], and clarifies it as a two-state crossover between regimes
with morphologically different energy landscape. The exact
nature of this crossover and its connection to the Gardner
transition, which also leads to a low-temperature regime of
intermittent avalanche-like dynamics in the energy landscape
[53], are interesting questions for future work. The SER—CER
crossover as described here appears as a promising candidate
for the (so far elusive) experimental detection of the Gardner
transition.

6. Summary

In summary, we presented an analytical atomistic model
describing the recently observed CER in glasses. The model
predicts the observed temperature variation of (5 in both
SER and CER regimes and the crossover between the two
regimes, in agreement with recent experimental observations
[17]. The model provides a broad picture of glassy dynam-
ics and relaxation encompassing a slow relaxation above T,
and an avalanche-dominated regime below 7,. A new connec-
tion between CER and the so-far elusive Gardner transition is
proposed, to be further elucidated in future investigations.



J. Phys.: Condens. Matter 33 (2021) 315101

K Trachenko and A Zaccone

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

ORCID iDs
K Trachenko ‘' https://orcid.org/0000-0003-4832-7101
A Zaccone ' https://orcid.org/0000-0002-6673-7043

References

[1] Fuchs M, Gotze W, Hofacker 1 and Latz A 1991 J. Phys.:
Condens. Matter 3 5047-71
[2] Domschke M, Marsilius M, Blochowicz T and Voigtmann T
2011 Phys. Rev. E 84 031506
[3] Ngai K L 2000 J. Non-Cryst. Solids 2757
[4] Xia X and Wolynes P G 2001 Phys. Rev. Lett. 86 5526
[5] Saltzman E J and Schweizer K S 2006 J. Chem. Phys. 125
044509
[6] Phillips J C 1996 Rep. Prog. Phys. 59 1133
[7] Phillips J C 2006 Phys. Rev. B 73 104206
[8] Lannon H, Vanden-Eijnden E and Brujic J 2012 Biophys. J. 103
2215-22
[9] Zaccone A 2020 J. Phys.: Condens. Matter 32 203001
[10] Pérez-Castafieda T, Jiménez-Rioboo R J and Ramos M A 2016
Phil. Mag. 96 774
[11] Dyre J C 2006 Rev. Mod. Phys. 78 95
[12] Tsiok O B, Brazhkin V V, Lyapin A G and Khvostantsev L G
1998 Phys. Rev. Lett. 80 999
[13] Kohlrausch R 1854 Ann. Phys. Chem. 167 179
[14] Palmer R G, Stein D L, Abrahams E and Anderson P W 1984
Phys. Rev. Lett. 53 958
[15] Zwanzig R 1985 Phys. Rev. Lett. 54 364
[16] Trachenko K 2007 Phys. Rev. B 75 212201
[17] Ruta B et al 2012 Phys. Rev. Lett. 109 165701
[18] Wu Z W, Kob W, Wang W-H and Xu L 2018 Nat. Commun. 9
5334
[19] Laurati M et al 2017 Phys. Rev. Lett. 118 018002
[20] Bouchaud J-P and Pitard E 2001 Eur. Phys. J. E 6 231-6
[21] Caronna C, Chushkin Y, Madsen A and Cupane A 2008 Phys.
Rev. Lett. 100 055702
[22] Evenson Z, Ruta B, Hechler S, Stolpe M, Pineda E, Gallino I
and Busch R 2015 Phys. Rev. Lett. 115 175701
[23] Fan Y, Iwashita T and Egami T 2014 Nat. Commun. 5 5083

[24] Frenkel J 1947 Kinetic Theory of Liquids (Oxford: Clarendon)

[25] Argon A S 1979 Acta Metall. 27 47

[26] Argon A S and Shi L T 1983 Acta Metall. 31 499

[27] Orowan E 1952 Proceedings of the First National Congress
of Applied Mechanics (New York: American Society of
Mechanical Engineers (ASME)) p 453

[28] Deng D, Argon A S and Yip S 1989 Phil. Trans. R. Soc. A 329
595

[29] Bulatov V V and Argon A S 1994 Modelling Simul. Mater. Sci.
Eng. 2 185

[30] Trachenko K and Dove M T 2002 J. Phys.: Condens. Matter 14
7449

[31] Trachenko K, Dove M T, Brazhkin V and ElI’kin F S 2004 Phys.
Rev. Lett. 93 135502

[32] Goldstein M 1969 J. Chem. Phys. 51 3728

[33] Noirez L and Baroni P 2012 J. Phys.: Condens. Matter 24
372101

[34] Noirez L and Baroni P 2010 J. Mol. Struct. 972 16

[35] Trachenko K and Brazhkin V V 2016 Rep. Prog. Phys. 79
016502

[36] Zaccone A and Trachenko K 2020 Proc. Natl Acad. Sci. USA
117 19653

[37] Garrahan J P and Chandler D 2002 Phys. Rev. Lett. 89 035704

[38] Chandler D and Garrahan J P 2010 Annu. Rev. Phys. Chem. 61
191

[39] Harrowell P 1993 Phys. Rev. E 48 4359

[40] Colmenero J, Arbe A and Alegria A 1993 Phys. Rev. Lett. 71
2603

[41] Zorn R, Arbe A, Colmenero J, Frick B, Richter D and Buchenau
U 1995 Phys. Rev. E 52 781

[42] Roland C M 2008 Soft Matter 4 2316

[43] Trachenko K and Brazhkin V 'V 2009 J. Phys.: Condens. Matter
21 425104

[44] Pronin A A, Trachenko K, Kondrin M V, Lyapin A G and
Brazhkin V V 2011 Phys. Rev. B 84 012301

[45] Brazhkin V V and Trachenko K 2014 J. Phys. Chem. B 118
11417

[46] Trachenko K, Roland C M and Casalini R 2008 J. Phys. Chem.
B 1125111

[47] Ledn C and Ngai KL 1999 J. Phys. Chem. B 103 4045

[48] Stickel F, Fischer E W and Richert R 1996 J. Chem. Phys. 104
2043

[49] Landau L D and Lifshitz E M 1986 Theory of Elasticity (Oxford:
Pergamon)

[50] Micoulaut M 2016 Rep. Prog. Phys. 79 066504

[51] Ruta B, Pineda E and Evenson Z 2017 J. Phys.: Condens. Matter
29 503002

[52] Fan'Y, Iwashita T and Egami T 2017 Nat. Commun. 8 15417

[53] Berthier L, Biroli G, Charbonneau P, Corwin E I, Franz S and
Zamponi F 2019 J. Chem. Phys. 151 010901


https://orcid.org/0000-0003-4832-7101
https://orcid.org/0000-0003-4832-7101
https://orcid.org/0000-0002-6673-7043
https://orcid.org/0000-0002-6673-7043
https://doi.org/10.1088/0953-8984/3/26/022
https://doi.org/10.1088/0953-8984/3/26/022
https://doi.org/10.1088/0953-8984/3/26/022
https://doi.org/10.1088/0953-8984/3/26/022
https://doi.org/10.1103/physreve.84.031506
https://doi.org/10.1103/physreve.84.031506
https://doi.org/10.1016/s0022-3093(00)00238-6
https://doi.org/10.1016/s0022-3093(00)00238-6
https://doi.org/10.1103/physrevlett.86.5526
https://doi.org/10.1103/physrevlett.86.5526
https://doi.org/10.1063/1.2217739
https://doi.org/10.1063/1.2217739
https://doi.org/10.1088/0034-4885/59/9/003
https://doi.org/10.1088/0034-4885/59/9/003
https://doi.org/10.1103/physrevb.73.104206
https://doi.org/10.1103/physrevb.73.104206
https://doi.org/10.1016/j.bpj.2012.10.022
https://doi.org/10.1016/j.bpj.2012.10.022
https://doi.org/10.1016/j.bpj.2012.10.022
https://doi.org/10.1016/j.bpj.2012.10.022
https://doi.org/10.1088/1361-648x/ab6e41
https://doi.org/10.1088/1361-648x/ab6e41
https://doi.org/10.1080/14786435.2015.1111530
https://doi.org/10.1080/14786435.2015.1111530
https://doi.org/10.1103/revmodphys.78.953
https://doi.org/10.1103/revmodphys.78.953
https://doi.org/10.1103/physrevlett.80.999
https://doi.org/10.1103/physrevlett.80.999
https://doi.org/10.1002/andp.18541670203
https://doi.org/10.1002/andp.18541670203
https://doi.org/10.1103/physrevlett.53.958
https://doi.org/10.1103/physrevlett.53.958
https://doi.org/10.1103/physrevlett.54.364
https://doi.org/10.1103/physrevlett.54.364
https://doi.org/10.1103/physrevb.75.212201
https://doi.org/10.1103/physrevb.75.212201
https://doi.org/10.1103/PhysRevLett.109.165701
https://doi.org/10.1103/PhysRevLett.109.165701
https://doi.org/10.1038/s41467-018-07759-w
https://doi.org/10.1038/s41467-018-07759-w
https://doi.org/10.1103/physrevlett.118.018002
https://doi.org/10.1103/physrevlett.118.018002
https://doi.org/10.1007/s101890170005
https://doi.org/10.1007/s101890170005
https://doi.org/10.1007/s101890170005
https://doi.org/10.1007/s101890170005
https://doi.org/10.1103/physrevlett.100.055702
https://doi.org/10.1103/physrevlett.100.055702
https://doi.org/10.1103/physrevlett.115.175701
https://doi.org/10.1103/physrevlett.115.175701
https://doi.org/10.1038/ncomms6083
https://doi.org/10.1038/ncomms6083
https://doi.org/10.1016/0001-6160(79)90055-5
https://doi.org/10.1016/0001-6160(79)90055-5
https://doi.org/10.1016/0001-6160(83)90038-x
https://doi.org/10.1016/0001-6160(83)90038-x
https://doi.org/10.1098/rsta.1989.0080
https://doi.org/10.1098/rsta.1989.0080
https://doi.org/10.1088/0965-0393/2/2/002
https://doi.org/10.1088/0965-0393/2/2/002
https://doi.org/10.1088/0953-8984/14/32/304
https://doi.org/10.1088/0953-8984/14/32/304
https://doi.org/10.1103/physrevlett.93.135502
https://doi.org/10.1103/physrevlett.93.135502
https://doi.org/10.1063/1.1672587
https://doi.org/10.1063/1.1672587
https://doi.org/10.1088/0953-8984/24/37/372101
https://doi.org/10.1088/0953-8984/24/37/372101
https://doi.org/10.1016/j.molstruc.2010.02.013
https://doi.org/10.1016/j.molstruc.2010.02.013
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1073/pnas.2010787117
https://doi.org/10.1073/pnas.2010787117
https://doi.org/10.1103/physrevlett.89.035704
https://doi.org/10.1103/physrevlett.89.035704
https://doi.org/10.1146/annurev.physchem.040808.090405
https://doi.org/10.1146/annurev.physchem.040808.090405
https://doi.org/10.1103/physreve.48.4359
https://doi.org/10.1103/physreve.48.4359
https://doi.org/10.1103/physrevlett.71.2603
https://doi.org/10.1103/physrevlett.71.2603
https://doi.org/10.1103/physreve.52.781
https://doi.org/10.1103/physreve.52.781
https://doi.org/10.1039/b804794d
https://doi.org/10.1039/b804794d
https://doi.org/10.1088/0953-8984/21/42/425104
https://doi.org/10.1088/0953-8984/21/42/425104
https://doi.org/10.1103/PhysRevE.84.012301
https://doi.org/10.1103/PhysRevE.84.012301
https://doi.org/10.1021/jp503647s
https://doi.org/10.1021/jp503647s
https://doi.org/10.1021/jp800347w
https://doi.org/10.1021/jp800347w
https://doi.org/10.1021/jp983756h
https://doi.org/10.1021/jp983756h
https://doi.org/10.1063/1.470961
https://doi.org/10.1063/1.470961
https://doi.org/10.1088/0034-4885/79/6/066504
https://doi.org/10.1088/0034-4885/79/6/066504
https://doi.org/10.1088/1361-648x/aa9964
https://doi.org/10.1088/1361-648x/aa9964
https://doi.org/10.1038/ncomms15417
https://doi.org/10.1038/ncomms15417
https://doi.org/10.1063/1.5097175
https://doi.org/10.1063/1.5097175

	Slow stretched-exponential and fast compressed-exponential relaxation from local event dynamics
	1.  Introduction
	2.  Elastic interaction between local relaxation events
	2.1.  Concordant relaxation and stress redistribution
	2.2.  Feed-forward interaction mechanism

	3.  Exponential, stretched and compressed relaxation from the rate equation for LREs
	4.  SER–CER crossover
	5.  Glassy relaxation: from slow dynamics to avalanches and Gardner physics
	6.  Summary
	Data availability statement
	ORCID iDs
	References


