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THE DUAL OF COMPACT ORDERED SPACES IS A VARIETY

MARCO ABBADINI

Abstract. In a recent paper (2018), D. Hofmann, R. Neves and P. Nora proved that
the dual of the category of compact ordered spaces and monotone continuous maps is
a quasi-variety—not finitary, but bounded by ℵ1. An open question was: is it also a
variety? We show that the answer is affirmative. We describe the variety by means of
a set of finitary operations, together with an operation of countably infinite arity, and
equational axioms. The dual equivalence is induced by the dualizing object [0, 1].

1. Introduction

Compact ordered spaces were introduced by L. Nachbin, and they are to topology and
partial order what compact Hausdorff spaces are to topology. A compact ordered space
(X,≤, τ) consists of a compact space (X, τ) equipped with a partial order ≤ so that the
set

{(x, y) ∈ X ×X | x ≤ y}

is closed in X×X with respect to the product topology (see [Nachbin, 1965] for a standard
reference); we are interested in the category PosComp of compact ordered spaces with
monotone continuous maps.

The goal of this paper is to establish for PosComp a result which is known to hold for
the category CompHaus of compact Hausdorff spaces with continuous maps—namely,
that the dual category is a variety (not finitary, but bounded by ℵ1). As far as com-
pact Hausdorff spaces are concerned, we recall some historical details: in 1969, Duskin
proved that the functor hom(−, [0, 1]) : CompHausop → Set is monadic [Duskin, 1969];
Isbell presented a set of primitive operations of CompHausop, using finitely many fini-
tary operations, along with an operation of countably infinite arity [Isbell, 1982]; finally,
Marra and Reggio provided finitely many axioms to axiomatize the variety CompHausop

[Marra and Reggio, 2017].
These results were a source of motivation for the algebraic study of the dual of

PosComp in [Hofmann et al., 2018]: the authors proved that PosCompop is a quasi-
variety—not finitary, but bounded by ℵ1—leaving as open the following question.

Is PosCompop also a variety?

Our main result is that the answer is affirmative, as stated in the following theorem.
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1.1. Theorem. [Main result] The dual of PosComp is equivalent to a variety of algebras.

The proof of our main result is at times inspired by [Hofmann et al., 2018], but does not
depend on their results. In this paper, under the term variety of algebras, we admit the
so called varieties of infinitary algebras, whose operations may have infinite arity (see
[S lomiński, 1959] for varieties of infinitary algebras). The variety in Theorem 1.1 will be
denoted by MC∞, where M stands for “monotone” and C stands for “continuous”. We
will give a set of primitive operations (of countable arity) and a set of equational axioms
for MC∞.

The set [0, 1] is both a compact ordered space, with the canonical order and the
euclidean topology, and an MC∞-algebra, in a natural way. In fact, we present the
duality between PosComp and MC∞ as induced by the dualizing object [0, 1]. This
dual equivalence coincides, essentially, with the duality available in [Hofmann et al., 2018]:
the main difference is that, on the algebraic side, we consider a slightly different set of
primitive operations, that facilitates us to state the axioms in an equational form.

We will show MC∞ = ISP([0, 1]), where P denotes the closure under products, S
denotes the closure under subalgebras, and I denotes the closure under isomorphisms.
Moreover, we will see that the operations of MC∞, interpreted in [0, 1], are precisely the
monotone continuous maps from a power of [0, 1] to [0, 1]. In other words, MC∞ is the
category of algebras of the varietal theory (in the sense of [Linton, 1966]) whose objects
are powers of [0, 1] and whose morphisms are the monotone continuous maps.

1.2. The strategy. The strategy that we adopt to prove the duality follows the lines
of [Marra and Reggio, 2017], which, to the best of our knowledge, used this strategy for
the first time in a similar context—namely, to obtain a finite equational axiomatization
of the dual of CompHaus. We prove that the dual of PosComp is a variety via the
following steps.

1. We obtain a dual adjunction between the category of preordered topological spaces
and a finitary variety MC, to be defined. This dual adjunction is induced by the
dualizing object [0, 1].

2. We characterize the objects which are fixed by the adjunction. On the topological
side, the fixed objects are precisely the compact ordered spaces. On the algebraic
side, the fixed objects are the archimedean Cauchy complete MC-algebras. Hence,
a duality is established between the full subcategories of compact ordered spaces
and archimedean Cauchy complete MC-algebras.

3. We show that the full subcategory of archimedean Cauchy complete MC-algebras is
isomorphic to an infinitary variety MC∞, obtained by adding a term δ of countably
infinite arity to the language of MC, together with some new appropriate equa-
tional axioms. The term δ is intended to map enough Cauchy sequences to their
limit. The forgetful functor MC∞ → MC, restricted at codomain, gives the desired
isomorphism.
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To show that every compact ordered space is fixed by the adjunction, we use an analogue
of Urysohn’s Lemma. To show that every archimedean Cauchy complete MC-algebra is
fixed, we use the Subdirect Representation Theorem, which applies since MC is finitary,
and an analogue of Stone-Weierstrass Theorem. The Subdirect Representation Theorem
is used to show that every archimedean MC-algebra is mapped injectively by the unit of
the adjunction. The analogue of Stone-Weierstrass Theorem is used to show that if the
algebra is Cauchy complete, then it is mapped surjectively by the unit of the adjunction.

Acknowledgements. The author would like to thank his Ph.D. advisor Vincenzo Marra
for his suggestions. Moreover, the author is deeply grateful to Luca Reggio, who notably
improved the proof of Theorem 5.9, and helped with many useful comments. Finally, the
author expresses his gratitude to the anonymous referee for his or her careful reading and
several comments that helped to achieve a better presentation of the results.

2. The category PreTop of preordered topological spaces

2.1. Definition.A preordered topological space (X,≤, τ) consists of a set X, a preorder
≤ on X and a topology τ on X.

When no confusion arises, we write X instead of (X,≤, τ). We denote with PreTop

the category whose objects are preordered topological spaces and whose morphisms from
A to B are the monotone (i.e. x ≤ y ⇒ f(x) ≤ f(y)) continuous functions f : A→ B.

It is well known that the forgetful functors from the category of topological spaces and
from the category of preordered sets to the category of sets are both topological, in the
sense of [Adámek et al., 2006, Definition 21.1]. The forgetful functor UPreTop : PreTop →
Set is topological, too; indeed, every UPreTop-structured source

(
X

fi−→ UPreTop(Xi,≤i, τi)
)
i∈I

admits a unique UPreTop-initial lift
(

(X,≤, τ)
f i−→ (Xi,≤i, τi)

)

i∈I

,

where ≤ is defined by
x ≤ y ⇔ ∀i ∈ I fi(x) ≤ fi(y),

and τ is the topology generated by

{f−1
i (Oi) | i ∈ I, Oi ∈ τi}.

It is well known that topological functors lift limits (in particular, products) uniquely
[Adámek et al., 2006, Proposition 21.15]. For a family (Xi,≤i) of preordered spaces, the
product preorder on

∏
i∈I Xi is the preorder ≤ defined by

x ≤ y ⇐⇒ ∀i ∈ I πi(x) ≤i πi(y),
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where πi is the projection onto the i-th coordinate. For a family (Xi, τi)i∈I of topological
spaces, the product topology on

∏
i∈I Xi is the topology generated by

{π−1
i (Oi) | i ∈ I, Oi ∈ τi}.

Finally, for a family (Xi, τi,≤i)i∈I of preordered topological spaces, the unique UPreTop-

initial lift of the UPreTop-structured source
(∏

i∈I Xi
πi−→ UPreTop(Xi,≤i, τi)

)
i∈I

is

((
∏

i∈I

X,≤, τ

)
πi−→ (Xi,≤i, τi)

)

i∈I

,

where ≤ is the product preorder, and τ is the product topology. Moreover, this is a cat-
egorical product in PreTop. Unless otherwise stated, when referring to the set-theoretic
product of preordered topological spaces as a preordered topological space, we implicitly
assume that the preorder is the product preorder and the topology is the product topol-
ogy. Then, if I is a set, and f : [0, 1]I → [0, 1] is a monotone and continuous function, we
have the following: for every preordered topological space X , f is an internal operation on
homPreTop(X, [0, 1]), meaning that, for every I-indexed family (gi)i∈I of monotone con-
tinuous functions from X to [0, 1], the function X → [0, 1], x 7→ f((gi(x))i∈I) is monotone
and continuous, as well.

3. The variety MC

We define some operations on [0, 1]. For a, b ∈ [0, 1], a∨b and a∧b denote, respectively, the
supremum and the infimum of {a, b}, a⊕b := min{a+b, 1}, and a⊙b := max{a+b−1, 0}.
Moreover, for each λ ∈ [0, 1], the constant symbol λ denotes λ itself.

3.1. Remark. Each of these operations (∨, ∧, ⊕, ⊙, and, for every λ ∈ [0, 1], the
constant function λ) is monotone and continuous with respect to the product order and
product topology.

Note that we do not consider the function ¬ : [0, 1] → [0, 1] a 7→ 1 − a, since it is not
monotone.

We define a finitary variety MC of algebras of type L = {⊕,⊙,∨,∧, 0, 1} ∪ {λ | λ ∈
[0, 1]}. Specifically, an algebra A belongs to MC (and we say that A is an MC-algebra)
if it satisfies the following identities, which, as one may verify, are all satisfied by [0, 1].

1. 〈A,∨,∧, 0, 1〉 is a distributive bounded lattice.

(a) a ∨ b = b ∨ a.

(b) a ∧ b = b ∧ a.

(c) a ∨ (b ∨ c) = (a ∨ b) ∨ c.

(d) a ∧ (b ∧ c) = (a ∧ b) ∧ c.
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(e) a ∨ (a ∧ b) = a.

(f) a ∧ (a ∨ b) = a.

(g) a ∨ 0 = a.

(h) a ∧ 1 = a.

(i) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

(j) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

2. 〈A,⊕, 0〉 is a commutative monoid, with absorbing element 1.

(a) (a⊕ b) ⊕ c = a⊕ (b⊕ c).

(b) (a⊕ b) = (b⊕ a).

(c) a⊕ 0 = a.

(d) a⊕ 1 = 1.

3. 〈A,⊙, 1〉 is a commutative monoid, with absorbing element 0.

(a) (a⊙ b) ⊙ c = a⊙ (b⊙ c).

(b) (a⊙ b) = (b⊙ a).

(c) a⊙ 1 = a.

(d) a⊙ 0 = 0.

4. ⊕ and ⊙ distribute over ∨ and ∧.

(a) (a ∨ b) ⊕ c = (a⊕ c) ∨ (b⊕ c).

(b) (a ∧ b) ⊕ c = (a⊕ c) ∧ (b⊕ c).

(c) (a ∨ b) ⊙ c = (a⊙ c) ∨ (b⊙ c).

(d) (a ∧ b) ⊙ c = (a⊙ c) ∧ (b⊙ c).

5. (a⊕ b) ⊙ c ≤ a⊕ (b⊙ c).

6. For each λ ∈ [0, 1], we have the axiom a ≤ (a⊙ (1 − λ)) ⊕ λ.

7. For each λ ∈ [0, 1], we have the axiom a ≥ (a⊕ λ) ⊙ (1 − λ).

8. For every n,m ∈ {0, 1, 2, . . .}, we have the axiom

a ∧ (b⊕ (c⊙ λ) ⊕ · · · ⊕ (c⊙ λ)︸ ︷︷ ︸
n times

) ≤ (a⊙ (c⊕ λ) ⊙ · · · ⊙ (c⊕ λ)︸ ︷︷ ︸
m times

) ∨ b.

9. For α, β, γ ∈ [0, 1] such that α ∨ β = γ in [0, 1], we have the axiom α ∨ β = γ.

10. For α, β, γ ∈ [0, 1] such that α ∧ β = γ in [0, 1], we have the axiom α ∧ β = γ.
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11. For α, β, γ ∈ [0, 1] such that α⊕ β = γ in [0, 1], we have the axiom α⊕ β = γ.

12. For α, β, γ ∈ [0, 1] such that α⊙ β = γ in [0, 1], we have the axiom α⊙ β = γ.

For λ ∈ [0, 1], we write x⊖λ for x⊙ (1− λ). In [0, 1], x⊖λ = max{x−λ, 0}. We remark
that we allow the notation x⊖ λ only when λ is a constant symbol in [0, 1].

4. The dual adjunction between PreTop and MC

Let X be a preordered topological space. We set

C(X) := homPreTop(X, [0, 1]) =

= {f : X → [0, 1] | f is monotone and continuous}.

Since, by Remark 3.1, the interpretation in [0, 1] of every MC-operation is monotone and
continuous, C(X) is an MC-algebra with pointwise defined operations. For each x ∈ X ,
we set

evx : C(X) −→ [0, 1]

a 7−→ a(x).

Let A ∈ MC. Set Max(A) := homMC(A, [0, 1]). The motivation for this name stems
from the fact that the set of morphisms from an MC-algebra A to [0, 1] is in bijection
with the set of maximal congruences on A; this follows from the fact that [0, 1] is the only
simple algebra, as will be proved in Corollary 7.18. For each a ∈ A, we set

eva : Max(A) −→ [0, 1]

x 7−→ x(a).

For all x, y ∈ Max(A), set x ≤ y if, and only if, for all a ∈ A, eva(x) ≤ eva(y), i.e.,
x(a) ≤ y(a). Let τ be the smallest topology on Max(A) that contains ev−1

a (O) (i.e.,
{x ∈ Max(A) | x(a) ∈ O}) for every a ∈ A and O open subset of [0, 1].

In [Porst and Tholen, 1991, Section 1-C], some properties are discussed that are suf-
ficient to establish a dual adjunction induced by a dualizing object. These proper-
ties are expressed in terms of existence of certain initial lifts, and in our case these
properties hold. Indeed, let UPreTop : PreTop → Set and UMC : MC → Set de-
note the forgetful functors; by the results discussed in section 2, for every A ∈ MC,(

(Max(A),≤, τ)
eva−−→ [0, 1]

)
a∈A

is the unique UPreTop-initial lift of the UPreTop-structured

source
(

Max(A)
evx−−→ UPreTop([0, 1])

)
x∈X

. Moreover, since for every preordered topologi-

cal space X the operations in C(X) are pointwise defined, we have that

(
C(X)

evx−−→ [0, 1]
)

x∈X
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(where C(X) denotes the MC-algebra whose underlying set is homPreTop(X, [0, 1]) and
with pointwise defined operations) is the unique UMC-initial lift of the UMC-structured
source (

C(X)
evx−−→ UMC([0, 1])

)

x∈X

(where C(X) denotes the set homPreTop(X, [0, 1])).
Therefore, we have a dual adjunction between PreTop and MC induced by the du-

alizing object [0, 1], that we now make explicit. In accordance with [Porst and Tholen,
1991], we find a more natural choice to use contravariant functors between PosComp and
MC rather than covariant ones between PosCompop and MC, or between PosComp

and MCop. This choice seems to us more natural in the context of dual adjunctions in-
duced by a dualizing object, because it respects the symmetry between the two involved
categories (PosComp and MC, in our case). Since we are considering contravariant
functors, we end up using two units, rather than a unit and a counit.

The assignment C on the objects may be extended on arrows so that C becomes a
contravariant functor: for a morphism g : X → Y in PreTop, we set

C(g) : C(Y ) −→ C(X)

a 7−→ a ◦ g.

Analogously, the assignment Max on the objects may be extended on arrows so that Max
becomes a contravariant functor: for a morphism f : A→ B in MC, we set

Max(f) : Max(B) −→ Max(A)

x 7−→ x ◦ f.

The adjunction is given as follows. Let X ∈ PreTop and A ∈ MC. To each morphism
g : X → Max(A) in PreTop we associate the following morphism in MC:

ĝ : A −→ C(X)

a 7−→ eva ◦ g; x 7→ (g(x))(a).

To each morphism f : A→ C(X) in MC we associate the following morphism in PreTop:

f̌ : X −→ Max(A)

x 7−→ evx ◦ f ; a 7→ (f(a))(x).

For X ∈ PreTop, the unit at X is

ηX : X −→ MaxC(X)

x 7−→ (evx : C(X) → [0, 1]; a 7→ a(x)).

For A ∈ MC, the unit at A is

εA : A −→ CMax(A)

a 7−→ (eva : Max(A) → [0, 1]; x 7→ x(a)).
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5. Fixed objects on the geometrical side

Let us recall the definition of compact ordered space.

5.1. Definition. A compact ordered space (X,≤, τ) consists of a compact space (X, τ)
equipped with a partial order ≤ so that the set

{(x, y) ∈ X ×X | x ≤ y}

is closed in X ×X with respect to the product topology.

A standard reference is [Nachbin, 1965]. We recall that every compact ordered space
is Hausdorff [Nachbin, 1965, Proposition 2, Chapter 1, p. 27]. We denote with PosComp

the category of compact ordered spaces with monotone continuous maps.
The goal of this section is to prove the following.

5.2. Theorem. Let X be a preordered topological space. The following conditions are
equivalent.

1. The unit ηX : X → MaxC(X) is an isomorphism.

2. There exists an MC-algebra A such that X and Max(A) are isomorphic preordered
topological spaces.

3. X is a compact ordered space.

5.3. Remark. The implication [(1)⇒(2)] in Theorem 5.2 is immediate: take A = C(X).

5.4. Max(A) is a compact ordered space. In this subsection, we prove the impli-
cation [(2)⇒(3)] of Theorem 5.2, i.e., for every A ∈ MC, Max(A) is a compact ordered
space. We need the following lemmas and remarks.

5.5. Lemma. Let X be a compact ordered space, and let Y be a closed subset of X. Then
Y , equipped with the topology and the order induced by X, is a compact ordered space.

Proof. Since Y is a closed subspace of a compact space, Y is compact. Clearly, the partial
order on X induces a partial order on Y . The product topology on Y × Y coincides with
the subspace topology on Y ×Y as subspace of X×X . Since {(x, y) ∈ X×X | x ≤ y} is
a closed subset of X ×X , {(x, y) ∈ Y × Y | x ≤ y} = {(x, y) ∈ X ×X | x ≤ y} ∩ Y × Y

is closed in Y × Y .

5.6. Lemma. Let (Xi)i∈I be a family of compact ordered spaces. Then,
∏

i∈I Xi, equipped
with the product topology and product order, is a compact ordered space.

Proof. By Tychonoff’s theorem,
∏

i∈I Xi is compact. Let us consider the bijection
φ : (

∏
i∈I Xi) × (

∏
i∈I Xi) →

∏
i∈I(Xi ×Xi); ((ai)i∈I , (bi)i∈I) 7→ (ai, bi)i∈I . The function φ

is a homeomorphism, and the image under φ of the set
{
(
(xi)i∈I , (yi)i∈I

)
∈

(
∏

i∈I

Xi

)
×

(
∏

i∈I

Xi

)
| (xi)i∈I ≤ (yi)i∈I

}

is
∏

i∈I {(xi, yi) ∈ Xi ×Xi | xi ≤i yi}, which is closed.
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5.7. Remark. For every set A, [0, 1]A (with the product order and product topology) is
a compact ordered space.

If X a Hausdorff space, then the diagonal of X × X is closed; as a consequence, we
have the following.

5.8. Remark. Let Y be a Hausdorff space, letX be a topological space, and let f, g : X →
Y be continuous functions. Then, {x ∈ X | f(x) = g(x)} is closed.

We can now prove the implication [(2)⇒(3)] of Theorem 5.2.

5.9. Theorem. For A ∈ MC, Max(A) is a compact ordered space.

Proof. Max(A) = homMC(A, [0, 1]) is a subset of [0, 1]A. By Remark 5.7, [0, 1]A (with
the product order and product topology) is a compact ordered space. The topology on
Max(A) coincides with the induced topology on Max(A) as a subspace of [0, 1]A; moreover,
the order on Max(A) coincides with the order induced by [0, 1]A. By Lemma 5.5, it is
enough to show that Max(A) is closed. The idea is that Max(A) is closed because it is
defined by equations, which express the preservations of primitive operation symbols of
MC. To make this precise, let L denote the set of primitive operation symbols of MC.
For each h ∈ L, we denote with ar(h) the arity of h; moreover, we denote with hA the
interpretation of h in A, and by h[0,1] the interpretation of h in [0, 1]. For a ∈ A, we denote
with πa : [0, 1]A → [0, 1] the projection onto the a-th coordinate (which is continuous).
We have

Max(A) = homMC(A, [0, 1]) =

= {x : A→ [0, 1] | ∀h ∈ L ∀a1, . . . , aar(h) ∈ A

x(hA(a1, . . . , aar(h))) = h[0,1](x(a1), . . . , x(aar(h)))} =

=
⋂

h∈L

⋂

a1,...,aar(h)∈A

{x : A→ [0, 1] |

x(hA(a1, . . . , aar(h))) = h[0,1](x(a1), . . . , x(aar(h)))} =

=
⋂

h∈L

⋂

a1,...,aar(h)∈A

{x ∈ [0, 1]A | πhA(a1,...,aar(h))(x) = h[0,1](πa1(x), . . . , πaar(h)(x))}.

By Remark 3.1, h[0,1] is continuous; therefore, the function from [0, 1]A to [0, 1] which maps
x to h[0,1](πa1(x), . . . , πaar(h)(x)) is continuous. Since [0, 1] is Hausdorff, by Remark 5.8,

{x ∈ [0, 1]A | πhA(a1,...,aar(h))(x) = h[0,1](πa1(x), . . . , πaar(h)(x))} is closed.

5.10. The unit ηX : X → MaxC(X) is injective. We now turn to the proof of the
implication [(3)⇒(1)] in Theorem 5.2, which states that, if X is a compact ordered space,
ηX : X → MaxC(X) is an isomorphism. Our source of inspiration is [Hofmann and Nora,
2018]. The results we will obtain in the present section may be seen, essentially, as specific
cases of the results available in [Hofmann and Nora, 2018]; nevertheless, for reasons of
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presentation, we provide independent proofs here. In this subsection, we prove that, if X
is a compact ordered space, then ηX : X → MaxC(X) is injective; this result is essentially
due to L. Nachbin.

5.11. Definition. For X a partially ordered set, we call upper an upward closed subset
of X, and lower a downward closed one.

For X a partial ordered set, and x ∈ X , we set ↓ x := {z ∈ X | z ≤ x} and
↑ x := {z ∈ X | x ≤ z}. The following is well known.

5.12. Lemma. Let X be a compact ordered space, and let x ∈ X. Then ↓ x is the smallest
closed lower subset of X that contains x and ↑ x is the smallest closed upper subset of X
that contains x.

Proof. Let us prove that ↓ x is closed. Set D := {(u, v) ∈ X ×X | u ≤ v}. D is closed
by definition of compact ordered space. Moreover, since any compact ordered space is
Hausdorff, every point of X is closed. Hence D ∩ (X × {x}) = {(z, x) | z ∈ X : z ≤ x}
is closed. Since the projection π1 : X × X → X onto the first coordinate is closed,
π1({(z, x) | z ∈ X : z ≤ x}) = {z ∈ X | z ≤ x} =↓ x is closed. Analogously for ↑ x. The
rest of the statement is straightforward to prove.

5.13. Proposition. [Ordered version of Urysohn’s Lemma] Let X be a compact ordered
space, let A be a closed lower subset, and let B be a closed upper subset, with A∩B = ∅.
Then there exists a monotone and continuous function ψ : X → [0, 1] such that, for every
x ∈ A, ψ(x) = 0, and, for every x ∈ B, ψ(x) = 1.

Proof. See [Nachbin, 1965, Chapter I, Theorem 1, p. 30].

5.14. Corollary. Let X be a compact ordered space, and let x, y ∈ X such that x 6≥ y.
Then there exists a monotone and continuous function ψ : X → [0, 1] such that ψ(x) = 0
and ψ(y) = 1.

Proof. Set ↓ x∩ ↑ y = ∅. By Lemma 5.12, ↓ x is a closed lower subset and ↑ y is a closed
upper subset. Therefore we may apply Proposition 5.13 with A =↓ x and B =↑ y.

5.15. Corollary. Let X be a compact ordered space, and let x, y ∈ X. Suppose that,
for every ψ : X → [0, 1] monotone and continuous, ψ(x) ≤ ψ(y). Then x ≤ y.

A consequence of Corollary 5.15 is the fact that every compact ordered space embeds
into a power of [0, 1].

5.16. Proposition. For every X compact ordered space, ηX is injective.

Proof. Let x, y ∈ X . Suppose x 6= y. Then, either x 6≥ y or y 6≥ x. Suppose, without
loss of generality, x 6≥ y. Then, by Corollary 5.14, there exists ψ ∈ C(X) such that
ψ(x) = 0 and ψ(y) = 1. Therefore, (ηX(x))(ψ) = evx(ψ) = ψ(x) = 0 6= 1 = ψ(y) =
evy(ψ) = (ηX(y))(ψ). Thus, ηX(x) 6= ηX(y).
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5.17. The unit ηX : X → MaxC(X) is surjective. We continue the path that allows
us to prove the implication [(3)⇒(1)] in Theorem 5.2: if X is a compact ordered space,
ηX : X → MaxC(X) is an isomorphism. In this subsection, we prove that, if X is a
compact ordered space, then ηX : X → MaxC(X) is surjective.

Let X be a compact ordered space, and let Φ: C(X) → [0, 1] be an MC-morphism,
i.e. Φ ∈ MaxC(X). The goal is to find x ∈ X such that Φ = evx. For every ψ ∈ C(X),

set Z(ψ) := {x ∈ X | ψ(x) = 0}. Moreover, set Z̃(Φ) :=
⋂
ψ∈C(X):Φ(ψ)=0 Z(ψ). We shall

prove that Z̃(Φ) has a maximum element x, and that Φ = evx. Set A(Φ) :=
⋂
ψ∈C(X){y ∈

X | ψ(y) ≤ Φ(ψ)}.

5.18. Lemma. A(Φ) = Z̃(Φ).

Proof. Let us prove (⊆). Let y ∈ A(Φ). Then for every ψ ∈ C(X), we have ψ(y) ≤ Φ(ψ).

Therefore, if Φ(ψ) = 0, then ψ(y) = 0, i.e., ψ ∈ Z(Φ). Hence, y ∈ Z̃(Φ).

Let us prove (⊇). Let x ∈ Z̃(Φ). Let ψ ∈ C(X). We shall prove ψ(x) ≤ Φ(ψ). Set

ψ′ := ψ⊖Φ(ψ). Then Φ(ψ′) = Φ(ψ)⊖Φ(ψ) = 0. Since x ∈ Z̃(Φ), we have ψ′(x) = 0, i.e.
ψ(x) ⊖ Φ(ψ)., i.e. ψ(x) ≤ Φ(ψ).

5.19. Lemma.

1. Z̃(Φ) is a closed lower subset of X.

2. For every ψ ∈ C(X), supy∈A(Φ) ψ(y) ≤ Φ(ψ).

Proof.

1. For every ψ ∈ C(X), Z(ψ) is closed, hence Z̃(Φ) is closed.

Suppose y ∈ Z̃(Φ) and x ≤ y. Then, for every ψ ∈ C(X) such that Φ(ψ) = 0,
we have y ∈ Z(ψ), i.e. ψ(y) = 0. Since ψ is monotone, we have ψ(x) = 0, i.e.

x ∈ Z(ψ). Therefore, x ∈ Z̃(Φ).

2. It follows from the fact that, for every ψ ∈ C(X) and y ∈ A(Φ), ψ(y) ≤ Φ(ψ).

The following is inspired by [Hofmann and Nora, 2018, Proposition 6.12].

5.20. Proposition. Let X be a compact ordered space and let Φ: C(X) → [0, 1] be an
MC-morphism. Then, for all ψ ∈ C(X), we have

Φ(ψ) = sup
y∈Z̃(Φ)

ψ(y).
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Proof. Let ψ ∈ C(X). We already know

sup
y∈Z̃(Φ)

ψ(y)
Lem. 5.18

= sup
y∈A(Φ)

ψ(y)
Lem. 5.19

≤ Φ(ψ).

Let us set λ := sup
y∈Z̃(Φ) ψ(y). We shall prove Φ(ψ) ≤ λ. Let ε > 0. We shall prove

Φ(ψ) ≤ λ+ ε. Set
U := {y ∈ X | ψ(y) < λ+ ε} .

Clearly, U is open and, by definition of λ, Z̃(Φ) ⊆ U . Let x ∈ X \ Z̃(Φ). There is some

ψ̃ ∈ C(X) with Φ(ψ̃) = 0 and ψ̃(x) 6= 0. Let n ∈ N be such that n(ψ̃(x)) ≥ 1. Set

ψ′ := ψ̃ ⊕ · · · ⊕ ψ̃︸ ︷︷ ︸
n times

. Then Φ(ψ′) = 0 and ψ′(x) = 1. For every ψ′ ∈ C(X) we set

s(ψ′) := {x ∈ X | ψ′(x) > 1 − ε}.

By the considerations above,

X = U ∪
⋃

ψ′∈C(X):Φ(ψ′)=0

s(ψ′);

since X is compact, we find ψ1, . . . , ψn ∈ C(X) with Φ(ψi) = 0 and

X = U ∪ s(ψ1) ∪ · · · ∪ s(ψn).

Therefore, for all x ∈ X , either x ∈ U , i.e., ψ(x) < λ + ε, or there exists j ∈ {1, . . . , n}
such that x ∈ s(ψj), i.e., ψj(x) > 1 − ε. Hence,

ψ ⊙ (1 − ε) ≤ ((λ⊕ ε) ⊙ (1 − ε)) ∨ ψ1 ∨ · · · ∨ ψn ≤ λ ∨ ψ1 ∨ · · · ∨ ψn.

Therefore,

Φ(ψ) ⊙ (1 − ε) ≤ λ ∨ Φ(ψ1) ∨ · · · ∨ Φ(ψn) = λ ∨ 0 ∨ · · · ∨ 0 = λ.

Hence Φ(ψ) ≤ (Φ(ψ) ⊙ (1 − ε)) ⊕ ε ≤ λ⊕ ε.

5.21. Definition. A nonempty subset A of a topological space X is irreducible if A ⊆
B ∪ C for closed subsets B and C implies A ⊆ B or A ⊆ C.

5.22. Notation. Let X be a compact ordered space, and let τ be the topology on X .
We denote with τ ♯ the topology of all upper open subsets of X .

A subset B ⊆ X is upper if, and only if, its complement X \ B is lower; hence the
closed subsets of (X, τ ♯) are precisely the closed lower subsets of (X, τ).

5.23. Definition. Let X be a compact ordered space and let τ be the topology on X.
We say that A ⊆ X is ♯-irreducible if it is irreducible in (X, τ ♯), i.e., for all closed lower
subsets A1, A2 of (X, τ) with A ⊆ A1 ∪A2, one has A ⊆ A1 or A ⊆ A2.
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5.24. Proposition. Let X be a compact ordered space and Φ: C(X) → [0, 1] an MC-
morphism. Then

1. Z̃(Φ) 6= ∅.

2. Z̃(Φ) is ♯-irreducible.

Proof.

1. 1 = Φ(1) = supx∈Z̃(Φ) 1.

2. Let A1, A2 ⊆ X be closed upper subsets with Z̃(Φ) ⊆ A1 ∪A2. We shall prove that

either Z̃(Φ) ⊆ A1 or Z̃(Φ) ⊆ A2. Suppose, by way of contradiction, x ∈ Z̃(Φ) \ A1

and y ∈ Z̃(Φ) \ A2. Then (↑ x) ∩ A1 = ∅ and (↑ y) ∩ A2 = ∅. By Proposition 5.13,
there exist ψ1, ψ2 ∈ C(X) such that,

(a) ψ1(x) = 1 and, for all z ∈ A1, ψ1(z) = 0.

(b) ψ2(y) = 1 and, for all z ∈ A2, ψ2(z) = 0.

Then, for all z ∈ Z̃(Φ), (ψ1 ⊙ ψ2)(z) = ψ1(z) ⊙ ψ2(z) = 0, since either ψ1(z) = 0 or
ψ2(z) = 0.

Hence, Φ(ψ1 ⊙ ψ2) = sup
z∈Z̃(Φ) ψ1(z) ⊙ ψ2(z) = 0.

But, also,
Φ(ψ1 ⊙ ψ2) = Φ(ψ1) ⊙ Φ(ψ2) =

=

(
sup

z∈Z̃(Φ)

ψ1(z)

)
⊙

(
sup

z∈Z̃(Φ)

ψ2(z)

)
≥

≥ ψ1(x) ⊙ ψ2(y) =

= 1 ⊙ 1 =

= 1.

This is a contradiction.

5.25. Definition.We say that a topological space (X, τ) is sober if, for every irreducible
closed set C, there exists a unique x ∈ X such that the closure of {x} is C.

5.26. Proposition. Let (X,≤, τ) be a compact ordered space. Then (X, τ ♯) is sober.

Proof. See Proposition VI.6.11 in [Gierz et al., 2003].
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5.27. Remark. Let (X,≤, τ) be a compact ordered space, and let x ∈ X . The closure
of {x} in (X, τ ♯) is ↓ x.

5.28. Proposition. Let X be a compact ordered space, and let A ⊆ X be an irreducible
closed lower subset of X. Then there exists a unique x ∈ X such that A =↓ x.

Proof. By Proposition 5.26 and Remark 5.27.

5.29. Theorem. Let X be a compact ordered space, and let Φ: C(X) → [0, 1] be a map
that preserves the operations ∨,∧,⊕,⊙ and every constant λ ∈ [0, 1]. Then, there exists
a unique x ∈ X such that, for every ψ ∈ C(X), Φ(ψ) = ψ(x), i.e. Φ = evx.

Proof. For every x ∈ X , ηX(x) = evx. Hence, uniqueness follows from injectivity of ηX ,
which was established in Proposition 5.16 and which—we recall—was a consequence of
Corollary 5.14. Concerning existence, by Proposition 5.28, there exists x ∈ X such that
Z̃(Φ) =↓ x. Then

Φ(ψ) = sup
z∈Z̃(Φ)

ψ(z) = ψ(x).

5.30. Corollary. If X is a compact ordered space, the map ηX : X → MaxC(X) is
surjective.

We may now conclude the proof of Theorem 5.2, which asserted, for X a preordered
topological space, the equivalence of the following conditions.

1. The unit ηX : X → MaxC(A) is an isomorphism.

2. There exists an MC-algebra A such that X and Max(A) are isomorphic preordered
topological spaces.

3. X is a compact ordered space.

Proof of Theorem 5.2. [(1)⇒(2)] By Remark 5.3.
[(2)⇒(3)] By Theorem 5.9.
[(3)⇒(1)] By Proposition 5.16, ηX is injective. By Corollary 5.30, ηX is surjective. Every
continuous map between compact Hausdorff spaces is closed, and every closed bijective
continuous map between topological spaces is a homeomorphism. We are left to show
that ηX reflects the order, i.e., for every x, y ∈ X , if ηX(x) ≤ ηX(y), then x ≤ y. If
ηX(x) ≤ ηX(y), then, for every ψ ∈ C(X), (ηX(x))(ψ) ≤ (ηX(y))(ψ), i.e., ψ(x) ≤ ψ(y).
By Corollary 5.15, x ≤ y.
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6. Fixed objects on the algebraic side: the goal

6.1. Definition. Let A ∈ MC and x, y ∈ A. We set

↑yx:= {λ ∈ [0, 1] | y ≤ x⊕ λ};

d↑(x, y) := inf ↑yx;

and
d(x, y) := max{d↑(x, y), d↑(y, x)}.

On [0, 1], d↑(x, y) = (y − x)+ (where z+ := max{z, 0}), and d(x, y) = |y − x|. If X is
a set, and L is an MC-subalgebra of [0, 1]X , then, on L, d↑(f, g) = supx∈X(g(x)− f(x))+,
and d coincides with the sup metric. We mention that, in [0, 1], (y − x)+ coincides with
y ⊖ x.

6.2. Definition. Let A ∈ MC. We say that A is archimedean if, for all x, y ∈ A,

d(x, y) = 0 ⇒ x = y.

The idea—as we will see—is that A ∈ MC is archimedean if, and only if, A is an
MC-subalgebra of [0, 1]X , for some set X . For now, we have the following.

6.3. Remark. If X is a set, and L is an MC-subalgebra of [0, 1]X, then L is archimedean.
Indeed, d coincides with the sup metric, that satisfies the implication d(x, y) = 0 ⇒ x = y.

In Definition 6.4 below, we define Cauchy sequences, convergence, and Cauchy com-
pleteness. These definitions are standard; anyway, one should pay attention to the fact
that d is not required to be a metric, because d(x, y) = 0 ⇒ x = y might fail.

6.4. Definition. Let A ∈ MC, let (an)n∈N be a sequence in A, and let a ∈ A. We say
that (an)n∈N is a Cauchy sequence if, for all ε > 0, there exists k ∈ N such that, for all
n,m ≥ k, d(an, am) < ε. We say that (an)n∈N converges to a, or that a is a limit of
(an)n∈N, if, for every ε > 0, there exists n ∈ N such that, for all m ≥ n, d(am, a) < ε.
We say that (an)n∈N converges if there exists b ∈ A such that (an)n∈N converges to b. We
say that A is Cauchy complete if every Cauchy sequence in A converges.

We remark that a sequence may have more than one limit, since d is not a metric.

6.5. Remark. On [0, 1] the concepts of Cauchy sequence and convergence to an element
in Definition 6.4 coincide with the usual ones with respect to the euclidean distance. In
particular, [0, 1] is Cauchy complete. If X is a set, and L is an MC-subalgebra of [0, 1]X ,
the concepts of Cauchy sequence and convergence to an element in Definition 6.4 coincide
with the usual ones with respect to the sup metric.

Our next goal is to prove the following.
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6.6. Theorem. Let A ∈ MC. The following conditions are equivalent.

1. The unit εA : A→ CMax(A) is an isomorphism.

2. There exists a preordered topological space X such that A and C(X) are isomorphic
MC-algebras.

3. A is archimedean and Cauchy complete.

The current section and the following two are intended to prove Theorem 6.6 above.

6.7. Remark. We give here the proofs of the implications [(1)⇒(2)] and [(2)⇒(3)] of
Theorem 6.6.
[(1)⇒(2)] Take X = Max(A).
[(2)⇒(3)] A is archimedean because C(X) is archimedean, by Remark 6.3. Let us prove
that C(X) (and hence A) is Cauchy complete. Let (fn)n∈N be a sequence in C(X) which
is Cauchy with respect to the metric d. Then, there exists a function f : X → [0, 1] such
that fn converges to f uniformly. It is well known that the uniform limit of a sequence of
continuous functions is continuous. Since, for all n ∈ N, fn is continuous, f is continuous.
Let us prove that f is monotone. Let x, y ∈ X with x ≤ y. For all n ∈ N, fn is monotone.
Therefore, f(x) = limn→∞ fn(x) ≤ limn→∞ fn(y) = f(y).

We are left to prove the implication [(3)⇒(2)] of Theorem 6.6, i.e., that, for every
archimedean Cauchy complete MC-algebra A, the unit εA : A → CMax(A) is an isomor-
phism. This implication is a consequence of the following two theorems, whose proofs we
conclude, respectively, at the ends of the following two sections.

6.8. Theorem. Let A ∈ MC. The following conditions are equivalent.

1. A is archimedean.

2. For every x, y ∈ A with x 6= y, there exists an MC-morphism ϕ : A → [0, 1] such
that ϕ(x) 6= ϕ(y).

3. There exists a set X such that A is an MC-subalgebra of [0, 1]X .

4. The unit εA : A→ CMax(A) is injective.

6.9. Theorem. Let A ∈ MC. The following conditions are equivalent.

1. A is Cauchy complete.

2. The unit εA : A→ CMax(A) is surjective.

7. A is archimedean if, and only if, the unit εA is injective

The aim of this section is to prove Theorem 6.8 above. Some of the implications between
the four conditions in Theorem 6.8 are relatively easy to prove, and we collect their proofs
in the following remark.
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7.1. Remark. [Part of the proof of Theorem 6.8] We prove some of the implications in
Theorem 6.8.
[(4)⇒(3)] Immediate.
[(3)⇒(2)] Let f, g ∈ A ⊆ [0, 1]X be such that f 6= g. Then, there exist z ∈ X such that
f(z) 6= g(z). Set

ϕ : A −→ [0, 1]

h 7−→ h(z).

The function ϕ : A → [0, 1] is clearly an MC-morphism. ϕ(f) = f(z) 6= g(z) = ϕ(g).
[(2)⇒(4)] Let x, y ∈ A be such that x 6= y. We shall prove εA(x) 6= εA(y). By hypothesis,
there exists an MC-morphism ϕ : A → [0, 1] such that ϕ(x) 6= ϕ(y). Note that ϕ ∈
Max(A). We have (εA(x))(ϕ) = evx(ϕ) = ϕ(x) 6= ϕ(y) = evy(ϕ) = (εA(y))(ϕ). This
proves εA(x) 6= εA(y).
[(3)⇒(1)] By Remark 6.3.

In Remark 7.1 we have proved that (2), (3) and (4) in Theorem 6.8 are equivalent,
and that any of these conditions implies (1). What is missing to prove Theorem 6.8 is
the implication [(1)⇒(2)] (for example), i.e., that if A is archimedean, then, for every
x 6= y ∈ A, there exists an MC-morphism ϕ : A → [0, 1] such that ϕ(x) 6= ϕ(y). The
proof of this last implication will take us some effort. The idea is that, since MC is a
finitary variety, we may apply the Subdirect Representation Theorem. The Subdirect
Representation Theorem ensures, for every A ∈ MC, the existence of an injective MC-
morphism ι : A →֒

∏
i∈I Ai, where, for all i ∈ I, Ai is subdirectly irreducible. We will

show that every subdirectly irreducible algebra B consists essentially of the set [0, 1]
together with some additional elements, each of which lies “just above” or “just below”
one particular λ ∈ [0, 1]. This allows us to define the morphism ess : B → [0, 1] that “kills
the infinitesimals”. We will show that the morphism ess preserves d. Composing the map
ι : A →֒

∏
i∈I Ai with the morphisms essi : Ai → [0, 1], we obtain a map h : A→

∏
i∈I [0, 1]

that correctly translates the function d on A to the sup metric on
∏

i∈I [0, 1]. Then, if,
x 6= y ∈ A, and A is archimedean, we have d(x, y) 6= 0, and therefore the sup distance
between h(x) and h(y) is not zero. From this we conclude that there is a morphism
ϕ : A→ [0, 1] such that ϕ(x) 6= ϕ(y).

7.2. Subdirectly irreducible MC-algebras. We start the path that will take us to
the proof that every archimedean MC-algebra admits enough morphisms towards [0, 1],
i.e., the implication [(1)⇒(2)] in Theorem 6.8. The main goal of this subsection is to
prove the following.

7.3. Theorem. Let A ∈ MC be subdirectly irreducible. Then, for all x ∈ A, and λ ∈
[0, 1], x ≤ λ or λ ≤ x.

To a reader that has familiarity with abelian lattice-ordered groups or MV-algebras,
Theorem 7.3 might sound analogous to the well-known result that every subdirectly irre-
ducible abelian lattice-ordered group (or MV-algebra) is totally ordered. Note, however,
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that Theorem 7.3 does not say “every subdirectly irreducible A ∈ MC is totally or-
dered”; in fact, it says something something weaker. The author does not know whether
every subdirectly irreducible A ∈ MC is totally ordered; nevertheless, for our purposes,
Theorem 7.3 is enough.

The idea for the proof of Theorem 7.3 is the following: if, by contraposition, x 6≤ λ

and λ 6≤ x, then we could construct two nonminimal congruences whose intersection is
minimal, which shows that A is not subdirectly irreducible. The idea is that these two
congruences are the congruences generated, respectively, by x ∼ x ∨ λ and x ∼ x ∧ λ.

Our convention is that we do not consider the trivial algebra (i.e, with exactly an
element) as subdirectly irreducible.

7.4. Notation. Let A ∈ MC, and let L denote the language of MC. For A ∈ MC,
let A∂ denote the L-algebra that shares the same underlying set with A, and which is
such that ∨A∂ = ∧A, ∧A∂ = ∨A, ⊕A∂ = ⊙A, ⊙A∂ = ⊕A, and, for every λ ∈ [0, 1],
λA∂ = (1 − λ)A. We call A∂ the order-dual algebra of A.

Roughly speaking, the dual operation γ∂ of an operation γ of arity I is given by
γ∂((xi)i∈I) := 1 − γ((1 − xi)i∈I) (this makes sense in [0, 1]).

We will use the concept of order-dual algebra only to shorten some proofs. This is
made possible by the following lemma.

7.5. Lemma. Let A ∈ MC. Then, A∂ ∈ MC.

Proof. The only nontrivial part is showing that Axioms (9), (10), (11), (12) “dualize”.
But this holds because, for every a, b, c ∈ [0, 1], we have the following properties.

1. a ∧ b = c⇔ (1 − a) ∨ (1 − b) = 1 − c.

2. a ∨ b = c⇔ (1 − a) ∧ (1 − b) = 1 − c.

3. a⊕ b = c⇔ (1 − a) ⊙ (1 − b) = 1 − c.

4. a⊙ b = c⇔ (1 − a) ⊕ (1 − b) = 1 − c.

7.6. Remark.
(
A∂
)∂

= A.

7.7. Lemma. Let A ∈ MC. The following properties hold for all a, b, c, a′, b′ ∈ A.

1. a ≤ b⇒ a⊕ c ≤ b⊕ c.

2. a ≤ b⇒ a⊙ c ≤ b⊙ c.

3. a ≤ a⊕ b.

4. a ≥ a⊙ b.

5. If a ≤ a′ and b ≤ b′, then a⊕ b ≤ a′ ⊕ b′.

6. If a ≤ a′ and b ≤ b′, then a⊙ b ≤ a′ ⊙ b′.
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Proof. (1) Suppose a ≤ b. Then a⊕ c = (a ∧ b) ⊕ c = (a⊕ c) ∧ (b⊕ c).
(3) From 0 ≤ b we obtain a⊕ 0 ≤ a⊕ b. Since a⊕ 0 = a, a ≤ a⊕ b.
(5) This follows from (1), taking into account that ⊕ is commutative.
Items (2), (4) and (6) in A coincide respectively with items (1), (3) and (5) in the order-
dual algebra of A.

7.8. Lemma. Let A ∈ MC and x ∈ A. For a, a′ ∈ A, set a ∼x
⊕ a′ if, and only if, there

exist n,m ∈ N such that
a⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸

n times

) ≥ a′

a′ ⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
m times

) ≥ a.

Then ∼x
⊕ is a congruence.

Proof. We first prove that ∼x
⊕ is an equivalence relation. The relation ∼x

⊕ is trivially
reflexive and symmetric. To prove transitivity, suppose a ∼x

⊕ b ∼
x
⊕ c. Then

(a⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
n times

)) ⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
n′ times

) ≥ b⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
n′ times

) ≥ c.

Analogously for the other inequality.
Suppose a ∼x

⊕ a
′ and b ∼x

⊕ b
′.

1. We shall prove a ∨ b ∼x
⊕ a

′ ∨ b′.

(a ∨ b) ⊕ ( x⊕ · · · ⊕ x︸ ︷︷ ︸
max{n,n′} times

) ≥ a′ ∨ b′.

Analogously for the other inequality.

2. We shall prove a ∧ b ∼x
⊕ a

′ ∧ b′.

(a ∧ b) ⊕ ( x⊕ · · · ⊕ x︸ ︷︷ ︸
max{n,n′} times

) = (a⊕ ( x⊕ · · · ⊕ x︸ ︷︷ ︸
max{n,n′} times

)) ∧ (b⊕ ( x⊕ · · · ⊕ x︸ ︷︷ ︸
max{n,n′} times

)) ≥ a′ ∧ b′.

Analogously for the other inequality.

3. We shall prove a⊕ b ∼x
⊕ a

′ ⊕ b′.

(a⊕ b) ⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
(n+n′) times

) = (a⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
n times

)) ⊕ (b⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
n′ times

)) ≥ a′ ⊕ b′.

Analogously for the other inequality.

4. We shall prove a⊙ b ∼x
⊕ a

′ ⊙ b′.

(a⊙ b) ⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
(n+n′) times

) ≥ (a⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
n times

)) ⊙ (b⊕ (x⊕ · · · ⊕ x︸ ︷︷ ︸
n′ times

)) ≥ a′ ⊙ b′.

Analogously for the other inequality.
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7.9. Lemma. Let A ∈ MC, x ∈ A.
For b, b′ ∈ A, set b ∼x

⊙ b
′ if, and only if there exists n,m ∈ N such that

b⊙ (x⊙ · · · ⊙ x︸ ︷︷ ︸
n times

) ≤ b′,

b′ ⊙ (x⊙ · · · ⊙ x︸ ︷︷ ︸
m times

) ≤ b.

Then ∼x
⊙ is a congruence.

Proof. The relation ∼x
⊙ is a congruence in A∂ , by Lemma 7.8. This implies that ∼x

⊙ is
a congruence in A.

We call minimal congruence (or trivial congruence) on an algebra A the smallest
congruence, which is ∆A := {(a, a) | a ∈ A}.

We are now ready for the proof of Theorem 7.3.

Proof of Theorem 7.3. Suppose, by way of contradiction, x 6≤ λ and λ 6≤ x. Then,
x⊖ λ 6= 0 and x⊕ (1 − λ) 6= 1. Indeed, x ≤ (x⊖ λ) ⊕ λ, and x ≥ (x⊕ (1 − λ))⊖ (1 − λ).

For a, b ∈ A, set a ∼⊕ b if, and only if, there exists n,m ∈ N such that

a⊕ ((x⊖ λ) ⊕ · · · ⊕ (x⊖ λ)︸ ︷︷ ︸
n times

) ≥ b,

b⊕ ((x⊖ λ) ⊕ · · · ⊕ (x⊖ λ)︸ ︷︷ ︸
m times

) ≥ a.

By Lemma 7.8, ∼⊕ is a congruence.
For a, b ∈ A, set a ∼⊙ b if, and only if, there exists n,m ∈ N such that

a⊙ ((x⊕ (1 − λ)) ⊙ · · · ⊙ (x⊕ (1 − λ))︸ ︷︷ ︸
n times

) ≤ b,

b⊙ ((x⊕ (1 − λ)) ⊙ · · · ⊙ (x⊕ (1 − λ))︸ ︷︷ ︸
m times

) ≤ a.

By Lemma 7.9, ∼⊙ is a congruence.
Since x⊖λ 6= 0 and x⊖λ ∼⊕ 0, ∼⊕ is not the minimal congruence. Since x⊕(1−λ) 6= 1

and x⊕ (1 − λ) ∼⊕ 1, ∼⊕ is not the minimal congruence.
We claim that the congruence ∼⊕ ∩ ∼⊙ is the minimal one. Indeed, let us take

a, b ∈ A such that a ∼⊕ b and a ∼⊙ b.
Then

a ≤ b⊕ ((x⊖ λ) ⊕ · · · ⊕ (x⊖ λ)︸ ︷︷ ︸
m times

).

and
a⊙ ((x⊕ (1 − λ)) ⊙ · · · ⊙ (x⊕ (1 − λ))︸ ︷︷ ︸

n times

) ≤ b.
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Then
a = a ∧ (b⊕ ((x⊖ λ) ⊕ · · · ⊕ (x⊖ λ)︸ ︷︷ ︸

m times

)) ≤

≤ (a⊙ ((x⊕ (1 − λ)) ⊙ · · · ⊙ (x⊕ (1 − λ))︸ ︷︷ ︸
n times

)) ∨ b = b.

Analogously, b ≤ a, and therefore a = b. Therefore ∼⊕ ∩ ∼⊙ is the minimal congru-
ence. This is a contradiction; indeed, the minimal congruence on a subdirectly irreducible
algebra is ∧-irreducible in the lattice of congruences, and therefore the intersection of
nonminimal congruence is not minimal in a subdirectly irreducible algebra.

7.10. The morphism ess from a subdirectly irreducible MC-algebra to [0, 1]
that kills infinitesimals. In Theorem 7.3 we proved that, if A ∈ MC is subdirectly
irreducible, then, for all x ∈ A, and λ ∈ [0, 1], x ≤ λ or λ ≤ x. The intuition is that A
consists essentially of the set [0, 1], together with some infinitesimals, each of which lies
“just above” or “just below” one particular λ ∈ [0, 1]. In this subsection we show that
one can define the function ess : A → [0, 1] that “kills the infinitesimals” and that this
map is an MC-morphism (see Theorem 7.17).

7.11. Lemma. Let A ∈ MC. Let α, β ∈ [0, 1] be such that α 6= β. The following
conditions are equivalent.

1. A is trivial.

2. αA = βA.

Proof. If A is trivial, then, clearly, αA = βA. Suppose αA = βA and suppose, without
loss of generality, α < β. Then, in A, β⊖α = β⊖β = 0. Then, for every n ∈ N, in A, 0 =
(β ⊖ α) ⊕ · · · ⊕ (β ⊖ α)︸ ︷︷ ︸

n times

. Let n be big enough so that, in [0, 1], (β ⊖ α) ⊕ · · · ⊕ (β ⊖ α)︸ ︷︷ ︸
n times

=

1. Then, in A, 0A = (β ⊖ α) ⊕ · · · ⊕ (β ⊖ α)︸ ︷︷ ︸
n times

= 1A. Since 0A is the bottom and 1A is the

top of A, for every x, y ∈ A, x = y.

7.12. Definition. Let A ∈ MC and x ∈ A. We set

Ix := {λ ∈ [0, 1] | λ ≤ x};

Sx := {λ ∈ [0, 1] | x ≤ λ};

essinf x := sup Ix;

esssup x := inf Sx.

7.13. Remark. Let A ∈ MC and x ∈ A. Then, essinf x, calculated in A, is esssup x,
calculated in A∂ .
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7.14. Remark. Ix is an initial segment of [0, 1], 0 ∈ Ix, Sx is a final segment of [0, 1],
and 1 ∈ Sx. In addition, we note the following facts.

1. If A is trivial, then Ix = [0, 1] = Sx, and thus essinf x = 1 and esssup x = 0.

2. If A is not trivial, then Ix ∩ Sx has at most one element, because otherwise there
would exists α 6= β in [0, 1] such that, in A, α ≤ x ≤ β ≤ x ≤ α, and hence
αA = βA; but, since A is non-trivial, this is not possible by Lemma 7.11. Hence, if
A is not trivial,

essinf x ≤ esssup x.

7.15. Lemma. Let A ∈ MC be nontrivial. If x ∈ A is such that, for all λ ∈ [0, 1], x ≤ λ

or λ ≤ x, then
essinf x = esssup x.

In particular, if A is subdirectly irreducible, then, for all x ∈ X, essinf x = esssup x.

Proof. By Remark 7.14, essinf x ≤ esssup x. Since, by hypothesis, Ix ∪ Sx = [0, 1], we
conclude essinf x = esssup x. If A is subdirectly irreducible, then, by Theorem 7.3, for all
x ∈ A and λ ∈ [0, 1], x ≤ λ or λ ≤ x.

7.16. Notation. For A ∈ MC and x ∈ A, if essinf x = esssup x, we set

ess x := essinf x = esssup x.

7.17. Theorem. Let A ∈ MC be such that, for all x ∈ A, essinf x = esssup x (this holds,
in particular, if A is subdirectly irreducible). Then, the function

ess : MC −→ [0, 1]

x 7−→ ess x

is a surjective MC-morphism.

Proof. For all x ∈ A, recall: Ix := {λ ∈ [0, 1] | λ ≤ x}, Sx := {λ ∈ [0, 1] | x ≤ λ},
and ess x = sup Ix = inf Sx. For every constant symbol λ ∈ [0, 1], ess clearly preserves
λ. Let x, y ∈ A and let ⊗ denote any operation amongst {∨,∧,⊕,⊙}. We shall show
ess(x⊗ y) = ess x⊗ ess y. For every U,W ⊆ [0, 1], set U ⊗W := {α⊗ β | α ∈ U, β ∈ W}.
Since ⊗ : [0, 1]2 → [0, 1] is continuous, for every nonempty U, V ⊆ [0, 1], sup(U ⊗W ) =
(supU) ⊗ (supW ) and sup(U ⊗W ) = (supU) ⊗ (supW ). We shall show ess(x ⊗ y) =
ess x⊗ ess y. Now,

ess(x⊗ y) = sup Ix⊗y,

ess(x⊗ y) = inf Sx⊗y,

ess x⊗ ess y = (sup Ix) ⊗ (sup Iy) = sup(Ix ⊗ Iy),

ess x⊗ ess y = (inf Sx) ⊗ (inf Sy) = inf(Sx ⊗ Sy).
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Let us take λ ∈ Ix⊗y. Then λ ≤ x⊗ y. Therefore, for every α ∈ Sx, β ∈ Sy, λ ≤ x⊗ y ≤
α⊗ β. This shows ess(x⊗ y) = sup Ix⊗y ≤ inf(Sx ⊗ Sy) = ess x⊗ ess y. Let us now take
λ ∈ Sx⊗y. Then, x⊗ y ≤ λ. Then, for every α ∈ Ix, β ∈ Iy, we have α ⊗ β ≤ x ⊗ y ≤ λ.
This shows ess x⊗ ess y = sup(Ix ⊗ Iy) ≤ inf Sx⊗y = ess(x⊗ y).

The function ess is surjective, because it must preserve every contant symbol λ ∈ [0, 1].
By Lemma 7.15, if A is subdirectly irreducible, then, for all x ∈ A, essinf x = esssup x.

We call an algebra A simple if it is not trivial and any proper quotient of A is trivial.
From Theorem 7.17, we obtain that [0, 1] is the unique simple MC-algebra, as stated in
Corollary 7.18 below. This is similar to Hölder’s Theorem for lattice-ordered groups.

7.18. Corollary. Let A ∈ MC. A is simple if, and only if, it is isomorphic to [0, 1].

Proof. [0, 1] is simple. Indeed, if B ∈ MC, and ϕ : [0, 1] → B is a surjective not-
injective MC-morphism, then there exist α, β ∈ [0, 1] such that α 6= β and ϕ(α) = ϕ(β),
i.e., αB = βB. By Lemma 7.11, B is trivial. Hence, [0, 1] is simple, as well as any of its
isomorphic copies. Suppose that A is simple. By the subdirect representation theorem,
it is isomorphic to a subdirect product

∏
i∈I Bi of subdirectly irreducible algebras. Since

A is simple, it is not trivial. Hence, I 6= ∅, and thus there exists a surjective morphism
ϕ : A → B, with B subdirectly irreducible. By Theorem 7.17, we have a surjective MC-
morphism ess : B → [0, 1]. Hence, we have a surjective MC-morphism ψ : A → [0, 1],
which must be injective since A is simple. Hence ψ is an isomorphism.

Corollary 7.18 implies that the set of morphisms from an MC-algebra A to [0, 1] is in
bijection with the set of maximal congruences on A. This explains why we gave the name
Max(A) for the set homMC(A, [0, 1]).

7.19. The map ess preserves distance. The main goal of this subsection is to prove
that, for A a nontrivial subdirectly irreducible algebra, the map ess : A→ [0, 1] preserves
d, i.e., dA(a, b) = d[0,1](ess a, ess b). We will actually prove, in Lemma 7.26, a slightly
stronger statement, i.e., that d↑ is preserved.

7.20. Lemma. Let A ∈ MC and x, y ∈ A. Then y ≤ x⊕ λ if, and only if, y ⊖ λ ≤ x.

Proof. If y ≤ x⊕λ, then y⊖λ ≤ (x⊕λ)⊖λ ≤ x. If y⊖λ ≤ x, then y ≤ (y⊖λ)⊕λ ≤ x⊕λ.

7.21. Remark. Let A ∈ MC and x, y ∈ A. Then, by Remark 7.20, we have

↑yx:= {λ ∈ [0, 1] | y ≤ x⊕ λ} = {λ ∈ [0, 1] | y ⊖ λ ≤ x}.

Hence

d↑(x, y) := inf ↑yx= inf{λ ∈ [0, 1] | y ≤ x⊕ λ} = inf{λ ∈ [0, 1] | y ⊖ λ ≤ x}.

7.22. Remark. Let A ∈ MC. Then the set ↑yx calculated in A equals ↑xy calculated in
A∂. Thus d↑

A(x, y) = d↑
A∂(y, x).
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7.23. Remark.

1. Let I be a set, and, for each i ∈ I, let Ai ∈ MC. Let a, b ∈
∏

i∈I Ai. Then,
d↑(a, b) = supi∈I d↑(ai, bi).

2. Let A ∈ MC, let B be an MC-subalgebra of A, and let x, y ∈ B. Then d↑(x, y) is
the same calculated in A and B.

7.24. Lemma. Let A ∈ MC and x, y, z ∈ A. The following properties hold.

1. d↑(x, y) ∈ [0, 1].

2. x ≤ y ⇒ d↑(y, x) = 0.

3. d↑(x, z) ≤ d↑(x, y) ⊕ d↑(y, z) ≤ d↑(x, y) + d↑(y, z).

Proof. (1) and (2) are clear, by definition. To prove (3), let λ0 ∈↑yx and λ1 ∈↑zy. Then
y ≤ x ⊕ λ0, z ≤ y ⊕ λ1. Then z ≤ y ⊕ λ1 ≤ (x ⊕ λ0) ⊕ λ1 = x ⊕ (λ0 ⊕ λ1). Therefore,
λ0 ⊕ λ1 ∈↑zx. Therefore, d↑(x, z) = inf(↑zx) ≤ inf(↑yx ⊕ ↑zy). By continuity of ⊕, inf(↑yx
⊕ ↑zy) = inf(↑yx) ⊕ inf(↑zy) = d↑(x, y) ⊕ d↑(y, z).

7.25. Lemma. Let A ∈ MC. Then

1. For every x ∈ A, d↑(x, essinf x) = d↑(esssup x, x) = 0.

2. If A is nontrivial, for every α, β ∈ [0, 1], d↑(αA, βA) = (β − α)+.

Proof.

1. Let ε > 0. Then x ≤ esssup x⊕ ε. Therefore, ε ∈↑xesssupx. Since it holds for every ε,
then d↑(esssup x, x) = inf ↑xesssupx= 0. Via the order-dual algebra, d↑(x, essinf x) = 0
is automatically proven.

2. If A is nontrivial, then ↑βα= {λ ∈ [0, 1] | βA ≤ αA⊕λ} = {λ ∈ [0, 1] | λ ≥ (β−α)+}.

7.26. Lemma. Let A ∈ MC, and let x, y ∈ A be such that essinf x = esssup x and
essinf y = esssup y. Then, d↑(x, y) = (ess y − ess x)+.

Proof.A is nontrivial, because essinf x = esssup x. Thus, (ess y−ess x)+ = d↑(ess x, ess y).
We are left to prove d↑(x, y) = d↑(ess x, ess y). We have

d↑(x, y) ≤ d↑(x, ess x) ⊕ d↑(ess x, ess y) ⊕ d↑(ess y, y) =

= 0 ⊕ d↑(ess x, ess y) ⊕ 0 =

= d↑(ess x, ess y).
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Moreover,
d↑(ess x, ess y) ≤ d↑(ess x, x) ⊕ d↑(x, y) ⊕ d↑(y, ess y) =

= 0 ⊕ d↑(x, y) ⊕ 0 =

= d↑(x, y).

7.27. Every archimedean MC-algebra is an algebra of functions. In this
subsection, we prove that every archimedean MC-algebra has enough morphisms towards
[0, 1] to separate its elements; this completes the proof of Theorem 6.8.

7.28. Lemma. Let A,B ∈ MC and let φ : A→ B be an MC-morphism. Then, for every
x, y ∈ A,

d↑(φ(x), φ(y)) ≤ d↑(x, y).

Proof. Let λ ∈↑yx: y ≤ x ⊕ λ. Then φ(y) ≤ φ(x) ⊕ λ; thus λ ∈↑φ(y)
φ(x). Therefore,

d ↑ (φ(x), φ(y)) = inf ↑
φ(y)
φ(x)≤ inf ↑yx= d↑(x, y).

7.29. Theorem. Let A ∈ MC, and let x, y ∈ A. Then,

d↑(x, y) = sup
ϕ : A→[0,1] MC-morphism

(ϕ(y) − ϕ(x))+.

Proof. By the subdirect representation theorem, A is an MC-subalgebra of a product
of subdirectly irreducible MC-algebras. Say ι : A →

∏
i∈I Ai. For each i ∈ I, consider

the projection πi :
∏

i∈I Ai → Ai and the morphism essi : Ai → [0, 1] as in Theorem 7.17.
Then

d↑(x, y) = sup
i∈I

d↑(πiι(x), πiι(y)) = sup
i∈I

(essi πiι(y) − essi πiι(x))+.

Since essi ◦πi ◦ ι : A→ [0, 1] is an MC-morphism, we obtain

d↑(x, y) ≤ sup
ϕ : A→[0,1] MC-morphism

(ϕ(y) − ϕ(x))+.

From Lemma 7.28, we obtain the converse inequality.

7.30. Lemma. Let A ∈ MC and x, y, z ∈ A. The following properties hold.

1. d(x, y) ∈ [0, 1].

2. d(x, x) = 0.

3. d(x, z) ≤ d(x, y) ⊕ d(y, z) ≤ d(x, y) + d(y, z).



26 MARCO ABBADINI

Proof. (1) and (2) are clear. Let us prove (3).

d(x, z) = max{d↑(x, z), d↑(z, x)} ≤

≤ max{d↑(x, y) ⊕ d↑(y, z), d↑(z, y) ⊕ d↑(y, x)} ≤

≤ max{d↑(x, y), d↑(y, x)} ⊕ max{d↑(y, z), d↑(z, y)} =

= d(x, y) ⊕ d(y, z).

7.31. Remark. Let A ∈ MC. Then A is archimedean if, and only if, (A, d) is a metric
space.

7.32. Theorem. Let A ∈ MC, and let x, y ∈ A. Then

d(x, y) = sup
ϕ : A→[0,1] MC-morphism

|ϕ(x) − ϕ(y)|.

Proof.

d(x, y) = max{d↑(x, y), d↑(y, x)}
Thm. 7.29

=

= max

{
sup

ϕ : A→[0,1] MC-morph.

(ϕ(y) − ϕ(x))+, sup
ϕ : A→[0,1] MC-morph.

(ϕ(x) − ϕ(y))+

}
=

= sup
ϕ : A→[0,1] MC-morph.

max
{

(ϕ(y) − ϕ(x))+, (ϕ(x) − ϕ(y))+
}

=

= sup
ϕ : A→[0,1] MC-morph.

|ϕ(x) − ϕ(y)|.

We are ready to prove the implication [(1)⇒(2)] in Theorem 6.8.

7.33. Theorem. Let A ∈ MC be archimedean, and let x, y ∈ A with x 6= y. Then, there
exists an MC-morphism ϕ : A→ [0, 1] such that ϕ(x) 6= ϕ(y).

Proof. By Theorem 7.32, for every x, y ∈ A, we have

d(x, y) = sup
ϕ : A→[0,1] MC-morphism

|ϕ(x) − ϕ(y)|.

Since A is archimedean, d(x, y) 6= 0. Therefore, supϕ : A→[0,1] MC-morphism|ϕ(x)−ϕ(y)| 6= 0,
and hence there exists ϕ : A → [0, 1] MC-morphism such that |ϕ(x) − ϕ(y)| 6= 0, i.e.,
ϕ(x) 6= ϕ(y).
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7.34. Corollary. For every A ∈ MC, and every x, y ∈ A, we have dA(x, y) =
dCMax(A)(evx, evy).

The results obtained so far enable us to prove one of the main results of this section—
namely, Theorem 6.8.

Proof of Theorem 6.8. By Remark 7.1 and Theorem 7.33.

We add one additional characterization of archimedean MC-algebras.

7.35. Theorem. Let A ∈ MC. Then the following conditions are equivalent.

1. A is archimedean.

2. For every x, y ∈ A, d↑(x, y) = 0 implies y ≤ x.

Proof. [(2)⇒(1)] Let x, y ∈ A, and suppose d(x, y) = 0. Then d↑(x, y) = 0 and d↑(y, x) =
0. Hence y ≤ x and x ≤ y. Therefore x = y.
[(1)⇒(2)] Let us suppose A is archimedean, and let x, y ∈ A be such that d↑(x, y) = 0.
Then, for every MC-morphism ϕ : A → [0, 1], ϕ(y) ≤ ϕ(x); hence ϕ(y) ∨ ϕ(x) = ϕ(x),
which implies ϕ(y ∨ x) = ϕ(x). Hence, for all MC-morphisms ϕ : A → [0, 1], |ϕ(y ∨ x) −
ϕ(x)| = 0. By Theorem 7.32, d(y ∨ x, x) = 0. Since A is archimedean, y ∨ x = x, that is,
y ≤ x.

8. A is Cauchy complete if, and only if, the unit εA is surjective

The aim of this section is to prove Theorem 6.9 above, which states, for any A ∈ MC,
the equivalence of the following conditions.

1. A is Cauchy complete.

2. The unit εA : A→ CMax(A) is surjective.

8.1. Remark. The implication [(2)⇒(1)] of Theorem 6.9—i.e., if the unit εA : A →
CMax(A) is surjective, then A is Cauchy complete—follows from the fact, observed in
Corollary 7.34, that εA preserves d. In detail, let (an)n∈N be a Cauchy sequence in A.
Then (εA(an))n∈N is a Cauchy sequence in CMax(A). Since CMax(A) is Cauchy complete
(see [(2)⇒(3)] in Theorem 6.6), there exists f ∈ CMax(A) such that (εA(an))n∈N converges
to f . Since εA is surjective, there exists a ∈ A such that εA(a) = f . The sequence (an)n∈N
converges to a.

We are left to prove that if A is Cauchy complete, then εA is surjective. To do so,
we make use of an analogue of Stone-Weierstrass Theorem. Our source of inspiration is
[Hofmann and Nora, 2018, Section 7].

8.2. Lemma. Let X be a preordered topological space, let x, y ∈ X, let L be an MC-
subalgebra of C(X), and let φ ∈ L be such that φ(x) < φ(y). Then, there there exists
ψ ∈ L and an open neighbourhood Uy of y such that ψ(x) = 0 and, for all z ∈ Uy,
ψ(z) = 1.
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Proof. There exists c ∈ [0, 1] such that ϕ(x) < c < ϕ(y). Let n ∈ N be such that
n(c−ϕ(x)) ≥ 1. Set ψ := (ϕ⊖ ϕ(x)) ⊕ · · · ⊕ (ϕ⊖ ϕ(x))︸ ︷︷ ︸

n times

. Set Uy as the pre-image of (c, 1]

under ϕ. Note that y ∈ Uy. We have ψ(x) = (ϕ(x) ⊖ ϕ(x)) ⊕ · · · ⊕ (ϕ(x) ⊖ ϕ(x))︸ ︷︷ ︸
n times

= 0,

and, for every z ∈ Uy, ψ(z) = (ϕ(z) ⊖ ϕ(x)) ⊕ · · · ⊕ (ϕ(z) ⊖ ϕ(x))︸ ︷︷ ︸
n times

= 1.

8.3. Theorem. [Ordered version of Stone-Weierstrass Theorem] Let X be a preordered
topological space, let L be an MC-subalgebra of C(X), and suppose that, for every x, y ∈ X,
if x 6≥ y then there exists φ ∈ L such that φ(x) < φ(y). If X is compact, then, for every
ψ ∈ C(X), there exists a sequence (φn)n∈N in L converging to ψ in the sup metric.

Proof. Fix ε ∈ (0, 1]; we shall find φ ∈ L such that supx∈X |ψ(x)−φ(x)| ≤ ε. Fix x ∈ X .
Set U := {z ∈ X | ψ(z) < ψ(x) + ε}. The set U is open. Moreover, for every y ∈ X such
that y ≤ x, we have y ∈ U (by monotonicity of ψ); contrapositively, for every y ∈ X \ U
we have x 6≥ y. Hence, by Lemma 8.2, for every y ∈ X \ U there exists αy ∈ L and an
open neighbourhood Uy of y such that αy(x) = 0 and, for all z ∈ Uy, αy(z) = 1.

By compactness of X , there exist finitely many elements y1, . . . , yn ∈ X \U such that
X = U∪Uy1∪· · ·∪Uyn . Set λ := ψ(x), and set λ : X → [0, 1] to be the function constantly
equal to λ. Let us define φx := αy1 ⊕ · · · ⊕ αyn ⊕ λ. We claim that φx has the following
properties.

a1. φx(x) = ψ(x).

a2. For every z ∈ X , φx(z) > ψ(z) − ε.

Indeed, (a1) holds because, for 1 ≤ i ≤ n, we have αyi(x) = 0, and so φx(x) = αy1(x) ⊕
· · · ⊕ αyn(x) ⊕ λ = 0 ⊕ · · · ⊕ 0 ⊕ λ = λ = ψ(x). We prove (a2) by cases. If z ∈ U , then
ψ(x) = αy1(z) ⊕ · · · ⊕ αyn(z) ⊕ λ ≥ λ = ψ(z) > ψ(z) − ε. If z ∈ X \ U , there exists
i ∈ {1, . . . , n} such that z ∈ Uyi . Thus, φx(z) = αy1(z)⊕· · ·⊕αyn(z)⊕λ = 1 ≥ ψ(z) > 1−ε.
This settles the claim that (a1) and (a2) hold.

Now x is not fixed anymore. For x ∈ X , set

Vx := {z ∈ X | φx(z) < ψ(z) + ε}.

The set Vx is open because the functions φx and ψ are continuous. Moreover x ∈ Vx be-
cause of (a1). Therefore the family (Vx)x∈X is an open cover of X . Again, by compactness
of X , there exists a finite subcover Vx1, . . . , Vxm of X . Define φ := φx1 ∧ · · · ∧ φxm ; note
that φ ∈ L. For all z ∈ X we have the following.

b1. There exists i ∈ {1, . . . , n} such that z ∈ Vxi. Hence, φ(z) = φx1(z)∧ · · · ∧φxm(z) ≤
φxi(z) < ψ(z) + ε.

b2. By (a2), φ(z) = φx1(z) ∧ · · · ∧ φxm(z) > (ψ(z) − ε) ∧ · · · ∧ (ψ(z) − ε) = ψ(z) − ε.

Hence, for all z ∈ X , ψ(z)− ε < φ(z) < ψ(z) + ε, which implies supx∈A|ψ(x)− φ(z)| ≤ ε.
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8.4. Theorem. Let A ∈ MC. If A is Cauchy complete, then

εA : A −→ CMax(A)

a 7−→ eva : Max(A) → [0, 1], x 7→ x(a)

is surjective.

Proof. Set L ⊆ CMax(A) as the image of A under εA. L is an MC-subalgebra of
CMax(A). By the definition of the topology and the order on Max(A), the hypothesis
in Theorem 8.3 are fulfilled, with X := Max(A). Hence Theorem 8.3 applies: for every
ψ ∈ CMax(A), there exists a sequence (ãn)n∈N in the image of εA converging to ψ with
respect to the sup metric. Let (an)n∈N be a sequence in A such that, for every n ∈ N,
evan = ãn. Therefore, (ãn) is a Cauchy sequence with respect to the sup metric. Therefore,
for every ε > 0, there exists k ∈ N such that, for every n,m ≥ k, we have d(evan , evam) < ε.
Since, by Corollary 7.34, εA preserves d, d(an, am) = d(evan , evam) < ε, and therefore
(an)n∈N is a Cauchy sequence. Since A is Cauchy complete, there exists a ∈ A such that
an converges to a. Therefore, for every ε > 0, there exists n ∈ N such that, for all m ≥ n,
d(an, a) < ε. Since, by Corollary 7.34, εA preserves d, for every ε > 0, there exists n ∈ N

such that, for all m ≥ n, d(evan , eva) = d(an, a) < ε. Hence, evan converges both to eva
and ψ. Therefore, ψ = eva.

We can now prove Theorem 6.9.

Proof of Theorem 6.9. By Remark 8.1 and Theorem 8.4.

Finally, we can prove Theorem 6.6.

Proof of Theorem 6.6. By Remark 6.7 and Theorems 6.8 and 6.9.

Combining Theorems 5.2 and 6.6, we have that the adjoint contravariant functors
C: PreTop → MC and Max: MC → PreTop restrict to a dual equivalence be-
tween PosComp and the full subcategory of archimedean Cauchy complete MC-algebras.
Hence, we have the following.

8.5. Theorem. The dual of PosComp is equivalent to the full subcategory of MC given
by the archimedean Cauchy complete MC-algebras.

9. The variety MC∞

Up to now, we have proved that the category PosComp of compact ordered spaces is
dually equivalent to the full subcategory of archimedean Cauchy complete MC-algebras.
Our final goal is to show that the full subcategory of archimedean Cauchy complete MC-
algebras is isomorphic to a variety. Our strategy to achieve this purpose is analogous to
the strategy that, in [Hofmann et al., 2018], Section 3, after Theorem 3.8, was pursued
to show that a given category was a quasi-variety. The crucial difference is that we make
the axioms equational; in achieving the equational axiomatization, having the operation
∧ amongst the primitive operations has facilitated us.
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9.1. Adding the infinitary “Cauchy” operation δ. In order to ensure Cauchy
completeness, we would like to add an operation δ of countably infinite arity to the class
of operations of MC that computes the limit of “enough” Cauchy sequences, meaning that
convergence of such sequences in an MC-algebra is enough to imply Cauchy completeness
(and, at the same time, it is possible to interpret δ in [0, 1] so that it becomes a monotone
continuous function from [0, 1]N to [0, 1] that calculates the limit of such sequences, see
[Hofmann et al., 2018, p. 283]).

9.2. Definition. Let A ∈ MC. A sequence (an)n∈N in A is called HNN-Cauchy if, for
every n ∈ N,

an ≤ an+1 ≤ an ⊕
1

2n
.

This definition is inspired by Lemma 3.9 in [Hofmann et al., 2018]; in fact, “HNN” stands
for “Hofmann, Neves, Nora”, the authors of the paper.

9.3. Lemma. Let A ∈ MC, and let (an)n∈N be an HNN-Cauchy sequence in A. Then,
for every n,m ∈ N, with n ≤ m, we have

an ≤ am ≤ an ⊕
1

2n−1
,

and therefore (an)n∈N is a Cauchy sequence.

Proof. The inequality an ≤ am is obtained by induction on m. Moreover,

am ≤ (. . . (an ⊕
1

2n
) ⊕ . . . ) ⊕

1

2m−1
≤ an ⊕

∞∑

i=n

1

2i
= an ⊕

1

2n−1
.

Hence,

d(an, am) = max{d↑(an, am), d↑(am, an)} = max{d↑(an, am), 0} = d↑(an, am) ≤
1

2n−1
.

9.4. Lemma. For A ∈ MC, the following conditions are equivalent.

1. A is Cauchy complete.

2. Every HNN-Cauchy sequence in A converges.

Proof. [(1)⇒(2)] By Lemma 9.3.
[(2)⇒(1)] Let (an)n∈N be a Cauchy sequence. For every i ∈ N, let ki ∈ N be such that,
for every n,m ≥ ki, d(an, am) < 1

2i+1 . For each i ∈ N, set bi := aki . Then, for every i ∈ N,
and every n,m ≥ i, d(bn, bm) < 1

2i+1 . In particular, for each i ∈ N, d(bi, bi+1) <
1

2i+1 .
Therefore,

bi ⊖
1

2i+1
≤ bi+1;
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bi+1 ⊖
1

2i+1
≤ bi.

For all i ∈ N, we set ci := bi ⊖
1
2i

.
Then, for every i ∈ N,

ci = bi ⊖
1

2i
=

(
bi ⊖

1

2i+1

)
⊖

1

2i+1
≤ bi+1 ⊖

1

2i+1
= ci+1;

ci+1 = bi+1 ⊖
1

2i+1
≤ bi ≤

(
bi ⊖

1

2i

)
⊕

1

2i
= ci ⊕

1

2i
.

So, ci ≤ ci+1 ≤ ci⊕
1
2i

. Hence, (cn)n∈N is an HNN-Cauchy sequence, and thus there exists
c ∈ A such that (cn)n∈N converges to c.

We have

d(bi, c) ≤ d(bi, ci) + d(ci, c) = d

(
bi, bi ⊖

1

2i

)
+ d(ci, c) ≤

1

2i
+ d(ci, c)

i→∞
→ 0.

Therefore, the sequence (bi)n∈N converges to c. The sequence (an)n∈N is a Cauchy sequence
that admits a convergent subsequence (bi)i∈N; by a standard argument, it follows that
(an)n∈N converges.

9.5. Notation. Inductively on n ∈ N, we define the term ρn of arity n+1 in the language
of MC as follows.

ρ0(x0) := x0;

for n ∈ N ρn+1(x0, . . . , xn+1) := (x0 ∨ · · · ∨ xn+1) ∧

(
ρn(x0, . . . , xn) ⊕

1

2n

)
.

9.6. Lemma. Let A ∈ MC. For every n ∈ N, and every x0, . . . , xn+1 ∈ A, the following
properties hold.

ρn(x0, . . . , xn) ≤ ρn+1(x0, . . . , xn+1) ≤ ρn(x0, . . . , xn) ⊕
1

2n
.

Proof. By definition of ρn, we have ρn(x0, . . . , xn) ≤ x0∨· · ·∨xn and ρn+1(x0, . . . , xn+1) ≤
ρn(x0, . . . , xn) ⊕ 1

2n
. As a consequence, ρn(x0, . . . , xn) ≤ x0 ∨ · · · ∨ xn ≤ x0 ∨ · · · ∨ xn+1

and ρn(x0, . . . , xn) ≤ ρn(x0, . . . , xn) ⊕ 1
2n

. Thus, ρn(x0, . . . , xn) ≤ (x0 ∨ · · · ∨ xn+1) ∧(
ρn(x0, . . . , xn) ⊕ 1

2n

)
= ρn+1(x0, . . . , xn+1).

9.7. Lemma. Let A ∈ MC, and let (xn)n∈N be a sequence in A. The following properties
hold.

1. The sequence (ρn(x0, . . . , xn))n∈N is an HNN-Cauchy sequence.

2. If (xn)n∈N is an HNN-Cauchy sequence, then, for all n ∈ N,

ρn(x0, . . . , xn) = xn.

Proof. (1) follows from Lemma 9.6. (2) is proved inductively. The case n = 0 is
trivial. Inductive step: let n ∈ N. Then ρn+1(x0, . . . , xn+1) := (x0 ∨ · · · ∨ xn+1) ∧(
ρn(x0, . . . , xn) ⊕ 1

2n

) ind. hyp.
= (x0 ∨ · · · ∨ xn+1) ∧

(
xn ⊕

1
2n

)
= xn+1 ∧

(
xn ⊕

1
2n

)
= xn+1.
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Let A ∈ MC, and let (an)n∈N be a sequence in A. If A is Cauchy complete, the
sequence (ρn(a0, . . . , an))n∈N admits a limit in A. If, additionally, A is archimedean,
(A, d) is a metric space and thus the limit is unique.

9.8. Notation. Let A ∈ MC be archimedean and Cauchy complete. For every sequence
(an)n∈N in A, we set

δ(a0, a1, a2, . . . ) := lim
n→∞

ρn(a0, . . . , an).

The definition of δ takes inspiration from [Hofmann et al., 2018, Section 3]; in fact,
the function δ : [0, 1]N → [0, 1] in [Hofmann et al., 2018, Section 3] coincides with the
interpretation in [0, 1] of what we call δ here.

9.9. Remark. δ calculates the limit of HNN-Cauchy sequences.

9.10. Proposition. Let A ∈ MC be archimedean and Cauchy complete. The following
properties hold.

1. δ(x, x, x, . . . ) = x.

2. δ(x0, x1, x2, . . . ) ≤ δ(x0 ∨ y0, x1 ∨ y1, x2 ∨ y2, . . . ).

3. δ
(
x⊖ 1

20
, x⊖ 1

21
, x⊖ 1

22
, . . .

)
= x.

4. For all n ∈ N

ρn(x0, . . . , xn) ≤ δ(x0, x1, x2, . . . ) ≤ ρn(x0, . . . , xn) ⊕
1

2n−1
.

Proof. Since A ∈ MC is archimedean, A is (isomorphic to) a subalgebra of [0, 1]X , for
some set X . The function d: A×A→ [0, 1] coincides with the sup metric. We recall that,
for every sequence (fn)n∈N in A, δ((fn)n∈N) = limn→∞ ρn(f0, . . . , fn). The convergence is
uniform, and therefore pointwise. Hence, it is enough to prove (1), (2), (3) and (4) for
A = [0, 1].

1. The sequence (x, x, x, . . . ) is HNN-Cauchy; thus δ(x, x, x, . . . ) = limn→∞ x = x.

2. For each n ∈ N, set zn := xn ∨ yn. By induction, we show ρn(x0, . . . , xn) ≤
ρn(z0, . . . , zn). Indeed, for n = 0, we have ρ0(x0) = x0 ≤ z0 = ρ0(z0). Inductive step:

let n ∈ N; then, ρn+1(x0, . . . , xn+1) = (x0∨· · ·∨xn+1)∧
(
ρn(x0, . . . , xn) ⊕ 1

2n

) ind. hyp.

≤
(z0∨ · · ·∨ zn+1)∧

(
ρn(z0, . . . , zn) ⊕ 1

2n

)
= ρn+1(z0, . . . , zn+1). Hence, we have proved

inductively ρn(x0, . . . , xn) ≤ ρn(z0, . . . , zn). Since, in [0, 1], lim is monotone, we have

δ(x0, x1, x2, . . . ) = lim
n→∞

ρn(x0, . . . , xn) ≤

≤ lim
n→∞

ρn(z0, . . . , zn) =

= δ(x0 ∨ y0, x1 ∨ y1, x2 ∨ y2, . . . ).
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3. Let us prove that
(
x⊖ 1

20
, x⊖ 1

21
, x⊖ 1

22
, . . .

)
is an HNN-Cauchy sequence. Indeed,

x⊖ 1
2n

≤ x⊖ 1
2n+1 ≤ x ≤ (x⊖ 1

2n
) ⊕ 1

2n
.

4. By Lemma 9.7, the sequence (ρn(x0, . . . , xn))n∈N is an HNN-Cauchy sequence. By
Lemma 9.3, for every n,m ∈ N, with n ≤ m, we have

ρn(x0, . . . , xn) ≤ ρm(x0, . . . , xm) ≤ ρn(x0, . . . , xn) ⊕
1

2n−1
.

Fix n and let m tend to ∞.

9.11. The variety MC∞. Recall the inductive definition of the term ρn of arity n+ 1
in the language of MC:

ρ0(x0) := x0;

for n ∈ N ρn+1(x0, . . . , xn+1) := (x0 ∨ · · · ∨ xn+1) ∧

(
ρn(x0, . . . , xn) ⊕

1

2n

)
.

9.12. Definition. We define the variety MC∞ as the variety obtained from the vari-
ety MC by adding an operation δ of countably infinite arity, together with the following
additional axioms.

1. δ(x, x, x, . . . ) = x.

2. δ(x0, x1, x2, . . . ) ≤ δ(x0 ∨ y0, x1 ∨ y1, x2 ∨ y2, . . . ).

3. δ
(
x⊖ 1

20
, x⊖ 1

21
, x⊖ 1

22
, . . .

)
= x.

4. For all n ∈ N

ρn(x0, . . . , xn) ≤ δ(x0, x1, x2, . . . ) ≤ ρn(x0, . . . , xn) ⊕
1

2n−1
.

The idea behind this definition is the following. Axioms (1), (2), (3) imply being
archimedean (see Proposition 9.14 below); Axiom (4) forces δ(x0, x1, x2, . . . ) to be the limit
of (ρn(x0, . . . , xn))n∈N, and therefore it implies Cauchy completeness (see Proposition 9.16
below).

9.13. General properties of the forgetful functor MC∞ → MC.

9.14. Proposition. Let A ∈ MC∞. Then A is archimedean.

Proof. Let x, y ∈ A be such that d(x, y) = 0. We shall show x = y. Since d(x, y) =
max{d↑(x, y), d↑(y, x)}, d↑(y, x) = 0. We recall d↑(y, x) = inf{λ ∈ [0, 1] | x⊖ λ ≤ y} = 0.
Hence, for all λ ∈ (0, 1], we have x⊖ λ ≤ y. Note that (2) in Definition 9.12 implies that
δ is monotone. We have

x
(3)
= δ

(
x⊖

1

20
, x⊖

1

21
, x⊖

1

22
, . . .

)
(2)

≤ δ(y, y, y, . . . )
(1)
= y.

Analogously, one shows that y ≤ x. Hence, x = y.
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9.15. Theorem. Let A,B ∈ MC∞, and let ϕ : A → B be an MC-morphism. Then, ϕ
preserves δ.

Proof. We should prove ϕ(δA(x0, x1, x2, . . . )) = δB(ϕ(x0), ϕ(x1), ϕ(x2), . . . ). Since B is
archimedean, it is enough to prove

d(ϕ(δA(x0, x1, x2, . . . )), δB(ϕ(x0), ϕ(x1), ϕ(x2), . . . )) = 0.

For all n ∈ N, we have

ρn(ϕ(x0), . . . , ϕ(xn)) ≤ ϕ(δA(x0, x1, x2, . . . )) ≤ ρn(ϕ(x0), . . . , ϕ(xn)) ⊕
1

2n−1
,

because ϕ is an MC-morphism. Moreover, since B is an MC∞-algebra, we have

ρn(ϕ(x0), . . . , ϕ(xn)) ≤ δB(ϕ(x0), ϕ(x1), ϕ(x2), . . . ) ≤ ρn(ϕ(x0), . . . , ϕ(xn)) ⊕
1

2n−1
.

Hence, for all n ∈ N, we have

ϕ(δA(x0, x1, x2, . . . )) ≤ δB(ϕ(x0), ϕ(x1), ϕ(x2), . . . ) ⊕
1

2n−1

and

δB(ϕ(x0), ϕ(x1), ϕ(x2), . . . )) ≤ ϕ(δA(x0, x1, x2, . . . )) ⊕
1

2n−1
.

Thus,
d(ϕ(δA(x0, x1, x2, . . . )), δB(ϕ(x0), ϕ(x1), ϕ(x2), . . . )) = 0.

9.16. Proposition. Let A ∈ MC∞. Then A is Cauchy complete.

Proof. It is enough to prove that every HNN-Cauchy sequence in A converges. Let
(xn)n∈N be an HNN-Cauchy sequence in A. Then, ρn(x0, . . . , xn) = xn. Hence, for all
n ∈ N, xn ≤ δ(x0, x1, x2, . . . ) ≤ xn ⊕

1
2n−1 , which implies d(δ(x0, x1, x2, . . . ), xn) ≤ 1

2n−1 ,
which implies that δ(x0, x1, x2, . . . ) is a limit for (xn)n∈N.

We denote with UMC∞,MC : MC∞ → MC the forgetful functor.

9.17. Theorem.

1. UMC∞,MC is full and faithful.

2. UMC∞,MC is injective on objects: UMC∞,MC(A) = UMC∞,MC(B) implies A = B.
This means that every MC-algebra admits at most one MC∞-structure that extends
its MC-structure.

3. For A ∈ MC, there exists Ã ∈ MC∞ such that UMC∞,MC(Ã) = A if, and only if,
A is archimedean and Cauchy complete.

4. The image of UMC∞,MC on objects is closed under isomorphisms.

5. The MC-algebra [0, 1] admits a (unique) MC∞-structure.
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Proof.

1. The fact that UMC∞,MC is faithful is trivial. The fact that UMC∞,MC is full is
Theorem 9.15.

2. Suppose UMC∞,MC(A) = UMC∞,MC(B). Then, A and B share the same underlying
set. Let Id : UMC∞,MC(A) → UMC∞,MC(B) be the identity function (which is an
MC-morphism since UMC∞,MC(A) = UMC∞,MC(B)). Since UMC∞,MC is full, there
exists an MC∞-morphism ϕ : A → B such that UMC∞,MC(ϕ) = Id. Then, ϕ is the
identity function, and thus A = B.

3. Suppose there exists Ã ∈ MC∞ such that UMC∞,MC(Ã) = A. By Propositions 9.14
and 9.16, A is archimedean and Cauchy complete. For the converse implication,
suppose that A is archimedean and Cauchy complete. Then, by Proposition 9.10,
A admits an MC∞-structure.

4. It is a consequence of (3).

5. [0, 1] is archimedean and Cauchy complete.

9.18. Corollary. The variety MC∞ is isomorphic to the full subcategory of MC given
by the archimedean Cauchy complete MC-algebras.

We can now prove Theorem 1.1, which is our main result: the dual of PosComp is
equivalent to a variety of algebras.

Proof of Theorem 1.1. The dual of PosComp is equivalent, by Theorem 8.5, to the
full subcategory of MC given by the archimedean Cauchy complete MC-algebras, which
is equivalent, by Corollary 9.18, to the variety MC∞. Hence, the dual of PosComp is
equivalent to the variety MC∞.

10. The variety MC∞ and Linton’s varietal theories

10.1. Lemma. The function δ : [0, 1]N → [0, 1] is monotone and continuous with respect
to the product order and product topology.

Proof. For every n ∈ N, we set

ρ̃n : [0, 1]N −→ [0, 1]

(xn)n∈N 7−→ ρn(x0, . . . , xn).

Then, the sequence (ρ̃n)n∈N tends to δ with respect to the the supremum norm, i.e.,
uniformly. For every i ∈ N, the projection πi : [0, 1]N → [0, 1] onto the i-th coordinate
is continuous, and for every n ∈ N, ρn : [0, 1]n → [0, 1] is continuous. Therefore, for
every n ∈ N, ρ̃n : [0, 1]N → [0, 1] is continuous. Since (ρ̃n)n∈N converges to δ uniformly,
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δ is continuous. For every n ∈ N, one proves, by induction, that ρn : [0, 1]n → [0, 1] is
monotone, and thus ρ̃n : [0, 1]N → [0, 1] is monotone, as well. Since δ is the pointwise limit
of ρ̃n, δ is monotone, as well.

The primitive operation symbols of MC∞ (δ, ∧,∨,⊕,⊙, and, for every λ ∈ [0, 1], the
constant symbol λ) have a natural interpretation in [0, 1]; indeed, each of them can be
viewed as a function from a power of [0, 1] to [0, 1] itself. As we noticed in Remark 3.1
and in Lemma 10.1, they are monotone and continuous. In fact, the operations of MC∞

are all monotone continuous functions from some power of [0, 1] to [0, 1]. The following
theorems make this statement precise.

10.2. Theorem. For each cardinal κ, the set of monotone continuous functions from
[0, 1]κ to [0, 1] coincides with the set of interpretations in [0, 1] of MC∞-terms of arity κ.

Proof. Let A be the set of functions f : [0, 1]κ → [0, 1] for which there exist an MC∞-
term (depending on f) of arity κ whose interpretation in [0, 1] is f . Since the inter-
pretation in [0, 1] of an MC∞-term is monotone and continuous by Remark 3.1 and
Lemma 10.1, we have A ⊆ C ([0, 1]κ). Moreover, A contains, for each i ∈ κ, the pro-
jection πi : [0, 1]κ → [0, 1]. Then, Theorem 8.3 applies, and we obtain that A is dense in
C ([0, 1]κ). Furthermore, A is an MC∞-algebra, and therefore it is Cauchy complete; thus
A = C ([0, 1]κ).

Roughly speaking, Theorem 10.2 says that the interpretation in [0, 1] is a surjective
operator from the class of equivalence classes of MC∞-terms (where the equivalence rela-
tion is defined in the standard manner by identifying two terms if their interpretation in
each algebra of the variety coincides) to the class of monotone continuous functions from
some power of [0, 1] to [0, 1] itself. One consequence of the Theorem 10.3 below is that
this operator is injective, too, and so the equivalence classes of MC∞-terms are in bijec-
tive correspondence with the monotone continuous functions from some power of [0, 1]
to [0, 1] itself. To state the theorem, we recall the standard operators I (closure under
isomorphisms), S (closure under subalgebras) and P (closure under products). Moreover,
we denote simply with [0, 1] the canonical MC∞-algebra whose underlying set is the unit
interval [0, 1].

10.3. Theorem.

MC∞ = ISP([0, 1]).

Proof. The right-to-left inclusion ⊇ is clear beacuse MC∞ is a variety containing [0, 1].
For the converse inclusion, let A ∈ MC∞. Then A is archimedean, and thus the MC-
morphisms towards [0, 1] separate the points of A. Since UMC∞,MC is full, every MC-
morphism from A to [0, 1] is also an MC∞-morphism. Hence, there are enough MC∞-
morphisms from A to [0, 1] to separate the points of A, and so A is isomorphic to a
subalgebra of a power of [0, 1].
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10.4. Theorem. Let I be a set. The MC∞-algebra C
(
[0, 1]I

)
is freely generated by the

projections
(
πi : C

(
[0, 1]I

)
→ [0, 1]

)
i∈I

.

Proof. By Theorem 10.3, the free algebra generated by the set I is the set of functions
[0, 1]I → [0, 1] that are the evaluation of a term of arity |I|. By Theorem 10.2, this set is
precisely C([0, 1]I).

Let us recall, from [Linton, 1966, Section 1], Linton’s definition of equational theory,
varietal theory, equational category and varietal category. An equational theory is a
product preserving covariant functor T : Setop → T from the dual of the category of
sets to a category T whose class of objects is put by T in one-one correspondence with
the objects of Setop. One may then identify each object ñ of T with the set n ∈ Set

such that T (n) = ñ. The idea behind this definition is that the morphisms in T from
T (n) to T (m) are the |m|-tuples of equivalence classes of terms of arity |n| of a certain
variety of algebras—where the equivalence relation is defined in the standard manner by
identifying two terms if their interpretation in each algebra of the variety coincides—and
the composition of morphisms is just the composition of terms (modulo the equivalence
relation). From the category SetT of set valued functors on T, we single out the full
subcategory SetT whose objects are the functors X : T → Set such that the composite
XT : Setop → Set preserves products. One such functor X is called a T -algebra. Any
category equivalent to the category SetT is called an equational category. Evaluation at
the object T (1) ∈ T provides a faithful functor UT : SetT → Set, the underlying set
functor for T -algebras. The equational theory T is called varietal if the category T is
locally small, and in this case any category equivalent to SetT is said to be a varietal
category.

Linton’s setting generalizes Lawvere’s perspective for finitary algebras [Lawvere, 1963]
to the infinitary ones (see [S lomiński, 1959]). In fact, every variety of algebras V is a
varietal category: V is equivalent to the category of T -algebras, where T is the opposite
of the category of free algebras with homomorphisms, and T : Setop → T maps a set I
to the free algebra Free(I) over I. Note that the set of homomorphisms from Free(n) to
Free(m) is in bijection with the set of |n|-tuples of equivalence classes of terms of arity
|m|, where the equivalence relation is defined in the standard manner by identifying two
terms if their interpretation in each algebra of the variety coincides.

10.5. Remark. The results in this section show that MC∞ is the category of alge-
bras of the varietal theory T : Set → T, where, for each set I, T (I) = [0, 1]I , and the
morphisms from T (I) to T (J) are the monotone continuous maps from [0, 1]I to [0, 1]J .
The fact that the concrete varietal category SetT , i.e. MC∞, has a class of primitive
operations of countable arity is equivalent to the fact that every continuous map from
a power of [0, 1] to [0, 1] depends on at most countably many coordinates [Mibu, 1944,
Theorem 1]. However, in this paper we do not settle the question whether PosCompop

is equivalent or not to a variety of finitary algebras; what we can say is that the functor
hom(−, [0, 1]) : PosComp → Set cannot be naturally isomorphic to the forgeftul functor
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of a variety of finitary algebras, because the function δ fails to be dependent on at most
finitely many coordinates.

11. Conclusions

C and Max establish a dual adjunction between PreTop and MC, induced by the du-
alizing object [0, 1]. The fixed objects of this adjunction are precisely the objects in the
images of the two functors: the fixed objects in PreTop are the compact ordered spaces,
while the fixed objects in MC are the archimedean Cauchy complete algebras. The forget-
ful functor from the variety MC∞ to the full subcategory of MC of archimedean Cauchy
complete algebras is an isomorphism of categories. Therefore, C and Max restrict to a
dual equivalence between PosComp and MC∞, induced by the dualizing object [0, 1].
The main result is Theorem 1.1, i.e., the following.

The category PosCompop is equivalent to a variety of algebras.

The additional results are the description of the variety by means of operations and
equational axioms, the description of the dual equivalence via the dualizing object [0, 1],
and the extension of the duality to a wider dual adjunction between the category PreTop

and the finitary variety MC.
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via Cesare Saldini 50, 20133 Milano, Italy.
Email: marco.abbadini@unimi.it

https://doi.org/10.1007/BF02483718
https://doi-org.pros.lib.unimi.it:2050/10.1073/pnas.50.5.869
https://doi.org/10.1016/j.aim.2016.11.012
http://projecteuclid.org.pros.lib.unimi.it/euclid.pja/1195572745

	1 Introduction
	2 The category PreTop of preordered topological spaces
	3 The variety MC
	4 The dual adjunction between PreTop and MC
	5 Fixed objects on the geometrical side
	6 Fixed objects on the algebraic side: the goal
	7 A is archimedean if, and only if, the unit A is injective
	8 A is Cauchy complete if, and only if, the unit A is surjective
	9 The variety MC
	10 The variety MC and Linton's varietal theories
	11 Conclusions

