
A Structural Approach to Graph Transformation Based
on Symmetric Petri Nets

Lorenzo Capra∗

Università degli Studi di Milano
Dipartimento di Informatica,Via Celoria 18, 20133 Milan, Italy

Abstract

Graph Transformation Systems (GTS) and Petri Nets (PN) are two central,
theoretically sound, formal models for concurrent or distributed systems. A lot
of papers have focused on the relationship between GTS and PN. It is gener-
ally accepted that PN are instances of GTS due to the lack of ability to adapt
or reconfigure their structure. In this paper, which extends a recent one, we
reverse this perspective by presenting a formal definition of GTS in terms of
Symmetric Nets (SN). SN are a standard High-Level PN formalism featuring a
compact syntax which highlights behavioural symmetries of systems. The major
strength lies in the possibility of using well-established tools to edit/efficiently
analyze (SN-based) graph transformation models. We follow a structural ap-
proach, based on a newly implemented symbolic calculus, to validate Graph
Transformation Rules (GTR) and formally verify GTS properties.

In the second part of the paper, we supply a semantic characterization of the
SN-based graph transformation model, by carrying out a thorough comparison
with the classical, algebraic double-pushout (DPO) approach. We construc-
tively and formally show how to translate any DPO rule to a corresponding,
elementary or composite, SN rule. We treat both injective and non-injective
DPO rules/rule matches. The comparison shows that the SN approach is, in
some sense, a generalization of the DPO.

Keywords: Graph Transformation Systems, Double Pushout, Symmetric
Nets, Structural analysis Operational semantics.

1. Introduction and Related Work

Graph transformation (or rewriting) [1, 2], introduced around fifty years ago
[3], has been successfully proposed as a general, flexible, theoretically sound
model for concurrent systems with a dynamical structure. Lots of research has
focused on these topics. Many foundational papers describe different models of

∗Corresponding author

Preprint submitted to Elsevier December 7, 2020

graph transformation and make a comparison among them, using the category
theory as a generalizing and unifying semantics [4, 5]. Many others present
applications, especially in the area of networking, software engineering [2], and
more recently, biology [6], social networks [7], chemistry [8].

The connections between Graph Transformation Systems (GTS) and other
formalisms for concurrent systems, in particular, Petri Nets (PN) [9] and Process
Algebra [10, 11], have been deeply investigated. GTS have borrowed some well
known behavioural equivalence concepts from Process Algebra [12], which are
similar in expressivity, but less flexible.

On the other side, PN are a central model for concurrent or distributed
systems and represent a reference for any formalism meant to describe such
systems, including GTS. The success of PN is due to several reasons, two of
which particularly significant: a distributed state notion (corresponding to PN
marking) that makes it easy to represent typical aspects of concurrency such
as local conflicts, synchronizations, non-determinism, and the availability of a
number of tools/techniques supporting the editing/analysis of models.

It is generally accepted that (classical) PN are instances of GTS, due to the
lack of ability to adapt/reconfigure their structure. Some PN extensions have
been thus equipped with dynamical reconfiguration capabilities (a survey may
be found in [13]), which, however, almost always build on concepts typical of
Graph Transformation Rules.

Kreowsky was the first to show that GTS are a generalization of some PN
classes, in his seminal work [14] based on the double-pushout (DPO) approach.
The idea is to represent a marked PN as a graph with three different types
of nodes (for places, transitions, and tokens) and describe the firing of a PN
transition through a rule (derivation). Since then, several encodings of PN
classes in terms of GTS have appeared, among which Place/Transitions nets,
Condition/Event nets, Elementary Net Systems, Consume-Produce-Read nets.
Some PN variants with extra features, such as read/reset/inhibitor arcs, have
also been encoded. It would be impossible to supply a complete list of these
proposals, let us refer to [15] (and included references) for the earliest, and to
[16, 17] for more recent ones.

This paper extends [18] and is somewhat related to most of those mentioned
above. [18] considers the relationship between GTS and PN from a completely
new perspective, by proposing a formalization of Graph Transformation Rules
in terms of Symmetric Nets (SN) [19]. SN are a subclass of Coloured Petri
nets [20, 21] featuring a particular syntax that outlines model symmetries and
allows for efficient, both state-space based and structural, model analysis. The
idea in [18] is to map a Graph Transformation Rule (GTR) to a SN transition
connected to a couple of places whose state (marking) encodes a graph. [18]
only deals with directed simple graphs.

Such an approach enjoys several benefits. You can exploit well-established
tools for the editing/analysis of SN, like GreatSPN [22]. The Reachability Graph
of a SN supplies the interleaving semantics of a GTS . The associated quotient
graph (called Symbolic Reachability Graph) [23], which directly comes from a
symbolic graph encoding, naturally abstracts from graph isomorphism. Above

2

all, some recent advances in SN symbolic structural analysis [24, 25], imple-
mented in SNexpression tool [26] (www.di.unito.it/~depierro/SNex), allow
you to efficiently validate rules and verify general properties of a GTS, such as
conflicts, mutual-exclusion, semi-flows.

The first part of this paper significantly extends and consolidates the formal-
ization of Graph Transformation Rules in terms of SN introduced in [18]. We
consider a more general class of graphs, edge-labelled multi-graphs, and provide
a sound structural characterization of SN rules by using the symbolic calculus
implemented in SNexpression. We show the potential of structural analysis
through simple but not trivial examples of property verification, including the
use of semi-flows. We introduce a new kind of composite rule able to emulate
graph transformations in undetermined contexts, which are peculiar to algebraic
approaches to graph transformation.

In the second part, we conduct a thorough comparison of the SN based
approach with a classical algebraic one, the double-pushout, or DPO [4]. We do
not use the original, categorical pushout notions, but we follow an operational,
though rigorous, schema. Starting from injective DPO rules, then considering
non-injective ones, we show in a constructive, formal way how to translate
any DPO rule to a corresponding, elementary or composite, SN rule. The
intent is twofold: provide a sound, semantic characterization of the SN approach
to graph transformation and, in a way, promote the interoperability among
different formalisms/tools, a must in formal methods area. The comparison
shows that the SN-based approach to graph transformation can be viewed as a
generalization of (base) DPO. The possibility of encoding richer forms of graph
transformations, such as Attributed Graph Rewriting, is part of our ongoing
work. Let us finally remark that the use of the native stochastic extension of
SN (SSN) would represent a natural encoding for Stochastic GTS.

All the examples presented in the paper are available in GreatSPN format
at github.com/lgcapra/GTS-SN, together with a notebook including the com-
mands to issue to the SNexpression shell for checking some of the structural
formulae used in the examples.

The outline of the paper follows: Section 2 contains background notions
and formally introduces SN; Sections 3 through 6 present the SN-based, struc-
tural approach to graph transformation: the encoding and formal validation
of rules, the generation of a symbolic state-transition system which abstracts
from graph isomorphism, some examples of property verification, the definition
of composite rules; Section 7 formalizes the procedure(s) translating DPO rules
into corresponding SN rules, starting from injective DPO rules/matches, then
considering non-injective matches of a rule, lastly, non-injective rules; Section 8
draws some conclusion and outlines ongoing work.

2. Background

This section collects the background notions used in the rest of the paper,
except for double-pushout (DPO) rules, introduced in Section 7.1. The reader

3

www.di.unito.it/~depierro/SNex
github.com/lgcapra/GTS-SN

may refer to [9] and [19] for a detailed description of classical, low-level, PNs
and SNs, respectively.

2.1. Multisets, multi-set functions, and their operations

A multiset (bag) over a domain D is a map b : D → N, where b(d) is the
multiplicity of d in b. The support b is {d ∈ D|b(d) > 0}: d is said an element
of b (d ∈ b) if and only if d ∈ b. A bag whose elements all have multiplicity one
is said type-set. We may denote a multiset b as a weighted formal sum of its
elements, weights representing multiplicities (omitted, if equal to one). With
some overloading, a set symbol may also denote the corresponding type-set bag.
The null multiset, i.e., the multiset with an empty support, is denoted εD, or
just ε if its domain is implicit. Bag[D] denotes the set of all bags over D.

Bag operations.. Let b1, b2 ∈ Bag[D]. The sum b1 + b2, the difference b1 − b2,
and the intersection b1 ∩ b2 are bags in Bag[D] defined, for any d ∈ D, as:
b1+b2(d) = b1(d)+b2(d); b1−b2(d) = b1(d)−b2(d) if b1(d) ≥ b2(d), 0 otherwise;
b1 ∩ b2(d) = min(b1(d), b2(d)). Two bags b1, b2 are said disjoint if b1 ∩ b2 = ε
(b1∩b2 = ∅). Associativity holds for +, ∩ (which are treated as n-ary operators),
but not for −. Relational operators apply component-wise, e.g., b1 < b2 if and
only if ∀d ∈ D, b1(d) < b2(d). Similarly for the others.

The scalar product k · b1, k ∈ N, is the bag b′1 ∈ Bag[D], s.t. for any d ∈ D
b′1(d) = k · b1(d). The hybrid notation b+ k, k ∈ N, stands for b+ k · b, the bag
obtained from b by increasing the elements’ multiplicity by k (thus, ε+ k = ε).

Let bi ∈ Bag[Di], di ∈ Di: the bag Cartesian product b1×b2× . . . bn belongs
to Bag[D1 ×D2 × . . . Dn], and is defined as

b1 × b2 × . . . bn(〈d1, d2, . . . , dn〉) = b1(d1) · b2(d2) · . . . bn(dn).

Bag-functions. Bag-operators naturally extend to bag-functions. Let f1, f2 :
D → Bag[D′], and op ∈ {+,−,∩}1: f1 op f2 : D → Bag[D′] is defined
f1 op f2 (d) = f1(d) op f2(d), ∀d ∈ D. Analogously, f1 : D → 2D

′
is defined

f1(d) = f1(d), ∀d ∈ D. As for relational operators, f1 < f2 if and only if
f1(d) < f2(d), ∀d ∈ D. And so forth. The symbol εD,D′ (just ε if the domains are
implicit) denotes the constant null function of arity D → Bag[D′]. The notions
of type-set bag and disjoint bags apply to bag-functions as well, considering
function evaluation to all the arguments.

Let fi : D → Bag[Di]. The scalar product k·fi is defined as k·fi(d), ∀d ∈ D;
the Cartesian product f1 × f2 × . . . fn is a map D → Bag[D1 × D2 × . . . Dn]
such that f1 × f2 × . . . fn(d)=f1(d) × f2(d) × . . . fn(d), ∀d ∈ D. The notation
〈f1, f2, . . . , fn〉 (called function-tuple) will be used in place of f1 × f2 × . . . fn.

Let f : D → Bag[D′]: the transpose f t : D′ → Bag[D] is defined as,
f t(x)(y) = f(y)(x), ∀x ∈ D′, y ∈ D. The function linear extension f∗ :
Bag[D] → Bag[D′] is f∗(b) =

∑
x∈b b(x) · f(x), for any b ∈ Bag[D]. The

1we use, again, symbol overloading

4

linear extension applies to function composition as well: let h : A → Bag[B],
g : B → Bag[C], then g ◦h : A→ Bag[C] is defined as g ◦h(a) = g∗(h(a)). We
shall henceforth use the same symbol for a bag-function and its linear extension.

Finally, let {fi} be a family of functions fi : D → Bag[D′]. The linear
combination F =

∑
i λi · fi, λi ∈ Z, is a function D → Bag[D′] if and only if

F (d)(d′) =
∑
i λi · fi(d)(d′) ≥ 0, ∀d ∈ D, d′ ∈ D′.

2.2. Symmetric Nets

Symmetric Nets (SN)2 [19] (iso.org/standard/43538.html) are a high-
level PN standard formalism featuring a particular syntax which highlights be-
havioural symmetries of systems. SN show an acceptable trade-off between
expressivity and analysis capability. Efficient algorithms are available for both
state-space based [23] and structural [24, 25] analysis of SN. Many of these
are integrated in GreatSPN [22], a graphical editor for SN, whereas the most
recent advances on structural analysis are implemented in SNexpression [26]
(www.di.unito.it/~depierro/SNex), a kind of computer-algebra system.

SN are a particular flavour of Colored Petri Nets (CPN) [21]. Like in any
PN formalism, the underlying structure is a finite, directed bipartite graph,
whose nodes are partitioned in P ∪ T , P and T being non-empty sets, holding
the places and transitions, respectively. The former, drawn as circles, represent
state variables, whereas the latter, events causing local state changes.

The SN formalism admits two kinds of transitions: those drawn as white rect-
angles represent observable (time-consuming, in Stochastic SN) events, whereas
those drawn as tiny black bars, called immediate, model non-observable (logi-
cal) events. The latter take priority over the former. As in any high-level PN
formalism, (colour) domains are associated with SN nodes. Each edge (called
arc in SN) is annotated by a function that, given an element of the (edge’s)
transition’s domain, yields a bag defined on the place’s domain. In the next
sections, we formally introduce the SN color annotations and semantics.

2.2.1. SN Color Domains

The color structure of a SN model is built upon the basic color classes
C = {Ci, i = 1 . . . ,n}, finite, pair-wise disjoint sets, which may be (circu-
larly) ordered or partitioned into static subclasses Ci,j . A color domain D is a
Cartesian product of classes : D =

∏
i=1,...,n C

ei
i , ei ∈ N being the repetitions

of class Ci in D. The color domain of place p, D(p), defines the type of tokens
(color-tuples) p may hold; the color domain of transition t, D(t), instead defines
the potential firing instances of t: we use typed local variables, V ar(t), to refer
to single elements in a color-tuple of D(t). Formally, transition variables are
projections, as explained below.

The partition of color classes into static subclasses is what determines the
symmetry level of an SN model : each static subclass gathers (all and only) sys-
tem entities of a given type equivalently behaving, therefore, indistinguishable.

2Originally introduced with the name of Well-formed Nets, in their stochastic extension.

5

iso.org/standard/43538.html
www.di.unito.it/~depierro/SNex

We shall use simple conventions. Capital letters, e.g. C, will denote color
classes. A capital letter with a subscript, e.g., Ci, will denote a subclass of a
given class.

The SN models used in the paper build on two unordered color classes:
N={vi, i : 1 . . . |N|} and L =

⋃
j:1...|L| Lj , with Lj = {lbj}, ∀j. Color domains

take the form: Ne1 × Le2 .
A transition variable will be denoted (with a few exceptions) by a single,

(possibly) subscripted lower-case letter, e.g. n1, which implicitly indicates the
variable’s type (N). Subscripts distinguish variables of the same class if it re-
peatedly occurs in a transition’s domain. Otherwise, the subscript is optional.
As an example, the color domain of transition tr1 (Figure 1 (R1)) is N3 × L.
The transition’s variables are {ni}, i : 1 . . . 3, and l.

SN nodes may have a neutral color domain consisting of a singleton color
class X. In particular, if V ar(t) = ∅ then D(t) = X.

2.2.2. Guards and Transition Instances

A transition t may have a guard, g(t), a boolean expression on D(t) built of
basic predicates, such that V ar(g(t)) ⊆ V ar(t). The only used in this paper are
(we refer to a generic class C):

• c1 = (6=)c2, true when c1 and c2 are assigned the same/a different color

• c1 ∈ Cj , true when the color assigned to c1 belongs to subclass Cj ;

The default guard is the constant true, and is omitted.
A transition instance is denoted (t, b), b ∈ D(t). It may be seen as an

assignment (binding) of colors to V ar(t). For example, an instance of transition
tr1 (Figure 1 (R1)) is b : (n1 = v2, n2 = v1, n3 = v3, l = lb1). We say that
(t, b) is valid if and only if g(t)(b) = true . With transition color domain we
shall henceforth refer to the restriction of D(t) to valid instances of t.

2.2.3. Arc Functions

An arc is said input if going from a place to a transition, output if going
in the opposite direction. In SN there is another type of arc, called inhibitor,
drawn with an ending small circle on the transition. SN arcs are annotated by
families of functions, denoted (for each type) I[p, t], O[p, t], H[p, t], respectively.
Formally, an arc-function F [p, t] : D(t) → Bag[D(p)] is expressed as a linear
combination:

F [p, t] =
∑
k

λk.Tk[gk], λk ∈ Z, (1)

where Tk is a tuple (Cartesian product) 〈f1, . . . , fh〉 of class-functions, possibly
suffixed by a guard on D(t): if gk(b) = true, then Tk[gk](b) = f1(b)× . . . fh(b),
otherwise, Tk[gk](b) = ε. Scalars in (1) must ensure that the linear combination
is a bag-function. If D(p) = X then (for simplicity) F [p, t] ∈ N.

A class-C function fi is a type-set map D(t)→ Bag[C], defined in terms of
elementary functions EC = {cj ,++cj ,−−cj ,Cq, All}:

6

• cj (variable, or projection) maps a color-tuple b ∈ D(t) to the jth oc-
currence of color C in b; if C is ordered, ++cj (−−cj) yields the mod|C|
successor (predecessor) of the color bound to cj

3;

• Cq (defined only if C is partitioned) and All are constant maps to Cq and
C, respectively.

Formally, a class-function fi is recursively defined:

fi =

{
e, e ∈ EC or

e± fi, e ∈ EC

(2)

where in (2) ± are meant as set-operations. This syntax/semantics is fully in
accordance with that of GreatSPN [22] and SNExpression [26] tools, whereas is
slightly different (even if equivalent) from that used in legacy papers on SNs,
where class-functions are defined in turn as linear combinations. We shall exploit
it when handling non-injective graph morphisms.

As an example, consider the function-tuple 〈n1, n2 + n3,L1〉 : N3 → N2 × L,
which annotates the I/O arcs of transition tr in Figure 12. When evaluated on
a color-tuple 〈v1, v2, v3〉, it yields the type-set bag 1 · 〈v1, v2, lb1〉+1 · 〈v1, v3, lb1〉,
instead, when evaluated on a color-tuple 〈v1, v2, v2〉 yields 1 · 〈v1, v2, lb1〉. Its
semantics is thus different from the sum 〈n1, n2,L1〉+ 〈n1, n3,L1〉, which, when
evaluated on 〈v1, v2, v2〉, results in 2 · 〈v1, v2, lb1〉.

It may be convenient/necessary to rewrite arc functions as weighted sums of
pair-wise disjoint terms, according to:

Property 1 Any SN arc-function F can be equivalently expressed as F ′

F ′ =
∑
i λiTi[gi], λi ∈ N, where ∀i, j, i 6= j : Ti[gi] ∩ Tj [gj] = ∅.

For example: 2 · 〈All − n1, n2〉[n1 6= n2] + 1 · 〈n2, n2〉 : Nk → N2, k > 1
≡ 2 · 〈All − n1 − n2, n2〉[n1 6= n2] + 3 · 〈n2, n2〉[n1 6= n2] + 1 · 〈n2, n2〉[n1 = n2].

2.2.4. Semantics of SN

A marking m provides a distributed notion of state. Formally, m is a P -
indexed vector such that m[p] ∈ Bag[D(p)]. The elements of m[p] (the marking
of place p) are said tokens. If p is neutral then (for simplicity) m[p] ∈ N.

The firing rule sets the SN interleaving semantics. We assume that missing
arcs are annotated by null functions. A transition instance (t, b) has concession
in marking m if and only if:

• ∀p ∈ P : I[p, t](b) ≤m[p]

• ∀p ∈ P ∀x ∈ H[p, t](b): H[p, t](b)(x) >m[p](x)

3in this paper we only use unordered classes

7

An instance (t, b) having concession in m is enabled if no higher-priority
transition instance has concession in m. In that case, (t, b) may fire, withdrawing
the bag I[p, t](b) from each (input) place p and putting the bag O[p, t](b) into
each (output) place p. The reached marking, m′, is defined as:

m′[p] = m[p]− I[p, t](b) + O[p, t](b), ∀p ∈ P

We say that m′ is reachable from m through (t, b), denoted m[t, b〉m′.
We call a marking m vanishing if and only if there is some immediate tran-

sition instance which is enabled in m, tangible otherwise. If we set a tangible
initial marking m0, and there are no infinite firing sequences of immediate tran-
sition instances, we can build the reachability graph (RG) of an SN model.

The RG is an edge-labelled, directed multi-graph (NRG, ERG) (this structure
will be formalized next) whose nodes are tangible markings, defined as follows:
m0 ∈ NRG; if m ∈ NRG, and m[t, b〉m1[t1, b1〉 . . .mn[tn, bn〉m′, where m′ is a
tangible marking and {(ti, bi), i : 1 . . . n}, n ≥ 0, is a (possibly empty) sequence

of immediate transition instances, then m′ ∈ NRG and m
t,b−→m′ ∈ ERG.

2.3. Graphs and Graph Morphisms

We choose to consider a quite general class of graphs, used in many papers,
namely directed, edge-labelled, multi-graphs (parallel edges are allowed). Other
possible choices, such as the use of hypergraphs or attributed graphs, will be
shortly discussed in section 8. Let Λ be a fixed set of labels.

Graph. A graph G is a 5-tuple G = (N,E, s, t, l) where

- N is a set of nodes, E is a set of edges, N ∩ E = ∅

- s : E → N is the source function; t : E → N is the target function

- l : E → Λ is the labelling function

The components of a graph will be subscripted by the graph’s name, if
needed. The source and target nodes of an edge e ∈ E are said incident to e.
A crucial notion is that of (total) graph morphism. Let G, H be graphs.

Graph Morphism. A graph morphism φ : G → H is a pair of functions
φN : NG → NH , φE : EG → EH , such that ∀e ∈ EG:

sH(φE(e)) = φN (sG(e)), tH(φE(e)) = φN (tG(e)), lH(φE(e)) = lG(e)

A morphism maps the nodes and the edges of a graph to the nodes and the
edges of another, by preserving graph structure and edge labels. A morphism
φ : G → H is said injective (surjective) if both φN and φE are. If φ is both
injective and surjective φ is said an isomorphism, written G ∼= H. The set of
morphisms between multi-graphs G→ H has an associated, obvious equivalence
relation: φ1, φ2 are equivalent if they coincide, up to the mapping of parallel
edges. We implicitly consider the representatives of equivalence classes.

Graph morphisms are base components of graph transformation rules and
are used to match the left-hand side of a rule to a host graph.

8

Another key concept is that of graph gluing, usually called pushout in the
categorical setting. The term gluing has an intuitive explanation: assume that
G and H are two graphs with a common interface (i.e., an overlap) I, then
gluing G and H through I, results in a graph, denoted G +I H, obtained by
“joining” G and H via their overlap I. The embedding of I into G and H is
formally described by two morphism φH : I → H, φG : I → G. The intuition
above is valid if both morphisms are injective, whereas is partially incorrect if
they are not: in such a case, in fact, there may be some merge of graph elements,
formally captured by definition below using an equivalence class.

Given a set A, and an equivalence relation ≡ on A, the set of equivalence
classes is denoted A/ ≡, whereas the equivalence class of a ∈ A is denoted [a]≡.
In all subsequent definitions, we assume that node/edge sets are disjoint.

Graph Gluing. Let I, G, H, be graphs, and φH : I → H, φG : I → G
be graph morphism (I is called interface). Let ≡ be the smallest equivalence
relation on EG ∪NG ∪ EH ∪NH such that ∀x ∈ NI ∪ EI φH(x) = φG(x). The
gluing of G, H, over I, (denoted G+IH or G+φH ,φG

H) is a graph X such that

NX = (NG ∪NH)/ ≡ EX = (EG ∪ EH)/ ≡

sX([e]≡) =

{
[sG(e)]≡ if e ∈ EG
[sH(e)]≡ if e ∈ EH

tX([e]≡) =

{
[tG(e)]≡ if e ∈ EG
[tH(e)]≡ if e ∈ EH

lX([e]≡) =

{
lG(e) if e ∈ EG
lH(e) if e ∈ EH

Intuitively, we obtain G+I H by juxtaposing the parts of G and H that do not
belong to the images of φH , φG, and by merging the elements of G and H with
a common pre-image.

3. Encoding Graph Transformation Rules in SN

In this section, we formally introduce the graph transformation model based
on SN, focusing on graph encoding and structural conditions featuring well-
defined rules. We consider by now elementary rules encoded by single transi-
tions. The benefits of this approach are basically three: the possibility of using
a symbolic structural calculus for validating single rules and verifying properties
of GTS; the (implicit) abstraction from graph isomorphisms when using a sym-
bolic encoding of graphs; the availability of well-established tools supporting
SN, like GreatSpn and SNExpression. We shall use a few examples to illustrate
the base concepts.

Even if we refer to directed (edge labelled) multi-graphs, we may easily
extend this approach to other classes of graphs, e.g. multipartite graphs.

9

3.1. Graph Encoding as an SN Marking

The basic idea is to encode a graph through a pair of SN places, Node and
Edge, which are then suitably connected to any transition (subnet) representing
a rule.

Two basic color classes N, L are used: N = {vi, i : 1 . . . |N|} holds node
descriptors, and is assumed large enough to cover all possible evolutions of a
graph; L = L1 ∪ L2 ∪ . . .Lm holds label descriptors, i.e., Li = {lbi}. Their color
domains are: D(Node) = N, D(Edge) = N2 × L.

A graph G = (NG, EG, s, t, l) is encoded as an SN marking, denoted mG.
Whenever possible, we use the same symbols for graph nodes, edge labels, and
corresponding colors of classes N and L, respectively. We assume |NG| ≤ |N|
and |Λ| = |L|4.

mG[Node] =
∑
vi∈NG

vi mG[Edge] =
∑
e∈EG

〈s(e), t(e), l(e)〉

.
Observe that mG[Node] is a type-set bag, whereas the elements of mG[Edge]

may have a multiplicity greater than one (denoting parallel edges).
In general, the class-N colors describing the nodes of graph G in mG are

denoted by an injective map colG : NG → N.
Vice-versa, the following definition sets the conditions under which an SN

marking encodes a graph:

Definition 1 (Graph Encoding) Marking m is a graph-encoding if and only if

- m[Node] is type-set

- 〈n1 + n2〉 ◦m[Edge] ≤m[Node]

The 2nd condition in Definition 1 means that there are no dangling edges, i.e.,
edges with non-encoded, incident nodes. The graph corresponding to a graph-
encoding m is denoted Gm (we skip its formalization, as trivial).

The adopted graph-encoding is not the only possible. A compact alternative
might just use place Edge, and the extra subclass L0 = {lb0}: isolated nodes
would be represented by color tuples 〈vi, vi, lb0〉. This choice, however, would
require to check for new (non-)isolated nodes after any edge deletion (insertion).

3.2. SN Graph Transformation Rules: a Structural Approach

Graph Transformation Rules (GTR) are formalized as SN subnets including
places Node and Edge. We first consider elementary rules consisting of single
observable transitions linked to these places (shared among the rules of a GTS),
then we introduce and shortly discuss on composite rules, described by more
complex subnets.

4We may also write NG ⊆ N, Λ ∼= L

10

An elementary GTR is implemented by a SN transition tr, whose color
domain is implicitly defined by V ar(tr): in general, D(tr) = Ne1 × Le2 , e1 > 0.

The idea is simple: the input arc functions I[Node, tr], I[Edge, tr] (which
should not be both null), and the inhibitor arc function H[Edge, tr], when eval-
uated on an enabled instance of tr in a graph-encoding m, match a subgraph of
the encoded graph, which is rewritten according to the SN firing rule: instanta-
neously, the matched subgraph is removed from the encoded graph and replaced
with another subgraph yielded by evaluating the output arc functions on the
same instance. The role of inhibitor arc-functions is to set the rule’s applica-
tion context (e.g., a node without predecessors) and ensure general conditions
of correctness (e.g., the dangling edge condition).

Figure 1 is a gallery of rule representatives. R1 (when repeatedly applied)
builds the (label-preserving) transitive closure of a graph: it requires an initial
simple graph to properly work. R2 removes isolated nodes from a graph. R3
derives a Kripke structure from a source graph, by creating an edge-loop with
label lb1 for nodes without successors. R4 removes parallel edges, if any. R5
deletes a node with only one incident edge-loop: the quite complex inhibitor arc
function ensures that there are no dangling edges. Finally, R6 is matched by a
couple of edges with source vi and target different from vi, with the same label:
these two edges are replaced by parallel edges with source vi and target a fresh
new node (bound to n4), with label lb1.

3.3. Elementary Graph Transformation Rules

A transition t represents a Graph Transformation Rule if any instance of t
transforms a graph-encoding into another one, as formalized by:

Definition 2 (Graph Transformation Rule, GTR) A SN transition t is a GTR
if and only if, for any graph-encoding m, ∀b ∈ D(t):

m[t, b〉m′ ⇒m′ is a graph-encoding.

Definition 2 refers to any graph/transition instance. Therefore, we need for
parametric structural conditions ensuring that an SN transition represents a
GTR. By exploiting the SN calculus introduced in [25, 24] and recently imple-
mented in SNexpression tool [26], we can mechanically derive these conditions
from the arc-functions surrounding a transition and efficiently manipulate the
corresponding symbolic expressions.

SNexpression is a kind of symbolic calculator, which allows checking struc-
tural properties (conflict, causal connection, mutual exclusion, semiflows, and
many others lower-level) directly on an SN, without any unfolding. The SN cal-
culus solves algebraically any formulae defined in terms of a language, L, and a
base set of functional operators (difference, intersection, composition, transpose,
and support). The syntax of L is a small extension of arc-functions’ syntax, in
which guards defined on functions’ co-domain may prefix functions, performing
as filters: letting f : A → Bag[B], then [g]f : A → Bag[B] is such that if

11

Figure 1: Examples of elementary Graph Transformation Rules

12

Table 1: Symbolic expressions used in SN GTR structural definition.

Symbol Definition/Description
D(t)→ Bag[D(p)]

W+[p, t]
O[p, t]−I[p, t]
multi-set of colors put in place p by an instance of t

W−[p, t]
I[p, t]−O[p, t]
multi-set of colors removed from p by an instance of t

D(t)→ Bag[D(Edge)]

F ∗
〈W−[Node, t], All, All〉+〈All−W−[Node, t],W−[Node, t], All〉
“set” of edges incident to any node removed by an instance
of t

W−[Edge, t]∗
∑
i λi · Fi ∩ F ∗, letting W−[Edge, t] =

∑
i λi · Fi

multi-set of edges removed by an instance of t which are
incident to withdrawn nodes

g(x) = true then [g]f(y)(x) = f(y)(x), otherwise [g]f(y)(x) = ε, ∀y ∈ A, x ∈ B.
SNexpression works as a rewriting system by reducing any expression e, pos-
sibly involving the operators mentioned above, to a normal form e′ ∈ L, a kind
of disjunctive normal form in which the only admitted operators are ’+’ and (at
class-function level) ’∩’. We denote it: e→ e′.

SNexpression manages both bag-functions and their supports. In the se-
quel, we shall use the overloaded operator symbols, ’−,+,∩’, denoting either
bag- or set-operators, depending on their operands. We can syntactically check
the equivalence between expressions, thanks to the following property:

e ≡ ε (∅) ⇔ e→ ε (∅)

.
In particular, we shall implicitly use two intuitive equivalences. Let F , F ′

be bag-functions with the same (co-)domains:

F ≤ F ′ ⇔ F − F ′ ≡ ε F ⊆ F ′ ⇔ F − F ′ ≡ ∅.

Lemma 1 states quite general conditions for a SN transition t to represent a
GTR. The first one is related to the assumption that the marking of place Node

is type-set, whereas the other two, a bit more complex, concern dangling-edges.
We use some auxiliary expressions, defined and described in Table 1.

Lemma 1 Let t be a SN transition linked to places Node, Edge. If the following
conditions hold:

C 1. H[Node, t] ≤ 〈All〉 ∧ W+[Node, t] ≤ H[Node, t]

C 2. 〈n1 + n2〉 ◦O[Edge, t]− 〈n1 + n2〉 ◦ I[Edge, t] ≤ O[Node, t]

C 3. H[Edge, t] ≡ H1 +H2, H1 ∩H2 ≡ ε
with H1 = (F ∗ −W−[Edge, t]) + (W−[Edge, t]∗ + 1)

then t is a GTR.

13

Proof. Let m be a graph-encoding, b ∈ D(t), and m[t, b〉m′. The 1st in-
equality in Condition 1 ensures that H[Node, t](b) is a type-set bag: due to the
enabling condition, it means that no element of this bag and (for the 2nd in-
equality) of the bag added to place Node, which is in turn type-set, must be
present in m[Node]. Consequently, m′[Node] is type-set. Condition 2) avoids
the creation of dangling edges due to insertion of edges: O[Edge, t](b) is the
bag of newly added edges, the minuend consequently is the set of nodes to
which these edges are incident. By subtracting the nodes to which existing
edges are incident (which are encoded, due to Definition 1) we get the fresh
nodes involved in W+[Edge, t](b), enforcing that they are contextually put in
place Node. Condition 3) avoids the creation of dangling edges due to node
removal. First, observe that W−[Node, t](b), the bag of withdrawn nodes, is
actually type-set, otherwise (t, b) would not be enabled in m. The inhibitor arc
function ensures that, for every withdrawn node, there is no edge incident to
it, but for those contextually removed. The term t1 = (F ∗ −W−[Edge, t])(b)
is (by definition) a type-set symbolic bag representing all and only the edges
incident to any removed node, with the exclusion of those which are contex-
tually withdrawn; t2 = (W−[Edge, t]∗ + 1)(b) is a multi-set including all and
only the withdrawn edges which are incident to any withdrawn node, with their
multiplicity increased by one. The two terms above are disjoint by construction.
Since the inhibitor arc function H[Edge, t] includes both terms, plus (possibly)
another one disjoint as well, and (t, b) is enabled, we have: if x ∈ t1, i.e., x is
an edge incident to a removed node, which is not contextually removed, then
x is not encoded; otherwise, if x ∈ t2, i.e., x is an edge incident to a removed
node, and x is contextually removed, then it is encoded in exactly as many in-
stances as those withdrawn (formally, it holds I[Edge, t](b)(x) ≤ m[Edge](b)(x)
and H[Edge, t](b)(x) = W−[Edge, t](b)(x) + 1 > m[Edge](b)(x), thus, since
W−[p, t] ≤ I[p, t], we get: I[Edge, t](b)(x) = m[Edge](b)(x)). �:

Let us point out two relevant aspects of Lemma 1.

1. No constraint is set on I[Node, t] because Definition 2 only concerns enabled
instances. Since we assume that the marking of place Node is type-set, every
instance (t, b) such that I[Node, t](b) is not type-set is excluded. Thus, there
may be implicit guards: for example, if I[Node, t] = 〈n1〉+ 〈n2〉, it is implicit
n1 6= n2, if I[Node, t] = 〈All − n1〉+ 〈n2〉, it is implicit n1 = n2.

2. Condition 3) explicitly shows what H[Edge, t] looks like: this makes it possible
to mechanically derive it from W−[Node, t] and W−[Edge, t].

We have successfully verified the conditions set by Lemma 1 on all transitions
shown in Figure 1, by means of SNexpression. The check, basically a term-
equivalence test, took (at most) a few dozen ms for each involved calculation.

Structured Labels. In our encoding of graphs edge labels are coherently repre-
sented as elementary objects, corresponding to singleton subclasses of L. To
enhance the model’s expressivity, we might, however, use richer structured la-
belling of edges, and retain all the theoretical achievements. A label could be

14

expressed as a color-tuple of whatever color domain, on which all available SN
functions could apply. This goes in the direction of those graph rewriting exten-
sions introduced for modelling reasons, like Attributed Graph Rewriting [27, 28].
In particular, the characterization of SN Graph Transformation Rules provided
by Lemma 1 would still work, but for inserting as many occurrences of the All
constant function as the label domain’s size, at the end of function-tuples. Also,
all the outcomes of the next sections would apply with a few adaptations.

3.4. Graph Transformation System

An SN Graph Transformation System consists of an initial graph and a set
of SN graph transformation rules.

Definition 3 (SN Graph Transformation System) Let G0 be a graph, and R

be a set of SN Graph Transformation Rules (Definition 2). The corresponding
GTS is obtained by sharing places Node and Edge among R transitions, and
setting mG0

as initial marking.
The GTS state-transition system corresponds to the SN Reachability Graph.

Consider, as an example, the SN in Figure 2 bringing together the elementary
rules R1,R3 of Figure 1. Given a graph G0 encoded by the initial marling
mG0

, the SN Reachability Graph describes the sequence of transformations
that G0 undergoes by applying either Rule 1 or Rule 3. The resulting RG has
an absorbing state, i.e. a dead home-state, which corresponds to the transitive
closure of G0, where, also, nodes without proper predecessors have newly added,
incident edge-loops.

Let mG0
[Edge] = 〈v1, v2, lb1〉 + 〈v1, v3, lb1〉 + 〈v4, v1, lb1〉, and mG0

[Node] =
〈v1 + v2 + v3 + v4〉: the corresponding RG (built with the GreatSPN package)
holds 16 nodes, including the absorbing one:

〈v1, v2, lb1〉+ 〈v1, v3, lb1〉+ 〈v4, v1, lb1〉+ 〈v2, v2, lb1〉+ 〈v3, v3, lb1〉+ 〈v4, v2, lb1〉+ 〈v4, v3, lb1〉

.

4. Graph Isomorphism Abstraction and SN Symbolic Marking

In this section, we introduce the SN Symbolic Marking notion (with some
related concepts) and discuss the isomorphism abstraction it implicitly provides
in the graph encoding context.

In the context of GTS, all considerations are valid up to graph isomorphism.
In particular, the state-transition system associated with a GTS usually ab-
stracts from isomorphic graphs obtained by applying rules.

The system symmetries implicitly expressed by the syntax of the SN formal-
ism, in the graph encoding context, exactly match graph isomorphism. Let us
recall a few basic concepts and refer to [23] for the details.

SN are equipped with a syntactical state-equivalence notion, called symbolic
marking (SM). Two SN markings m1, m2 belong to the same SM m̂ if and
only if there is a permutation σ on color classes (a rotation, on ordered classes),

15

preserving static subclasses, such that m2 = σ(m1) (we write m1 ≡ m1). An
immediate consequence is the following.

Property 2 G ∼= G′ if and only if there exists a permutation σ of class-N colors
such that mG′ = σ(mG).

Note that the only permutation on L is the identity.
We might easily extend this intuitive property if edge labels had a richer

structure, as discussed later.
At transition instance level, the SN symmetry looks like a strong bisimu-

lation: for each color permutation σ: m[t, b〉m′ ⇔ σ(m)[t, σ(b)〉σ(m)′; on the
other side, m1[t, b〉m2⇒∀m′2,m′2 ≡m2 ∃m′1, b′,m′1 ≡m1∧b′ ≡ b: m′1[t, b′〉m′2.

By setting an initial symbolic marking, m̂0, we can thus automatically gener-
ate (with the GreatSPN package) a quotient graph, called Symbolic Reachability
Graph (SRG), which retains all the liveness/safety properties of the ordinary
RG of a SN. Formally, a symbolic marking (SM) employs dynamic subclasses
instead of colours. Dynamic subclasses define (locally) a parametric partition of
color (sub-)classes: each dynamic subclass refers to a specific static subclass, or
a colour class if that class is not partitioned. The size of a dynamic subclass in-
dicates a set of different colors evenly distributed over the SN places. Consider,
for example, the initial symbolic marking below, where symbol zvi denotes a
class-N dynamic subclass, whereas static subclasses denote edge labels:

m̂0[Edge] = 〈zv1, zv2,L1〉+ 〈zv3, zv1,L1〉, m̂0[Node] = 〈zv1 + zv2 + zv3〉

where |zv1| = |zv3| = 1, |zv2| = 2. This symbolic marking represents a number
of equivalent SN markings (six if N = 4) including mG0

defined at the end of
the last section. Observe that colors v2, v3 are now folded into zv2.

The SRG is directly built from m̂0 through a symbolic firing mechanism.
Leaving out technical details, a symbolic instance of transition tr1 (Figure 2) is:
(n1 = zv3, n2 = zv1, n3 = zv2). This symbolic instance, which folds two color
instances, is enabled in m̂0; when firing, it leads to the symbolic marking 5:

〈zv3, zv1,L1〉+ 〈zv1, zv2,L1〉+ 〈zv3, zv2,L1〉, |zv2| = 2

The SRG of the simple example we are considering contains 10 nodes, one
of which absorbing, against the 16 nodes of the corresponding RG.

When considering large graphs, the reduction achieved with the SRG in
terms of states/edges may be dramatic. In particular, if a GTR adds new nodes
to the encoded graph, GTR’s symbolic firing instances may fold together a huge
number of ordinary ones. The reason is that added nodes correspond to class-
N colors bound to fresh transition variables, like n4 in Figure 1 (R6).

A canonical representative for SM permits a syntactical comparison between
SM. In the context of graph encoding, bringing an SM into its canonical form has

5we only refer to place Edge, because the marking of Node doesn’t change

16

Figure 2: GTS composed of rules R1,R3 of Figure 1

more or less the same complexity as checking graph isomorphism. We believe
that the legacy GreatSPN algorithm computing SM canonical representatives
(which in addition, for performance analysis purposes, calculates the size of SM
by enumerating color permutations) might be significantly improved by using
structural analysis outcomes. This is a part of ongoing work.

In the rest of the paper, to keep notations simple, we shall refer to ordinary
markings/transition instances.

5. Exploiting SN Structural Analysis: Application Examples

In this section, we aim at showing the potential of SN structural analysis
in graph transformation field, by means of a simple example of GTS. We intro-
duce/use (symbolic) structural relations and (colored and numerical) semiflows.

Symbolic structural analysis is a promising, effective approach to formal ver-
ification of properties, with a lot of positive effects also on traditional methods
based on state-space exploration and model-checking.

In Section 3.3, we have set conditions on arc functions characterizing SN
Graph Transformation Rules. These conditions, which involve base functional
operators on bag-expressions, can be automatically and efficiently checked with
the SNexpression tool.

The SN structural calculus allows you not only to validate GTRs, but also
to check general properties of a GTS, e.g., figure out which rules are in con-
flict (as a consequence, may concurrently apply), mutually exclusive, causally
connected, and so forth. True concurrent or partial-order approaches have been
widely treated in graph rewriting and PN literature: we are not interested in a
theoretical discussion about these specific topics, rather we aim at showing the
potential of SN structural analysis in these and related research areas.

17

5.1. Symbolic Structural Relations

A (symbolic) structural relation between SN nodes e, e′, defined as R(e, e′) :
D(e′) → 2D(e), maps any instance b′ of e′ to the set of instances of e related
with b′. Formally, structural relations are expressions involving arc functions
and a base set of functional operators: transpose, sum, intersection, difference,
support, and composition.

Two base relations, Rb[t, p], Ab[t, p], and others higher-level, are listed in
Table 2 with their formulae. Rb[t, p] (Removed by), given an element c of the
color domain of place p, results in the set of instances of t that withdraw c from
p; Ab[t, p] (Added by) is dual, given a color c results in the set of instances of t
that put c in p. An intuitive explanation of the others follows.
(Asymmetric) Structural Conflict : two transition instances (t, b) and (t′, b′) are
in a conflict relation in marking m if the firing of the former disables the latter.
The structural conflict relation (SC) sets the necessary conditions for a conflict:
SC(t, t′) maps an instance b′ of t′ to the set of (all and only) the colour instances
b of t that may disable (t′, b′). A conflict arises because (t, b) withdraws tokens
from an input place of t′ or it adds tokens to an inhibitor place of t′. The
SC formula is the summation over all local conflicts possibly caused by the
situations described above. Different instances of the same transition may be
conflicting: the corresponding, one-argument SC formula, therefore, uses the
identity function as a final subtrahend.
Structural Causal Connection: two transition instances (t, b) and (t′, b′) are in
causal connection in a marking m if the firing of the former causes the enabling
of the latter. The structural causal connection (SCC) relation sets the necessary
conditions for causal connection: SCC(t, t′) maps an instance b′ of t′ to the set
of the instances b of t that may cause the enabling of (t′, b′). This situation
occurs if (t, b) adds tokens to an input place of t′ or it withdraws tokens from
an inhibitor place of t′.
Structural Mutual Exclusion: two instances (t, b) and (t′, b′) are in structural
mutual exclusion (SME) if whenever one is enabled the other is not, and vice-
versa. This case occurs when there is a place p which is both an input place
for t and an inhibitor place for t′, and the number of tokens of a certain color
required for the enabling of t is at least equal to the upper-bound enforced
by the inhibitor arc-function for tokens of that color. The symmetric relation
SME (t, t′) maps an instance b′ of t′ to the set of instances of t that cannot be
enabled when (t′, b′) is. The SME formula given in Table 2 works if all involved
input/inhibitor arc-functions are type-set, as in most of SN models presented
in this paper. Note that the formula is slightly different if t = t′. [25] treats the
general case of SME.

Applications. Assume that we want to determine which rules (described by SN)
of a GTS may simultaneously apply. By using the SN structural calculus, we
can give a precise answer. First of all, we should partition the whole set of GTS
rules’ instances into (symbolic) conflict sets, each representing all the instances
which may conflict, directly or indirectly. And even though, in general, this

18

Table 2: Symbolic structural relations in SN

Ab[t, p] = W+[p, t]
t

Rb[t, p] = W−[p, t]
t

SC(t, t′) =
∑
p Rb[t, p] ◦ I[t′, p] + Ab[t, p] ◦H[t′, p] t 6= t′

SC(t) =
(∑

p Rb[t, p] ◦ I[t, p] + Ab[t, p] ◦H[t, p]
)
− IdeD(t)

SCC(t, t′) =
∑
p Ab[t, p] ◦ I[t′, p] + Rb[t, p] ◦H[t′, p]

SME (t, t′) =
∑
p I[t, p]

t
◦H[t′, p] + H[t, p]

t
◦ I[t′, p] t 6= t′

SME (t) = (
∑
p I[t, p]

t
◦H[t, p])− IdeD(t)

requires calculating the symmetric and transitive closure of SC relation [25], in
the following examples we can use a smarter technique.

To illustrate the concept, let us consider the GTS in Figure 2. The two rules
are potentially in conflict due to place Edge, which is (reciprocally) an output
place for one and an inhibitor place for the other. There are no potential conflicts
due to shared input places since the corresponding expressions of Rb[t, p] turn
out to be null (by the way, a composition involving null operand results in turn
null). As for added by, we get the following non-null expressions: (in the rest of
the section, function supports are implicitly used): D(tr1) = N3×L, D(tr3) = N

Ab[tr1 , Edge] = 〈n1, All, n2, l〉 Ab[tr3 , Edge] = 〈n1〉[n1 = n2 ∧ l ∈ L1]

The expression on the left says that a color tuple 〈c1, c2, lbi〉 is put in place Edge
by any instance 〈c1, ∗, c2, lbi〉 of tr1 . The other expression instead says that a
color tuple 〈c1, c1, lb1〉 is put in place Edge by the instance 〈c1〉 of tr3 .

According to the formula in Table 2 and the tuple-transpose algorithm [24],
we obtain, after some rewriting:

SC(tr1 , tr3) = 〈n1, All, n2, l〉 ◦ 〈n1, All, All〉 ≡ 〈n1, All, All, All〉
SC(tr3 , tr1) = 〈n1〉[n1 = n2 ∧ l ∈ L1] ◦ 〈n1, n3, l〉 ≡ 〈n1〉[n1 = n3 ∧ l ∈ L1]

Once again, we can supply an intuitive explanation: SC(tr1 , tr3) indicates
that an instance 〈c1〉 of tr3 may be in conflict with any instance 〈c1, ∗, ∗, ∗〉 of tr1 ,
SC(tr3 , tr1) instead indicates that an instance 〈c1, ∗, c1, lb1〉 of tr1 is in conflict
with the instance 〈c1〉 of tr3 .

The SC relation points out potential conflicts. We can enhance the previous
outcome by computing SME: Edge is both an input and an inhibitor place for
tr1 , and inhibitor for tr3 . According to the formula in Table 2, we obtain:

SME(tr1 , tr3) =
(
〈n1, n2, All, l〉+ 〈All, n1, n2, l〉

)
◦ 〈n1, All, All〉

≡〈n1, All − n1, All, All〉+ 〈All, n1, All, All〉

SME(tr3 , tr1) turns out to be 〈n1〉+ 〈n2〉, i.e., SME(tr3 , tr1) ≡ SME(tr1 , tr3)t,
because SME is symmetric. But what matters is that:

SC(tr1 , tr3) ⊆ SME(tr1 , tr3) ∧ SC(tr3 , tr1) ⊆ SME(tr3 , tr1)

19

That is, any conflicting instances of tr1 and tr3 are mutually exclusive. In other
words, these two rules are potentially concurrent.

We can also extend this result to instances of the same GTR. According to
the formula in Table 2, we get (IdeD(tr1)

= 〈n1, n2, n3, l〉):

SC(tr1) =〈n1, All − n1, n3, l〉[n1 = n2 ∧ n1 6= n3] + 〈n2, All, n3, l〉[n1 6= n2]+

〈n1, All, n1, l〉[n1 = n2 ∧ n1 6= n3] + 〈n1, n2, n2, l〉[n1 6= n2 ∧ n2 6= n3]+

〈n1, All − n1, n1, l〉[n1 = n2 ∧ n1 = n3] + 〈n1, All − n2, n2, l〉[n1 6= n2]

The expression for mutually exclusive instances of GTR tr1 is:

SME(tr1) =〈n1, All − n1, n3, l〉[n1 = n2 ∧ n1 6= n3] + 〈n2, All, n3, l〉[n1 6= n2]+

〈n1, All, n1, l〉[n1 = n2 ∧ n1 6= n3] + 〈n1, n2, n2, l〉[n1 6= n2 ∧ n2 6= n3]+

〈n1, All − n1, n1, l〉[n1 = n2 ∧ n1 = n3] + 〈n1, All − n2, n2, l〉[n1 6= n2]

Also in this case, it holds SC(tr1) ⊆ SME(tr1), i.e., different instances of tr1
are potentially concurrent. As for tr3 , there are no auto-conflicts.

We performed all the calculations with SNexpression and, on average, it
took around a few dozen ms per test.

Detecting GTS rule instances which may run independently from each other
would generally require more sophisticated calculations. Related concerns, how-
ever, are out of the scope of this paper.

5.2. Checking Semiflows

An opportunity offered by SN is the automated verification of structural
invariants involving place marking (P -invariants, or semi-flows) or transition
sequences (T -invariants). These invariants do not take account of inhibitor arcs
and priorities. However, they allow you to formally and efficiently check interest-
ing properties, orthogonal or complementary to structural relations. Focusing
on P -invariants, we can distinguish between colored (symbolic) and numerical
ones. The former give us both qualitative and quantitative information, hence
are of particular interest.

The structural calculus implemented in SNExpression tool can be used to
verify whether a P -indexed vector i of bag-expressions i[p] : D(p)→ Bag[Dinv]
is a coloured P -invariant. Dinv is the invariant’s color domain.

Vector i is a P -invariant (or semi-flow) if and only if, for each transition t,∑
p∈P i[p]◦ (1 ·O[p, t]−1 · I[p, t]) ≡ ε 6. The invariant expression we obtain from

the SN initial marking is:
∑
p i[p](m0[p]).

Consider the GTS composed of two simple rules shown in Figure 3: one (tr1)
replaces everywhere edge label lb1 with lb2, the other (tr2) deletes edge-loops
whose label is neither lb1 nor lb2. In this fairly common case, the only non-null
invariant entry refers to place Edge, which encodes the connected components

6negative terms in a linear combination impact on the final outcome

20

Figure 3: GTS composed of two rules

of a graph. Let X denote the neutral color, x : X, l : L, n1, n2 : N. Here are
some possible invariants:

pinv1 := N2 × L→ X 〈x〉[l ∈ L1 ∨ l ∈ L2]

pinv2 := N2 × L→ N2 〈n1, n2〉[n1 6= n2]

pinv3 := N2 × L→ N2 × L 〈n1, n2〉[l ∈ L1 ∨ l ∈ L2]

The three expressions above satisfy the invariance property based on compo-
sition, therefore, are P -invariants. You can check it with SNExpression (which
adopts a syntax very close to that used here) in just a few ms. Notice that these
invariants depend on the size of subclasses L1, L2: the composition involving
pinv1 and tr1 , e.g., results in |L2| · 〈x〉 − 1 · |L1| · 〈x〉, which is equal to ε if, as
we are assuming, the two subclasses have the same size.

These invariants have a simple interpretation: pinv1 means that the total of
edges with label lb1 or lb2 is preserved; pinv2 means that edges whose source
differs from the target are preserved, without considering their labels; pinv3 is
like pinv1 but more precise: it tells that edges with label lb1 or lb2, no matter
which, are preserved.

5.2.1. Numerical Semiflows

Due to a property of SN arc functions, we may also check for numerical
semiflows (or even minimal semiflow bases), typical of classical low-level PN.
The size of a bag is the sum of multiplicities of the bag’s elements.

Property 3 A SN arc-function F : D(t) → Bag[D(p)] may be rewritten as∑
i λi · Ti[gi], λi ∈ N, where tuple guards are mutually exclusive and:

∀i ∃k ∈ N ∀b ∈ D(t) : gi(b) = true⇒ |Ti(b)| = k

21

In other words, any arc-function can be rewritten as a weighted sum of function-
tuples that map to constant-size bags, but for colour instances making the tuple
guards false. Consider 〈Ci− c〉, which, depending on whether the colour bound
to c belongs to subclass Ci or not, has size |Ci| − 1 or |Ci|: we may rewrite
〈Ci − c〉 → 〈Ci − c〉[c ∈ Ci] + 〈Ci〉[c /∈ Ci], according to Property 3. This is the
normal form used by SNexpression for bag-expressions.

As a consequence, by embedding function-tuple guards in transition guards
(always possible), we can split any SN transition into an equivalent set of
mutually-exclusive replica7, whose arc-functions are “constant-size”. In anal-
ogy with low-level PN, a |P | · |T | matrix H of Z values is thus defined, whose
[p, t] entry is |O[p, t](b)| − |I[p, t](b)|, for any b ∈ D(t). Any non-null P -vector y
which is a positive integer solution of the matrix product y∗H = 0 is a semiflow,
expressing a conservative law for tokens flowing through the places correspond-
ing to semiflows’s non-zero entries, which abstracts from tokens’ color. We say
a place p is covered by a semiflow is the semiflow’s p-entry is non-null. We say
an SN is covered if every place is. One such an SN is color-safe.

As for the GTS example of this section, place Edge is not covered by numer-
ical semi-flows. We shall exploit (numerical) semiflows in the next section.

6. SN Composite Graph Transformation Rules

In this section, we define a more structured type of GTR able to emulate
complex graph transformations (some of which) peculiar to algebraic, rule-based
models. We use SN subnets with a well-defined layout.

Until now, we have considered context-dependent graph transformations.
Some typical operations on graphs, however, apply in undetermined contexts:
an example treated here is node deletion with simultaneous removal of incident
edges, natively supported by the single-pushout [29] approach, but not by the
DPO. Other examples, considered later, are node merge/split.

It is not possible to represent these operations on graphs through a single SN
transition, due to the low data abstraction provided by SN arc-function syntax.
Using the All function is not the solution, since it yields all the elements of a
given color class.

The workaround consists of representing a GTR through an SN subnet,
called composite rule, composed of one observable transition, which operates
context-dependent changes and triggers a finite sequence of immediate transition
instances in charge of performing changes in unspecified contexts.

Composite rules meet a quite simple structural pattern making it possible
their efficient validation. Some subnet places have a neutral domain, their inci-
dent weight-one arcs do not carry any annotation, for simplicity (it should be
〈All〉). We denote with •t, t•, the set of places linked to a transition t through
non-null input, output arc-functions, respectively.

7that is, t may be equivalently “split” into a set EQ = {ti}, such that D(t) = D(ti),
∀ti ∈ EQ, and m[t, b〉m′ ⇔ ∃ti ∈ EQ : m[ti, b〉m′, ∀m, b ∈ D(t)

22

Definition 4 (SN Composite GTR) A composite rule is a SN including, among
the others, places Edge, Node (whose color domains have been previously de-
fined), neutral places Start, Trigger, one observable transition tr, and a set
Imm of immediate transitions including end, such that:

- Start ∈ end• ∩ •tr; Trigger ∈ tr•

- ∀t ∈ Imm : Trigger ∈ •t ∀t ∈ Imm− {end} : Trigger ∈ t•

- ∀t ∈ Imm− {end} : t SME end

- the SN is covered by (numerical) semiflows

- every SN transition satisfies Lemma 1

Places Start, Trigger are covered by a semi-flow, by construction. The cov-
erage requirement for the other places is to ensure color-safeness. The mutual
exclusion between end and any other immediate transition guarantees that the
rule’s behaviour is well-defined. Whenever end fires, it disables all the other
immediate transitions, bringing back the SN to its initial state.

As an example, Figure 4 shows an SN composite rule deleting a graph node
without successors but itself, together with all incident edges. Transition tr
checks for the application condition by matching a node vi, then transition
delInEdge removes all edges with target vi, finally end deletes vi by respecting
the dangling-edge condition. The only extra place NoSucc, initially marked
with any class N colour, is clearly covered by a semiflow. The mutual exclusion
between end and delInEdge is ensured by the arc-function H[Edge, end].

We need to slightly change the notion of GTS to include composite rules.

Definition 5 (Generalized SN Graph Transformation System) Let G0 be a
graph, Re be a set of (SN) Graph Transformation Rules (Definition 2) and Rc a
set of disjoint SN implementing composite rules (Definition 4). The associated
GTS is the SN model obtained by sharing places Node and Edge among Re and
Rc, with m0[Node],m0[Edge] encoding G0, and {Starti} places of Rc initially
holding one neutral token.

The SN Reachability Graph (precisely, its projection on places Node and
Edge) defines the GTS state-transition system.

7. A Comparison with the DPO Approach

In the second part of the paper, we compare the SN-based graph trans-
formation approach with a classical, rule-based one. We consider basic graph
rewriting, in particular, the algebraic approach based on double-pushout (DPO),
one of the most well-known (Turing-complete) approaches. We do not use the
original, categorical pushout concepts, but we follow a somewhat operational

23

Figure 4: Composite rule: removal of a node without proper successors

line. We use well-known definitions which solely refer to the concepts of graph
(total) morphism and gluing, formally presented in the background.

The aim is twofold: to provide the SN-based graph transformation approach
with a theoretically sound semantic characterization, and to promote interop-
erability among different modelling formalisms and tools.

We follow a constructive approach: given a DPO rule, we show how to
formally derive (step-by-step) the color annotations of the corresponding SN
GTR, first considering “injective” DPO rules, then non-injective ones.

After recalling the base concepts of DPO rules (Section 7.1), we formalize
the translation of injective rules in the (widespread) case of an injective match
of rules (Section 7.2). Then we set a precise relationship between rule matches
and SN transition instances, also considering non-injective matches (Section
7.3). Finally, we deal with non-injective DPO rules (Section 7.4) and shortly
discuss on the reverse direction SN → DPO (Section 7.5).

7.1. Basic Definitions

DPO Graph Transformation Rule. A DPO rule r is composed of three graphs,
L, I, R (left-hand side, interface, and right-hand side, respectively) and two

morphisms: L
φL←− I φR−→ R.

The elements of graph L not belonging to the image of φL are said obso-
lete, whereas the elements of R not in the image of φR are said fresh. If both

24

morphisms are injective we say that the rule is injective.
The application of an injective rule has an intuitive explanation: once a

match of the rule’s left-hand side is found in a host graph G, the rule applies by
removing obsolete nodes/edges, adding fresh elements, and preserving I, which
plays the role of a solid attachment point.

However, if φL or φR is not injective, the previous interpretation has to be
corrected because of some merge/split effect (depending on whether φR or φL
is non-injective, respectively). The general semantics of graph transformation
makes use of the graph gluing concept.

Graph Transformation. Given r = (L
φL←− I

φR−→ R), a graph G is transformed

by r into a graph H (written G
r⇒ H) if there is a graph C (context) and a

morphism ν : I → C, such that G ∼= L+φL,ν C and H ∼= R+φR,ν C.

L

m

��

I
φLoo φR //

ν

��

R

n

��
G C

ηLoo ηR // H

We illustrate this on the commutative diagram above, where the morphisms
m and n are called match and co-match, respectively. In other words, we search
for an unknown graph C (called context) such that the host graph G is the
gluing of L and C over I. If such a context does exist, we rewrite G to the
graph obtained by gluing C and R over I.

Many papers make strong assumptions on rules. Most of them deal with
injective rules and extend this assumption to rule match. Almost all assume
that the morphism φL is injective. We shall first consider the base case of an
injective rule/match then we shall treat non-injective m and φR.

Differently from term rewriting, the existence of a match of the left-hand
side of a rule in a host graph doesn’t ensure that the rule can apply. Two more
conditions guarantee it, the dangling-edge condition (if we remove a node, then
we contextually remove all incident edges) and the identification condition (a
match may only identify elements which are preserved). We call the sum of
these two conditions gluing condition.

Property 4 Let r = (L
φL←− I

φR−→ R) be a rule and m : L → G be a graph
morphism, such that mE is injective. Then a context C and a morphism ν :
I → C such that G ∼= L+φL,ν C do exist if and only if

- ∀v ∈ NL such that m(v) is incident to e ∈ EG −mE(EL): v ∈ φL(NI)

- ∀v1, v2 ∈ NL , v1 6= v2 : m(v1) = m(v2)⇒ v1, v2 ∈ φL(NI)

Informally, the dangling condition (the 1st one) says that every node of L whose
image is incident to an edge of G which is not in the image of m is not obsolete.

25

If φL is injective and m satisfies the gluing condition, the context C and
the morphism ν are unique. Rule r thus applies deterministically (up to graph

isomorphism) and we use the notation G
r,m
=⇒ H.

Figure 5 gives an example of injective DPO rule and corresponding graph
transformation. We shall refer to it to illustrate some basic concepts/notations.

By convention, we describe a morphism f : G1 → G2 by associating iden-
tifiers 1 through |NG1

| with nodes of the source graph (we may thus speak of
ith node), and pair-wise disjoint, non-empty sets of values in the same range to
nodes belonging to the image of G1. In the case of injective morphism, all these
sets are singletons.

7.2. Mapping Injective DPO Rules to SN Graph Transformation Rules.

Let tr denote the transition corresponding to r = L
φL←− I

φR−→ R. The
following steps formalize the functions on the arcs connecting tr to places Node,
Edge and the guard of tr. In the sequel,

∧
∅(. . .) ≡ true, whereas

∑
∅(. . .) ≡ ε.

Procedure 1 (SN translation of an injective DPO rule - injective match)

1. The set V ar(tr) = {ni, i : 1 . . . k}, k ∈ N+, of type-N variables (projections)
used in arc functions is partitioned into:

V ar(tr) = V arI ∪ V arobs ∪ V arfresh

V arI = {ni, i : 1 . . . |NI |} corresponds to the set of interface’s nodes, whereas
V arobs and V arfresh are isomorphic to NL − φL(NI) and NR − φR(NI),
respectively (the obsolete and fresh nodes). By convention, if ni ∈ V arobs and
nj ∈ V arfresh, then i < j. Let var : NI∪NL∪Nr → V ar(tr) map each graph
node to the corresponding variable: var(NI) = var(φL(NI)) = var(φR(NI)).

2. The arc functions involving place Node are

I[Node, tr] =
∑

ni∈V arI∪V arobs

〈ni〉 O[Node, tr] =
∑

ni∈V arI∪V arfresh

〈ni〉

H[Node, tr] =
∑

ni∈V arfresh

〈ni〉

3. Having mapped graph nodes to transition’s variables, each e ∈ EI ∪EL∪ER,
with l(e) = lbk, is consequently identified by a tuple 〈ni, nj ,Lk〉, where ni =
var(s(e)), nj = var(t(e)). Since we are considering multi-graphs, we can
represent the sets EI , EL, ER as (symbolic) bags8: bagEI

∈ Bag[V arI
2×L],

bagEL
∈ Bag[(V arI ∪ V arobs)2 × L], bagER

∈ Bag[(V arI ∪ V arfresh)2 × L].
Since φR and φL are injective morphisms, bagEI

≤ bagEL
∧ bagEI

≤ bagER
.

8They can be seen both as formal bags of functions and bag-functions

26

4. The arc functions involving place Edge are:

I[Edge, tr] = bagEL
O[Edge, tr] =bagER

H[Edge, tr] = H1 (see Lemma 1, C 3.)

5. The guard g(tr) is a conjunctive form which contains the following predicates:

∀ni, nj ∈ V arfresh, i 6= j : ni 6= nj

∀ni ∈ V arobs ∀nj ∈ V arobs ∪ V arI , i 6= j : ni 6= nj

We have mechanically obtained the SN in Figure 6 (a) from the DPO rule
in Figure 5, by applying Procedure 1. In this case, we have: V arI = {n1, n2},
V arobs = ∅, V arfresh = {n3}.

Property 5 A transition tr defined according to Procedure 1 is a SN Graph
Transformation Rule (Definition 2).

Proof. The 1st condition of Lemma 1 holds since (
∑
ni∈V arfresh

〈ni〉)[g(tr)] ≤
〈All〉 and W+[Node, tr] = (

∑
ni∈V arfresh

〈ni〉)[g(tr)] − As for the 2nd con-

dition, it is sufficient to observe that 〈n1 + n2〉 ◦O[Edge, tr] ⊆ V arI ∪ V arfresh
= O[Node, tr]. The 3rd and last condition is enforced by step 4. �

Enabled instances of transition tr meet the property below.9.

Property 6 Let tr be the SN transition obtained by translating an injective
DPO rule r according to Procedure 1 and m a graph-encoding.

If (tr, b) is enabled in m then ∀ni, nj ∈ V ar(tr), i 6= j : ni(b) 6= nj(b).

Proof. Since m[Node] is type-set, due to I[Node, tr],H[Node, tr] (Step 3), en-
abled instances of tr verify, other than g(tr) (Step 5), these implicit predicates:

∀ni, nj ∈ V arI , i 6= j : ni(b) 6= nj(b)

∀ni ∈ V arfresh ∀nj ∈ V arI ∪ V arobs : ni(b) 6= nj(b).

�
Sometimes, we may rewrite the color annotations of the SN transition re-

sulting from Procedure 1 in a somewhat simpler form.
Hereinafter, we shall use two extra symbols: V ar∗I ⊆ V arI includes all and

only V arI variables occurring on I[Edge, tr] whereas V ar−I = V arI − V ar∗I .

9Given a transition instance b, we may equivalently write b : (ni = vi, . . .), or ni(b) = vi,
depending on whether we see ni as a variable or a projection

27

Property 7 Let tr be the SN translation of an injective rule r = L
φL←− I φR−→ R,

according to Procedure 1. If we erase V ar∗I from I[Node, tr], O[Node, tr], and
introduce in g(tr) the predicates ni 6= nj , ∀ni ∈ V ar∗I , nj ∈ V arI , i 6= j, we get
an equivalent GTR.

Proof. Let t′r be obtained by rewriting tr, as indicated. By construction, t′r has
the same color domain as tr, and W+[p, tr] = W+[p, t′r], i.e., any two instances
(tr, b) and (t′r, b), when firing, have the same effect. If (tr, b) is enabled, then
also (t′r, b) is, based on the aforementioned implicit predicates (Property 6). On
the other side, if (t′r, b) is enabled in m (therefore, I[Edge, t′r](b) ≤m[Edge]), we
know that F (b) =

∑
ni∈V ar∗I

ni(b) ≤ 〈n1 +n2〉 ◦m[Edge] ≤ m[Node] (Definition

1, graph-encoding), with F (b) being type-set due to the guard. Given that
I[Node, tr](b) is equal to the disjoint sum I[Node, t′r](b) + F (b) (both terms are
less than or equal to m[Node]), (tr, b) is enabled in m. �

Figure 6 (b) shows the equivalent (simpler) translation of DPO rule in Figure
5, according to Property 7. In this case, V ar∗I = {n1, n2}.

An example of mechanical translation of an injective DPO rule involving
node removal, according to Procedure 1, is shown in Figures 7,8. In that case, we
have: V arI = V ar∗I = {n1}, V arobs = n2, V arfresh = ∅. You can see that the
inhibitor arc function ensuring the dangling-edge condition takes account of the
(only) edge incident to the removed node, which is contextually withdrawn by
the rule. This corresponds to the weight-two term in the arc-function expression.

We may carry out a comparison between an injective r: L
φL←− I φR−→ R and

the corresponding SN transition tr through the diagram below, which obscures,
however, the role played by inhibitor arcs and transition guard:

(
I[Node, tr]
bagEL

)
≥
(

I[Node, tr] ∩O[Node, tr]
bagEI

)
≤
(

O[Node, tr]
bagER

)

7.3. Rule Match and Graph Transformation

In order to define the semantics of a transition tr representing a DPO rule r,
we need to formalize a graph morphism m : L→ G (hereinafter, simply match)
in terms of tr. We first consider injective matches, to which we have so far
implicitly referred. Then, we treat the more general, even if less frequent, case.

We set an intuitive relationship between m : L → G and an equivalence
class of instances of tr, holding independently on whether m is injective or not.
Let b1, b2 ∈ D(tr) = N|V arI |+|V arobs|+|V arfresh|: we write b1 ≡ b2 if and only if
∀ni ∈ V arI ∪ V arobs : ni(b1) = ni(b2).

In a graph encoding context, equivalent instances behave in the same way.

28

B

L I R

1 2 1 2 1 2

G C H

1 2 1 2

B
1 2

m n

Figure 5: Injective DPO rule and graph transformation

Figure 6: SN Translation(s) of DPO rule in Figure 5

29

Property 8 Let tr be the SN transition translating an injective DPO rule r,
b1, b2 ∈ D(tr), with b1 ≡ b2, and mG a graph-encoding.

If mG[tr, b1〉mH then mG[tr, b2〉m′H , with H ∼= H ′.

Proof. It stems from the fact that b1, b2 (by definition of ≡) are one the color-
permutation of the other. �

As explained (Procedure 1), the left-hand side L of an injective rule r is
isomorphic to a graph whose nodes are NL = V arI ∪ V arobs (the ith node of
L is identified by ni), and whose edges are represented by the symbolic bag
bagEL

. Precisely, we define the edge set EL as: ∀ T = 〈ni, nj ,Lk〉 ∈ bagEL
,

there are bagEL
(T) edges e ∈ EL, such that s(e) = ni, t(e) = nj , l(e) = Lk.

The definition below meets this convention.

Definition 6 (match and corresponding instance) Let r = L
φL←− I

φR−→ R be
an injective DPO rule, tr its SN translation, G a graph, and mG its encoding.

Given m : L → G, we say that bm ∈ D(tr) is a corresponding instance if
and only if ∀ni ∈ V arI ∪ V arobs: bm(ni) = colG(mN (ni)), where colG is the
color-map used in mG. The class of corresponding instances is [bm]≡.

The other way round, let b ∈ D(tr), such that I[Node, tr](b) ≤ mG[Node] ∧
I[Edge, tr](b) ≤mG[Edge]. The corresponding morphism mb : L→ G is:

- ∀ni ∈ V arI ∪ V arobs : mbN (ni) = col−1G (ni(b))

- ∀e ∈ EL : mbE (e) = e′ ∈ EG, with s(e′) = mbN (s(e)), t(e′) = mbN (t(e)),
l(e′) = l(e)

In the 2nd part of Definition 6, the assumption on the input functions ensures
that the colors bound to any ni ∈ V arI ∪V arobs correspond to (describe) nodes
of G (analogously for color-tuples describing edges). That is, the transition
instance “matches” a graph morphism.

Definition 6 thus sets a bijection between morphisms matching an injective
DPO rule r to a graph G and (equivalence classes of) instances of the transi-
tion tr (the SN translation of r) verifying the input enabling condition in mG.
For simplicity, symbol bm will denote a representative of the class of instances
corresponding to a given match m.

The following lemma precisely states the semantics of the SN translation of
an injective DPO rule.

Lemma 2 Let r = L
φL←− I

φR−→ R be an injective rule, tr its SN translation,
and G a graph.

m : L→ G satisfies the gluing condition (Property 4) if and only if (tr, bm)
is enabled in mG.

30

B

L I R

1 1 1

Figure 7: DPO rule removing a (source) node from a graph

Figure 8: SN translation of rule in Figure 7

Proof. Consider ⇒. We assume that m is injective. Since ni(bm) 6= nj(bm),
∀ni, nj ∈ V arI ∪V arobs, i 6= j (i.e., ni, nj are bound to different colors), it holds
I[Node, tr](bm) ≤ mG[Node]. By the way, I[Edge, tr](bm) ≤ mG[Edge] because
m is a morphism. We have just to consider inhibitor functions. Assume, by
contradiction, that ∃e: H[Edge, tr](bm)(e) ≤mG[Edge](e); due to the definition
of H[Edge, tr], this is only possible if there is ni ∈ V arobs such that, letting
vj = ni(bm) be the associated colour (obsolete node), edge e is incident to
vj and there are more instances of e than those which are withdrawn (better,
required by the input arc function, whose image corresponds to the image of m).
This would imply that there is an arc (an occurrence of e) incident to an obsolete
node, which is not in the image of mE , in contrast with the Hp (Property 4,
dangling condition). As for H[Node, tr], we only have to chose colors for fresh
variables such that ∀ni, nj ∈ V arfresh, i 6= j,∀nh ∈ V arI ∪ V arobs: ni(bm) 6=
nj(bm) ∧ ni(bm) 6= nh(bm) ∧ nj(bm) 6= nh(bm): this is surely possible, because
we assume color class N large enough (all these instances are isomorphic).
Consider ⇐. We have to show that, if (tr, b) is enabled in mG, then mb verifies
Property 4. The identification condition is trivially met: since I[Node, tr](b) ≤
mG[Node], it holds: ni(b) 6= nj(b), ∀ni, nj ∈ V arI ∪ V arobs, i 6= j. As for the
dangling condition, we can use pretty the same reasoning as for the 1st assertion.
By definition of H[Edge, tr], we know that, if ni ∈ V arobs, ni(b) = vj , and a
type-edge color tuple e ∈ mG[Edge] is “incident” to (contains) vj , then there

31

are just as many occurrences of e in mG[Edge] as those withdrawn by the firing
of b (I[Edge, tr](b)(e) = mG[Edge](e)): that is, each edge of G incident to the
image mb(vj) of an obsolete node vj of L is in turn in the image of mb. �

The parallelism between DPO rules and their SN translation is complete ob-

serving that, given a rule r = L
φL←− I φR−→ R and a match m : L→ G satisfying

the gluing condition, the application of r and the firing of any corresponding
instance of rule’s translation tr have the same effect. This directly follows from
the next explanation of a DPO rule’s application, which is valid independently
on whether m and φR are injective or not:

1. we remove the image of obsolete elements, m(L− φL(I)), from G, to get the
context graph C10; we directly derive morphism ν from m

2. we derive the target graph H by gluing C and R over I (H ∼= R+φr,ν C): we
merge elements of R, C with a common pre-image in I, whereas we include
in H all the other elements of R and C, individually taken.

If φR is injective we do not perform any merge. In such a case, if m is an injective
match (we shall relax this condition) satisfying the gluing condition, and bm is
a representative of corresponding instances of tr, then we can reproduce the two
steps above in terms of SN firing rule (functions W−[p, t],W+[p, t] are defined
in Table 1). Let p ∈ {Node, Edge}:

1. mG[p]−W−[p, tr](bm) = mC [p]

2. mC [p] + W+[p, tr](bm) = mH [p]

Corollary 1 (of Lemma 2) Let r = L
φL←− I

φR−→ R be an injective DPO rule,
tr its SN translation, and G a graph.

m : L→ G is a match satisfying the gluing condition such that G
r,m
=⇒ H

if and only if mG[tr, bm〉mG′ , with H ∼= G′.

7.3.1. Non-Injective Match

The translation of an injective DPO rule r into a single SN transition tr,
formalized by Procedure 1, only deals with injective matches of rule’s left-hand
side L to a host graph G. If we want to include non-injective matches, we have to
modify a single point of the procedure. The definitions/outcomes presented in
Section 7.3 remain valid. First, we deal with a possibly non-injective node map
mN , assuming the edge map mE injective. Then, we exemplify the treatment
of a non-injective mE , which, however, has little interest in the practice.

A non-injective match m for the rule in Figure 5 identifies nodes 1,2 of L
in G. The reason why the rule’s translation (Figure 6), in either form (a) or
(b), excludes such a match, is that the corresponding instance bm of tr assigns

10C is a graph, because the gluing condition ensures that the source and target nodes of an
edge in C are nodes in C

32

variables n1, n2 ∈ V arI the same color of N (denoting the image in G of the
two nodes of L). In the original translation, the instance (tr, bm) is not enabled
because I[Node, tr](bm) is a non-type-set bag; in the equivalent form, (t′r, bm) is
not even a valid transition instance.

The workaround to consider injective matches, however, is unexpectedly
simple. It consists of writing the function(s) I[Node, tr] (O[Node, tr]) as an ele-
mentary tuple with an inner summation, instead of a sum of elementary tuples,
thus exploiting the “type-set” semantics of class-functions (Section 2.2.3).

Figure 9 shows an (injective) DPO rule with a non-injective match m and
the corresponding graph transformation. Figure 10 shows the rule’s alterna-
tive translations into SN: (a) comes directly from Procedure 1, i.e., it refers to
injective matches of the rule, (b) refers, instead, to matches m with any mN .

Passing from (a) to (b) requires two simple changes to color annotations: we
erase variable n3 (V ar∗I = {n3}) from I[Node, tr], O[Node, tr] then we rewrite
the residual expression of the input (output) arc-function as:

〈n1〉+ 〈n2〉F
6≡−→ 〈n1 + n2〉

Due to the class-function semantics, the resulting expression is type-set and
evaluates as the original one (only) if n1, n2 are bound (map) to different colors.
This way, we encode non-injective morphisms L→ G as t′r instances where two
or more variables among {n1, n2, n3} are bound (map) to the same color.

As for the rule in Figure 5, we get its SN translation including matches m
with non-injective mN by just erasing the transition’s guard from the SN in
Figure 6 (b).

Based on the above remarks, to deal with rule matches m with any mN we
have to slightly modify Step 2 of Procedure 1. Note that revised Step 2 embeds
the reduction on I/O arc-functions specified by Property 7.

Procedure 1∗ (Procedure 1 with revised Step 2 - match m with any mN)

I[Node, tr] =〈
∑

ni∈V ar−I ∪V arobs

ni〉 O[Node, tr] =〈
∑

ni∈V ar−I ∪V arfresh

ni〉

(H[Node, tr] is unchanged)

Is is straightforward to find out the implicit predicates which characterize
the enabled instances of the SN translation of a DPO rule r including also
non-injective matches of r.

Property 9 Let tr be the SN transition obtained by translating an injective DPO

rule r = L
φL←− I φR−→ R according to Procedure 1∗ and m a graph-encoding.

If (tr, b) is enabled in m then

∀ni ∈ V ar(tr) ∀nj ∈ V ar(tr)− V arI , i 6= j : ni(b) 6= nj(b)

33

L I R

3 1

G H

2

B

m n

2

3 1

2

3 1,2 B 1,23

3 1

2

2
3 1,2

C

Figure 9: DPO rule with non-injective match mN

Figure 10: SN translations of rule in Figure 9: injective mN vs any mN

34

A very important thing is that all the notions/outcomes presented in Section
7.2 still hold, except Property 6 (replaced by Property 9). This statement has
two main explanations. As for the gluing condition, the few changes introduced
to the translation procedure allow a valid instance of tr (corresponding to a
non-injective match m) to identify only variables denoting non-obsolete nodes.
As for the dangling-edge condition, the changes above do not even involve it.
The second (related) reason lies in the new shape of the function I[Node, tr]:
this function is type-set, hence, also instances corresponding to non-injective
morphisms may be enabled in a graph-encoding.

Non-injective mE. Figure 11 shows a DPO rule whose associated match m is
such that mE is non-injective (mE identifies the two edges with label lb1 of L in
the host graph G). Figure 12 shows two alternative SN translations of the rule,
one (a) obtained according to Procedure 1∗ (the functions on I/O arcs incident
to place Node are null because V ar−I = ∅), the other (b) taking account of non-
injective edge-matches mE . The arc-function I[Edge, tr] contains the sub-sum
F = 〈n1, n3,L1〉 + 〈n1, n2,L1〉, whose two terms represent edges of L which
may be identified by a morphism mE , prior identification of their target nodes.
Therefore, we rewrite the subsum into a (non-equivalent) disjoint form:

F
6≡−→ F [n2 6= n3] + 〈n1, n2,L1〉[n2 = n3] ≡ 〈n1, n2 + n3,L1〉

whose elements represent injective/non-injective mE , respectively. We can ex-
press this form compactly, utilizing the class-function n2 + n3.

The general formalization is merely a technical matter: for each (maximal)
subset of edges (symbolic tuples) {〈ni, nj ,Lk〉} of graph L with an identical la-
bel11, we should consider all its partitions, and encode each of these (modelling
any edge map) through a set of (in)equalities associated to a term of I[Edge, tr]
(we get mutually exclusive guards). Let us omit the details of this operation
(combinatorial with respect to |bagEL

|), which is of little interest, both theoret-
ical and practical. Even though non-injective edge-matches of a rule exhibit a
kind of “folding” effect, they ultimately obscure rule’s interpretation.

7.4. Non-Injective DPO Rules

Until now, we have assumed that both legs of a rule r = L
φL←− I φR−→ R are

injective. This is actually a general assumption. Finally, we consider the case
of a non-injective right leg φR, what may result in merging nodes/edges of a
source graph G.

A non-injective rule and related graph transformation are shown in Figure
13. The nodes 2 and 3 of the interface I, in fact, are identified by φR, together
with the two incident arcs. The rule’s application to G, via the match m, results
in H = R+IC: elements of R and C with a common pre-image in I are merged.
As a result, nodes 2 and 3 of G are merged, as well as two of the three edges

11identification of parallel edges of graph L is coherently excluded

35

L I

G C

m

1 2

3

1
2

3

1
2,3 1 2,3

R

1 2

3

H

1 2,3

n

Figure 11: DPO rule with a non-injective match mE and graph transformation

Figure 12: SN translations of DPO rule in Figure 11: injective mE (any mN) vs any mE

36

B

L I R

1
1 2,3

G C H

2

B

m n

3

1 2

3

1 2

3

2
1 2 B 2,3

3

1

2

Figure 13: a NON-injective DPO rule and a graph transformation

(with label lb1) departing from node 1. The edges incident to nodes 2,3 of G
are “redirected” in H to the node resulting from merge.

Being able to reproduce this context-dependent changes, preserving the
atomic semantics of DPO rules, requires the use of a SN composite rule (Sec-
tion 6). The subnet’s observable transition, tr, directly implements most of the
structural changes on a source graph G (merge/add/removal of elements), and
triggers a sequence of immediate transitions which rebuild the adjacencies of
merged nodes on the target graph H. The color annotations of tr are slightly
different from the injective rule case, the rest of the subnet is built according to
a structural pattern.

Figure 14 shows the SN subnet translating the rule in 13. Let us formally
describe the translation procedure, focusing on new elements.

Procedure 2 (SN translation of non-injective DPO rules - any match m) Let

r = L
φL←− I φR−→ R be a DPO rule, with φR non-injective and φL injective. We

refer to any match m, with mE injective.

1. The rule’s observable transition, tr, is linked to places Node, Edge as de-
scribed in Section 7.2, with a few differences:

- V arfresh ∼= (NR−φR(NI))∪{v ∈ Nr, |φ−1R (v)| > 1}. In other words,
the nodes of R with non-singleton pre-images are described as fresh
variables, denoted V armerge.

- I[Node, tr], O[Node, tr] are defined as in Step 2 of Procedure 1∗.

- ∀ni ∈ V armerge ∀nj , nk ∈ φ−1R (ni), j 6= k, there is nj 6= nk in g(tr)

(Note that in general bagEI
6≤ bagER

)

2. for each ni ∈ V armerge, there are a pair of places {ToMergei, Mergei} and
a pair transitions Ri = {reconnect si, reconnect ti}, such that, letting

37

x, y, be auxiliary, type-N variables, and ti denote any Ri element:

O[ToMergei, tr] = I[ToMergei, ti] = O[ToMergei, ti] = I[ToMergei, end] =∑
nj∈φ−1

R (ni)

〈nj〉

O[Mergei, tr] = I[Mergei, ti] = O[Mergei, ti] = I[Mergei, end] = 〈ni〉

I[Edge, ti] = 〈x, y, l〉 O[Edge, reconnect si] = 〈ni, y, l〉
O[Edge, reconnect ti] = 〈x, ni, l〉

g(reconnect si) =
∨

nj∈φ−1
R (ni)

x = nj g(reconnect ti) =
∨

nj∈φ−1
R (ni)

y = nj

3. transition end is linked to place Edge through an inhibitor arc

H[Edgei, end] =〈F,All, All〉+ 〈All − F, F,All〉 where

F =
∑

ni∈V armerge,nj∈φ−1
R (ni)

〈nj〉

4. Places Start,Trigger are linked to the sub-net’s transitions, as indicated
at (the first two points of) Definition 4

The observable transition, tr, manages the possible identification of edges by
φR, and the other rewritings involving obsolete/fresh graph elements (if any).
The couple of transitions reconnect si, reconnect ti manage the redirection
of edges incident to any of the (source/target) nodes which are merged into a
fresh new one. As a last step, transition end removes all the merged nodes,
according with the dangling-edge condition.

Since, by construction, all the transitions of the SN translating a non-
injective DPO rule match Definition 2 (and the other conditions set by Def-
inition 4), it holds:

Property 10 Let r be a non-injective DPO rule. The SN subnet obtained from
r according to Procedure 2 is a SN composite GTR.

As for the example in Figure 13, we get: V arI = {n1, n2, n3} (V ar−I = ∅),
V arfresh = {n4, n5}, V armerge = {n4}, V arobs = ∅, φ−1R (n4) = {n2, n3}. The
arc-functions and the guard annotating tr turn out to be:

I[Node, tr] = ε O[Node, tr] = H[Node, tr] = 〈n4 + n5〉
I[Edge, tr] = 〈n1, n1,L2〉+ 〈n1, n2,L1〉+ 〈n1, n3,L1〉
O[Edge, tr] = 〈n5, n1,L2〉+ 〈n1, n4,L1〉 H[Edge, tr] = ε

g(tr) = n2 6= n3 ∧ n4 6= n5

38

Figure 14: SN translation of rule in Figure 13

39

The inequality n2 6= n3 in the guard of tr (Step 1 of Procedure 2, last point)
makes the effect of a non-injective match m not to overlap with that of the
non-injective morphism φR, which identifies nodes 2,3. Such an overlap would
result in an undefined, or at least obscure, behaviour.

Accordingly, we need to modify (a bit) the match notion for non-injective
DPO rules.

Definition 7 (match of a non-injective rule) Let r = L
φL←− I φR−→ R be a rule

with φR non-injective and φL injective, and G be a graph.
A morphism m : L→ G is a match if and only if mE is injective and
∀vi ∈ NR, |φ−1R (vi)| > 1 ∀vj , vk ∈ φL(φ−1R (vi)), j 6= k : mN (vj) 6= mN (vk)

We may thus easily extend to non-injective rules the notion of transition in-
stance(s) corresponding to a match (Definition 6), by referring to the observable
transition tr of the SN subnet translating one such rule.

We have to rephrase Corollary 1 by taking into account the fact that the
observable transition triggers a sequence of immediate transitions.

Corollary 2 Let r = L
φL←− I

φR−→ R be a non-injective rule, tr the observable
transition of the subnet obtained from r according to Procedure 2, G a graph.

If m : L→ G satisfies the gluing condition and G
r,m
=⇒ H then mG[tr, bm ·ρ〉mG′ ,

where ρ is a firing sequence of immediate transitions terminated by transition
end and H ∼= G′. And vice versa.

A final note concerns the left leg φL of a rule. Almost all papers on graph
transformation assume that it is injective. The reason is that, if φL is not
injective, there may be cases when, even if a context C does exist for a match
m of L in a host graph G, it is not unique (for m). That may result in non-
determinism, because some nodes of G may have to be split, and the incident
edges may decide to “follow” any of split nodes. This situation shows very
little practical interest. However, we conjecture it might be represented without
any difficulty using composite rules, being in some sense dual to the case of a
non-injective right leg φR.

7.5. From SN GTR to DPO Rules

We conclude the comparison between SN Graph Transformation Rules and
DPO rules by shortly discussing the opposite direction, going from SN to DPO.
In our opinion, it is much less intriguing. The main reason is that there are
lots of rule application conditions, especially of restrictive type, that we can
easily model in SN, instead we hardly, or even cannot, embed in a (base) DPO
approach (or other algebraic ones.) The typical case consists of inhibiting con-
ditions on the left-hand side of a rule, e.g., when computing graph transitive
closure (whenever there exists an edge from s to v and one from v to t, create
one from s to t only if such an edge is absent). Other conditions we can easily set
with SN (and cannot so easily with DPO) concern edge labels (e.g., removing

40

edges with labels different from a given one), multiplicity (e.g, removing parallel
instances of an edge, leaving a single one), and so forth.

We believe that it is possible to characterize a quite large subclass of SN
GTR (especially of elementary type) that can be mechanically translated into
corresponding DPO rules. This might be done by defining syntactical patterns
for arc-functions that are likely matched by most practical examples: the SN
rules shown in the gallery of Figure 1 (but R5), e.g., are easily translatable into
DPO rules. This is part, however, of ongoing work.

8. Conclusions and Ongoing Work

In this paper, we have significantly enhanced and extended the outcome of
a recent one [18] which, reversing the usual perspective, has proposed a formal-
ization of Graph Transformation Systems (GTS) in terms of Symmetric Nets
(SN). SN are a standard, High-level PN formalism featuring a compact syn-
tax highlighting system behavioural symmetries, which are exploited in efficient
analysis techniques. We use a structural approach, exploiting a recently imple-
mented symbolic calculus for SN, to validate Graph Transformation Rules and
formally verify properties of GTS in an efficient way. A major strength is given
by the possibility of using automated tools for the editing and analysis of graph
transformation models.

In the second part of the paper, we have provided a new semantic charac-
terization of the SN-based graph transformation approach, by carrying out a
thorough comparison with the classical, algebraic double-pushout (DPO) ap-
proach. We have shown in a constructive way that any DPO rule maps to a
corresponding, elementary or composite, SN rule. We have treated both injec-
tive and non-injective DPO rules and rule matches. The comparison shows that
the SN approach is, in some sense, a generalization of the DPO.

Throughout the paper, we have used simple but significant examples of graph
encoding through SN. Edge-labelled, multi-graphs are considered.

Ongoing/Future Work. We are extending the SN-based graph transformation
by encoding Place/Transitions (P/T) nets enriched with inhibitor arcs, a kind
of directed, bipartite graphs. A SN emulator for P/T nets (encoded as markings)
has been defined in [30], together with a simple API for base net-transformations.
We aim at integrating the SN emulator with the theoretically sound, rule-based
graph transformation approach presented in this paper.

More general classes of graphs, in particular hypergraphs, cannot simply
encoded with SN, due to the SN low data abstraction ability. On the other side,
for the same reason, graph transformations with a richer (typed, constrained)
labelling mechanism, generally known as Attributed Graph Rewriting [27, 28],
are hardly translatable into SN. To cover more complex graph encodings and
graph transformation approaches, Algebraic (Spec-inscribed) Petri nets [20] may
be more conveniently used [31]. Unfortunately, this formalism pays its higher
expressivity with reduced analysis capability and automated support, so its
usage requires further studies.

41

References

[1] G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by
Graph Transformation, WORLD SCIENTIFIC, 1997. doi:10.1142/3303.

[2] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (Eds.), Handbook
of Graph Grammars and Computing by Graph Transformation: Vol.
2: Applications, Languages, and Tools, WORLD SCIENTIFIC, 1999.
doi:10.1142/4180.

[3] H. Ehrig, M. Pfender, H. J. Schneider, Graph-Grammars: An Algebraic
Approach, in: Proceedings of the 14th Annual Symposium on Switching
and Automata Theory (Swat 1973), SWAT ’73, IEEE Computer Society,
USA, 1973, p. 167–180. doi:10.1109/SWAT.1973.11.

[4] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe,
Algebraic approaches to graph transformation – part i: Basic concepts
and double pushout approach, in: Rozenberg [1], pp. 163–245. doi:

10.1142/9789812384720_0003.

[5] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of alge-
braic graph transformation., Berlin: Springer, 2006. doi:10.1007/

3-540-31188-2.

[6] V. Danos, J. Feret, W. Fontana, R. Harmer, J. Hayman, J. Krivine,
C. Thompson-Walsh, G. Winskel, Graphs, Rewriting and Pathway Re-
construction for Rule-Based Models, in: S. D. L.-Z. fuer Informatik (Ed.),
FSTTCS 2012 - IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, Vol. 18 of LIPIcs, Hyder-
abad, India, 2012, pp. 276–288. doi:10.4230/LIPIcs.FSTTCS.2012.276.

[7] M. Fernández, H. Kirchner, B. Pinaud, J. Vallet, Labelled graph rewrit-
ing meets social networks, in: D. Lucanu (Ed.), Rewriting Logic and Its
Applications, Springer International Publishing, Cham, 2016, pp. 1–25.
doi:10.1007/978-3-319-44802-2_1.

[8] K. Do, T. Tran, S. Venkatesh, Graph transformation policy network for
chemical reaction prediction, in: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD
’19, Association for Computing Machinery, New York, NY, USA, 2019, p.
750–760. doi:10.1145/3292500.3330958.

[9] W. Reisig, Petri Nets: An Introduction, Springer-Verlag New York, Inc.,
New York, NY, USA, 1985. doi:10.1007/978-3-642-69968-9.

[10] W. Fokkink, Introduction to process algebra., Berlin: Springer, 2000.

[11] D. Sangiorgi, D. Walker, The π-calculus: A theory of mobile processes.,
Cambridge: Cambridge University Press, 2001.

42

https://doi.org/10.1142/3303
https://doi.org/10.1142/4180
https://doi.org/10.1109/SWAT.1973.11
https://doi.org/10.1142/9789812384720_0003
https://doi.org/10.1142/9789812384720_0003
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.276
https://doi.org/10.1007/978-3-319-44802-2_1
https://doi.org/10.1145/3292500.3330958
https://doi.org/10.1007/978-3-642-69968-9

[12] H. Ehrig, B. König, Deriving bisimulation congruences in the DPO ap-
proach to graph rewriting with borrowed contexts., Math. Struct. Comput.
Sci. 16 (6) (2006) 1133–1163.

[13] J. Padberg, L. Kahloul, Overview of Reconfigurable Petri Nets, in:
R. Heckel, G. Taentzer (Eds.), Graph Transformation, Specifications, and
Nets: In Memory of Hartmut Ehrig, Springer International Publishing,
Cham, 2018, pp. 201–222. doi:10.1007/978-3-319-75396-6_11.

[14] H.-J. Kreowski, A comparison between Petri-nets and graph grammars,
in: H. Noltemeier (Ed.), Graphtheoretic Concepts in Computer Science,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1981, pp. 306–317.

[15] A. Corradini, Concurrent graph and term graph rewriting, in: U. Mon-
tanari, V. Sassone (Eds.), CONCUR ’96: Concurrency Theory, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1996, pp. 438–464. doi:10.1007/

3-540-61604-7_69.

[16] P. Baldan, A. Corradini, F. Gadducci, U. Montanari, From Petri Nets to
Graph Transformation Systems, ECEASST 26 (01 2010). doi:10.14279/

tuj.eceasst.26.368.

[17] H. Ehrig, J. Padberg, Graph Grammars and Petri Net Transformations,
in: J. Desel, W. Reisig, G. Rozenberg (Eds.), Lectures on Concurrency and
Petri Nets: Advances in Petri Nets, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004, pp. 496–536. doi:10.1007/978-3-540-27755-2_14.

[18] L. Capra, An operational semantics of graph transformation systems using
symmetric nets, in: M. Marin, A. Crăciun (Eds.), Proceedings Third Sym-
posium on Working Formal Methods, Timişoara, Romania, 3-5 September
2019, Vol. 303 of Electronic Proceedings in Theoretical Computer Science,
Open Publishing Association, 2019, pp. 107–119. doi:10.4204/EPTCS.

303.8.

[19] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, Stochastic well-
formed colored nets and symmetric modeling applications, IEEE Transac-
tions on Computers 42 (11) (1993) 1343–1360. doi:10.1109/12.247838.

[20] K. Jensen, G. Rozenberg (Eds.), High-level Petri Nets: Theory
and Application, Springer-Verlag, London, UK, 1991. doi:10.1007/

978-3-642-84524-6.

[21] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use., Volume 1, Basic Concepts. Monographs in Theoretical Com-
puter Science, Springer-Verlag, 2nd corrected printing 1997. ISBN: 3-540-
60943-1., 1997. doi:10.1007/978-3-662-03241-1.

[22] E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, G. Franceschi-
nis, 30 years of GreatSPN, in: Principles of Performance and Reliabil-
ity Modeling and Evaluation, Springer, 2016, pp. 227–254. doi:10.1007/

978-3-319-30599-8_9.

43

https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.1007/3-540-61604-7_69
https://doi.org/10.1007/3-540-61604-7_69
https://doi.org/10.14279/tuj.eceasst.26.368
https://doi.org/10.14279/tuj.eceasst.26.368
https://doi.org/10.1007/978-3-540-27755-2_14
https://doi.org/10.4204/EPTCS.303.8
https://doi.org/10.4204/EPTCS.303.8
https://doi.org/10.1109/12.247838
https://doi.org/10.1007/978-3-642-84524-6
https://doi.org/10.1007/978-3-642-84524-6
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/978-3-319-30599-8_9

[23] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, A symbolic reacha-
bility graph for coloured Petri nets, Theoretical Computer Science 176 (1)
(1997) 39 – 65. doi:10.1016/S0304-3975(96)00010-2.

[24] L. Capra, M. D. Pierro, G. Franceschinis, A High Level Language for
Structural Relations in Well-Formed Nets, in: Proc. of the 26th Int.
Conf. ATPN 2005, Vol. LNCS 3536, Springer, 2005, pp. 168–187. doi:

10.1007/11494744_11.

[25] L. Capra, M. De Pierro, G. Franceschinis, Computing Structural Proper-
ties of Symmetric Nets, in: J. Campos, B. R. Haverkort (Eds.), Quantita-
tive Evaluation of Systems QEST 2015, Springer International Publishing,
Cham, 2015, pp. 125–140. doi:10.1007/978-3-319-22264-6_9.

[26] L. Capra, M. De Pierro, G. Franceschinis, SNexpression: A Symbolic
Calculator for Symmetric Net Expressions, in: R. Janicki, N. Sidorova,
T. Chatain (Eds.), Application and Theory of Petri Nets and Concur-
rency, Springer International Publishing, Cham, 2020, pp. 381–391. doi:

10.1007/978-3-030-51831-8_19.

[27] B. König, V. Kozioura, Towards the verification of attributed graph trans-
formation systems, in: H. Ehrig, R. Heckel, G. Rozenberg, G. Taentzer
(Eds.), Graph Transformations, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008, pp. 305–320. doi:10.1007/978-3-540-87405-8_21.

[28] F. Orejas, Symbolic graphs for attributed graph constraints., J. Symb.
Comput. 46 (3) (2011) 294–315.

[29] M. Löwe, Algebraic approach to single-pushout graph transformation.,
Theor. Comput. Sci. 109 (1-2) (1993) 181–224.

[30] L. Capra, M. Camilli, Towards Evolving Petri Nets: a Symmetric Nets-
based Framework, IFAC-PapersOnLine 51 (7) (2018) 480 – 485, 14th IFAC
Workshop on Discrete Event Systems WODES 2018. doi:10.1016/j.

ifacol.2018.06.343.

[31] L. Capra, A pure SPEC-inscribed PN model for reconfigurable systems, in:
2016 13th International Workshop on Discrete Event Systems (WODES),
IEEE, 2016, pp. 459–465. doi:10.1109/WODES.2016.7497888.

[32] L. Capra, M. D. Pierro, G. Franceschinis, A Tool for Symbolic Manipulation
of Arc Functions in Symmetric Net Models, in: Proceedings of the 7th
International Conference on Performance Evaluation Methodologies and
Tools, ValueTools ’13, ICST, Torino, Italy, 2013, pp. 320–323. doi:10.

4108/icst.valuetools.2013.254407.

[33] C. Dutheillet, S. Haddad, Conflict Sets in Colored Petri Nets, in: proc. of
Petri Nets and Performance Models, 1993, pp. 76–85. doi:10.1109/PNPM.
1993.393433.

44

https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1007/11494744_11
https://doi.org/10.1007/11494744_11
https://doi.org/10.1007/978-3-319-22264-6_9
https://doi.org/10.1007/978-3-030-51831-8_19
https://doi.org/10.1007/978-3-030-51831-8_19
https://doi.org/10.1007/978-3-540-87405-8_21
https://doi.org/10.1016/j.ifacol.2018.06.343
https://doi.org/10.1016/j.ifacol.2018.06.343
https://doi.org/10.1109/WODES.2016.7497888
https://doi.org/10.4108/icst.valuetools.2013.254407
https://doi.org/10.4108/icst.valuetools.2013.254407
https://doi.org/10.1109/PNPM.1993.393433
https://doi.org/10.1109/PNPM.1993.393433

	Introduction and Related Work
	Background
	Multisets, multi-set functions, and their operations
	Symmetric Nets
	SN Color Domains
	Guards and Transition Instances
	Arc Functions
	Semantics of SN

	Graphs and Graph Morphisms

	Encoding Graph Transformation Rules in SN
	Graph Encoding as an SN Marking
	SN Graph Transformation Rules: a Structural Approach
	Elementary Graph Transformation Rules
	Graph Transformation System

	Graph Isomorphism Abstraction and SN Symbolic Marking
	Exploiting SN Structural Analysis: Application Examples
	Symbolic Structural Relations
	Checking Semiflows
	Numerical Semiflows

	SN Composite Graph Transformation Rules
	A Comparison with the DPO Approach
	Basic Definitions
	Mapping Injective DPO Rules to SN Graph Transformation Rules.
	Rule Match and Graph Transformation
	Non-Injective Match

	Non-Injective DPO Rules
	From SN GTR to DPO Rules

	Conclusions and Ongoing Work

