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Quantum Monte Carlo study of a vortex in superfluid 4He and search for a vortex state in the solid
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We have performed a microscopic study of a straight quantized vortex line in three dimensions in condensed
4He at zero temperature using the shadow path integral ground state method and the fixed phase approximation.
We have characterized the energy and the local density profile around the vortex axis in superfluid 4He at several
densities, ranging from below the equilibrium density up to the overpressurized regime. For the Onsager-Feynman
(OF) phase our results are exact and represent a benchmark for other theories. The inclusion of backflow
correlations in the phase improves the description of the vortex with respect to the OF phase by a large reduction
of the core energy of the topological excitation. At all densities the phase with backflow induces a partial
filling of the vortex core and this filling slightly increases with density. The core size slightly decreases for
increasing density and the density profile has well defined density dependent oscillations whose wave vector
is closer to the wave vector of the main peak in the static density response function rather than to the roton
wave vector. Our results can be applied to vortex rings of large radius R and we find good agreement with
the experimental value of the energy as a function of R without any free parameter. We have studied also 4He
above the melting density in the solid phase using the same functional form for the phase as in the liquid. We
found that off-diagonal properties of the solid are not qualitatively affected by the velocity field induced by the
vortex phase, both with and without backflow correlations. Therefore we find evidence that a perfect 4He crystal
is not a marginally stable quantum solid in which rotation would be able to induce off-diagonal long-range
coherence.
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I. INTRODUCTION

Topological excitations represent a class of excitations of
fundamental interest in many ordered phases in condensed
matter such as Bose/BCS-condensed quantum fluids, super-
conductors, crystals, or nematic liquid crystals. Starting from
the works by Onsager [1] and Feynman [2], a widely studied
example of a topological excitation is a vortex line in a Bose
superfluid, in particular in superfluid 4He. Vortices play a
fundamental role in many superfluid phenomena, for instance
the behavior of a superfluid under rotation or the value of
the critical velocity for the onset of dissipation in many cases
are determined by vortex nucleation. Addressing specifically
superfluid 4He almost all the studies of vortices are based on
simplified models in which vorticity turns out to be localized
along mathematical lines, more precisely the phase of the
wave function (wf) is assumed to be additive in the phase
of each particle, the so called Onsager-Feynman (OF) form.
Within this approximation the vorticity field has a singularity
along a line, the vortex core, where the density vanishes and
the velocity diverges. This behavior is found, for instance,
with the Gross-Pitaevskii (GP) equation [3,4] or with the
Biot-Savart model of vortex filaments [5]. Such models can
be a reasonable approximation for weakly interacting particles
such as cold bosonic atoms. For a strongly correlated system
such as superfluid 4He, that approximation is questionable
because single particle phase additivity is incompatible with
the presence of interparticle correlations that lead to backflow
effects. Still, also in superfluid 4He, most of the studies are
based on models with singular vorticity. A justification for this
is that the healing length ξ of the superfluid order parameter
is of order 1 Å, orders of magnitude smaller than the typical

intervortex distance. Therefore in most instances the flow field
of a given vortex system is equal to that given by classical
incompressible hydrodynamics with the single constraint that
the circulation κ around each vortex filament is quantized
in unit of Planck’s constant over particle mass, κ = h/m.
This explains why only few studies have addressed the local
structure of a vortex in superfluid 4He beyond the singular
vorticity models.

The previous perspective is changing due to the intense
experimental and theoretical interest in vorticity phenomena
at low temperature [6,7], where the normal component of
the superfluid essentially vanishes. Under such conditions
diffusion and decay of a vortex tangle, as observed experi-
mentally [8], must be dominated by reconnection of vortices,
the only mechanism that can change the topology of the vortex
system in the absence of dissipation. Computations [9] based
on the GP equation show that reconnections take place when
the distance between two vortex cores is of order the healing
length ξ . On the basis of the GP equation the local density
vanishes at the vortex line and the density reaches smoothly
the bulk value within a distance of order ξ , whereas it is known
that interparticle correlations lead to density oscillations as a
function of distance from the vortex axis [10]. It should be
noted that when the GP equation is used to study the elementary
excitations of the system, the bulk excitations consist of
phonons joining monotonically free particle behavior at large
wave vectors and that roton excitations are not present. Rotons
are excitations arising in the presence of strong interparticle
correlations [11–14]. The nature of the bulk excitations can
be relevant in connection with vortex reconnections because
there is evidence that a reconnection event is associated with
emission of bulk excitations, in addition to vortex oscillations
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(Kelvin waves) [15]. More precisely studies based on the
GP equation [16,17] have shown that vortex reconnection
events generate rarefaction waves, i.e., bulk sound waves. This
suggests that a realistic study of reconnections in superfluid
4He needs to start from a good model of the vortex core and, at
the same time, of the excitations of bulk superfluid 4He with a
proper treatment not only of phonons but also of rotons [18],
the more so because on the basis of density functional theory
it has been shown [19,20] that the oscillation of the density
profile around the vortex core seems to be related to the roton
excitations. Recent progress [21–23] in the visualization at a
local level of quantum vorticity should allow studies of vortex
reconnections and quantum turbulence at a level of detail not
available before so that advances in theoretical modeling are
called for.

In the literature only very few studies are present of the
core of a vortex in superfluid 4He based on microscopic theory
that goes beyond the mean field singular vortex behavior. In
three dimensional (3D) 4He the only study is the one [24,25]
based on variational theory with shadow wave function (SWF).
Another study was presented of a vortex in superfluid 4He in
mathematical two dimensions (2D) based on the so called
fixed phase quantum Monte Carlo (FP-QMC) [26]. Also
FP-QMC is a variational approach but it goes beyond the
approach of Refs. [24,25] because, for an assumed form of
the phase of the wf, the real part of the wf is computed
exactly. In these works [24–26] the global vortex phase is
not additive in the single particle phases but it contains also
pair or more complex contributions. Commonly one says that
backflow effects are taken into account. This term has its origin
in the Feynman-Cohen theory [11] of rotons in which the
phase of such momentum carrying excited state has not only
single particle contributions, like in the Feynman theory [27],
but also contributions depending on the relative positions
of pairs of neighboring atoms. Such pair contributions are
needed in order to guarantee local conservation of matter and
there is some similarity with the backflow effects in classical
hydrodynamics. A visualization of such roton backflow can
be found in Ref. [12] where roton wave packets have been
studied by a microscopic theory. As far as we know, no study
of a vortex in the 3D 4He based on advanced QMC methods
has been performed yet and this is the problem that we address
in the present study of a straight vortex line in condensed 4He
via the shadow path integral ground state [28,29] (SPIGS)
method with fixed phase approximation. We have studied a
vortex line in superfluid 4He over an extended pressure range,
from a density below equilibrium close to the spinodal up to
a density in the deeply overpressurized liquid 4He at a density
about 15% above the freezing density.

Following our recent work on 2D solid 4He [30], here we
have studied also a possible vortex state in 3D solid 4He by
considering different phases with FP-QMC. This investigation
is motivated by the presence of phenomenological models
based on vortices [31] to explain the possible superfluid
response of solid 4He [32], i.e., supersolidity. In fact, the vortex
model has been used to interpret several experiments [33–36].
Supersolidity in solid 4He is a debated question [32] and
there is no shared consensus on the supersolid nature of 4He.
A point that is firmly established by QMC computations is
that in an ideal perfect (i.e., with no defects, the so called

commensurate crystal) 4He crystal the condensate fraction and
the superfluid density are zero at finite [37,38] and even at
zero temperature [39,40]. In the absence of phase coherence
our choices for the phase of the wave function [Eqs. (3)
and (6)] have little justification. The conjecture has been
put forward that the nonsupersolid state of 4He could be
marginally stable (i.e., almost any deviation from the perfect
crystal would lead to a superfluid response) [32,40]. Then, the
present computation is relevant to infer whether the centrifugal
barrier associated with the flow field of a vortex line is able
to induce in an ideal perfect crystal off-diagonal long-range
order.

This paper is organized as follows: In Sec. II we discuss
the fixed phase approximation applied to the simulation of a
vortex line with the path integral ground state method; our
results for a straight vortex line in the liquid phase of 4He are
shown in Sec. III and how our results can be applied to a vortex
ring of large diameter is discussed in Sec. IV. In Sec. V we
present the results for the solid phase and Sec. VI contains our
conclusions.

II. METHODS

Dealing with vortices in a Bose fluid is an unresolved
problem for exact microscopic ab initio methods, and it calls
for some approximations or assumptions. For instance, in order
to describe a straight vortex line, the many-body wf �(R)
has to be an eigenstate of the angular momentum operator
L̂z with eigenvalues �Nl, l = 1,2, . . . being the quanta of
circulation; this requires the presence of a phase and thus one
deals with a complex wave function. It seems really tempting,
following the well established route for the ground state, to try
improving a variational ansatz by exploiting the projection
ability of exact quantum Monte Carlo (QMC) techniques.
Unfortunately the complex nature of the wf rules out an
exact implementation of QMC methods due to the presence
of a phase problem. The most followed recipe is then to
overcome the sign problem by releasing the exactness of QMC
techniques and improving only some aspects of the trial wf,
keeping other aspects at a variational level. This is the case of
approximations such as fixed phase [26,41] or fixed node [42].
Such approximations are viable also with finite temperature
methods that do not involve explicitly the wf, such as path
integral Monte Carlo [43].

In full generality, the many-body wf can be written as
�(R) = ei�(R)�0(R), where �(R) is the phase and �0(R)
is the modulus of the wf, and R = {�r1,�r2, . . . ,�rN } represents
the coordinates of the N particles composing the system. �(R)
describes a stationary quantum state if it is a solution of the time
independent Schrödinger equation Ĥ�(R) = E�(R), from
which two coupled differential equations for �(R) and �0(R)
are readily obtained. The fixed phase approximation [26]
consists in assuming a given functional form for the phase
�(R) and in solving the remaining differential equation for
the modulus �0(R):

[
− �

2

2m

N∑
i=1

∇2
i + V�(R) + V (R)

]
�0(R) = E��0(R), (1)
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where V (R) represents the interatomic potential of the system
and V�(R) reads

V�(R) = �
2

2m

N∑
i=1

( �∇i�(R))2 . (2)

Solving Eq. (1) is equivalent to solving the original time
independent Schrödinger equation for the N particles with the
extra potential term V�(R). Equation (1) can now be solved
with one of the QMC methods that give the exact energy
and other properties of the system. It can be proved that the
fixed phase method provides a variational upper bound for
the lowest energy state among the wave functions having the
assumed phase �(R) [26].

In the case of a straight vortex line, the simplest possible
choice for the phase is the well known Onsager-Feynman (OF)
phase [2]:

�OF(R) =
N∑

i=1

θi, (3)

where θi is the azimuthal coordinate of the ith particle with
respect to the vortex axis. �OF(R) gives rise to an irrotational
flow field everywhere but on the vortex axis where the velocity
field diverges and the quantized vorticity is localized on this
axis. The extra potential term V�(R) in Eq. (1) is given by the
standard centrifugal barrier:

V OF
� (R) =

N∑
i=1

vOF
� (ri) (4)

with

vOF
� (ri) = �

2

2m

1

r2
i

, (5)

where ri is the radial cylindrical coordinate of the ith particle.
Due to the divergence of V OF

� (R) when a particle approaches
the vortex axis, the local density has to vanish on the vortex
line in order to have finite kinetic energy. The OF recipe,
which provides a vortex line with a hollow core and localized
vorticity, has been largely employed to predict the properties
of a vortex line in the ground state of bulk 4He via integral
equation [10], density functional [19], and variational Monte
Carlo (VMC) [25,44] methods, and some of these techniques
have been applied with good results also to Bose-condensed
gases [45].

A way to improve the OF ansatz is taking into account the
so called backflow (BF) correlations [26] such that V�(R) is no
longer a sum of single particle terms and, by a proper choice
of the phase, the velocity field can remain finite everywhere,
also at the vortex core, and the vorticity is no longer localized.
With the choice of Ref. [26] for the phase, it is found that
BF correlations lower the vortex energy compared to the OF
choice (that computation covers only 2D 4He [26,42]) and,
more important, it has a dramatic effect on another property
of the system: the vortex core turns out to be no longer
empty [26,46] but the density is finite even inside the core.
Similar results in 3D have been also reached with the SWF
variational technique: the lowest energy state has a partially
filled core with distributed vorticity over a radius of about 1
Å [25,44,47].

In the present computation we assume for �(R) of a straight
vortex line a form that is an extension in 3D of the form studied
by Ortiz and Ceperley in Ref. [26] in 2D. Our BF phase �BF(R)
reads

�BF(R) =
N∑

j=1

ln

⎛
⎝ Aj + iBj√

A2
j + B2

j

⎞
⎠ (6)

with Aj = xj + k
∑

l �=j f (|�rjl|,rj ,rl)(xj − xl) and
Bj = yj + k

∑
l �=j f (|�rjl|,rj ,rl)(yj − yl). f (|�rjl|,rj ,rl) =

exp −[α|�rjl|2 + γ (r2
j + r2

l )] is the BF function [26]
characterized by the variational parameters k, α, and γ ,
and |�rjl| = |�rj − �rl|. In Eq. (6) we have used Cartesian
coordinates with the z axis taken along the vortex axis and
rj = √

x2
j + y2

j . The wf �(R) constructed with �BF(R)
has some analogy with the Feynman-Cohen wf for the
phonon-roton excited states [11]. With this choice of the
phase, the extra potential term in Eq. (1) reads

V BF
� (R) =

N∑
i=1

vBF
�i (R) (7)

with

vBF
�i (R) = �

2

2m

(
Ai∇iBi − Bi∇iAi

A2
i + B2

i

+
∑
l �=i

Al∇iBl − Bl∇iAl

A2
l + B2

l

)2

. (8)

For comparison purpose we have also performed computations
for zero backflow (i.e., for k = 0) so that one recovers the OF
phase (3).

We face the task of solving (1) with the extra potential
V OF

� (R) and V BF
� (R) with the shadow path integral ground

state (SPIGS) method [28,29], which allows us to obtain
the exact lowest eigenstate of a given Hamiltonian and the
exact correlation functions by projecting in imaginary time
τ with the operator e−τĤ a SWF [48] taken as a trial wf.
As SWF we have used the optimized form [49] for bulk
4He. It has been verified [50] that the SPIGS method is
unbiased by the choice of the trial wf, but a good choice
of the trial wf is important in order to accelerate convergence
as a function of imaginary time and to reduce fluctuations.
Therefore in a SPIGS computation the only inputs are the
interparticle potential and the approximation for the imaginary
time propagator [50]. By a proper choice of the propagator the
resulting errors can be reduced below the statistical uncertainty
of the computation. Notice that as trial wf we have used a
wf for the bulk system which is uniform. The nonuniformity
induced by the vortex phase is exclusively due to the action
of the imaginary time evolution operator e−τĤ , so that by
construction no bias is introduced in the computation once the
phase factor has been chosen. This is a great advantage of a
SPIGS computation compared, for instance, to the case of a
computation with the Green’s function and diffusion MC as in
Refs. [26,42].

As He-He interatomic potential we have considered the
HFDHE2 Aziz potential [51] and for the imaginary time
propagator we have employed the primitive approximation.
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The chosen time step is δτ = 1/640 K−1 and the total
projection time is τ = 0.5 K−1, which represent a good
compromise between accuracy and computational cost.

A technical difficulty with both (4) and (7) is represented
by their long-range character which complicates the use of
a finite simulation cell with periodic boundary conditions
(pbc). Often this problem has been overcome by simulating
the system in a finite bucket [25,26], but this has the drawback
that two inhomogeneities are present at the same time, the
one due to the vortex and the one due to the confining well.
Another possibility is to study a vortex-antivortex lattice in
the bulk system so that no large scale flow field is present and
one can use pbc [44]. This approach brings in computational
complications and it is difficult to implement with our form of
BF. On the other hand the vortex-antivortex lattice computation
has shown that BF modifies the velocity flow field from the one
of OF only at very short distance from the core, below about
1 Å. Since we are interested in the characterization of local
properties around the vortex core we have adopted a shortcut:
we have simply smoothed the extra potentials V OF

� and V BF
� far

from the core multiplying the terms vOF
� and vBF

�i in (4) and (7)
by the following function:

S(r) =

⎧⎪⎨
⎪⎩

1, r < �,

e−(r−�)2/(r−L/2)2
, � � r � L/2,

0, r > L/2

(9)

(L being the side of the simulation box), so that standard
pbc can be applied. With this choice, the extra potential is
equivalent to (4) and (7) for r < �, and gently smoothed to
zero by S(r) in the range � � r � L/2. The provided �(R)
is no longer an exact eigenstate of L̂z but we have verified
that the local quantities we want to characterize, such as the
integrated energy around the vortex line and the density around
the core, are not affected by the value of �, once it is taken
sensibly greater than the core width. The results shown in the
next sections correspond to the choice � = 8 Å.

III. VORTEX LINE IN SUPERFLUID 4He

We have studied a straight vortex line in bulk superfluid
4He at T = 0 K at four different densities: near equilibrium
density, ρ = 0.0218 Å−3, near the freezing density, ρ =
0.026 Å−3 (P = 25 bars), below the equilibrium density, ρ =
0.02 Å−3 (P = −6 bars), and finally, well above the freezing
density, for a metastable overpressurized liquid, ρ = 0.03 Å−3

(P = 71 bars). The reported values of pressure are derived
from the theoretical equation of state [52] for the adopted
He-He interatomic potential. The initial particle configurations
for the metastable disordered computation have been obtained
by rescaling to the desired density configurations from a
simulation performed below freezing; in this way, as shown
in Ref. [52], even at ρ = 0.03 Å−3 the system remains
disordered allowing for the characterization of the properties
of the overpressurized phase. The number of particles in the
simulation box was taken to be N = 336, which is large
enough to ensure negligible size effects. The adopted BF phase
function, Eq. (6), has three backflow parameters, the amplitude
k, the interparticle range α, and the particle-vortex range γ , and

these have been determined by minimization of the total energy
of the vortex. Computations at ρ = 0.0218 Å−3 have given
α = 0.1377 Å−2 and γ = 0.0765 Å−2 (which correspond to
a length scale of about 1.9 and 2.5 Å, respectively); these
optimal values of α and γ turn out to be equal to those obtained
for the 2D system [26]. Therefore we have retained these
values also for all the other densities considered here. Given
this value for γ , we expect that the effect of the backflow
will be restricted mainly within about 2.5 Å from the vortex
line. The optimization of the backflow parameter k gave the
following optimal values: k = 0.8 at ρ = 0.02 Å−3, k = 0.7
at ρ = 0.0218 Å−3, k = 0.6 at ρ = 0.026 Å−3, and k = 0.6
at ρ = 0.03 Å−3. When k = 0 no vortex backflow effect is
present and one recovers the OF phase Eq. (3) which has no
variational parameters.

In Fig. 1 we show the integrated vortex energy per unit
length εv(r) = [Ev(r) − E(r)]/Lz as a function of radial
distance r for the BF and OF phase. Lz is the box side along
the vortex axis and Ev(r) and E(r) are, respectively, the energy
of the particles that lie inside the cylinder of radius r centered
on the z axis in the system with and without the vortex line.
Therefore εv(r) represents the vortex excitation energy per unit
length integrated up to the radial distance r . We plot εv(r) up
to a distance of 8 Å because beyond this distance the vortex
flow field is modified with respect to the hydrodynamic 1/r as
discussed in the previous section, so that εv(r) for r > 8 Å does
not have physical meaning. It is evident from Fig. 1 that at all
densities the BF phase (6) reduces sensibly the energy of the
vortex line excitation with respect to the OF phase; as expected,
backflow mostly affects the integrated vortex energy within
about 2 Å. Beyond this distance the two phases are essentially
the same and we found that the energy gap �εv(r) =
εBF
v (r) − εOF

v (r) for r > 2 Å is almost constant within the
statistical uncertainties. The average of �εv(r) over the range
2 < r < 3 Å is �εv = −0.62 ± 0.02 K at ρ = 0.02 Å−3,
−0.59 ± 0.01 K at ρ = 0.0218 Å−3, −0.93 ± 0.01 K at
ρ = 0.026 Å−3, and −1.00 ± 0.01 K at ρ = 0.03 Å−3. If we
take εv(r) at r = 2 Å as a measure of the vortex core energy it
turns out that the core energy given by BF is less than half that
of the OF phase. More precisely, the ratio η = εBF

v (r)/εOF
v (r)

at r = 2 Å takes the values η = 0.35, 0.52, 0.37, and 0.30 at
the four densities of our computations, going from the lowest
to the highest.

Classically, the vortex energy in an incompressible fluid
has a logarithmic dependence on r . For a vortex line with
circulation κ this classical energy per unit length is usually
written as

εhyd(r) = κ2

4π
mρ

[
ln

r

a
+ δ

]
, (10)

where a is assumed as a core parameter and δ is related to
the model for the core [5,53]. For instance, one has δ = 0
for a hollow core model and δ = 1/4 for a core of radius
a rotating at uniform angular velocity as a solid body (solid
core model) [53,54]. The specific model chosen for the vortex
core is a matter of taste unless one wishes to obtain absolute
data [55] and one goes outside the hydrodynamics of an
incompressible fluid. The parameters a and δ are clearly not
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FIG. 1. (Color online) Integrated energy up to a distance r of a straight vortex line per unit length, εv(r), at different densities in the liquid
phase as a function r . Dashed line: Onsager-Feynman phase. Solid line: Backflow phase. The shadings represent the statistical uncertainties of
the results. Dotted lines: Integrated phase kinetic energy per unit length ν(r) = V�(r)/Lz, where V�(r) is the extra potential energy due to the
vortex phase of the particles that lie in the cylinder of radius r . Dot-dashed line: Fit of the MC data with the hydrodynamic form Eq. (11).

independent and Eq. (10) can be written in the form

εhyd(r) = �
2

m
πρ ln

r

λ
, (11)

where the core parameter lambda is λ = ae−δ and the quantum
value κ = h/m for the circulation has been used. For a
quantum vortex within the GP equation the energy can be
written in the form (11) only for r large compared to the
coherence length as discussed below.

Our results for the quantum vortex give εv(r) that is a
slowly increasing function of r with some structure that
can be connected to the oscillations of the density profile
as discussed below. However, statistical uncertainties are too
large to characterize in detail such structures. Our results for
the energy of the quantum vortex for r not too small can be
represented in a reasonable way by the functional form (11)
for a suitable choice of λ. A fit of εv(r) with εhyd(r) over the
range 4–8 Å gives the values of λ reported in Table I and
the corresponding εhyd(r) is plotted in Fig. 1 as a dot-dashed
line. For a vortex in bulk 4He at distances larger than 8
Å the contribution to the vortex energy due to interparticle
correlations and to backflow should have decayed to zero and
the density is uniform so that the only remaining contribution
to εv(r) is the kinetic energy due to the 1/r2 centrifugal barrier.
Therefore Eq. (11) is the correct representation of the vortex
energy also at arbitrary large distance for a straight vortex in
bulk 4He. It should be stressed again that the parameter λ for
the quantum vortex is just a convenient way to represent the
energy of the quantum vortex such that it joins with the large

scale behavior and λ does not represent the core radius or the
healing length. In summary, both for the OF and the BF phase
Eq. (11) is a good representation of the quantum εv(r) starting
from r > 4 Å; below this distance εhyd(r) does not represent
the quantum energy and one should use the numerical results
reported in Fig. 1.

The vortex excitation energy εv(r) can be decomposed
into several contributions. One derives from the expectation
value of the extra potential V�(R) and this corresponds to
the kinetic energy due to the phase of the wave function.

TABLE I. Parameter λ from the fit of the quantum vortex energy
per unit length with the hydrodynamic Eq. (11) in the region 4–8 Å,
and values of the parameter �, Eq. (18), for the energy of a large vortex
ring obtained from the present calculations (SPIGS) compared to the
values obtained with SWF [25] (SWF) and with the values obtained
by fitting the experimental data [55] (exp.).

� (Å)

ρ (Å−3) phase λ (Å) SPIGS SWF exp.

0.020 OF 0.45(2) 3.32(4)
BF 0.85(2) 6.03(8)

0.0218 OF 0.25(1) 1.87(2) 2.72 5.98
BF 0.67(2) 5.1(1) 5.87

0.026 OF 0.38(1) 2.72(3) 7.68
BF 1.13(3) 8.2(1)

0.030 OF 0.46(2) 3.27(4)
BF 1.05(2) 7.62(5)
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TABLE II. Core radii dWHM and Rcyl as defined in the text at different densities for both OF and BF phases. Integrated energy per unit
length of a vortex line at 6 Å from the core for the present computations (SPIGS) and for the variational approach of Ref. [25] (SWF). Damping
parameter r1 in Eq. (14). Wave vector qmax of the first peak of ρ̃(q), roton wave vector qrot from Ref. [52], and position of the main peak, qχ , in
the static density response function, χ (q) [64], computed via the GIFT method [63]. qχ has been obtained from a parabolic fit of χ (q) in the
region of the main peak (data at 0.020 and 0.030 Å−3 are from unpublished computations).

core radius εv(r = 6 Å) (K/Å)

ρ (Å−3) phase dWHM (Å) Rcyl (Å) SPIGS SWF r1 (Å) qmax (Å−1) qrot (Å−1) qχ (Å−1)
0.020 OF 0.923 1.003 1.94(21) 2.48 1.91(2) 1.844(3) 1.936(2)

BF 0.668 0.963 1.42(17) 3.13 1.91(2)
0.0218 OF 0.885 0.928 2.67(21) 2.36 3.07 1.97(3) 1.908(6) 1.989(3)

BF 0.663 0.753 1.81(29) 1.91 3.46 1.97(1)
0.026 OF 0.821 0.606 2.74(27) 2.97 3.40 2.09(1) 2.048(6) 2.094(6)

BF 0.565 0.456 1.51(33) 1.91 3.89 2.18(1)
0.030 OF 0.804 0.611 2.81(29) 4.06 2.19(1) 2.182(6) 2.192(4)

BF 0.504 0.364 2.01(26) 7.30 2.19(1)

Another contribution represents the extra kinetic energy due
to the bending of the real part of the wave function close to
the core. Finally there is a contribution due to the change
of the expectation value of the Hamiltonian due to local
rearrangement of the atoms close to the core. In Fig. 1 we
plot also the contribution ν(r) of V� to εv(r). In the case of
the OF phase, εv(r) is significantly larger of ν(r) so that a
substantial contribution to the vortex core energy is due to the
bending kinetic energy. It is interesting to notice that εv(r) is
much closer to ν(r) in the case of the BF phase. Actually at
freezing density and at ρ = 0.03 Å−3, within the statistical
uncertainty, εv(r) coincides with ν(r); i.e., BF is so efficient
that it essentially cancels the bending energy. At the two
lowest densities of our computations there is some remaining
contribution from the bending energy. We conjecture that this
might be due to the choice of the BF phase Eq. (6) that is more
accurate at large density and less so at lower density.

Classically the vortex energy (11) is simply proportional
to the density if the vortex core parameter λ is density
independent. We confirm the earlier finding [44] of the SWF
computation that the energy of a quantum vortex in superfluid
4He at short distance has very weak dependence on density. As
reported in Table II εv(r) at r = 6 Å within the statistical errors
of our computation are the same at freezing and at equilibrium
density.

Within the mean field GP equation the quantum vortex
energy deviates from the hydrodynamic value (11) at short
distance because the local density ρ(r) is a function of r .
From the numerical solution of the GP equation, accurate Padé
approximants for the local density have been obtained [56,57].
Using the approximant [3/3] in Ref. [57]

f 2
GP(r) = ρ(r)

ρ
= 0.3396r2 + 0.0501r4 + 0.0026r6

1 + 0.3976r2 + 0.0527r4 + 0.0026r6
,

(12)
we have obtained the integrated vortex energy per unit length
as

εGP
v (r) = π

∫ r

0
�d�

{
[f ′

GP(�)]2 + f 2
GP(�)

�2

+ 1

2

[
1 − f 2

GP(�)
]2

}
, (13)

where the standard GP reduced units are used. In order to
restore dimensional units for Eqs. (12) and (13), only a single
parameter is required, i.e., the coherence (or healing) length ξ .
Unfortunately, for strongly correlated systems as liquid 4He,
there is no unique definition for ξ . The standard procedure is to
choose ξ such as the sound velocity provided by GP equation
is equal to the observed one [58]. This leads to ξ = 0.47 Å at
the equilibrium density and ξ = 0.31 Å at the freezing one.
The authors of Ref. [17] proposed another recipe by requiring
the GP core parameter (discussed below), which is about 1.5ξ ,
to be equal to the experimental value [59], resulting in ξ =
0.87 Å at the equilibrium density [60].

In Fig. 2 the SPIGS vortex energy εv(r) is compared to
the GP results for two choices for ξ as well as with the SWF
variational results [44]. There is an overall good agreement
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FIG. 2. (Color online) Comparison of integrated energy of a
single vortex line per unit length, εv(r), at equilibrium (upper panel)
and freezing (lower panel) densities obtained with different methods.
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between the SWF results and the present fixed phase SPIGS
ones. This is an additional evidence of the excellent quality of
SWF in representing superfluid 4He. With respect to GP ones,
one can say that it gives a reasonable representation of the
vortex energy, but its quality very much depends on the value
of the ill-determined parameter ξ . At equilibrium density the
small value 0.47 Å gives εGP

v (r) in good agreement with the
exact SPIGS result for the OF phase. What is surprising is
that the GP result for ξ = 0.87 Å is rather close to the SPIGS
result for BF phase. At the freezing density, the agreement of
QMC data with GP predictions is poor when ξ is obtained in
the standard way via the speed of sound.

Here a comment is in order. With SWF the total energy Ev of
the vortex state and the energy E0 of the ground state are each
rigorously upper bounds to the exact values for the chosen
model of the He-He interatomic potential, though no such
bound is present for the vortex “excitation” energy Ev − E0.
On the other hand, in the fixed phase SPIGS computation both
Ev and Ev − E0 are upper bounds to the exact values because
the SPIGS E0 is exact within the statistical uncertainty. Finally,
no bound is present for the vortex energy given by the GP
equation.

In Fig. 3 we show the radial density profiles ρ(r) obtained
with the OF and BF phases. In qualitative agreement with the
pioneering work by Chester et al. [10], ρ(r) has a depression
on the vortex axis and reaches the bulk density value in an
oscillating way. ρ(r) for the OF phase vanishes on the vortex
core. At all studied densities ρ(r) computed for the BF phase
provides a partially filled core in qualitative agreement with
the SWF results. As might be expected, the filling of the
vortex core increases at large densities. By comparing the BF

and OF density oscillations around the vortex core one can
notice that such oscillations are significantly stronger for the
OF phase and shifted to larger distance compared to the BF.
These oscillations can be well fitted with a damped oscillating
function [19,20]. Starting from r � 3 Å we have fitted our
density profiles ρ(r)/ρ with the following functional form:

f (r) = f0 + A√
r

cos(k0r + φ)e−r/r1 (14)

with f0, A, k0, and r1 fitting parameters. The damping
parameter r1 is reported in Table II. At all densities, the
oscillations are more strongly damped when backflow is
present. It is clear that backflow has the role of reducing the
perturbation effect of the vortex and this explains the reduced
core energy with respect to the OF phase.

As already pointed out, the core parameter is not rarely
misled with the core radius, but we stress again that the core
parameter λ is not a measure of the core extension; rather it is
a suitable value to be inserted in the hydrodynamic description
Eq. (11) to obtain the large distance behavior of the vortex
energy. To obtain a measure of the vortex core extension is
quite easy, even if not completely unequivocal, within the GP
approach since the density profile ρ(r) is a smoothly increasing
function of r . The core radius is often taken equal to the radial
distance where ρ(r)/ρ = 1/2 [17]. More difficult is to define
it when ρ(r) is an oscillating function of r as the ones shown
in Fig. 3. As a possible choice we take dWHM that we define
as the position at which ρ(r) is equal to the average of ρ(r)
at the first maximum and the value at the origin r = 0. The
values of dWHM are given in Table II. Such a core radius for the
BF phase is significantly smaller of that for the OF phase and
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FIG. 3. (Color online) Radial density profiles, ρ(r)/ρ, for a single vortex line at different densities in liquid phase. Dashed line: Onsager-
Feynman phase. Solid line: Backflow phase.

224516-7



D. E. GALLI, L. REATTO, AND M. ROSSI PHYSICAL REVIEW B 89, 224516 (2014)

it shrinks for increasing density. We can obtain another way
to measure the core radius in the following way. We might
expect that at large distance from the core ρ(r) = ρ, so that
f0 = 1 in Eq. (14). We find that this is not so. The best fit of the
computed ρ(r)/ρ with Eq. (14) always gives f0 slightly above
1; it is as if the average density far from the vortex core were
f0ρ. We can understand this as a result of the combined effect
of operating with a fixed number of particles, of finite size
of the simulation box, and of the expulsion of some particle
from the vortex core. In fact, in our simulations, the particles
removed from the core accumulate in the region far from the
vortex line, increasing the average density. We define Rcyl as
the radius of an impenetrable hard cylinder, coaxial with the
vortex axis and completely void of particles, that inserted in
the same simulation box gives rise to a density increase equal
to f0ρ. Thus Rcyl is also a measure of how many particles are
expelled from the core of the vortex. The obtained values of
Rcyl are given in Table II. Rcyl is of the same order of dWHM

and it has a similar dependence on the phase of the wf and on
density.

The fixed phase SPIGS density profile at the equilibrium
density is compared in Fig. 4 to the results of other theories.
In the upper panel the results for the OF phase are shown.
One can notice that there is a good agreement of the SPIGS
result with that of the variational SWF computation [44]. As
already noticed, the GP ρ(r) is a monotonically increasing
function of r; no oscillations are present. What is commonly
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FIG. 4. (Color online) Comparison of normalized radial density
profiles, ρ(r)/ρ, for a single straight vortex line at equilibrium density
with Onsager-Feynman (upper panel) and backflow (lower panels)
phases obtained with different methods. SPIGS results are from the
present computation, SWF ones from Ref. [44]. Nonlocal GP result
is from the model in Eq. (17) of Ref. [58] (with γ = 1, χ = 3.5,
and δ = 1 in the notation of the original paper) and integral equation
result is the one referred as B in Ref. [10].

called the GP equation is based, in addition to a mean field
approximation, also on the assumption that the interatomic
interaction v(�r1 − �r2) is a contact one; i.e., v(�r1 − �r2) is
proportional to δ(�r1 − �r2). If one relaxes this assumption
and takes a finite range v(�r1 − �r2) one gets a nonlocal GP
equation (also called nonlocal nonlinear Schrödinger equation)
and v(�r1 − �r2) has the role of a phenomenological effective
interatomic potential between He atoms [4,61]. A further
extension of GP has been studied in which a term proportional
to a power higher than 4 of the single particle wf is included
too [62]. The density profile around a straight vortex line as
obtained with one of the most studied nonlocal GP models [58]
is also reported in Fig. 4. It indeed gives an oscillating ρ(r) with
oscillations of amplitude comparable to those of the SPIGS
computation, but the positions of the extrema are quite off
the mark (remember that we are comparing theories with the
same OF phase and that the SPIGS result is exact). Also the
integral equation approach of Ref. [10] gives an oscillating
ρ(r) which is in overall good agreement with QMC results.
In the lower panel of Fig. 4 the density profiles for two
computations with backflow are shown, the present SPIGS
and the SWF. The SPIGS result gives a larger population
of the core and a somewhat smaller core size compared to
the SWF result. Notice that the BF phase is not the same
in these two computations; in the present computation the
phase is explicit as given in Eq. (6) and it is variationally
optimized, whereas in the SWF the phase is implicit because
it derives from from a many-body integration over subsidiary
variables.

In the context of density functional theory it has been
proposed [19,20] that the oscillations of the local density
around the vortex core could be related to the roton excita-
tion. The range of densities considered in the present work
corresponds to the range of densities recently studied [52] in
the characterization of the excitation spectrum via the exact
SPIGS method and GIFT [63], a novel powerful approach to
extract dynamic structure factors from imaginary time density
correlation functions. We have, therefore, the possibility to
investigate such a relation on the basis of a fully microscopic
approach. In order to estimate the wave vector associated
with the density oscillation around the vortex core we have
computed the Fourier transform, ρ̃(q), of the radial density
profile ρ(r)/ρ − 1. In computing ρ̃(q), the SPIGS data have
been extended with the function f (r) − f0, from (14), beyond
L/2. The obtained ρ̃(q) are shown in Fig. 5. At each studied
density a well defined peak is present in ρ̃(q); its position, qmax,
indicates the wave vector which characterizes the oscillations
in the radial density profile. The obtained qmax are reported in
Table II together with the roton wave vectors [52], qrot, and the
position of the main peak, qχ , of the static density response
function [64], χ (q), at the considered densities. We find that
qmax is essentially the same for the OF and the BF phases,
suggesting that it might be related to an intrinsic property of
the bulk system. We find that even if they are very similar, qmax

is always higher than the roton wave vector qrot; rather, we find
a much better agreement with qχ . This is not surprising since
χ (q) provides the amplitudes of the density response of the
system to a static perturbation, which is the case of a vortex
within fixed phase approximation. Then qχ corresponds to the
preferred wave vector for a density modulation.
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FIG. 5. (Color online) Fourier transform of the radial density profile, ρ̃(q), for a single vortex line at different densities in liquid phase.
Dashed line: Onsager-Feynman phase. Solid line: Backflow phase. Insets: Ratio between the Fourier transforms of the radial density profile
with OF phase and with BF phase (solid line) and Gaussian fit in the 0 < q < 1 Å−1 range (dashed line).

A vortex line has excited states in the form of Kelvin
waves in which the vortex is no longer straight but its
core moves in a helical way. One way of interpreting the
delocalization of vorticity achieved with BF phase is that it
is due to the zero point motion of such Kelvin waves. In
fact, the localized vorticity given by the OF phase should
spread out in a cylindrical region around the vortex axis
as a consequence of such zero-point motion. Under such
hypothesis the density profile ρBF(r) of the BF phase should
be equal to the convolution of the density profile ρOF(r) of the
OF phase and of the probability P (r) that the vortex core has a
transverse displacement equal to r . For harmonic oscillations
P (r) should be a Gaussian function. One can easily verify
whether ρBF(r) indeed can be represented in this way. In fact,
in Fourier space the convolution becomes a product, so the
ratio of the Fourier transforms of ρBF(r) and ρOF(r) should be
a Gaussian functions of the wave vector q. This ratio is plotted
in the insets in Fig. 5 as well as the best fit by a Gaussian
function over the range 0–1 Å−1. It is clear that indeed the
ratio ρ̃BF(q)/ρ̃OF(q) is to a good approximation a Gaussian
and this gives support to the notion that backflow for a vortex
is a way to represent the zero point motion of Kelvin waves.
The optimal fitting values for the variance of the Gaussian
are 0.712 ± 0.016 Å at 0.020 Å−3, 0.777 ± 0.044 Å at
0.0218 Å−3, 0.676 ± 0.010 Å at 0.026 Å−3, and 0.963 ±
0.016 Å at 0.030 Å−3. A significant deviation of ρ̃BF(q)/ρ̃OF(q)
from a Gaussian is present only at the highest density ρ =
0.030 Å−3 in the metastable fluid phase. We do not know
whether this is a genuine effect or whether it is a consequence
of size effects that are more pronounced at higher density due
to the slow decay of the density oscillations.

IV. LARGE VORTEX RING IN SUPERFLUID 4He

Vortex ring excitations are particularly important for su-
perfluid 4He since experimental data [59] on mobility of ions
trapped in the core of a vortex ring have given information on
such excitations [55,59]. A full description of a vortex ring
requires a more complex functional form for the phase, but for
a large vortex ring, when the radius R is much larger than the
core size, the energy is expected to be accurately approximated
by the sum of the kinetic energy of an incompressible flow
outside a toroidal region centered at the circle of radius R

and with a radius b, and of the energy of the core inside
this region [10]. This latter energy can be approximated by
2πRεv(b), where εv(b) is the energy per unit length of a straight
vortex line up to a distance b [10,25]. Here b represents the
distance at which the inner quantum flow field is joined to the
external hydrodynamic one and should not be confused with
the core size or the healing length [25]. For the outer region
the energy is the one of a classical vortex ring of radius R and
a hollow core of size b:

E(R,b) = 1

2
κ2mρR

[
ln

8R

b
− 2

]
, (15)

where the circulation has been set to its quantum value
κ = h/m. Then, within such an approximation, the excitation
energy of a large vortex ring reads

Ering(R) = h2

2m
ρR

[
ln

8R

b
− 2 + 4πm

h2ρ
εv(b)

]
. (16)

The experimental results of Rayfield and Reif [59] have
been interpreted [55] in terms of an energy of a hollow-core
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vortex ring of radius R, written in the form

Ering(R) = h2

2m
ρR ln

8R

�
. (17)

Our approximated theoretical expression (16) can be recast in
the form of (17) with the core parameter

� = be
2− 4πm

h2ρ
εv (b)

. (18)

Our values of the parameter � are reported in Table I together
with the values obtained by the fit over the experimental
data [55]. In order to account for statistical uncertainty we
have averaged Eq. (18) over the range 4 < b < 8 Å where
the computed energy per unit length is quite close to the
hydrodynamic one (11). If the dependence of εv(b) on b is well
represented by Eq. (11), the energy of the ring (16) turns out to
be independent of the choice of b [25], and the parameter � is
equal to e2λ. Our results excellently fulfill such a relation, with
deviation smaller than 4%, confirming that, for large radial
distances, the energy per unit length of a vortex line is given
with great accuracy by the classical hydrodynamic functional
form (11).

We stress again that the parameters λ in Eq. (11) and
� in (17) do not represent the GP coherence length or the
vortex core radius. Failure to recognize this can lead to an
incorrect interpretation of experimental data. For instance, the
interpretation of the experimental data in terms of classical
hydrodynamics [55] led to a core parameter 0.81 Å and 1.04
Å, respectively, at equilibrium and at freezing density. This
expansion of the core parameter with the density has been
addressed as the test bed for any successful theory of the core
structure, and a vortex model that fulfills this requirement has
actually been developed [55]. However, if we consider the
core parameter as a measure of the core extension we will
be in the counterintuitive situation of a vortex that expands
by increasing the density. This striking feature is due to a
misleading interpretation of the hydrodynamic model (11).
In fact, as shown in Table I, our theory with the BF phase
gives at both equilibrium and freezing density results in
rather good agreement with the experimental value of �,
i.e., an expanding core parameter; but the actual core size, as
measured by the density profile (parameters dWHM and Rcyl in
Table II), decreases by about 15% on going from equilibrium
to freezing density. Moreover the vortex rings investigated
in the experiments [55,59] have a radius in the decade 103–
104 Å and it might be assumed that for such large vortices a
full classical description should be adequate. In order to see
that this is not correct consider the terms in square parentheses
in Eq. (16). The factor h2ρ

4πm
is 0.83 K/Å at equilibrium density

and using εv(b) for b = 6 Å from Table II we find that the
third term in square parentheses in (16) is equal to 2.12. This
term is equal to 1.51 when we perform a similar computation
at freezing density. Thus if one does not take into account
the variation with density of the quantum energy one gets an
incorrect description of the vortex.

V. A MODEL FOR A VORTEX LINE IN SOLID 4He

Given the recent interest on supersolidity and on the possi-
ble presence of vortex-like excitations in solid 4He [31,33–36],

we have extended our study also to the solid phase. Exact
quantum Monte Carlo computation at finite [37,38] and zero
temperature [40] have shown that an ideal perfect 4He crystal
(the so called commensurate solid) has no BEC and is not
superfluid. Without the presence of BEC the standard order
parameter cannot be defined and the form (3) or (6) for the
phase of a quantum vortex has little justification because such
a state should rapidly decay into other excitations. On the
other hand it is known that almost any deviation from the ideal
perfect state does induce BEC in solid 4He [65–68]. The idea
was to check the possibility that an ideal perfect 4He crystal
could correspond to a marginally stable quantum system [40]
in which rotation would be a strong enough perturbation
to induce a “dynamical” Bose-Einstein condensation and
quantum vortices at the same time. In this case the OF and
BF variational ansatz on the phase of the many-body wf could
be justified for an order parameter defined at least locally [69].
Since the BF corrections have a larger effect on the core
filling as the density is increased in the liquid phase, one
could expect that BF should be even more relevant in the solid
phase.

FIG. 6. (Color online) Integrated energy of a vortex line per unit
length, εv(r), at ρ = 0.0293 Å−3 in a hcp solid as function of the
distance from the vortex core, for two different orientation of the
vortex axis (which coincides with the z axis): perpendicular to
the basal planes (upper panel) and parallel to the basal planes (lower
panel) as shown in the insets where the vortex axis points toward
the reader along the z axis. Atoms belonging to different basal
planes in the hcp structure (A and B) have been represented with
different colors. Dotted line: Onsager-Feynman phase. Solid line:
Backflow phase. The shadings represent the statistical uncertainties
of the results.
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FIG. 7. (Color online) Normalized radial density profiles,
ρ(r)/ρ, at ρ = 0.0293 Å−3 in a hcp solid as functions of the distance
from the vortex core, for two different orientation of the vortex axis:
perpendicular to the basal planes (upper panel) and parallel to the
basal planes (lower panel). Dotted line: Onsager-Feynman phase.
Solid line: Backflow phase.

We have thus performed fixed phase SPIGS computation
for the OF (3) and the BF (6) phase also in bulk solid 4He. In
Fig. 6 we report the integrated energy per unit length εv(r) and
in Fig. 7 the radial density profile ρ(r)/ρ as a function of the
core distance r for the solution of Eq. (1) in an ideal perfect hcp
4He crystal at ρ = 0.0293 Å−3, just above the melting density.
We have considered two possible orientations for the vortex
axis: perpendicular to the basal planes (i.e., along the c axis)
and parallel to the basal planes. As in the liquid phase, the BF
phase provides an energy gain of about 1 K with respect to the
OF one, but the most striking result is that the core is partially
filled even in the solid phase when the BF phase is considered.
The filling of the core is however smaller than that found in
the liquid. Within the statistical uncertainty the obtained εv(r)
are the same for the two considered orientations of the vortex
axis both with the OF and with the BF phase.

An interesting piece of information that we can derive from
our computation is the deformation of the crystalline lattice and
the location of the vortex axis with respect to the crystalline
lattice sites. In fact, in a SPIGS computation the equilibrium
positions of the atoms are generated as a spontaneous broken
symmetry and the crystal is free to translate. We find that in
the simulation, whatever is the starting configuration of the
atoms with respect to the vortex axis the system evolves into
a state in which the vortex axis is an interstitial line, in the
sense that this straight line lies as far as possible from the
lattice sites as shown in the insets in Fig. 6. A similar result
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FIG. 8. One-body density matrix computed in a perfect hcp 4He
crystal at ρ = 0.0293 Å−3 along the direction parallel to the axis
of the centrifugal flow field of the OF phase. The case shown here
corresponds to an axis perpendicular to the basal planes of the hcp
crystal.

was already noticed in two dimensional 4He crystals [30]. In
addition we find that the centrifugal barrier induces only a very
small distortion of the crystal lattice, again in agreement with
the result in 2D [30]. The vortex core filling is greater in the
case where the axis of the centrifugal flow field is parallel to
the basal planes; we have found, in fact, that in this case
the solid is free to slide with respect to the axis and this
gives rise also to a less structured density profile around core
axis.

We have also computed the one-body density matrix
ρ1(�r,�r ′) in the system along the axis of the centrifugal
flow field. We find that for both phases ρ1(�r,�r ′) decays
exponentially with increasing |�r − �r ′| as in the ideal perfect
crystal. As an example, in Fig. 8 we show the result obtained
for the one-body density matrix in the presence of a centrifugal
flow field related to the OF phase with the axis perpendicular
to the basal planes of a hcp 4He crystal. A very similar result
is obtained with the BF phase. We conclude that both the
OF and the BF variational ansatz are not able to induce any
off-diagonal long–range order in the crystal. This means that
there is no condensate fraction induced by rotation and that
the state corresponding to the solution of Eq. (1) is not a stable
quantum state in an ideal perfect 4He crystal. It should be
noticed that it has been argued [70] that in solid 4He vortices
can appear also in the presence of a strongly fluctuating order
parameter such that no phase coherence is present. Also in this
case, the assumed forms (3) and (6) of the phase have little
justification, so we cannot investigate this possibility with the
present computation.

VI. CONCLUSIONS

We have performed a microscopic characterization of a
single straight vortex line in three dimensional 4He systems.
By using unbiased quantum Monte Carlo methods at zero
temperature and the fixed phase approximation, we have
obtained an exact estimation of the local energy and the local
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density profile around the vortex core once the Feynman-
Onsager model or a phase with backflow correlations is
assumed. The present results give a much stronger theoretical
basis to some of the earlier findings obtained by the variational
SWF method [25,47], such as the large lowering of the vortex
core energy due to BF correlations, the weak dependence of
the vortex core energy on density, or the significant oscillations
of the density profile close to the core. In fact our results
represent rigorous upper bounds of the exact excitation energy
of a vortex. For the OF phase it is not possible to do better than
our result because we solve exactly the quantum problem for
the real part of the wf. With backflow our results depend on
the specific choice of the BF phase so it could be improved.
In any case our results allow us to conclude that it is not
possible to get a correct quantitative estimation of the vortex
core energy without taking into account backflow correlations.
In fact the vortex excitation energy integrated up to a radial
distance of order 2–4 Å is reduced by about a factor of 2
with respect to the value for the OF phase so any better
BF phase would reduce that energy even more. The present
results for a straight vortex line have important implications
for vortex rings of radius much larger than the core radius
and on interpretation of experimental data. It is customary to
represent the energy and the translational velocity of the ring
in term of formulae derived from hydrodynamics with the core
parameter determined by the experimental data. We show that
the energy of a vortex ring can indeed be represented with the
hydrodynamic formula but the length parameter contained in
it is not a measure of the size of the core but, as already shown
in Ref. [44], it contains information on the core energy and
this requires the quantum theory. Our results for the energy
of the ring as function of its radius are in agreement with
experiments both at equilibrium density and at freezing, at the
same time the core radius shrinks for increasing density and
the core parameter � expands. We remark that an increasing
value of � with pressure, as obtained when the experimental
data are interpreted by using the hydrodynamic description, is
not a signature of an expanded vortex core.

Backflow not only reduces the excitation energy but also
gives smaller oscillation of the density profile compared to the
OF case and the density is finite even on the core axis. Analysis
of the density profile with and without backflow shows that the
first can be represented by a convolution of the second with
a Gaussian function. This is suggestive that BF is a way to
represent the effect of the zero point motion of Kelvin waves
and from the width of the Gaussian we estimate a mean square
oscillation of about 0.7 Å. This suggestion is worthy of further
study. In Fourier space the density profile has a strong peak at a
wave vector that at all densities is very close to the wave vector
at which the static density response function has a maximum.
This wave vector is somewhat larger than the one at the
minimum of the roton dispersion curve so that our microscopic
computations partially modify previous suggestions [19,20]
based on phenomenological theories. The fact that the Fourier
spectrum of the density profile is sharply peaked in q in the
region of rotons with positive group velocity (so called R+
rotons) gives a hint that in a vortex reconnection event there
might be emission of rotons [18] in preference of phonons as
obtained on the basis of GP equation [17]. Study of vortex
reconnections with QMC methods to verify this prediction

seems presently out of reach of microscopic simulation. It
might be feasible to extend the GP study of reconnection to
one of the nonlocal GP equations. For instance the model by
Berloff and Roberts [58] is attractive because it gives a realistic
description of the energetics of the roton excitations as well as
a reasonable density profile around the vortex core as shown in
Fig. 4. Should roton emission in a vortex reconnection depend
more on the modulation of the density profile of the vortex than
on the delocalized vorticity, it will be interesting to study the
vortex reconnection with such an equation because it should
give evidence for roton generation in a vortex reconnection. It
has been also suggested in the literature [71] that around the
vortex axis there might be a condensation of rotons. We do not
find a way to prove or disprove such hypothesis on the basis
of the present microscopic theory.

We have studied the vortex excitation also in metastable
states below equilibrium density and above freezing. We do
not find evidence of any anomaly for the studied densities; the
vortex properties have a smooth density dependence within
the statistics of our simulations.

A number of other properties of a vortex can be calculated
with our simulation method. One is the computation of the
flow field and of vorticity in the core region. This will allow
one to compute the translational velocity of a large vortex
ring with BF phase in a way similar to what was done in
Ref. [10] for the OF model. Another interesting question is
what happens to the Bose-Einstein condensate fraction n0 in
the core. It has been suggested [71] that in the core the fluid is
normal even at T = 0 K. The only microscopic computation
of the condensate for a vortex in superfluid 4He is based on the
integral equation method [10] and the result was an increasing
condensate fraction n0/ρ in the core but both n0 and the
local density were vanishing at the vortex axis because that
computation was based on the OF phase. With BF phase the
core is partially filled and it will be very interesting to compute
n0 with the present method. We leave such computations for
future work. A further challenging development is the direct
microscopic simulation of a small vortex ring.

We have investigated in crystalline solid 4He a state with the
same forms of the vortex phase as in the liquid phase. We find
that the vortex core goes into interstitial positions and that there
is a rather weak lattice distortion. At the same time we find
that the system has no off-diagonal long-range order like in the
perfect solid; i.e., the perturbation introduced by the phase is
not able to induce a condensate. Therefore the studied excited
state should not be a good representation of an elementary
excitation of the solid. The topic of a microscopic model of the
proposed vortex excitation in crystalline 4He in the presence
of a strongly fluctuating local order parameter [31] remains to
be explored.
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