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Abstract: New indexes of adiposity have been introduced to evaluate body-fat distribution and
cardiometabolic risk. However, data on the correlation between Insulin Resistance (IR) and these
new indexes are limited. We therefore evaluated the relationship between IR and adiposity indexes
in children and adolescents with obesity, focusing on gender differences. We retrospectively enrolled
586 patients with obesity (10.80 ± 2.63; 306F/279M). As adiposity indexes we considered body mass
index (BMI), BMI-z score, WC, waist-to-height ratio (WHtR), a body shape index (ABSI), triponderal
mass index (TMI), visceral adiposity index (VAI) and conicity index (ConI). The homeostasis model
assessment for insulin resistance (HOMA-IR), HOMA of percentage β-cell function (HOMA-β),
quantitative insulin sensitivity check index (QUICKI), and triglyceride and glucose index (TyG-index)
were measured and recorded as IR surrogates. In both sexes, WC and VAI significantly correlated
with all IR measurements (p < 0.001). BMI significantly correlated (p < 0.001) with all IR parameters
except for the TyG-index in females. Fat mass and TMI correlated with IR parameters only in females,
BMI-z score with IR markers except for HOMA-β in males, WHtR with HOMA-β in both sexes
(p < 0.05), free fat mass with HOMA-IR and QUICKI only in females (p < 0.01), ConI correlated with
the TyG index in females (p = 0.01). Tryglicerides and SBP were correlated with all IR measurements
(p < 0.001), in both sexes. Correlations between different sex parameters were significantly more
evident in middle puberty. The relationship between IR surrogates and obesity indexes is influenced
by gender in pediatrics. Sex-specific differences in obesity-related complications should be considered
in preventive intervention decision-making.

Keywords: sex-specific differences; insulin resistance; adiposity; children; adolescents; obesity

1. Introduction

Insulin resistance (IR) is a crucial factor contributing to the pathogenetic mechanism
of several disorders, including type 2 diabetes mellitus (DMT2), hypertension, dyslipi-
demia, cardiovascular disease, and metabolic syndrome [1–3]. IR represents the earliest
manifestation of dysmetabolism in children [4,5].
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Euglycemic-hyperinsulinemic clamp is the gold standard method for determining
insulin sensitivity. However, it is invasive, time intensive and not practical in the pediatric
age [6,7]. Consequently, several indirect methods have been proposed for clinical studies
and epidemiological evaluations. In particular, surrogate measures, based on fasting levels
of insulin and glucose are validated tools that simplify IR measurement and are used
in epidemiological studies and in clinical practice [8–10]; these include the homeostasis
model assessment for insulin resistance (HOMA-IR), HOMA of percentage β-cell function
(HOMA-β) and quantitative insulin sensitivity check index (QUICKI). The triglyceride and
glucose index (TyG-index) may also be useful for IR prediction in large-scale studies or
screening of populations at high risk of diabetes, as they are more sensitive in recognizing
IR compared with HOMA-IR [11,12].

Body-fat distribution is also a critical player in IR development [13–15]. Body mass
index (BMI), waist circumference (WC) and or waist-to-height ratio (WHtR) are usually
considered good markers of the dysmetabolic profile [16–22]. Recently, new indexes of
obesity, including body shape index (ABSI), triponderal mass index (TMI), conicity index
(ConI) and the visceral adiposity index (VAI) have been introduced to evaluate body-fat
distribution and cardiometabolic risk [23–32].

Limited data on the correlation between IR and these new indexes of adiposity have
been reported in the pediatric age [28,32]. Therefore, we analyzed the association of IR
surrogates and adiposity indexes in children and adolescents with obesity. Considering
that IR is partly attributed to sex differences in fat mass, we focused the evaluation on sex
differences. The relationship between IR and other cardiometabolic risk factors was also
considered.

2. Materials and Methods
2.1. Patients

We retrospectively enrolled 586 Caucasian children and adolescents (376 females and
279 males) with obesity (BMI-z score ≥ 2 according to the World Health Organization),
aged 10.80 ± 2.63 years (range 6–18 years) referred to the Outpatient Clinics of the Vittore
Buzzi Children’s Hospital, Milano, Fondazione IRCCS Policlinico S. Matteo, Pavia, and the
San Paolo University Hospital of Milan. Patients were referred by their general practitioner
or primary care pediatrician between January 2015 and December 2020. Known secondary
obesity conditions, use of any medications, and concomitant chronic or acute illnesses were
considered exclusion criteria.

2.2. Physical Examination and Adiposity Indexes

In all participants, height, weight, pubertal stage, WC, BMI, adiposity indexes, and
body composition were measured. Total and HDL-cholesterol levels as well as diastolic
(DBP) and systolic blood pressure (SBP) measurements were also collected.

Height, weight, pubertal stage, WC measurement, DBP and SBP were performed as
reported elsewhere [12]. As previously reported, pubertal stages were classified as follows,
Prepubertal stage = Tanner Stage 1; Middle puberty = Tanner Stages 2–3; Late puberty =
Tanner Stages 4–5 [12].

BMI was calculated as body weight (kilograms) divided by height (meters squared)
and was transformed into BMI-z scores using World Health Organization (WHO) reference
values [33].

In addition to BMI, BMI-z score, and WC, adiposity indexes, including WHtR, ABSI,
TMI, VAI, ConI were considered and calculated as follows:

• WHtR = WC/Ht
• ABSI = 1000 × WC × Wt −2/3 × Ht5/6 [34]
• TMI = weight (kg)/height (m)3 [29]
• ConI = WC/(0.109 × (Wt/Ht)0.5) [35]
• VAI [36]
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Male = [WC/(39.68 + (1.88 × BMI))] × (TG/1.03) × (1.31/HDL-C);

Female = [WC/(36.58 + (1.89 × BMI))] × (TG/0.81) × (1.52/HDL-C)

2.3. Biochemical Evaluation and Insulin Resistance Measurements

At enrollment, in addition to the collection of historical data and a physical exami-
nation, a biochemical evaluation was performed. Patients underwent a blood draw in a
fasting state between 8:30 a.m. and 9:00 a.m. and plasma glucose, insulin, triglycerides
(TG), total, and HDL-cholesterol were analyzed the same morning by standard methods.

As IR surrogates we considered the following:

• HOMA-IR calculated as insulin resistance = (insulin × glucose)/22.5 [8];
• TyG-index calculated as ln[fasting triglycerides (mg/dL) × fasting plasma glucose

(mg/dL)/2]) [37];
• HOMA of percentage β-cell function (HOMA-β) calculated as HOMA-β% = (FIRI ×

20)/(FPG − 3.5) [8];
• Quantitative Insulin sensitivity Check Index (QUICK index) calculated as the inverse

of the sum of the logarithms of fasting insulin and fasting glucose: 1/(log(fasting
insulin µU/mL) + log(fasting glucose mg/dL)) [38].

2.4. Statistical Analysis

Quantitative variables were described as the mean and standard deviation when
normally distributed (Shapiro–Wilks’s test). Comparisons based on sex were made with the
Student T test for independent samples. Relationships between the indexes, were assessed
with the Pearson correlation coefficient. A p-value < 0.05 was considered statistically
significant.

3. Results

Anthropometric features, adiposity indexes and indirect IR markers in the patients
according to sex, are summarized in Table 1.

Table 1. Indexes of obesity and insulin resistance and metabolic parameters of the patients according
to sex and pubertal stages.

Parameters All Females (n = 306) Males (n = 279) p *

Age (years) 10.80 ± 2.63 11.4 ± 3.0 11.2 ± 2.90 0.98

Pubertal stages
Tanner 1 145 89 56
Tanner 2–3 375 174 201 <0.001
Tanner 4–5 65 43 22

Body mass index (kg/m2) 28.36 ± 4.40 28.46 ± 4.84 28.26 ± 3.87

0.58
Tanner 1 25.13 ± 3.18 ** 24.88 ± 2.87 ** 25.54 ± 3.62 **
Tanner 2–3 28.95 ± 4.15 29.28 ± 4.72 28.67 ± 3.60
Tanner 4–5 32.18 ± 3.52 32.53 ± 3.80 31.48 ± 2.84

Body mass index z score 2.73 ± 0.73 2.72 ± 0.72 2.74 ± 0.74

0.78
Tanner 1 3.07 ± 1.04 ** 3.03 ± 1.04 ** 3.12 ± 1.04 **
Tanner 2–3 2.65 ± 0.57 2.63 ± 0.50 2.67 ± 0.62
Tanner 4–5 2.42 ± 0.42 2.44 ± 0.45 2.39 ± 0.37

Waist circumference (cm) 87.77 ± 11.28 86.49 ± 11.22 89.14 ± 11.18

0.005
Tanner 1 77.62 ± 7.68 ** 77.56 ± 7.72 ** 77.72 ± 7.67 **
Tanner 2–3 90.10 ± 9.74 88.76 ± 9.84 91.13 ± 9.55
Tanner 4–5 97.73 ± 10.32 96.50 ± 9.96 100.03 ± 10.82



Children 2021, 8, 449 4 of 14

Table 1. Cont.

Parameters All Females (n = 306) Males (n = 279) p *

Waist
circumference/height ratio 0.58 ± 0.11 0.58 ± 0.10 0.57 ± 0.12

0.38Tanner 1 0.59 ± 0.10 0.60 ± 0.09 ** 0.58 ± 0.10
Tanner 2–3 0.57 ± 0.13 0.56 ± 0.15 0.58 ± 0.12
Tanner 4–5 0.60 ± 0.06 0.60 ± 0.06 0.59 ± 0.06

Fat mass (%) 37.28 ± 5.85 37.42 ± 5.69 36.78 ± 6.0

0.06
Tanner 1 35.28 ± 4.88 ** 35.86 ± 4.59 ** 34.35 ± 5.22 **
Tanner 2–3 37.69 ± 5.77 37.87 ± 5.78 37.57 ± 5.78
Tanner 4–5 39.15 ± 7.10 41.06 ± 5.86 35.52 ± 7.96

Free Fat mass (%) 60.98 ± 9.8 60.25 ± 9.5 61.77 ± 10.2

0.09
Tanner 1 61.85 ± 12.26 62.48 ± 9.46 ** 60.90 ± 15.67
Tanner 2–3 61.12 ± 8.79 59.65 ± 9.78 62.24 ± 7.65
Tanner 4–5 58.81 ± 9.76 5818 ± 8.12 60.04 ± 12.53

Visceral Adiposity Index 3.31 ± 2.93 3.87 ± 3.00 2.71 ± 2.71

<0.001
Tanner 1 2.82 ± 2.16 3.52 ± 2.42 1.73 ± 0.95 **
Tanner 2–3 3.46 ± 3.26 4.18 ± 3.38 2.84 ± 3.03
Tanner 4–5 3.60 ± 2.25 3.34 ± 2.22 4.04 ± 2.28

Body shape index 0.078 ± 0.006 0.077 ± 0.006 0.079 ± 0.006

0.005
Tanner 1 0.079 ± 0.007 ** 0.080 ± 0.005 ** 0.078 ± 0.008
Tanner 2–3 0.078 ± 0.005 0.076 ± 0.005 0.079 ± 0.005
Tanner 4–5 0.075 ± 0.006 0.075 ± 0.006 0.077 ± 0.005

Triponderal mass index 19.32 ± 2.60 19.61 ± 2.93 19.01 ± 2.13

0.004
Tanner 1 19.45 ± 2.47 19.42 ± 2.47 19.50 ± 2.50
Tanner 2–3 19.20 ± 2.66 19.56 ± 3.18 18.90 ± 2.07
Tanner 4–5 19.67 ± 2.47 20.18 ± 2.75 18.68 ± 1.39

Conicity index 1.25 ± 0.09 1.24 ± 0.09 1.26 ± 0.09

0.003
Tanner 1 1.25 ± 0.10 1.25 ± 0.08 1.23 ± 0.12 **
Tanner 2–3 1.25 ± 0.08 1.23 ± 0.08 1.27 ± 0.08
Tanner 4–5 1.23 ± 0.10 1.22 ± 0.10 1.25 ± 0.09

Homeostasis model
assessment for insulin
resistance

3.42 ± 2.42 3.58 ± 2.52 3.24 ± 2.29

0.08Tanner 1 2.36 ± 1.56 ** 2.62 ± 1.73 ** 1.96 ± 1.14 **
Tanner 2–3 3.72 ± 2.38 4.02 ± 2.63 3.45 ± 2.11
Tanner 4–5 4.12 ± 3.40 3.84 ± 2.96 4.64 ± 4.12

Triglyceride and Glucose
index 8.10 ± 0.46 8.10 ± 0.46 8.09 ± 0.53

0.68Tanner 1 7.97 ± 0.48 ** 8.05 ± 0.47 ** 7.85 ± 0.49 **
Tanner 2–3 8.15 ± 0.49 8.17 ± 0.45 8.12 ± 0.53
Tanner 4–5 8.09 ± 0.52 7.94 ± 0.45 8.35 ± 0.54

HOMA of percentage
β-cell function 193.09 ± 76.67 205.71 ± 78.49 179.11 ± 72.21

<0.001Tanner 1 156.10 ± 63.77 ** 168.6 ± 69.57 ** 136.90 ± 48.22 **
Tanner 2–3 203.53 ± 76.48 222.84 ± 79.40 186.13 ± 69.48
Tanner 4–5 216.36 ± 77.74 211.45 ± 65.91 225.3 ± 96.73

Quantitative insulin
sensitivity check index 3.05 ± 0.28 3.08 ± 0.27 3.03 ± 0.28

0.05Tanner 1 2.91 ± 0.27 ** 2.95 ± 0.28 ** 2.83 ± 0.24 **
Tanner 2–3 3.11 ± 0.26 3.14 ± 0.26 3.08 0.26
Tanner 4–5 3.13 ± 0.28 3.14 ± 0.27 3.17 ± 0.30

Fasting blood glucose
(mg/dL) 81.74 ± 8.92 80.68 ± 9.34 82.89 ± 8.29

0.002Tanner 1 80.75 ± 8.21 80.58 ± 7.65 81.01 ± 9.07
Tanner 2–3 82.20 ± 8.79 80.70 ± 9.68 83.47 ± 7.71
Tanner 4–5 81.21 ± 10.88 80.51 ± 11.09 82.59 ± 10.59

Insulin (mU/mL) 16.75 ± 10.46 17.71 ± 10.93 15.67 ± 9.81

0.01
Tanner 1 11.71 ± 7.44 ** 13.09 ± 8.35 ** 9.56 ± 5.09 **
Tanner 2–3 18.17 ± 10.28 19.79 ± 11.31 16.72 ± 9.04
Tanner 4–5 19.90 ± 13.41 18.80 ± 11.44 21.91 ± 16.51
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Table 1. Cont.

Parameters All Females (n = 306) Males (n = 279) p *

Total cholesterol (mg/dL) 155.31 ± 27.61 152.94 ± 25.92 157.89 ± 29.18

0.03
Tanner 1 154.65 ± 26.06 154.52 ± 27.61 154.85 ± 23.87 **
Tanner 2–3 156.21 ± 27.77 153.65 ± 24.01 158.47 ± 30.57
Tanner 4–5 151.50 ± 30.04 146.80 ± 29.66 160.45 ± 29.35

HDL-cholesterol (mg/dL) 47.10 ± 11.10 47.25 ± 11.45 46.91 ± 10.71

0.71
Tanner 1 48.89 ± 12.52 ** 48.52 ± 12.79 49.46 ± 1217 **
Tanner 2–3 47.04 ± 10.58 47.28 ± 11.30 46.83 ± 9.92
Tanner 4–5 43.40 ± 9.80 44.57 ± 8.61 41.18 ± 11.63

Tryglicerides (mg/dL) 92.29 ± 58.56 92.21 ± 49.38 92.37 ± 67.22

0.97
Tanner 1 80.64 ± 40.82 ** 87.34 ± 44.76 ** 70.33 ± 31.57 **
Tanner 2–3 96.83 ± 65.06 97.90 ± 53.03 95.89 ± 74.17
Tanner 4–5 91.38 ± 48.07 78.02 ± 38.32 116.95 ± 54.41

Systolic Blood Pressure
(mmHg) 111.96 ± 14.20 111.86 ± 12.49 112.07 ± 15.92

0.43Tanner 1 105.41 ± 12.20 ** 105.38 ± 12.35 ** 105.47 ± 11.81 **
Tanner 2–3 113.39 ± 14.28 114.29 ± 11.29 112.70 ± 16.39
Tanner 4–5 117.95 ± 13.20 115.86 ± 12.36 122.04 ± 14.11

Diastolic Blood Pressure
(mmHg) 63.62 ± 9.49 63.68 ± 8.69 63.50 ± 10.33

0.82Tanner 1 60.13 ± 7.58 ** 60.18 ± 8.21 ** 60.05 ± 6.47 **
Tanner 2–3 63.97 ± 9.66 64.25 ± 8.22 63.67 ± 10.74
Tanner 4–5 69.06 ± 9.41 68.55 ± 8.65 70.04 ± 10.88

* p females vs. males; ** significant difference (p < 0.05) between Tanner stages.

3.1. Adiposity Indexes

Adiposity indexes according to sex and pubertal stages are reported in Table 1. The
BMI-z score did not differ in males and females; in both sexes it was higher in prepuberty
than in middle and late puberty (p < 0.001).

Compared to females, males had higher WC (p < 0.01), ABSI (p < 0.01), ConI (p < 0.01)
and lower VAI and TMI (p < 0.01) values, Table 1.

The difference in WC was influenced by puberty in both sexes, with higher values in
puberty compared to the prepubertal period (p < 0.001). ABSI in prepubertal females was
higher compared to girls in middle and late puberty (p = 0.001). In males, no differences
related to pubertal stage were noted (p = 0.27). In both males and females, TMI and ConI
did not differ between puberty groups (p > 0.05), Table 1.

VAI in pubertal males was higher compared to boys in middle and late puberty
(p = 0.001); no significant differences related to pubertal stage were noted in females
(p = 0.04), Table 1.

Fat mass and free fat mass did not differ in females and males (p > 0.05), Table 1.
Fat mass was influenced by puberty in both sexes, with higher values in pubertal stages
compared to prepubertal stages (p < 0.01). Free fat mass in prepubertal females was higher
compared to girls in middle and late puberty (p = 0.001), while no differences were related
to pubertal stage in boys (p = 0.54), Table 1.

3.2. Indirect IR Markers

Concerning IR indexes, lower HOMA-β (p < 0.001) levels were detected in males
compared to females. No other differences in IR indexes were noted between sex groups
(p > 0.05), Table 1. The differences in all IR parameters were influenced by puberty in both
sexes, with higher values in pubertal patients compared to patients in the prepubertal
period (p < 0.001).

3.3. Correlation between IR Measurements and Adiposity Indexes

As reported in Table 2, in both sexes, WC and VAI significantly correlated with all
indirect IR measurements (p < 0.001).
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Table 2. Correlation between insulin resistance measurements and adiposity indexes.

Adiposity Indexes

Indirect Insulin Resistance Measurements

HOMA-IR TyG-Index HOMA-β QUICK Index

All Females Males All Females Males All Females Males All Females Males

Body mass index r = 0.41 r = 0.42 r = 0.39 r = 0.14 r = 0.11 r = 0.18 r = 0.45 r = 0.49 r = 0.41 r = 0.41 r = 0.43 r = 0.39
p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.05 p = 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Tanner 1
r = 0.40 r = 0.49 r = 0.26 r = 0.16 r = 0.23 r = 0.16 r = 0.36 r = 0.42 r = 0.41 r = 0.31 r = 0.42 r = 0.25

p < 0.001 p < 0.001 p = 0.04 p = 0.05 p = 0.03 p = 0.24 p < 0.001 p < 0.001 p = 0.01 p < 0.001 p < 0.001 p = 0.05

Tanner 2–3
r = 0.40 r = 0.46 r = 0.30 r = 0.08 r = 0.13 r = 0.04 r = 0.45 r = 0.55 r = 0.30 r = 0.36 r = 0.43 r = 0.28

p < 0.001 p < 0.001 p < 0.001 p = 0.08 p = 0.07 p = 0.56 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Tanner 4–5
r = 0.13 r = −0.05 r = 0.57 r = 0.10 r = −0.02 r = 0.53 r = −0.01 r = −0.24 r = 0.43 r = 0.13 r = −0.13 r = 0.48
p = 0.28 p = 0.72 p < 0.01 p = 0.43 p = 0.88 p = 0.01 p = 0.93 p = 0.11 p = 0.04 p = 0.27 p = 0.93 p = 0.02

Body mass index z score r = 0.19 r = 0.24 r = 0.15 r = 0.18 r = 0.19 r = 0.18 r = 0.08 r = 0.19 r = −0.02 r = 0.21 r = 0.27 r = 0.15
p < 0.001 p < 0.001 p = 0.01 p < 0.001 p < 0.001 p = 0.002 p = 0.03 p < 0.001 p = 0.68 p < 0.001 p < 0.001 p = 0.01

Tanner 1
r = 0.34 r = 0.43 r = 0.21 r = 0.24 r = 0.20 r = 0.33 r = 0.23 r = 0.39 r = −0.05 r = 0.35 r = 0.44 r = 0.24

p < 0.001 p < 0.001 p = 0.11 p < 0.01 p = 0.06 p = 0.01 p < 0.01 p < 0.001 p = 0.71 p < 0.001 p < 0.001 p = 0.06

Tanner 2–3
r = 0.36 r = 0.47 r = 0.29 r = 0.25 r = 0.27 r = 0.25 r = 0.10 r = 0.36 r = 0.08 r = 0.36 r = 0.47 r = 0.31

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.01 p < 0.001 p = 0.21 p < 0.001 p < 0.001 p < 0.001

Tanner 4–5
r = 0.18 r = −0.08 r = 0.66 r = 0.12 r = 0.002 r = 0.42 r = 0.003 r = −0.29 r = 0.47 r = 0.16 r = −0.02 r = 0.58
p = 0.14 p = 0.61 p < 0.001 p = 0.32 p = 0.98 p = 0.04 p = 0.97 p = 0.06 p = 0.02 p = 0.19 p = 0.89 p < 0.01

Waist circumference
r = 0.41 r = 0.43 r = 0.42 r = 0.20 r = 0.15 r = 0.25 r = 0.46 r = 0.53 r = 0.45 r = 0.43 r = 0.44 r = 0.44

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.008 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Tanner 1
r = 0.35 r = 0.50 r = 0.04 r = 0.09 r = 0.22 r = −0.07 r = 0.31 r = 0.41 r = 0.13 r = 0.30 r = 0.41 r = 0.11

p < 0.001 p < 0.001 p = 0.75 p = 0.29 p = 0.03 p = 0.60 p < 0.001 p < 0.001 p = 0.33 p < 0.001 p < 0.001 p = 0.39

Tanner 2–3
r = 0.39 r = 0.48 r = 0.34 r = 0.14 r = 0.16 r = 0.14 r = 0.44 r = 0.60 r = 0.38 r = 0.39 r = 0.47 r = 0.34

p < 0.001 p < 0.001 p < 0.001 p < 0.01 p = 0.03 p = 0.04 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Tanner 4–5
r = 0.16 r = −0.08 r = 0.41 r = 0.42 r = 0.25 r = 0.54 r = 0.22 r = −0.06 r = 0.36 r = 0.13 r = −0.01 r = 0.29
p = 0.20 p = 0.59 p < 0.001 p < 0.001 p = 0.12 p < 0.001 p = 0.08 p = 0.71 p = 0.09 p = 0.31 p = 0.94 p = 0.17

Waist circumference/height
ratio

r = 0.08 r = 0.07 r = 0.10 r = 0.07 r = 0.07 r = 0.06 r = 0.07 r = 0.11 r = 0.14 r = 0.07 r = 0.06 r = 0.10
p = 0.05 p = 0.18 p = 0.09 p = 0.08 p = 0.17 p = 0.26 p = 0.07 p = 0.04 p = 0.01 p = 0.07 p = 0.26 p = 0.08

Tanner 1
r = 0.14 r = 0.22 r = −0.05 r = 0.009 r = 0.04 r = −0.06 r = 0.16 r = 0.23 r = 0.01 r = 0.09 r = 0.13 r = −0.009
p = 0.09 p = 0.03 p = 0.66 p = 0.90 p = 0.67 p = 0.63 p = 0.04 p = 0.03 p = 0.90 p = 0.28 p = 0.23 p = 0.944

Tanner 2–3
r = 0.08 r = 0.10 r = 0.09 r = 0.08 r = 0.11 r = 0.06 r = 0.12 r = 0.16 r = 0.15 r = 0.09 r = 0.10 r = 0.11
p = 0.08 p = 0.15 p = 0.17 p = 0.11 p = 0.14 p = 0.34 p = 0.01 p = 0.02 p = 0.02 p = 0.07 p = 0.15 p = 0.11

Tanner 4–5
r = 0.312 r = −0.05 r = 0.40 r = 0.37 r = −0.31 r = 0.58 r = 0.11 r = −0.04 r = 0.34 r = 0.17 r = −0.08 r = 0.34
p = 0.32 p = 0.74 p = 0.06 p = 0.003 p = 0.05 p < 0.01 p = 0.38 p = 0.78 p = 0.12 p = 0.17 p = 0.61 p = 0.11

Fat mass
r = 0.18 r = 0.27 r = 0.05 r = 0.12 r = 0.13 r = 0.10 r = 0.18 r = 0.25 r = 0.08 r = 0.19 r = 0.30 r = 0.04

p < 0.001 p < 0.001 p = 0.38 p = 0.006 p = 0.02 p = 0.10 p < 0.001 p < 0.001 p = 0.18 p < 0.001 p < 0.001 p = 0.48

Tanner 1
r = 0.26 r = 0.31 r = 0.12 r = 0.23 r = 0.18 r = −0.25 r = 0.20 r = 0.23 r = 0.06 r = 0.23 r = 0.27 r = 0.11
p < 0.01 p < 0.01 p = 0.40 p < 0.01 p = 0.10 p = 0.07 p = 0.02 p = 0.03 p = 0.67 p < 0.01 p = 0.01 p = 0.42
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Table 2. Cont.

Adiposity Indexes

Indirect Insulin Resistance Measurements

HOMA-IR TyG-Index HOMA-β QUICK Index

All Females Males All Females Males All Females Males All Females Males

Tanner 2–3
r = 0.19 r = 0.34 r = 0.01 r = 0.05 r = 0.13 r = −0.003 r = 0.16 r = 0.28 r = 0.03 r = 0.14 r = 0.37 r = −0.06

p < 0.001 p < 0.001 p = 0.88 p = 0.29 p = 0.08 p = 0.96 p < 0.01 p < 0.001 p = 0.66 p < 0.001 p < 0.001 p = 0.37

Tanner 4–5
r = −0.14 r = −0.20 r = −0.002 r = 0.07 r = −0.13 r = 0.34 r = −0.07 r = −0.18 r = 0.06 r = −0.04 r = −0.11 r = 0.10
p = 0.30 p = 0.721 p = 0.99 p = 0.60 p = 0.43 p = 0.13 p = 0.60 p = 0.29 p = 0.80 p = 0.73 p = 0.452 p = 0.65

Free Fat mass
r = −0.18 r = −0.22 r = −0.004 r = −0.04 r = −0.002 r = −0.08 r = −0.03 r = −0.12 r = 0.08 r = −0.10 r = −0.19 r = 0.007
p = 0.004 p < 0.001 p = 0.95 p = 0.30 p = 0.97 p = 0.22 p = 0.43 p = 0.06 p = 0.22 p = 0.03 p = 0.002 p = 0.91

Tanner 1
r = 0.01 r = −0.01 r = 0.03 r = −0.04 r = 0.13 r = −0.22 r = 0.05 r = 0.0001 r = 0.11 r = 0.08 r = 0.10 r = 0.05
p = 0.86 p = 0.88 p = 0.79 p = 0.41 p = 0.27 p = 0.12 p = 0.56 p = 0.99 p = 0.43 p = 0.37 p = 0.41 p = 0.70

Tanner 2–3
r = −0.23 r = −0.31 r = −0.06 r = −0.04 r = −0.05 r = −0.01 r = −0.08 r = −0.15 r = 0.07 r = −0.19 r = −0.30 r = −0.03
p < 0.001 p < 0.001 p = 0.44 p = 0.41 p = 0.51 p = 0.82 p = 0.13 p = 0.06 p = 0.38 p < 0.01 p < 0.001 p = 0.66

Tanner 4–5
r = 0.04 r = −0.02 r = −0.09 r = −0.03 r = −0.04 r = −0.07 r = 0.13 r = 0.12 r = 0.14 r = −0.05 r = −0.16 r = −0.02
p = 0.72 p = 0.87 p = 0.70 p = 0.82 p = 0.78 p = 0.74 p = 0.32 p = 0.46 p = 0.56 p = 0.64 p = 0.35 p = 0.92

VAI
r = 0.26 r = 0.21 r = 0.32 r = 0.77 r = 0.79 r = 0.80 r = 0.32 r = 0.27 r = 0.32 r = 0.29 r = 0.24 r = 0.33

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Tanner 1
r = 0.30 r = 0.33 r = 0.38 r = 0.80 r = 0.87 r = 0.88 r = 0.39 r = 0.38 r = 0.12 r = 0.38 r = 0.33 r = 0.41

p < 0.001 p = 0.001 p < 0.01 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.35 p < 0.001 p = 0.001 p = 0.001

Tanner 2–3
r = 0.27 r = 0.22 r = 0.31 r = 0.78 r = 0.77 r = 0.81 r = 0.31 r = 0.23 r = 0.32 r = 0.28 r = 0.23 r = 0.30

p < 0.001 p < 0.01 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.01 p < 0.001 p < 0.001 p = 0.002 p < 0.001

Tanner 4–5
r = 0.01 r = −0.10 r = 0.12 r = 0.84 r = 0.84 r = 0.88 r = 0.09 r = 0.10 r = 0.06 r = 0.07 r = 0.001 r = 0.15
p = 0.93 p = 0.54 p = 0.58 p < 0.001 p < 0.001 p < 0.001 p = 0.46 p = 0.54 p = 0.79 p < 0.001 p = 0.99 p = 0.050

ABSI
r = −0.04 r = −0.05 r = −0.02 r = 0.07 r = 0.10 r = 0.04 r = −0.02 r = −0.004 r = −0.009 r = −0.05 r = −0.07 r = −0.02
p = 0.24 p = 0.32 p = 0.68 p = 0.07 p = 0.07 p = 0.42 p = 0.56 p = 0.93 p = 0.87 p = 0.16 p = 0.21 p = 0.64

Tanner 1
r = −0.03 r = 0.02 r = −0.21 r = −0.12 r = −0.07 r = −0.21 r = −0.04 r = 0.01 r = −0.23 r = −0.07 r = −0.06 r = −0.16
p = 0.65 p = 0.79 p = 0.10 p = 0.15 p = 0.47 p = 0.11 p = 0.56 p = 0.90 p = 0.08 p = 0.38 p = 0.58 p = 0.23

Tanner 2–3
r = −0.01 r = 0.01 r = 0.001 r = 0.13 r = 0.15 r = 0.15 r = 0.01 r = 0.07 r = 0.05 r = −0.001 r = 0.03 r = 0.01
p = 0.76 p = 0.84 p = 0.98 p = 0.01 p = 0.04 p = 0.03 p = 0.84 p = 0.31 p = 0.48 p = 0.99 p = 0.65 p = 0.84

Tanner 4–5
r = 0.04 r = −0.01 r = 0.10 r = 0.38 r = 0.34 r = 0.35 r = 0.21 r = 0.25 r = 0.13 r = 0.06 r = 0.04 r = 0.05
p = 0.72 p = 0.92 p = 0.065 p < 0.01 p = 0.03 p = 0.10 p = 0.10 p = 0.12 p = 0.53 p = 0.62 p = 0.77 p = 0.82

TMI
r = 0.23 r = 0.30 r = 0.07 r = 0.07 r = 0.11 r = 0.02 r = 0.25 r = 0.33 r = 0.09 r = 0.18 r = 0.26 r = −0.03

p < 0.001 p < 0.001 p = 0.06 p = 0.06 p = 0.04 p = 0.65 p < 0.001 p < 0.001 p = 0.10 p < 0.001 p < 0.001 p = 0.55

Tanner 1
r = 0.18 r = 0.29 r = −0.02 r = 0.03 r = 0.06 r = −0.003 r = 0.20 r = 0.25 r = 0.13 r = 0.12 r = 0.22 r = −0.04
p = 0.02 p < 0.01 p = 0.83 p = 0.72 p = 0.54 p = 0.97 p = 0.01 p = 0.01 p = 0.31 p = 0.14 p = 0.03 p = 0.74

Tanner 2–3
r = 0.30 r = 0.38 r = 0.13 r = 0.11 r = 0.17 r = 0.04 r = 0.35 r = 0.47 r = 0.13 r = 0.23 r = 0.33 r = 0.09

p < 0.001 p < 0.001 p = 0.06 p = 0.03 p = 0.02 p = 0.56 p < 0.001 p < 0.001 p = 0.06 p < 0.001 p < 0.001 p = 0.20

Tanner 4–5
r = 0.09 r = −0.03 r = 0.58 r = 0.01 r = 0.003 r = 0.58 r = −0.11 r = −0.31 r = 0.41 r = 0.15 r = 0.07 r = 0.58
p = 0.48 p = 0.84 p < 0.01 p = 0.87 p = 0.98 p = 0.004 p = 0.38 p = 0.704 p = 0.05 p = 0.23 p = 0.63 p < 0.01
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Table 2. Cont.

Adiposity Indexes

Indirect Insulin Resistance Measurements

HOMA-IR TyG-Index HOMA-β QUICK Index

All Females Males All Females Males All Females Males All Females Males

ConI
r = 0.08 r = 0.09 r = 0.09 r = 0.12 r = 0.15 r = 0.10 r = 0.17 r = 0.11 r = 0.09 r = 0.07 r = 0.07 r = −0.08
p = 0.05 p = 0.11 p = 0.13 p = 0.003 p = 0.01 p = 0.07 p = 0.003 p = 0.06 p = 0.10 p = 0.08 p = 0.18 p = 0.15

Tanner 1
r = 0.04 r = 0.16 r = −0.20 r = −0.09 r = −0.01 r = −0.21 r = 0.02 r = 0.12 r = −0.19 r = −0.005 r = 0.06 r = −0.14
p = 0.61 p = 0.12 p = 0.13 p = 0.27 p = 0.86 p = 0.11 p = 0.75 p = 0.24 p = 0.15 p = 0.95 p = 0.57 p = 0.29

Tanner 2–3
r = 0.11 r = 0.17 r = 0.10 r = 0.16 r = 0.19 r = 0.17 r = 0.15 r = 0.26 r = 0.15 r = 0.11 r = 0.18 r = 0.10
p = 0.03 p = 0.02 p = 0.16 p < 0.01 p = 0.01 p = 0.01 p < 0.01 p < 0.001 p = 0.03 p = 0.02 p = 0.02 p = 0.14

Tanner 4–5
r = 0.07 r = −0.03 r = 0.20 r = 0.41 r = −0.35 r = 0.44 r = 0.21 r = 0.20 r = 0.21 r = 0.09 r = −0.04 r = 0.14
p = 0.54 p = 0.83 p = 0.34 p < 0.001 p = 0.02 p = 0.03 p = 0.09 p = 0.21 p = 0.33 p = 0.47 p = 0.77 p = 0.52

BMI = Body mass index; ABSI = body shape index; TMI = triponderal mass index; ConI = conicity index VAI = visceral adiposity index; HOMA = homeostasis model assessment for insulin resistance; HOMA-β =
HOMA of percentage β-cell function; QUICKI = quantitative insulin sensitivity check index; TyG-index = triglyceride and glucose index.
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Other correlations between adiposity indexes and IR parameters varied according to
sex. In particular, BMI was correlated (p < 0.001) with all indirect IR parameters except
for the TyG-index in females. Fat mass and TMI correlated with all IR parameters only in
females; BMI z-score correlated with IR markers except for HOMA-β in males (p > 0.05);
WC/H was not correlated with IR indexes except with HOMA-β in both sexes (males
p = 0.01; females p = 0.04); Free fat mass was related to HOMA-IR and QUICKI only in
females (p < 0.01); ConI was only correlated with the TyG-index in females (p = 0.01). ABSI
was not correlated with IR measurements.

As reported in Table 2, all significant correlations were influenced by puberty in both
males and females. For BMI, BMI-z score, WC, Fat mass, free fat mass, VAI, TMI, and ConI,
the correlation with IR parameters lost significance in late puberty, particularly in females,
Table 2.

The differences between females and males were more evident in middle puberty, in
particular for fat mass, free fat mass, VAI, TMI and Con I (p < 0.01).

3.4. Correlation between IR Measurements and Cardiometabolic Parameters

As shown in Table 3, in both sexes, triglycerides and SBP significantly correlated with
all indirect IR measurements (p < 0.001).

Table 3. Correlation between insulin resistance measurements and biochemical parameters.

Biochemical Parameters

Indirect Insulin Resistance Measurements

HOMA-IR TyG-Index HOMA-β QUICK Index

All Females Males All Females Males All Females Males All Females Males

Total cholesterol
r = 0.03 r = 0.03 r = 0.04 r = 0.28 r = 0.35 r = 0.23 r = 0.07 r = 0.07 r = 0.1 r = 0.01 r = 0.05 r = −0.006
p = 0.37 p = 0.49 p = 0.42 p < 0.001 p < 0.001 p < 0.001 p = 0.06 p = 0.17 p = 0.06 p = 0.71 p = 0.37 p = 0.91

Tanner 1
r = −0.03 r = −0.03 r = −0.05 r = 0.22 r = 0.33 r = 0.06 r = 0.04 r = −0.003 r = 0.17 r = −0.05 r = −0.02 r = −0.11
p = 0.63 p = 0.75 p = 0.68 p < 0.01 p < 0.01 p = 0.65 p = 0.57 p = 0.97 p = 0.19 p = 0.55 p = 0.84 p = 0.38

Tanner 2–3
r = 0.04 r = 0.16 r = −0.04 r = 0.30 r = 0.37 r = 0.26 r = 0.05 r = 0.14 r = 0.02 r = 0.02 r = 0.17 r = −0.05
p = 0.43 p = 0.03 p = 0.53 p < 0.001 p < 0.001 p < 0.001 p = 0.29 p = 0.06 p = 0.72 p = 0.59 p = 0.02 p = 0.43

Tanner 4–5
r = 0.10 r = −0.20 r = 0.47 r = 0.32 r = 0.27 r = 0.26 r = 0.29 r = −0.08 r = 0.53 r = 0.07 r = −0.11 r = 0.34
p = 0.43 p = 0.20 p = 0.02 p < 0.01 p = 0.08 p = 0.23 p = 0.02 p = 0.58 p = <0.01 p = 0.57 p = 0.49 p = 0.11

HDL-cholesterol
r = −0.16 r = −0.09 r = −0.25 r = −0.30 r = −0.26 r = −0.35 r = −0.21 r = −0.18 r = −0.28 r = −0.19 r = −0.12 r = −0.29
p < 0.001 p = 0.08 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.001 p < 0.001 p < 0.001 p = 0.03 p < 0.001

Tanner 1
r = −0.13 r = −0.14 r = −0.11 r = −0.37 r = −0.36 r = −0.38 r = −0.07 r = −0.11 r = 0.01 r = −0.14 r = −0.14 r = −0.14
p = 0.09 p = 0.18 p = 0.39 p < 0.001 p < 0.001 p < 0.01 p = 0.36 p = 0.31 p = 0.91 p = 0.08 p = 0.19 p = 0.27

Tanner 2–3
r = −0.19 r = −0.10 r = −0.33 r = −0.27 r = −0.23 r = −0.31 r = −0.25 r = −0.21 r = −0.33 r = −0.21 r = −0.10 r = −0.33
p < 0.001 p = 0.18 p < 0.001 p < 0.001 p < 0.01 p < 0.001 p < 0.001 p < 0.01 p < 0.001 p < 0.001 p = 0.16 p < 0.001

Tanner 4–5
r = 0.06 r = −0.07 r = 0.09 r = −0.34 r = −0.30 r = −0.29 r = −0.11 r = −0.08 r = −0.12 r = −0.01 r = 0.005 r = −0.007
p = 0.60 p = 0.65 p = 0.67 p < 0.01 p = 0.06 p = 0.18 p = 0.35 p = 0.59 p = 0.57 p = 0.89 p = 0.99 p = 0.97

Tryglicerides r = 0.27 r = 0.23 r = 0.32 r = 0.88 r = 0.90 r = 0.87 r = 0.30 r = 0.31 r = 0.31 r = 0.30 r = 0.26 r = 0.33
p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Tanner 1
r = 0.37 r = 0.31 r = −0.46 r = 0.93 r = 0.94 r = 0.94 r = 0.40 r = 0.42 r = 0.20 r = 0.38 r = 0.32 r = 0.46

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.12 p < 0.001 p < 0.01 p < 0.001

Tanner 2–3
r = 0.27 r = 0.27 r = −0.30 r = 0.88 r = 0.89 r = 0.88 r = 0.27 r = 0.27 r = 0.29 r = 0.28 r = 0.27 r = 0.29

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Tanner 4–5
r = 0.11 r = −0.09 r = 0.25 r = 0.94 r = 0.91 r = 0.95 r = 0.16 r = 0.19 r = 0.09 r = 0.13 r = 0.04 r = 0.20
p = 0.38 p = 0.55 p = 0.25 p < 0.001 p < 0.001 p < 0.001 p = 0.19 p = 0.22 p = 0.68 p = 0.29 p = 0.80 p = 0.37

Systolic Blood Pressure r = 0.34 r = 0.42 r = 0.27 r = 0.21 r = 0.22 r = 0.21 r = 0.25 r = 0.40 r = 0.12 r = 0.33 r = 0.47 r = 0.23
p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.04 p < 0.001 p < 0.001 p < 0.001

Tanner 1
r = −0.37 r = 0.44 r = 0.24 r = 0.09 r = 0.19 r = −0.06 r = 0.28 r = 0.35 r = 0.13 r = 0.40 r = 0.47 r = 0.27
p < 0.001 p < 0.001 p = 0.08 p = 0.27 p = 0.07 p = 0.66 p < 0.001 p < 0.01 p = 0.32 p < 0.001 p < 0.001 p = 0.04

Tanner 2–3
r = 0.25 r = 0.44 r = 0.13 r = 0.18 r = 0.22 r = 0.16 r = 0.17 r = 0.40 r = 0.02 r = 0.23 r = 0.44 r = 0.11

p < 0.001 p < 0.001 p = 0.06 p < 0.001 p < 0.01 p = 0.02 p < 0.01 p < 0.001 p = 0.72 p < 0.001 p < 0.001 p = 0.13

Tanner 4–5
r = 0.38 r = 0.12 r = 0.68 r = 0.39 r = 0.27 r = 0.44 r = 0.11 r = 0.10 r = 0.09 r = 0.30 r = 0.19 r = 0.43

p = 0.001 p = 0.44 p < 0.001 p < 0.01 p = 0.08 p = 0.03 p = 0.36 p = 0.50 p = 0.66 p = 0.01 p = 0.21 p = 0.04

Diastolic blood pressure r = 0.22 r = 0.23 r = 0.23 r = 0.007 r = −0.06 r = 0.06 r = 0.19 r = 0.27 r = 0.13 r = 0.17 r = 0.21 r = 0.14
p < 0.001 p < 0.001 p < 0.001 p = 0.85 p = 0.25 p = 0.26 p < 0.001 p < 0.001 p = 0.03 p < 0.001 p < 0.001 p = 0.02

Tanner 1
r = 0.27 r = 0.39 r = −0.05 r = −0.09 r = −0.03 r = −0.02 r = 0.17 r = 0.27 r = −0.11 r = 0.22 r = 0.33 r = −0.03

p = 0.001 p < 0.001 p = 0.68 p = 0.27 p = 0.78 p = 0.08 p = 0.03 p = 0.01 p = 0.43 p < 0.001 p < 0.01 p = 0.78

Tanner 2–3
r = 0.14 r = 0.22 r = −0.08 r = −0.02 r = −0.09 r = −0.02 r = 0.14 r = 0.29 r = 0.03 r = 0.08 r = 0.16 r = −0.03
p < 0.01 p < 0.01 p = 0.26 p = 0.71 p = 0.25 p = 0.78 p < 0.01 p < 0.001 p = 0.59 p = 0.11 p = 0.04 p = 0.63

Tanner 4–5
r = 0.28 r = −0.14 r = 0.73 r = 0.13 r = −0.004 r = 0.27 r = 0.08 r = −0.17 r = 0.33 r = 0.09 r = −0.22 r = 0.51
p = 0.02 p = 0.37 p < 0.001 p = 0.29 p = 0.97 p = 0.21 p = 0.51 p = 0.28 p = 0.12 p = 0.45 p = 0.17 p = 0.01

BMI = Body mass index; ABSI = body shape index; TMI = triponderal mass index; ConI = conicity index VAI = visceral adiposity index;
HOMA = homeostasis model assessment for insulin resistance; HOMA-β = HOMA of percentage β-cell function; QUICKI = quantitative
insulin sensitivity check index; TyG-index = triglyceride and glucose index.
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Total cholesterol levels did not correlate with IR indexes, except for the TyG-index
in both sexes (p < 0.001). DBP was not correlated with the TyG-index in females or males.
HDL-cholesterol correlated with all indirect IR (p < 0.001) parameters, except for HOMA-IR
and QUICKI in females.

Correlations between parameters and the differences between the sexes were signifi-
cantly more evident in middle puberty, Table 3.

4. Discussion

We reported sex-specific differences in the relationship between IR and adiposity
indexes, such as BMI, BMI-z score, WC, fat mass, free fat, TMI, ConI, ABSI, VAI, in children
and adolescents with obesity. Sex differences were also noted in the correlation between IR
markers and associated cardiometabolic risk factors, including lipidic profile and blood
pressure. Puberty, body-fat distribution, and body composition may play a role in the
differences between the sexes.

Childhood obesity is a multisystem condition associated with several metabolic dis-
eases [39]. IR is an early manifestation of dysmetabolism in pediatric patients, and is
also considered a precursor and risk factor for other cardiovascular diseases [1–5]. IR is
characterized by an inappropriate compensatory insulin secretory response, which leads to
hyperinsulinemia [40].

In this study, we observed sex-specific differences in the relationship between IR and
adiposity indexes in children and adolescents with obesity. Gender differences were also
noted in the correlation between IR markers and associated cardiometabolic risk factors.
Puberty, body-fat distribution, and body composition may play a role in these differences.

Some simple methods, including HOMA-IR, HOMA-β, QUICKI, have been validated
for use in epidemiological and clinical studies to detect IR and β-cell function and predict
the development of diabetes in a non-diabetic population [8]. Recently, the TyG-index has
also been proposed for IR estimation [11,12].

Several factors are known to contribute to IR development in patients with obesity.
Body composition, including distribution of body fat and accumulation of excess fat in
certain depots is a crucial player in the development of IR to the extent that visceral fat
accumulation has been shown to be a determinant of IR and cardiometabolic risk [16–32,41].
In pediatrics, pubertal changes in insulin sensitivity have been reported to contribute
to IR [42].

BMI, WC, and WHtR have been widely used as indexes of obesity, because of their
practical application. However, new parameters such as ABSI, VAI, TMI and the C-Index
have been proposed to better evaluate body-fat distribution [16–32,41]. In our population
significant differences were noted between these parameters according to sex and pubertal
stage, supporting the concept of differences in adipose tissue distribution according to
gender and hormonal influence [43].

Data on the correlations between new markers of adiposity and IR in pediatrics are
limited [28,32]. We describe here for the first time, sex-specific differences with respect to
these correlations. In both males and females, we observed that WC and VAI were closely
associated with IR indexes, confirming that these parameters are valuable indicators of
adipose tissue dysfunction [43] and are better predictors of impaired glucose metabolism
compared to BMI and other anthropometric measurements [44,45]. In support of this
concept, there is evidence that visceral fat is associated with adipokine production which
play a key role in insulin sensitivity [44]. Additionally, the capacity of IR indexes to estimate
muscle or central insulin sensitivity should be considered [8–12].

Other indexes highlighted different correlations with IR parameters according to
sex, even though IR indexes were similar in males and females. In particular, some
measurements, including total fat mass and TMI, were correlated with IR parameters only
in females. These results are supported by the well-known sex differences in adipose tissue
distribution [43]. Due to differences in the timing of pubertal development between females
and males, the role of sexual hormones was also considered [42]. Moreover, different
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adipose tissue functions according to gender, such as adipokine secretion related to insulin
sensitivity, cannot be excluded [43]. For example, it has been reported that developmental
genes may contribute to depot- and sex-specific properties of adipose tissue [43].

In this study, ABSI was not correlated with IR indexes, showing that this parameter is
a poor predictor of IR [46]. Bouchi et al. have reported that ABSI related to abdominal vs.
peripheral fat ratio is positively correlated with visceral adipose depot and is supposed to
be BMI-independent [47]. ABSI has also been shown to be significantly associated with
cardiometabolic risk markers in the pediatric population with overweight or obesity [28];
as reported this risk may be influenced by other variables, such as hypertension [41].

As with ABSI, ConI was a poor predictor of IR considering parameters based on
fasting levels of insulin and glucose. On the contrary, in females it was related to the
TyG-index, supporting a role in dysmetabolism linked to hypertension and dyslipidemia
rather than to IR [48].

In this study, sex-specific differences were also observed in the correlation between
IR surrogates and associated cardiometabolic risk factors, such as total cholesterol, HDL-
cholesterol, and DBP. These data support the idea that additional genetic and lifestyle
factors including dietary patterns and exercise, may also influence IR and the dysmetabolic
profile [1,5,49].

Western diets poor in fruit and vegetables and rich in animal-based sources of proteins
affect insulin secretion and reduce IR by insufficient intake of antioxidant food compounds;
negative microbiota interactions and increased metabolic acid load that have also been
linked to IR and impaired glucose homeostasis [50].

Data on the impact of sex-specific differences on health are scarce in the pediatric age.
The study of sex-specific differences in obesity-related complications, such as prevalence,
severity of progression, and symptom presentation represent crucial information for pre-
vention strategies in order to improve public health. Additionally, the critical importance
of sex differences as modulators of drug response have been reported [51]. Thus, these
differences should be considered for tailored treatments also in pediatrics.

Study limitations The study has some limitations that should be considered. First,
even though the gold standard for IR determination is the euglycaemic-hyperinsulinaemic
clamp technique, we used the indirect measurement of IR since the clamp is difficult to use
in routine clinical practice or large epidemiologic studies, particularly in children. Secondly,
we only evaluated correlations between IR and adiposity indexes; however, the role of
physical activity and diet in insulin sensitivity, should be considered. Additionally, in
females with adipomastia normal breast development with female Tanner classification
may be difficult to evaluate. However, the Tanner scale is the gold standard in rating
pubertal development in clinical practice.

Finally, sex hormone evaluations were not included in the analysis and their influence
on IR cannot be excluded.

5. Conclusions

The relationship between IR surrogates and obesity indexes is influenced by gender
in pediatrics and puberty represents the period in which these correlations were more
evident. Sex-specific differences in obesity-related complications are meaningful in the
detection process of pre-disease stage and in therapeutic intervention planning for children
and adolescents.
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