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Abstract
Motivation: Molecular profiles (DNA fingerprints) may be
used to allocate an individual of unknown membership to
one among the known groups of a reference population.
Time and costs of profile assessment may be reduced by
identifying informative profile components (markers).
Results: A genetic algorithm (GA) is proposed to identify
promising candidate markers from a pilot experiment in
which observations are supposed to be without measure-
ment error. The analysis of simulated datasets suggests
reasonable values for GA parameters and confirms that
the GA finds components of the profile showing associa-
tion with the considered groups. Our GA may be used to
perform a first screening of candidate markers to be in-
cluded in subsequent experiments.
Availability: The 32-bit executable (Windows 95, 98
and NT) is available at http://www.ds.unifi.it/∼stefanin/
bioinformatics.htm.
Contact: stefanin@ds.unifi.it
Supplementary Information: The algorithm is imple-
mented for research purposes, i.e. a limited amount of
input filtering and error messages are provided.

Introduction
Individual-specific fingerprints of human DNA were in-
troduced by Jeffreys et al. (1985) and are now extensively
used in epidemiology, forensic science, molecular and
population genetics. In crop science, DNA fingerprint
technology offers new tools to improve procedures of
pedigree analysis, genetic selection and genetic mapping
(Beckman and Osborn, 1992; Phillips and Vasil, 1994).

This work deals with the use of molecular profiles to
improve the ability of allocating an unknown individual to
one of the groups in a biological reference population.

In typical experimental setups, DNA fragments are
assayed as an array of dark bands on the electrophoretic
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gel. The array is called the molecular profile of the
individual (DNA fingerprint). If a laboratory protocol
includes DNA amplification, thousands of observable
bands may be surveyed for each individual sampled. A
wide amount of potentially useful information is readily
accessible but costs can rise quickly.

The spread of molecular profile technology in routine
applications requires methods to perform feature extrac-
tion (Devroye et al., 1996, chap. 32), that is the reduc-
tion of large profiles to small informative components: the
markers of biological groups. If the biological populations
are stable regarding their DNA features, then group mem-
bership may often be successfully evaluated through infor-
mative profile components.

Algorithms based on evolutionary computation have
been developed in forecasting (Packard, 1990), pattern
recognition problems (Pei et al., 1995a,b), molecular
marker identification (Stefanini and Camussi, 1997)
and to analyze high dimensional datasets in time series
analysis (Packard and Meyer, 1991). Genetic algorithms
(GAs) have been used to search for homologies in genetic
sequence classification (Chuzhanova et al., 1998) and
to perform combinatorial optimization in molecular
modelling and ligand design (Willet, 1995).

Recently, a GA optimizing a fitness function based
on Bayesian predictive distributions has been proposed
to analyze molecular profiles from pilot experiments
(Stefanini, 1998). The approach differs from that in
Stefanini and Camussi (1997) because a simpler and
faster algorithm takes into account sampling variability.
Moreover, it introduces Bayesian arguments to build the
fitness function, a component that strongly determines GA
performances.

Here we study the minimum number of generations
(MNG) that the GA requires in order to find profile com-
ponents associated to groups in the reference population,
before the pre-assigned maximum number of generations
is accomplished.
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The presentation opens with the problem abstraction in
which measurement errors are assumed to be negligible.
Then, an objective function based on Bayesian predictive
distributions is developed and used to define a fitness
function.

The main features of the implemented GA are explained
in the last part of the Section System and methods.
Two simulation experiments using the proposed fitness
function are performed. The first (see the Section Ex-
periment 1: the identification of G A and fitness function
parameters) deals with the full factorial experiment in
which MNG is recorded for each simulation repeated
on the same dataset but with different choice of pa-
rameter values in the GA. The analysis of results from
experiment 1 were used to select the parameter values
used in experiment 2. In the second experiment (see
the Section Experiment 2: some performances of the
GA) datasets in which profile components have a known
degree of association with groups are used as training data
for the GA.

The analysis of MNG from experiment 2 revealed a
dependence on the amount of information carried by
profile components associated to groups. The Discussion
focuses on the issues that might arise in the analysis of
actual data.

Our algorithm may be used without additional tools
only if data are not affected by measurement error.
Moreover, the algorithm has the purpose of finding all the
components of the profile that are associated to groups in
the reference population, whether they are fake markers
due to sampling noise or not. Confirmatory experiments
are required to validate candidate markers (informative
profile components).

System and methods
The objective function
Let O = {O1, . . . , O j , . . . , OK } be the set of locations
on electrophoretic gels (observable bands) that may show
DNA bands. Let P (O) be the power set of O. Then, a
profile component is an element S of P (O). Let B =
{0, 1} and B

K be its Cartesian product. Then, the band
pattern of an individual is an element of B

K , that is his
molecular profile is represented by a vector of length
K , whose element j is equal to 1 if a DNA band is
present at location j on the gel, 0 otherwise. Let �Y =
{0, 1, . . . , M − 1} be the set of integers used to label the
reference population that is made up of M subpopulations
(groups). The random vector of K +1 elements associated
with the random sampling of one individual from the
reference population is

(Y, X) = (Y, X1, X2, . . . , X K ) on �Y × B
K , (1)

where X j , j = 1, . . . , K , refers to O j ∈ O. A
realization (y, x1, x2, . . . , xK ) of (1) indicates the cell of
the two-way contingency table ‘group by band pattern’
whose count has to be increased by one. Therefore, a
saturated multinomial model for such a table is obtained
by associating a parameter θi, j with each cell i, j where
j = 1, . . . , 2K and i = 0, . . . , M − 1. The parameter θi, j
represents the probability of observing the band pattern
in column j in the individual sampled from group i , with
θ = (θ0,1, θ0,2, . . . , θi, j , . . .) the vector of parameters and∑

i, j θi, j = 1.
A profile component S ⊆ O is informative for Y

if its observable bands reduce the uncertainty about Y
(Stefanini, 1998). An informative profile component is a
marker only if the association with groups of the reference
population is not due to sampling noise. Thus, a validation
experiment is required to assess if an informative profile
component really marks the reference population. In this
case the information is stable over replicated experiments.

Let (Y, XS , XS) be a partitioned representation of (1)
for a given S in which XS contains those X j with O j ∈
S . Let θS = t (θS,0,1, θS,0,2, . . . , θS,i, j ′, . . .) be the vector
of parameters associated to the contingency table Y by
XS and θS = (θS,1, θS,2, . . . , θS, j ′′, . . .) be the vector of
parameters related to the band patterns 1, 2, . . . , j ′′, . . .
due to XS . Let p(Y | XS , θS ,S) be the probability
mass function of Y conditional on the parameter θS and
the molecular information carried by S . The band pattern
indicated by j in the whole table is split into a component
indicated by j ′ in the table Y by XS , and a component
indicated by j ′′ in the vector of band patterns due to XS .

Let p(Y | XS , XS , θ,S) be the the conditional distri-
bution of Y given X , where X is partitioned according to
S . Assume that conditional independence holds, i.e.

p(Y | XS , XS , θ,S) = p(Y | XS , θS ,S), (2)

then the conditional distribution of Y given a component
of the band pattern indicated by j ′ does not change
its shape whatever the component of the band pattern
indicated by j ′′. In other words, the information content of
the conditional distribution does not change after assessing
the component of the band pattern due to observable bands
in S .

We follow the Bayesian paradigm for the unknown
parameters in θ by summarizing the uncertainty through
a probability distribution. The information on θ is updated
by conditioning on data from a pilot experiment. From
the reference population, Nt = M · N individuals are
sampled, N for each of the M subpopulations. Let nS =
(n0,1, . . . , ni, j , . . .) be the value of the sufficient statistics
(cell counts) that are calculated using the training dataset
on the marginal two-way table induced by S . Let the prior
distribution be a Dirichlet probability density function
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with parameters λi, j = const, λ =
∑
i, j

λi, j = 1. The

posterior distribution p(θS | nS ,S) of θS given nS and
S is Dirichlet with updated parameters λ̃i, j = λi, j + ni, j .
The predictive distribution p

(
Y | xS , nS ,S

)
obtained by

integrating with respect to θS captures the uncertainty
about Y for the next individual that carries the molecular
profile component equal to xS .

The directed divergence (Kullback, 1968, p. 7) quanti-
fies the information gain about Y provided by the data nS
for a given profile component S and observed band pattern
xS , which is

I (pY | xS , nS ,S) =
M−1∑
i=0

p(Y | xS , nS ,S)

× log

(
p(Y | xS , nS ,S)

pY (i)

)
. (3)

The evaluation of the information gain depends on the
amount of uncertainty for the same subpopulation before
observing the band pattern xS , i.e. the denominator pY (i).
If the probability value pY (i) is close to one, the gain
is small even if p(Y = i | xS , nS ,S) is equal to
one. The information gain associated to a band pattern
xS is maximum if the probability mass function p(Y |
xS , nS ,S) is degenerate, that is if it is concentrated on
one subpopulation that prior to observing the band pattern
had a probability value close to zero. If the numerator of
the logarithm in equation (3) is zero, we set 0 · log(0) =
0. In experiments 1 and 2 the denominator is equal to
the constant M−1, because the probability mass function
pY (y) is uniform. This choice maximizes the entropy of
the distribution and it is suited to circumstances of weak
priori information about Y . We will not discuss here the
possibility of modifying pY (y) according to experimental
data.

The value of a band pattern in a future experiment is
unknown, thus different results xS correspond to different
values of equation (3). We propose a weighted average
of equation (3) according to the probability of observing
xS . The expected information gain IE (pY | nS ,S) with
respect to XS is an averaged gain with respect to the band
patterns defined through S , that is

IE (pY | nS ,S) = E[I (pY | XS , nS ,S)]. (4)

The expected information gain approaches the maxi-
mum value if different subpopulations do not share band
patterns, that is if equation (3) is maximized for each band
pattern.

It follows that a profile component that is very large, will
determine a huge number of band patterns, and each one
will be observed one or zero times. Moreover, it is likely

those zeros are due to sampling (small sampling size), thus
the expected information gain does not capture interesting
features if large profile components are investigated with
small samples (as expected). This is the main reason to
constraint the maximum size of the candidate markers.

Two assumptions make the evaluation of the expected
information gain meaningful:

(1) the variability of band patterns ‘between’ and
‘within’ subpopulations is not negligible; if this
assumption does not hold then the probabilistic
description of the uncertainty loses its purpose;

(2) if some informative profile components are con-
tained in the profile, their size is small thus the
number of elements of O contained in S is small; it
is difficult to specify a maximum number, although
it is clear from the discussion above that the maxi-
mum number of observable bands is related to the
sample size.

We anticipate here that in our simulations, the maximum
number of elements contained in a set S is three.

For the goal of our analysis, the dependence of equa-
tions (3) and (4) over M is not interesting here, because the
search for informative profile components is performed in
the preassigned reference population, that is conditional to
a given M .

From the equations above, the expected information
gain is conditional to the observed data. A profile com-
ponent could be evaluated as highly informative because
of sampling noise. The large number of observable bands
in pilot experiments suggests that a validation experiment
including only informative profile components is the best
approach to distinguish fake from true markers. Statistical
tests might be used to perform some kind of noise filter-
ing, but the statistical power in detecting signals might be
so low to make pilot experiments useless.

The unnormalized fitness function
The unnormalized fitness function gE (S, q1, q2) for a
given training dataset n is obtained from the expres-
sion (4):

gE (S, q1, q2) = {IE (pY | nS ,S) · h(S)}q1 + q2, (5)

where q1 and q2 are two tuning constants that affect the
way the expected information gain is mapped in the fitness
function. Thus a rich class of functions is available .

The function h(S) penalizes the profile components that
exceed the minimum number of observable bands required
to discriminate among M groups. In our simulations it is
defined by

h(S) = 1 − W + Wl

W̃
,
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where Ml is the least integer not smaller than log2(M),
W = card(S) and W̃ = max(card(S)). In our simulations
the maximum size of an informative profile components is
W̃ = 3, and Ml = 1 (two subpopulations).

Numerical investigations (results not shown) were per-
formed on simulated datasets to check if the equivalence
classes induced by (5) on P(O) were suited to the goal
and if the values shown for pairs of equivalence classes
were reasonable. Nevertheless, the uncertainty about the
choice of q1 and q2 was still considerable even after the
numerical inspection.

Moreover, it was not clear if the choice of GA param-
eters should be performed one at a time, that is by ignor-
ing the value of parameters within gE (·), or if parameters
should be jointly selected because of the relevance of their
interaction.

We designed the Monte Carlo experiment 1 to answer
the above questions, because the analytical solution re-
lated to GA dynamics seemed unfeasible.

Algorithm and implementation
The GA used in experiments 1 and 2 resembles the simple
GA described in Stefanini and Camussi (1993), but the
chromosome structure is different (Stefanini, 1998).

Each chromosome is an ordered list of integers whose
size is variable within a preassigned set (1–3 in our simu-
lations). Chromosomes are initialized by a single random
drawing from the set of integers {11, . . . , K }, so that in-
formative profile components located in {1, . . . , 10} are
certainly excluded from the first generation. The proba-
bility of sampling informative components by chance dur-
ing the initialization is negligible for datasets larger then
those considered here, thus we introduced this feature as a
correction in the evaluation of MNG. Stochastic Universal
Sampling (Baker, 1987) is used in the reproduction step to
diminish the selection bias.

A specialized crossing over operator and three different
types of mutation are defined to work on ordered lists of
integers. As regards mutation, a Monte Carlo mutation op-
erator guarantees the global convergence of the algorithm
in the limit (Geyer-Schulz, 1995, chapter 10, pp 316). In
our algorithm it corresponds to the random draw without
replacement of a random number of integers from the urn
defined by the set {1, 2, . . . , K }. The mutation operator
called Del causes random deletion of size 1 in a chro-
mosome. The mutation operator called Sub substitutes a
single observable band j with a new observable band ran-
domly drawn from the set {1, 2, . . . , j −1, j +1, . . . , K }.
A mixture of these mutation operators is used with prob-
ability pm on a given chromosome. See Stefanini (1998)
for details.

The probability of recombination for a chromosome
is equal to pc. The partner chromosome is randomly
drawn according to fitness values in the population. The

recombination operator samples half of the observable
bands contained in the first chromosome and half from
the second, checking for duplication of observable bands
in the derived list. Then, it stores the ordered list of
observable bands in the newborn chromosome.

The ran2() generator described in Press et al. (1992)
was used as a source of pseudo-random numbers, after
embedding it in a C++ class that contains member
functions to produce various other types of random
deviates. The initialization may be chosen by the user or
set using internal clock values.

The implementation of the GA was performed in C++,
using the Borland compiler 5.01 (Borland International,
Inc., 1996) in a Windows 98 environment. Simulations
were performed on a Pentium II PC 200 MHz with
128 Mb Ram. Each GA run took approximately 33 s.

The 32-bit executable file runs on PC machines and uses
ASCII files to read the dataset and GA parameters.

Results
Experiment 1: the identification of G A and fitness
function parameters
The designed simulation plan corresponds to the Carte-
sian product among the following sets: {0.5, 1} for q1,
{0.01, 0.001} for q2, {0.01, 0.05, 0.1} for the probability
of mutation pm (it refers to one chromosome, see the
Section Algorithm and implementation), {0.1, 0.25, 0.35}
for the probability of crossing-over pc. For each point
in the Cartesian product, 50 GA runs (replicates) were
performed on a simple simulated dataset that retained
a non-trivial association structure between Y and XS .
This means that there was an observable band not fully
informative for the reference population if considered
alone, but fully informative if jointly considered with
another observable band.

Three observable bands O1, O2 and O3 carried infor-
mation about Y . The observable bands O1, O2 were fully
informative for Y , and O3 carried some information but it
was redundant given O1, O2. Furthermore, both O1, O3
and O2, O3 were not fully informative for Y . In other
words, individuals in the dataset that shared the same band
pattern in O1, O2 belonged to the same subpopulation.

The dataset of 100 simulated molecular profiles had two
subpopulations, M = 2, and K = 1000 observable bands.

The total number of GA runs was 1800, and the
maximum number of generations was set to 10 000.

Observable bands in XS were identical in the two sub-
populations, and were independently sampled from a uni-
form distribution on {0, 1}, that is (x4, x5, . . . , x1000)r =
(x4, x5, . . . , x1000)r+50, where r = 1, 2, . . . , 50 and the
yr = 0, yr+50 = 1.

Generalized linear models (McCullagh and Nelder,
1989) were used to clarify the structure underlying the
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Table 1. Descriptive statistics for experiment 1. Mean (top in each cell) and
standard deviation (bottom in each cell) of the variable minimum number
of generations (MNGs), cross-classified for parameter values of q1, pm and
pc. This table is marginalized with respect to q2, thus in each cell there are
100 observations

pc 0.1 0.25 0.35

q1 = 0.5
pm

4185 2485 2282
0.01

3499 2283 2500

970 480 402
0.05

984 536 411

445 298 220
0.1

431 304 211

q1 = 1
pm

5439 3671 2750
0.01

5673 2982 2452

1465 636 615
0.05

1209 544 609

644 349 289
0.1

547 320 277

observed variability of MNGs (Z in equation (6)). Several
quasi-likelihood models (McCullagh and Nelder, 1989)
were fitted to data and the final model, obtained using a
stepwise procedure, was

log(ηi jk) = µ111 + αi + β j + γk

Var(Z) = φ · η2
i, j,k

ηi, j,k = E[Zi, j,k,l ]
i = 2; j = 2, 3; k = 2, 3; l = 1, . . . , 100. (6)

The parameter µ111 refers to the cell in the top-left corner
of Table 1, and αi , β j , γk represent respectively the main
effects of q1, pm and pc. In equation (6), φ is a scale
parameter and η the expected value of Z . The index l is
from 1–100 because the 50 replicates are multiplied by 2,
the two levels of the model factor q2 that was excluded
from the final model.

Table 2 provides estimates for all terms in (6). The
simple effect of q2, as well as all interaction effects, were
excluded from the final model as they did not significantly
differ from 0. All the main effects retained in (6), on the
other hand, differed from 0 at a significance level of 1%.
Absence of interactions, in particular, allows us to select
the values of q1, q2, pm and pc separately (that is, without
having to consider joint effects on MNGs).

Table 1 provides some summary statistics (mean and
standard deviation of MNGs) classified by values of q1,
pm and pc. Each cell refers to 100 replicates, since q2

Table 2. GLM model for experiment 1. Estimated values and standard errors
of model parameters. Standard errors are almost all equal due to the selected
variance function

Parameter Value Standard error

µ111 8.398 0.055
α2 0.307 0.045
β2 −1.565 0.055
β3 −2.240 0.055
γ2 −0.577 0.055
γ3 −0.759 0.055
φ 0.912

is neglected. It can be seen that q1 (minimum fitness
value assigned to non-informative markers) is inversely
related to the average number of MNGs. Also pm and pc
(crossing-over probability in the GA) are inversely related
to the average number of MNGs.

Based on the above considerations, we selected param-
eter values for experiment 2 as follows:

• q2 is not significant, thus we just picked q2 = 0.005
(an average of the two values considered in experiment
1),

• q1, pm and pc should be large to reduce MNGs
and to avoid the premature convergence to relative
maxima. At the same time, large values of pm and
pc are undesirable as they make the GA less capable
of finding the absolute maximum. Thus, striking a
balance among the values considered in experiment 1,
we picked q1 = 1, pm = 0.01 and pc = 0.25.

These values provided reasonable time performances in
our simulations, but this could clearly be the object of
further investigations.

Experiment 2: some performances of the GA
In the second set of simulations, a GA with parameter
values q1 = 1, q2 = 0.005, pm = 0.01 and pc =
0.25 was used to analyze 10 000 simulated datasets. Each
sampled dataset had size 200, K = 1000 and M = 2. The
maximum number of generations was set to 10 000.

The joint distribution from which the datasets were
sampled is specified by a hierarchy of distributions. The
informative profile component, if present, always contains
observable bands 9 or 8 and 9. The probability mass
function for such observable bands is

p(Y, X9, X10 | γ11, γ21, α11, α21, β11, β21)

= α11 · I(0,0,0)(y, x9, x10)

+(γ11−α11) · I(0,1,0)(y, x9, x10)

+β11 · I(0,0,1)(y, x9, x10)

927



F.M.Stefanini and A.Camussi

+((1 − γ11) − β11) · I(0,1,1)(y, x9, x10)

+α21 · I(1,0,0)(y, x9, x10)

+(γ21−α21) · I(1,0,1)(y, x9, x10)

+β21 · I(1,0,1)(y, x9, x10)

+((1 − γ21) − β21) · I(1,1,1)(y, x9, x10)

where parameters are distributed as

γ11 ∼ 1

0.39
· I[0.60,0.99](γ )

γ21 ∼ 1

0.49
· I[0.01,0.50](γ )

(α11 | γ11) ∼ 2

γ11
· I[γ11/2,γ11](α)

(α21 | γ21) ∼ 2

γ21
· I[γ21/2,γ21](α)

(β11 | γ12) ∼ 2

γ12
· I[γ12/2,γ12](β)

(β21 | γ22) ∼ 2

γ22
· I[γ22/2,γ22](β).

The observable bands from 1–8 are sampled from
uniform distributions on the cartesian product B8 =
{0, 1}8:

(X1, . . . , X8)r ∼ 1

256
· IB8(x1, . . . , x8)

r = 1, 2, . . . , 200.

The observable bands from 11–1000 in the 100 profiles
which refer to Y = 0 are sampled from

(
Xi j | Y = 0

) ∼ 1

2
· I{0,1}(x)

i = 11, . . . , 1000; j = 1, . . . , 100,

and are duplicated in the 100 profiles, which refer to
Y = 1, that is

(xi j+100 | Y = 1) = (xi j | Y = 0)

i = 11, . . . , 1000; j = 1, . . . , 100.

The class of datasets that can be generated using the
proposed distribution is very rich. Anyway, the maximum
number of observable bands in the informative profile
components is always three, and the informative com-
ponents are always built among the first 10 observable
bands. This feature does not limit the validity of the
results as the performances of the optimization do not
depend on the order of observable bands in the dataset.
Note that unplanned informative components may arise
by random sampling among observable bands located in a
position smaller than 9.
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Fig. 1. Information gain in experiment 2. Histogram of the expected
information gain for the best chromosome in 10 000 datasets.

A summary of the main feature of these datasets is
given in Figure 1. The approximate distribution of the
expected information gain based on 10 000 simulated
datasets is shown after rescaling the maximum value to 1.
The datasets generating process matches our belief about
the amount of information contained in datasets from a
pilot experiment, given that at least one profile component
is informative.

The fittest chromosome after 10 000 generations of the
GA was examined for each simulated dataset. The best
chromosome in a dataset is known by construction, there-
fore it was possible to classify the fittest chromosomes in
four subsets: full match (FM) with the best chromosome,
partial match (PM) with the best chromosome, no match
and higher fitness value (NMH), no match and smaller
fitness value (NMS, Table 3). The best chromosome is
found by the GA in 10 000 generations only in 90% of
the datasets. Although the probability of finding the fittest
chromosome is one in the limit for a number of genera-
tions that goes to infinite, there is not a strict rule to choose
the maximum number of generations (see the Discussion).
In 1.4% of the simulations, the fittest chromosome has no
match and smaller fitness value than the known best. Some
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Table 3. Descriptive statistics for experiment 2.The fittest chromosomes
(after 10 000 generations) are cross-classified according to: full match (FM)
and partial match (PM) with the best chromosome, no match but higher
fitness value (NMH), and no match and smaller fitness value (NMS)

Class Number %

FM 9003 90.0
NMH 646 6.5
PM 212 2.1
NMS 139 1.4

Total 10 000 100.0

observable bands of the best chromosome are contained in
the fittest chromosome for the 2.1% of the GA runs. If
the number of generations is increased by a few hundreds
generations, PM chromosomes became FM, but the per-
centage of PM chromosomes does not reach zero as fast
(data not shown): the NMS chromosomes start moving to
the PM class, thus the choice of maximum number of gen-
erations in our simulations might be about how many gen-
erations will give 100% of FM chromosomes.

We anticipate the discussion here by underlining that in
actual applications no known best is available, thus other
rules based on output diagnostics must be used (see the
Discussion). In the analysis of actual data, the number of
generations required might be greater than a few hundred
due to higher level of sampling noise in the dataset.

Finally, the GA found fittest chromosomes that have a
higher fitness value than the best chromosomes in 6.5%
of the datasets (Table 3). This result suggests that, in the
analysis of actual data, a relevant number of informative
profile components found by the GA might just contain
sampling noise instead of useful information. This is a
feature that depends on the design of pilot experiments,
typically constrained by high costs, not on the GA.

At the end of a computer run, the best chromosome
is examined and the generation in which it was hit is
recorded as value of MNG.

In Figure 2 (main window), the histogram of MNGs
shows a long right tail. The dependence of MNGs on
the fitness value of the best chromosome was investigated
by fitting a smoothed surface to the two-way histogram
‘fitness by MNGs’ and displaying it in a contour plot
(Figure 2, overlaid plot). In the simulation output, a
fitness value equal to 0.1836 splits the MNGs values
into two groups. The first, defined by values larger than
0.1836, always shows MNGs values smaller than 1200
generations; the second is characterized by MNGs values
that cover the entire range 1–10 000 generations. An
explanation of these findings is that the GA can establish
a subpopulation of chromosomes that are almost-optimal
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Fig. 2. Relationship between information gain and minimum
number of generations. The histogram shows the minimum number
of generations (MNGs) required to obtain the fittest chromosome.
Overlaid on top right, the contour plot of the smoothed surface based
on the two-way histogram ‘fitness value by MNGs’ emphasizes the
dependence of MNGs on the fitness value.

if the fitness is above a threshold. If the fitness value is not
large enough, then the chance to exploit neighborhoods of
almost-optimal chromosomes is small. Nevertheless, such
exploitation is the main reason why we use the GA instead
of simple random sampling, thus a rescaling of the fitness
function might be useful in these cases. This is an issue
open to investigation.

Discussion
Feature extraction in datasets of actual pilot experiments is
a formidable computational task due to the huge number
of candidate markers. The straightforward use of machine
learning algorithms may fail (no or wrong feature extrac-
tion) due to the presence of many sampling zeros in the
two-way contingency table ‘groups by band pattern’. Thus
we proposed the use of Bayesian techniques to smooth out
observed values by using predictive distributions. The def-
inition of expected information gain is the core of the ob-
jective function optimized by the GA. Nevertheless, the
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choice of a map from values of the expected information
gain to fitness values is not trivial. Experiment 1, using a
simulated data set, shedded some light on the role of the
parameters q1, q2, pm and pc : q2, as well as all the inter-
action effects, were found to be of little relevance. Thus,
the parameter values for experiment 2 were chosen inde-
pendently. In particular, we selected the smallest values
pm and pc that made the computational burden feasible in
experiment 2. In this way GA robustness and tractability
were achieved. Experiment 2 has shown that for the (large)
class of datasets generated by a specified prior distribution,
the proposed GA is effective.

Several questions remain unanswered, due to the high
complexity of the problem domain, especially as regards
the analysis of experimental results. Comments and rec-
ommendations to perform the analysis of actual datasets
are listed below, from general aspects to algorithmic de-
tails.

If there is no variability within groups and they do not
share the same band pattern, then the straight comparison
of bands suffices to find molecular markers.

The analysis may be performed by setting the maxi-
mum number of observable bands within informative pro-
file components to values larger than 3. Nevertheless, the
sample size sets an upper limit because a large contin-
gency table will contain too many sampling zeroes. If the
study of large profile components is essential, full scale
experiments should be designed.

Researchers should save part of the resources to perform
confirmatory experiments on candidate markers. The
GA identifies profile components associated to groups,
but the association could be due to sampling noise.
Simultaneous statistical tests based on pilot experiments
seem inadequate to account for noise in collected data due
to small statistical power of the overall testing procedure.
For similar reasons the optimization over the space of non
saturated models for the two-way contingency table was
not considered.

The class of datasets generated using the prior distribu-
tion described in the Section Experiment 2: some perfor-
mances of the G A is wide as regards the informative part
of the profile. We expect that actual datasets may show
larger variability in the non informative part of the pro-
file. For these reasons, our findings about MNG obtained
by Monte Carlo simulation act as an expected minimum,
because the fitness landscape might be less flat than the
one for simulated data for the non informative part of the
profiles (higher sampling noise).

In any case, the features of the DNA in the biological
populations should be ‘stable’ with respect to time,
otherwise the information obtained from data processing
is useless. For example, (natural or artificial) vegetative
reproduction or short rate of sexual mating should make
DNA sequences stable in the population.

The analysis of actual data may take advantage of algo-
rithmic improvements. The beneficial effects of changing
the probability of mutation and crossing over along the GA
run to change the trade-off existing between exploitation
and exploration are well known. In any case, the number of
GA chromosomes should not be smaller than 100. A small
population of chromosomes makes the GA faster, but the
exploitation of promising neighborhoods is almost absent
(Stefanini, 1998). If the collection of data is highly ex-
pensive it might be reasonable to demand stronger exper-
imental evidence about a candidate marker before includ-
ing it in the confirmatory experiment. This goal might be
achieved using a value of λ greater than 1 in the prior dis-
tribution of the probability values in the contingency table
(see the Section The objective function). Finally, if prior
information is available about some observable bands, it
might be included by a suitable choice of values λi, j .

The choice of values for the GA parameters should not
depend on specific association structures between groups
and band patterns. Robustness and generality of the GA
could be compromised to improve the performances in a
relatively small subset of association structures. Moreover,
pilot experiments are typically performed because it
is impossible to restrict the search space to specific
association structures, thus the advantage expected by
such an elaborate choice of parameters vanishes.

In the study of an actual experiment, several GA runs
should be performed on the same dataset to increase
the confidence that the chromosome found by the GA is
optimal. It is not excluded that several profile components
might show similar values of expected information gain.
Thus several GA runs also provide evidence of multiple
optima. We suggest a simulation plan including less than
five long runs and some more short runs, so that a balance
between the effect of the starting population and the
need for long runs may be achieved. Quantitative rules
based on empirical models for output analysis are still to
be developed to relate the chance of capturing the true
best chromosome and the number of computer runs. A
different approach based on fitness sharing is discussed
in (Stefanini, 1998), but, at this time, it does not seem
convenient in terms of computational load.

Actual datasets may contain missing values, especially
if the amount of DNA available for the analysis is small.
Bayesian imputation techniques (Schafer, 1997) should
be embedded in the objective function to handle missing
values. A simplified procedure was recently proposed to
cut the computational burden involving missing values,
so that extensive simulation plans are not compromised
(Stefanini, 1998).

A different type of uncertainty is due to measurement
errors (Roeder, 1994). For example, in some experiments
the number of bands on the gel is uncertain because of the
background noise, the low intensity of the signal and/or
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the tendency of closely located bands to collapse. In this
paper we assumed that this type of uncertainty is not
present, but if it were, further steps would be required
before running the GA. The mechanism originating
the uncertainty typically depends on the protocol and
equipment used, therefore we think that the identification
step should be maintained separate from the algorithm
to perform feature extraction. These are issues to be
addressed in further research.

The definition of O in the Section The objective function
is not trivial even without missing values or errors in
measurement. Changes in the GA might be introduced
to take advantage of multiband protocols; that is, of full
linkage among sets of observable bands. In any case,
we suggest associating an observable band to each gel
location whether or not DNA fragments are observed in
that position. Instead, a definition based on those gel
locations showing variability may be used, only if the
sample size is large.

Finally, further theoretical analysis of GAs might solve
some of the problems described above without resorting to
Monte Carlo experiments, although the high non linearity
of GA dynamics makes the analysis beyond a stylized
class of GAs (van Nimwegen et al., 1997) very difficult. A
better characterization of GA dynamics might arise from
innovative hypotheses about the innermost mechanism of
GA optimization (Beyer, 1997).
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