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Abstract: Understanding the molecular mechanisms underlying prostate cancer (PCa) progression
towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the
therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be charac-
terized by a peculiar hormonal landscape. It is now well established that the androgen/androgen
receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression
has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR
amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-
related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone
(GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role
in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different
types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the
activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic
and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated
Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the
role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic
implications.

Keywords: castration-resistant prostate cancer; androgens; androgen receptors; AR; gonadotropin-
releasing hormone; GnRH; gonadotropin-releasing hormone receptors; GnRH-R

1. Introduction

Prostate cancer (PCa) still remains the second leading cause of cancer-related deaths
in Western countries, although a higher survival rate and a long-term decline in mortal-
ity have been recently reported [1]. Most PCas are androgen-dependent in their early
stage, and androgen deprivation therapy (ADT), aimed to reduce the circulating levels of
testosterone and achieved by chemical castration, still represents the standard care of treat-
ment [2–4]. Gonadotropin-releasing hormone (GnRH) analogs (agonists and antagonists),
responsible for the suppression of testicular androgen production, are often associated with
inhibitors of androgen receptor (AR) activity to obtain a maximal androgen deprivation
condition (combined androgen blockade, CAB) [5,6]. Unfortunately, within 2–3 years, most
patients progress towards the so called castration-resistant prostate cancer (CRPC) stage,
characterized by tumor growth, even in the presence of castration levels of circulating
androgens [7,8].

It is now well established that the androgen/androgen receptor (AR) axis remains
a key player in the growth of CRPC [9–13]. Moreover, not only steroids but also peptide
hormones and their receptors are deeply involved in the process of PCa progression.
Gonadotropin-releasing hormone (GnRH) is the hypothalamic decapeptide known to be
a key player in the functions of the pituitary gonadal axis through the activation of its
pituitary receptor (GnRH-R) [14–19]. GnRH and GnRH-Rs are also expressed in different
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cancer cells and tissues, including PCa, both androgen-dependent and castration-resistant;
the activation of these receptors is associated with a significant antitumor activity [20–34].

2. The Androgen/AR Axis in CRPC

Second-line antiandrogen therapy is indicated for the treatment of CRPC patients,
supporting the idea that the androgen/AR axis is still active in this progression phase
of the tumor [35–41]. To date, several mechanisms involving a persistent activity of the
androgen/AR axis in CRPC have been elucidated [12,13,42–44].

2.1. Intratumoral Synthesis of Androgens

About two decades ago, it was reported that, after ADT therapy, intratumoral levels
of androgens remain high in spite of serum castration levels of testosterone [45]. This
observation suggested that circulating adrenal androgens might be uptaken by CRPC
cells to be converted to testosterone and dihydrotestosterone (DHT). Subsequently, it was
demonstrated that CRPC tissues overexpress both 3β-HSD, the enzyme responsible for the
conversion of the adrenal steroid dehydroepiandrosterone (DHEA) to androstenedione,
and AKR1C3 (17β-HSD), the enzyme involved in the conversion of androstenedione to
testosterone and DHT and, therefore, to active androgens [46–48]. Transcription factors
regulating the expression of genes involved in androgen biosynthesis are also expressed in
CRPC cells [49].

It has also been suggested that, in CRPC tissues, androgens can be synthesized from
cholesterol; however, this issue is still a matter of debate [48,50]. CYP17A1, the enzyme
involved in the synthesis of DHEA and androstenedione, is expressed not only in the
adrenal gland but also in PCa tissue [47,50]; treatment options for CRPC patients presently
include abiraterone, a specific inhibitor of CYP17A1 activity [51–53].

2.2. Androgen Receptor Amplification

CRPC tissues (about 80%) from patients who progressed after ADT express high levels
of AR; 30–50% of these tissues were reported to carry AR amplification, due to the presence
of a high AR gene copy number [54–56]. AR amplification was also detected in circulating
tumor cells (CTCs) from patients with metastatic PCa [57]. The overexpressed receptor is
sensitive to low levels of androgens, thus allowing PCa cells to progress towards the CRPC
stage. Interestingly, AR amplification has been found to be more common in enzalutamide
than in abiraterone-resistant patients [58,59].

2.3. Androgen Receptor Mutations

The AR gene, belonging to the steroid hormone receptor superfamily, composed
of eight exons, is mapped on chromosome Xp11-12 and encodes a 110 kDa (920 amino
acids) protein. The full-length AR protein consists of three domains: the NH2-terminal
transactivation domain (NTD, encoded by exon 1), the central and conserved DNA-binding
domain (DBD, encoded by exons 2 and 3), a flexible hinge region containing a nuclear
localization signal and the COOH-terminal ligand-binding domain (LBD, encoded by
exons 4–8). The NTD domain contains two trinucleotide repeats that encode polyglutamine
and polyglycine tracts. The interaction between NTD and LBD is necessary for the receptor
transcriptional activity. In the absence of androgens, the AR is located in the cytoplasm,
where it is present in an inactive conformation associated with heat shock proteins. Once
bound by androgens (testosterone, DHT), the receptor translocates into the nucleus, where
it is activated through dimerization, recruitments of coregulatory/epigenetic factors and
stimulation of specific target genes [12,13,43,60–62].

Gain-of-function mutations of the AR are quite frequent (about 50%) in CRPC patients
after antiandrogen therapy; these are usually single point mutations occurring mostly in
the LBD of the receptor [63,64]. The T878A mutation, with alanine being substituted by
threonine, was shown to confer resistance to both first- and second-generation antian-
drogens (enzalutamide, apalutamide, darolutamide); similar observations were reported
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for the H875Y, W742C and F876L mutations [58,65–69]. Interestingly, by binding to these
mutant receptors, antiandrogens can induce their activation, thus behaving as AR agonists;
moreover, these mutations were also shown to be activated by different steroids, such
as adrenal androgens, progesterone and estrogens [70–72]. Consequently, AR mutations
are responsible for the continuous activation of the receptor even in the presence of low
circulating androgen levels after ADT therapy, thus playing a key role in tumor progression.
Some gain of function mutations were shown to favor the recruitment of coregulators to
the promoter region of AR target genes, thus increasing the transcriptional activity of this
receptor [73,74].

Recently, mutant AR receptor genes were reported to be easily detectable in cell-free
DNA (cfDNA) obtained from CRPC patients. These data strongly support that the presence
of specific circulating mutant ARs can represent a useful biomarker in terms of personalized
therapy in CRPC [58,75–77].

The most frequent mutations of the AR in CRPC patient tissues and plasma (cfDNA)
are reported in Figure 1.
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Figure 1. Most frequent mutations of AR detected in tissues and plasma cfDNA from CRPC pa-
tients. Upper part, representation of the AR gene structure. Lower part, representation of the AR
protein structure with the most frequently mutated amino acids. T878A, alanine substituted by threo-
nine; H875Y, tyrosine substituted by histidine; W742C, cysteine substituted by triptophan; F876L,
leucine substituted by phenylalanine. Abbreviations: AR, androgen receptor; NTD, NH2-terminal
transactivation domain; DBD, DNA-binding domain; LBD, ligand-binding domain.

2.4. Androgen Receptor Splice Variants

During the last two decades, it has become increasingly clear that, in PCa cells, the
AR gene can undergo alternative splicing, giving rise to different splice variants (AR-
Vs) [78–82]. Most of these variants lack the LBD but maintain the ability to enter the
nucleus and to bind specific DNA response elements in a ligand-independent manner.
Specifically, AR-V7 is truncated at the end of exon 3, but it has been demonstrated to
be localized at the nuclear level and to retain constitutive transcriptional activity in the
absence of the ligand [83]. The expression of AR-V7 was found to be associated with
the development of drug resistance (enzalutamide, abiraterone) and aggressive behavior
in CRPC cells [84]. In nude mice harboring human CRPC cell xenografts, treatment
with abiraterone significantly increased AR-V7 expression while AR-V7 overexpression
promoted tumor growth and invasiveness [85,86]; in line with this observation, targeting
this receptor variant was reported to suppress tumor growth and to confer sensitivity to
antiandrogens (enzalutamide) [87]. In humans, the expression of AR-V7 was observed in
tumor biopsies from CRPC patients and significantly correlated with tumor progression and
short survival [88–92]. High levels of AR-V7 could also be detected in extracellular vesicles
purified from the plasma of CRPC patients, as well as in circulating tumor cells (CTCs)
from enzalutamide- or abiraterone-resistant patients, and were found to be associated with
a poor prognosis [93–97].

Additional transcript variants are generated by alternative splicing of the AR gene
in CRPC [13,98,99]. In particular, the ARv567es splice variant originates from the loss
of exons 5–7, encoding the LBD, but it conserves the hinge region of exon 4 involved in
the nuclear localization of the receptor isoform, thus supporting its constitutive activity
irrespective of the presence of the ligand; its expression was shown to increase in tissue
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biopsies after ADT therapy, and to correlate with outcomes to taxane therapy in CTCs, in
PCa patients [88,100,101].

Mechanistically, the AR-Vs can form homodimers or heterodimers (by combining
with other variants), or they can dimerize with the full-length AR. At the nuclear level, the
dimers bind to response elements in the promoter region of specific downstream genes
(either unique or canonical AR-regulated genes), thus modulating their expression and
promoting the development of CRPC [13,42,89,91,102].

Based on these observations, targeting the AR-Vs and their signaling pathways might
represent a novel and effective therapeutic strategy for the treatment of CRPC patients.

2.5. Androgen Receptor: Transcription Factors and Coregulators

AR-mediated gene transcription requires the interaction of the receptor with different
coregulators (such as the Steroid Receptor Coactivators, SRCs) and transcription factors
(such as GATA2 and FOXA1) [103–106].

The transcriptional activity of AR requires the recruitment and cooperation of tran-
scription factors. Among these, the GATA family of transcription factors, consisting
of six members, was reported to be involved in the AR-mediated signaling in CRPC
cells [42,43,106]. In particular, GATA2 pioneer transcription factors were shown to be
involved in the androgen-related regulation of PSA expression in CRPC cells; moreover,
GATA protein consensus DNA sequences were observed in the AR binding regions of
androgen-regulated genes in these cells, supporting their cooperation with the receptor
in mediating androgen effects [106,107]. This factor was also demonstrated to be a key
regulator of the transcriptional activity of AR-Vs in CRPC cells [43].

FOXA-1 (forkhead box A1) is another pioneer transcription factor involved in AR-
promoted gene transcription. It was demonstrated to play a key role in AR-mediated
tumor growth and progression in CRPC cells [108]. Mechanistically, FOXA1 binds to
AR and the transcription factor HOXB13 at the cytoplasmic level; then, the FOXA1-AR-
HOXB13 complex translocates into the nucleus where it binds, with the cooperation of
GATA2, to specific DNA sequences. FOXA1, HOXB13 and GATA2 open compacted
chromatin, increasing the accessibility of these DNA regions to additional transcription
factors, thus promoting AR transcriptional activity and the expression of AR-regulated
genes [42,108–110].

Coregulators modulate the activity of several proteins in the transcription complex
through chemical modifications and are also involved in the recruitment of general tran-
scription factors associated with RNA polymerase II to the constitutive promoter of tar-
get genes [106,111]. Specifically, the p160 steroid receptor coactivators (SRC-1, SRC-2
and SRC-3) promote the formation of a complex between AR enhancer sequences and
the promoter region of androgen target genes, thus favoring AR transcriptional activ-
ity [112]. SRCs expression was found to positively correlate with PCa progression and
recurrence [113–115]. Importantly, in PCa cells, SRC-2 was reported to interact with AR at
the nuclear level to increase the sensitivity of cancer cells to androgens and to enhance the
ligand-independent transcription of AR target genes [116,117]. Similarly, the AR coactiva-
tor MAGE-11 (melanoma antigen gene protein-A11) was shown to be overexpressed in
CRPC cells as a consequence of the hypomethylation of CpG islands in its promoter region,
providing an additional mechanism for the increased AR signaling in CRPC [118].

Taken together, these observations support the notion that the interaction of AR with
specific transcription factors and coregulators plays a key role in promoting PCa growth
and progression. These mechanisms are presently considered a possible molecular target
for novel therapeutic approaches for CRPC.

The most relevant molecular mechanisms underlying the persistent activity of the
androgen/AR axis in CRPC cells are summarized in Figure 2.
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Figure 2. Molecular mechanisms involved in the persistent activity of the androgen/AR axis in CRPC
cells. The persistent activation of the androgen/AR axis has been attributed to several mechanisms,
including: (1) intratumoral synthesis of androgens; (2) AR amplification; (3) AR mutations and
alternative splicing; and (4) increased expression/activity of transcription factors and coregulators of
the AR. Abbreviations: AR, androgen receptor.

3. The GnRH/GnRH-R Axis in CRPC

GnRH agonists (goserelin, triptorelin, histrelin, leuprolide) bind to pituitary GnRH-Rs
and, after an initial stimulation (the so called flare event), induce their down-regulation
and desensitization leading to the suppression of gonadotropins (LH and FSH), and
subsequently, of testosterone secretion [119,120]. To avoid the flare effect, as well as the
GnRH-associated side effects (metabolic dysfunction and cardiovascular diseases), GnRH
antagonists (cetrorelix, degarelix, abarelix, ozarelix, ganirelix, relugolix) were developed.
These compounds act by competitively binding to the pituitary GnRH-Rs, thus immediately
suppressing LH and FSH secretion; they were also reported to decrease FSH release for a
longer time period and to lower levels than GnRH agonists [121]. Thus, GnRH agonists
and antagonists still represent the standard ADT therapy for patients with metastatic
PCa [122–124].

In the last three decades, it has been widely demonstrated that GnRH and GnRH-Rs are ex-
pressed also in tumor tissues, including PCa and, specifically, CRPC [21,23–26,28,29,32,33,125–127].
This intratumor GnRH-GnRH-R axis is associated with a significant anticancer activity, sup-
porting the notion that it may represent an effective target for novel anticancer strategies.

3.1. Gonadotropin-Releasing Hormone

Hypothalamic GnRH (pGlu1-His2-Trp3-Ser4-Tyr5-Gly6-Leu7-Arg8-Pro9-Gly10-NH2) is
a decapeptide synthesized in a small number of neurons and released in a pulsatile way
into the portal blood vessels, through which it reaches the gonadotrope cells at the pituitary
level. Here, it binds to its specific receptors, GnRH-Rs, to stimulate gonadotropin secretion
and, consequently, gonadal androgen production [14,15]. The N-terminal (Glp-His-Trp-Ser)
and the C-terminal (Pro-Gly-NH2) domains of the decapeptide are essential for its binding
to GnRH-Rs.

In addition to the classical form of GnRH (also called GnRH-I), other forms of the
peptide have been identified. The isoform II (GnRH-II) has been observed in most verte-
brates [128]. It is a decapeptide whose amino acid sequence differs from that of GnRH in
the positions 5, 7 and 8 (His5, Trp7, Tyr8), known to be involved in the biological functions
of the neurohormone. On the other hand, GnRH-II conserves the amino acid sequence
of GnRH in both the N- and C-terminal domains, supporting that it may recognize, bind
and activate the same receptors. The presence of a receptor specific for GnRH-II in verte-
brates is still a controversial issue [18,19,128–134]. A third form of GnRH, GnRH-III, was
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identified in sea lamprey (Petromyzon marinus); its structure differs from that of GnRH in
amino acids 5–8 (His5, Asp6, Trp7, Lys8); this isoform was shown to possess a very low
gonadotropin-releasing effect in vertebrates [19,135,136].

GnRH was reported to be expressed in different types of cancer cells. Specifically,
GnRH mRNA expression and immunoreactivity were identified in breast, ovarian, en-
dometrial as well as in PCa cells, both androgen-dependent and castration-resistant. In
tumor cells, including CRPC cells, this peptide was shown to be endowed with a significant
antiproliferative/proapoptotic biological activity [137–141].

3.2. Gonadotropin-Releasing Hormone Receptors: Molecular Structure

The molecular structure of the pituitary GnRH-R, belonging to the GPCR (G protein
coupled receptor) receptor family, was identified by Kakar et al., in 1992 [142]. Its gene is
located on chromosome 4q13.2 and encodes for a 328 amino acid protein consisting of an
extracellular N-terminal domain, a seven helical transmembrane-spanning domain and a
uniquely short (1–2 amino acids) intracellular C-terminal domain [133,143–145]. This last
domain is responsible for its desensitization triggered by GnRH agonists [146].

Endogenous GnRH, as well as its synthetic agonists, by binding to this receptor,
triggers the recruitment/activation of the Gαq/11 subunit of the G protein complex, thus
activating the downstream effector phospholipase Cβ (PLCβ). PLCβ, in turn, catalyzes the
hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2) into the two second messengers,
inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DG), leading to protein kinase C (PKC)
activation and increased cytoplasmic levels of Ca2+, respectively. Both PKC and Ca2+

trigger specific downstream signaling pathways involving proteins of the MAPK cascade
(ERK1/2, JNK, p38MAPK), finally mediating the biological activity of the receptor ligands,
i.e., expression and secretion of the two gonadotropins [27,147–151].

As discussed above, it is now well established that GnRH-Rs are expressed also in
different tumor cells and tissues, including PCa, and specifically CRPC [20–26,28–34,152].

The binding affinity of GnRH analogs for these receptors was first investigated, leading
to contrasting results. Two classes of GnRH-binding sites, one with low affinity and one
with high affinity, were found in human PCa cells, as well as in the Dunning R3327 prostatic
adenocarcinoma in rats [153,154]. On the other hand, in our laboratory, we could observe
the presence of one single class of low affinity GnRH-binding sites in PCa cells, both
androgen-dependent and castration-resistant [139,155], while the presence of a single class
of high affinity GnRH-binding sites was reported in PC3 CRPC cells and in Dunning R3327
prostatic tumor tissue [156,157].

At the molecular level, we demonstrated that a GnRH-R, with the same mRNA and
protein size with the gonadotrope receptors, is expressed in human androgen-dependent
and CRPC cells [21,137,158,159]; these observations were further confirmed by studies
performed in rat Dunning R3327 prostatic adenocarcinoma and in human PCa cells and
tissue biopsies [160–163].

The presence of a specific receptor for GnRH-II (GnRH-II-R) in human tissues has been
widely investigated; however, this receptor still must be cloned and sequenced. It has been
proposed that the GnRH-II-R might correspond to a five transmembrane domain protein,
which lacks the transmembrane regions 1 and 2 [132]. Another variant form of this receptor
was also reported to be expressed in human tissues and suggested to be nonfunctional due
to the presence of a frameshift in exon 1 and a stop codon in exon 2 [164]; on the other hand,
this receptor variant was reported to be present in sperm and testis and to be endowed
with a functional role in spermatogenesis [165].

The presence of the GnRH-II-R was also investigated in human cancers. Emons and
coworkers reported the presence of a functional GnRH-II-R in tumors of the female repro-
ductive system (ovary, endometrium) [29,32,33,166]. On the other hand, we demonstrated
that, in CRPC cells, the antiproliferative activity of GnRH-II is mediated by the classical
form of the GnRH-R [167]; similar observations were reported by Kim and collabora-
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tors [168]. Taken together, these observations support the claim that the presence of a
functional GnRH-II-R in human tumor tissues is still a controversial issue.

3.3. Gonadotropin-Releasing Hormone Receptors: Antiproliferative Activity

The activation of locally expressed GnRH-Rs, by means of GnRH agonists, was widely
reported to induce antitumor/proapoptotic effects in PCa cells. Specifically, we demon-
strated that GnRH agonists, significantly and dose-dependently, reduce the proliferation
of both androgen-dependent (LNCaP) and castration-resistant (PC3, DU145) human PCa
cells, both in vitro and in vivo [21–23,139,155,169,170]. GnRH agonists were also shown
to suppress the growth of the rat Dunning R-3327 model of PCa as well as of primary
human PCa cell cultures [156,171]. This activity was found to be mediated by the induction
of G2/M phase cell cycle arrest [172,173]. These experimental data are supported by the
observation that, in CRPC patients, GnRH agonist-based therapy is associated with a longer
disease-specific survival in the presence of a high expression of GnRHRs [174].

GnRH-R activation was further reported to be associated with proapoptotic effects [175,176].
In particular, in CRPC cells, GnRH agonists were shown to trigger apoptosis-related molec-
ular events through the down-regulation of the PI3K/AKT signaling pathway, leading to
the activation of the downstream JNK kinase, and MEK/ERK kinase activity [177,178]. In
our laboratory, we found that GnRH agonists can sensitize, and resensitize, CRPC cells
to the proapoptotic activity of the chemotherapeutic agent docetaxel [179]. In line with
these observations, cleaved caspase-8 and -3, but not -9, and increased expression and
phosphorylation of p53, were reported to increase in primary cell cultures from human
PCa samples, supporting the idea that the extrinsic (but not intrinsic) apoptosis pathway
is involved in the antitumor activity of GnRH agonists [171,173,180,181]. The different
cell context-dependent biological effects of GnRH agonists at the pituitary vs. PCa cell
level was suggested to be related to a transient vs. sustained activation of the intracellular
signaling pathway (PKC/MAPK) in gonadotropes vs. cancer cells [176,182].

It is now well known that GnRH-R activation interferes with the protumor activity
of growth factors and their locally expressed receptors in cancer, and, specifically, in PCa
cells [21–24,29,158,183,184].

The insulin-like growth factor (IGF) signaling axis, composed of two receptors (IGF-IR
and IGF-IIR) and their specific ligands (IGF-I and IGF-II), was widely shown to be up-
regulated in PCa cells and tissues [185–187] and is now considered an effective molecular
target for PCa therapy [188–190]. We reported that, in CRPC cells, GnRH agonists interfere
with the protumoral activity of IGF-I, by reducing IGF-IR expression and activation (i.e.,
tyrosine phosphorylation) [21,159]. Ahearn and coworkers observed that IGF-IR expression
positively correlates with tumor stage in human PCa biopsies [191]; a positive correlation
was also observed between the expression of IGF-II and the histologic differentiation and
pathologic stage, lymph node metastasis and serum PSA (prostate-specific antigen) levels
in hormone-treated PCa patients [192].

The EGF/EGF-R (epidermal growth factor and its receptor) signaling pathway is also
deeply involved in PCa growth and progression [184,193–195]. We demonstrated that
GnRH agonists abrogate the stimulatory effects of EGF on CRPC cell proliferation, in vitro
and in vivo, by reducing the expression of EGF-Rs and its downstream transcription factor
c-fos [196]. In line with these data, GnRH agonists were found to interfere with the
mitogenic activity of EGF and its intracellular signaling pathways in androgen-dependent
as well as in CRPC cells [197–199].

Based on the undesired initial flare effect triggered by GnRH agonists, GnRH antag-
onists, able to compete with the binding of the endogenous decapeptide to its pituitary
receptors, were subsequently developed, and it was expected that these compounds might
act as GnRH-R antagonists also in tumors. Surprisingly, it was widely demonstrated that
GnRH antagonists act as agonists in cancer cells, including PCa cells, exerting a significant
antiproliferative/proapoptotic activity both in vitro and in vivo [24–26,29,200–202]. In
line with these observations, Castellon and coworkers reported that the GnRH antagonist
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cetrorelix induces an antiproliferative and proapoptotic effect in primary cell cultures from
human prostate carcinoma [171]. Sakai et al. analyzed the effects of the GnRH antagonist
degarelix on the growth of androgen-dependent and CRPC cells, as well as on VCaP
cells derived from a patient with hormone-refractory PCa. They found that degarelix
reduces cell viability by triggering apoptosis, both extrinsic and intrinsic, as indicated
by increased caspase 3/7, 8 and 9 levels [203]. Interestingly, Cucchiara and coworkers
recently reported that degarelix significantly decreases the proliferation of C4–2B MDVR
(enzalutamide resistant, expressing high levels of the AR splice variant AR-V7, after a
long exposure to the AR antagonist) PCa cells. This antitumor activity was found to be
related to a decreased expression of the AR variant, both at the mRNA and at the protein
level [204]. Since the GnRH antagonist had a greater impact on protein than on mRNA
levels, the authors suggested that this compound might act by triggering a protein degra-
dation through the ubiquitin proteasome system [204–206]. Different molecules such as
ASF/SF, JMJD1A, U2AF65, hnRNPA1 and HoxB13 were demonstrated to be involved
in AR splicing mechanisms; however, whether degarelix might affect their activity still
remains to be investigated [207–210].

To explain the agonistic behavior of GnRH antagonists at the level of tumor cells,
Millar and coworkers proposed that these receptors may adopt different conformations
according to the cell context in which they are expressed, thus selectively binding to the
different GnRH analogs (the “ligand-induce selective signaling” theory) [211].

In addition to the classical form of GnRH, its GnRH-II isoform has also been reported
to be expressed in tumors, including PCa [21,29,31,212]. Similar to GnRH, GnRH-II was
found to be endowed with a significant antiproliferative/proapoptotic activity in both
androgen-dependent and CRPC cells [21,212,213]. Interestingly, the classical form of the
GnRH-R was demonstrated to mediate the antitumor effects of GnRH-II in these cells [167].

3.4. Gonadotropin-Releasing Hormone Receptors: Antimetastatic and Antiangiogenic Activity

CRPC is frequently associated with the development of metastasis, specifically at the
bone, lymph node and visceral level; a better understanding of the molecular mechanisms
involved in the metastatic events associated with PCa progression might help identify
novel biomarkers and possible targets to increase the therapeutic approaches against this
almost untreatable disease [12,214–217].

A remodeling of the intracellular cytoskeleton as well as of the extracellular matrix
is deeply involved in the motility and invasive behavior of cancer cells associated with
the tumor metastatic spread. We demonstrated that, in CRPC cells, GnRH-R activation
significantly reduces both cell migratory and invasive behavior. Moreover, GnRH agonists
interfere with the prometastatic activity of IGF-I by affecting cell morphology, cytoskeleton
organization and the expression of the αvβ3 integrin, involved in the cell to extracellular
matrix adhesion in PCa tissues [218].

In line with these data, it was demonstrated that not only GnRH but also the GnRH-II
isoform inhibits CRPC cell motility through the remodeling of actin cytoskeleton [219].

Dondi and coworkers reported that, in DU145 and PC3 CRPC cells, GnRH analogs
inhibit the activity of the plasminogen activator (PA) system, implicated in the local
degradation of the extracellular matrix. Specifically, they showed that both the GnRH
agonist leuprolide and the antagonist cetrorelix decrease cell motility and invasiveness
by reducing the enzymatic activity and the secretion of uPA (urokinase-type PA), while
increasing the expression of the PA inhibitor PAI-1 [220]. In line with these data, cetrorelix
was reported to suppress DU145 cell invasiveness by decreasing the expression of proteins
involved in cell-to-cell adhesion molecules (i.e., E-cadherin, α- and β-catenin) [221].

It is well known that metastasis is a complex process that involves the cooperative
actions of different cancer cell subpopulations, in which cancer stem cells would be respon-
sible for the final step of colonizing premetastatic niches. Cancer stem cells are also deeply
involved in the mechanisms of drug resistance, being able to avoid the effects of standard
antitumor therapies [222]. Recently, Contreras and coworkers isolated and characterized a
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cell subpopulation with stem-like properties from explants of human prostate tumors and
found that these cells do not express the GnRH-R [34,223].

Angiogenesis is the process by which new vascular vessels form from the pre-existing
vasculature. In tumors, the formation of new blood vessels is necessary to provide an
appropriate blood supply to support cell viability and proliferation. Hence, this process
plays a key role in tumor progression and is now recognized as one of the hallmarks
of cancer [224,225]. Vascular endothelial growth factor (VEGF) is an essential factor for
vascular endothelial cells; its expression is up-regulated in most cancers, and its crucial
role in tumor angiogenesis is well defined [226–231]. Among the VEGF isoforms, VEGF-A
was shown to play a key role in PCa angiogenesis [232–234]. VEGF-A is overexpressed in
PCa, and high levels of this growth factor are associated with the presence of metastasis
and a poorer prognosis [235,236]. Furthermore, in PCa, a high expression of VEGF-A was
observed not only in endothelial cells, but also in tumor cells [235].

In our laboratory, we observed that GnRH-Rs are expressed in HUVEC (human
umbilical vein endothelial) cells; GnRH agonists reduce HUVEC cell proliferation and
counteract the effects of VEGF-A on their ability to form capillary-like tubes [237]. Recently,
a bifunctional fusion protein (LMRAP), consisting of a GnRH Fc fragment and an integrin
targeting peptide, was developed as a new strategy for the therapy of GnRH-R expressing
tumors. The antitumor activity of this protein was assessed in different cancer cells lines,
including CRPC cells, in vitro and in vivo. It was reported that this protein significantly
inhibits tumor growth and angiogenesis [238].

3.5. Gonadotropin-Releasing Hormone Receptors: Signal Transduction

The inhibitory effects of GnRH-R activation on tumor growth and progression sug-
gested that, in cancer cells, these receptors might be coupled with intracellular signaling
mechanisms different from those found at the pituitary level. It is now well accepted that,
while GnRH-Rs expressed on the gonadotrope cell membranes are associated with the
Gαq/PLC/PKC signaling pathway, in cancer cells, these receptors are mainly coupled
with the Gαi/cAMP/PKA cascade of transduction mechanisms [21,29,31,148,211,239,240].

We demonstrated that, in PCa and, specifically, CRPC cells, GnRH-R activation signif-
icantly interferes with the forskolin-induced increase in cytoplasmic cAMP levels while
pertussis toxin counteracts the antiproliferative effects of GnRH analogs [152], suggesting
that the Gαi signaling pathway is involved in the anticancer activity of these compounds.
In these cells, by decreasing cAMP levels, GnRH-R ligands trigger the activation of a PTP
(phosphotyrosine phosphatase), an enzyme responsible for the dephosphorylation (i.e.,
inactivation) of growth factor receptors. It is well established that GnRH ligands prevent
the activity of growth factors, such as EGF and IGF-I, thus leading to the suppression of
the expression/activity of their intracellular signaling mediators (i.e., ERK1/2, PI3K/AKT
and c-fos) and, consequently, of their protumoral effects [196,218,239]. In human benign
prostatic hyperplasia (BPH-1) cells, GnRH-R ligands (agonists and antagonists) stimulate
the Gαi-mediated activation of the p38MAPK and JNK kinases [240]. The JNK/Jun sig-
naling pathway, triggered by AKT inhibition and subsequent stabilization/activation of
its upstream regulator MLK3 (mixed-lineage kinase 3), was also shown to be involved in
the anticancer activity of GnRH analogs in PCa cells [28,177]. Similar observations were
reported in cancer cells of the female reproductive system [29,241,242].

Naor’s laboratory widely demonstrated that the Gαq/PLC/PKC pathway is also in-
volved in the antiproliferative/proapoptotic activity of GnRH analogs in cancer cells [243].
It was found that different PKC isoforms (PKCα, PKCβII and PKCε) are present in go-
nadotropes as well as in PCa cells, despite being at a different level of expression. Moreover,
in CRPC cells, GnRH agonists induce a sustained activation of the PKC/MAPK (p38MAPK
and JNK) signaling cascade [182]. In particular, a c-Src-mediated signal and a reduction of
AKT activity were found to be involved in the activation of the MLK3/JNK axis [176].
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Taken together, these data strongly support the notion that different GnRH-R-associated
signaling pathways are involved in the opposite effects of GnRH analogs in pituitary vs.
CRPC cells.

The main signaling pathways associated with the GnRH/GnRH-R axis in CRPC cells
are summarized in Figure 3.
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Figure 3. Intracellular signaling pathways involved in the antitumor activity of the GnRH-R in
CRPC cells. The binding of GnRH analogs (both agonists and antagonists) to locally expressed
GnRH-Rs triggers the activation of the Gαi/cAMP pathway. By decreasing cAMP levels, GnRH-R
ligands activate the MAPK kinase cascades (i.e., p38MAPK and JNK), deeply involved in their
anticancer effects. GnRH-R analogs also trigger the activation of a PTP, an enzyme responsible
for the dephosphorylation (i.e., inactivation) of growth factor receptors (RTK), thus leading to the
suppression of the expression/activity of their intracellular signaling mediators (i.e., ERK1/2 and
AKT). In addition, AKT inhibition also leads to the stimulation of the JNK signaling pathway, further
potentiating its antitumor activity. Abbreviations: cAMP, cyclic adenosine monophosphate; p38, p38
mitogen-activated protein kinase; JNK, c-Jun N-terminal kinase; RTK, receptor tyrosine kinase; AKT,
protein kinase B; ERK1/2, extracellular signal-regulated kinase 1/2.

4. Androgen and Gonadotropin-Releasing Hormone Receptors: Molecular Targets for
Therapeutic Strategies in CRPC

ADT, based on GnRH agonists or antagonists, still remains the mainstay treatment
of hormone-dependent PCa. Results from different clinical trials also support the use of
AR antagonists, such as enzalutamide and apalutamide, as well as of androgen synthesis
inhibitors, such as abiraterone, for the treatment of hormone-sensitive PCa [4,244–251].
Unfortunately, in a few years, the majority of patients progress towards the CRPC stage,
with tumor growing even in the presence of castration levels of circulating androgens.

Taxane-based cytotoxic chemotherapy, i.e., docetaxel, is considered a therapy of
choice for CRPC patients; cabazitaxel was also introduced in the clinical settings; how-
ever, its efficacy was found to be lower than that of docetaxel in a phase III clinical trial
(FIRSTANA) [252]. Immunotherapy, such as sipuleucel-T or immune checkpoint inhibitors
(nivolumab and pembrolizumab, binding and inactivating the T cell antigen PD1; durval-
umab, targeting PD-L1), is another therapeutic strategy for CRPC patients. Unfortunately,
serious side effects and a lower efficacy than expected are commonly associated with
chemotherapy and immunotherapy, respectively [253–257].

Given the persisting role of the AR in the progression of PCa to the CRPC stage,
inhibitors of the androgen pathways are commonly used for the treatment of CRPC pa-
tients [38,254,255,257,258]. Second-generation non-steroidal AR antagonists (enzalutamide,
apalutamide, darolutamide) compete with androgens by binding to AR receptors and also
inhibit AR translocation into the nucleus and its downstream binding to, and activation
of, response elements in the promoter region of specific target genes. Enzalutamide was
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reported to significantly reduce PSA levels and the metastasis-free survival while increas-
ing the progression-free survival (PFS) and the overall survival (OS) in non-metastatic
and metastatic CRPC patients, either before or after chemotherapy [247,249,259–262]. Sim-
ilar positive clinical outcomes were reported with the more recently developed, second-
generation AR antagonists such as apalutamide and darolutamide [37,263–265]. Abi-
raterone, the inhibitor of CYP17A1 activity and, therefore, of androgen biosynthesis,
demonstrated efficacy (reduction of risk of death, PFS and OS) and safety in metastatic
CRPC patients, both in the pre- and post-chemotherapy settings [266–268]. Interestingly, it
has been observed that, in a sequential treatment setting, starting therapy with abiraterone
and subsequently switching to enzalutamide provides better results (in terms of PFS and
PSA-PFS) than those obtained with the opposite sequence [39,255,257,269].

The presence of a GnRH/GnRH-R axis associated with antitumor activities in PCa
and specifically in CRPC cells supports the notion that it might be considered an additional
direct target of GnRH analog-based (agonists and antagonists) ADT.

Gnanapragasam and coworkers reported that a high expression of GnRH-Rs corre-
lates with a better clinical outcome in CRPC patients treated with GnRH agonists [174].
Moreover, it was shown that, in PCa patients, switching from a GnRH agonist (goserelin
or leuprolide) to another agonist (leuprolide or goserelin), after disease progression, is
associated with a reduction of PSA levels [270]. Co-treatment of chemotherapy-naïve CRPC
patients with a GnRH agonist and docetaxel resulted in an improved PFS with respect
to chemotherapy alone [271]. In line with these data, patients developing CRPC often
continue on a GnRH agonist-based therapy when starting chemotherapy [272]. However,
different results were reported by other clinical trials. In the ICELAND clinical trial, pa-
tients with advanced/relapsing PCa were treated with the GnRH agonist leuprorelin, either
alone or in combination with bicalutamide. It was observed that continuous androgen
deprivation did not improve PSA progression [273].

As discussed above, by binding to GnRH receptors expressed in PCa cells, as specifi-
cally in CRPC cells, GnRH antagonists behave as agonists triggering marked antitumor
effects. To this purpose, it must be underlined that these compounds elicit a faster suppres-
sion of testosterone, as well as of FSH and PSA levels, in PCa patients [124,274]. Abufaraj
and coworkers recently reported that, in patients with metastatic PCa, GnRH antagonists
are associated with lower overall mortality rate (but without a significant difference in
PSA progression) and cardiovascular events compared with GnRH agonists, while induc-
ing higher injection site reactions [123]. Degarelix was shown to induce a more rapid
decrease in testosterone levels and a better PSA control with respect to leuprolide in PCa
patients [258,275–277]. Sugimura et al. showed that switching from a GnRH agonist to
an antagonist (degarelix) was associated with a delay in tumor progression in a case of
CRPC [278]; moreover, a recent systematic meta-analysis has pointed out that treatment
with degarelix after failure of a GnRH agonist is associated with decreased or stable PSA
levels in patients progressing to the CRPC phase [279]. However, in spite of these data,
evidence to make an incontrovertible statement that GnRH antagonists have a greater
efficacy than agonists in PCa treatment is considered still limited [123,280,281].

Recently, cytotoxic GnRH bioconjugates were developed as a new therapeutical ap-
proach for tumors expressing GnRH-Rs; these compounds consist of a GnRH-derivative
covalently linked to a cytotoxic drug. It is expected that, by binding to its receptor, the
GnRH derivative may specifically carry the cytotoxic drug to cancer cells without affecting
normal cells. AEZS-108 (also known as AN-152), a bioconjugate consisting of a GnRH
derivative covalently linked to doxorubicin via an ester bond, was developed, and its
anticancer activity was investigated in different types of tumors [282–284]. This peptide
cytotoxin was reported to exert a significant antiproliferative/proapoptotic activity in PCa,
and specifically in CRPC cells, in vitro and in preclinical studies [285–287]. Results from
phase I and II clinical trials demonstrated that, in chemotherapy naïve and taxane-resistant
CRPC patients, AEZS-108 reduces PSA levels and is effective in increasing PFS [288,289].
Promising results were also obtained with different GnRH-based cytotoxic bioconjugates
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in CRPC cells, both in vitro and in vivo [283,290,291]. In our laboratory, we investigated
the antitumor activity of bioconjugates consisting of daunorubicin linked to the GnRH-III
isoform in CRPC cells. We found that these compounds are rapidly internalized and exert
a significant antitumor activity in these cells [292]. Further studies are needed to confirm
the efficacy and the lack of toxicity of GnRH-based cytotoxic bioconjugates in PCa.

5. Conclusions and Future Perspectives

It is now well established that the progression of PCa towards its most aggressive
CRPC phase is characterized by an active hormonal landscape.

Specifically, a persistent activity of the androgen/AR axis has been demonstrated to
be present in CRPC cells. This is correlated to different molecular mechanisms, including:
intratumoral synthesis of androgens; AR amplification; AR mutations; alternative splicing
of the AR mRNA leading to the expression of AR splice variants (i.e., AR-V7 and Arv567es);
increased expression/activity of transcription factors and coregulators of the AR. Based on
these data, second-generation non-steroidal antiandrogens (enzalutamide, darolutamide,
apalutamide) as well as inhibitors of enzymes involved in the androgen biosynthesis
(abiraterone, the CYP17A1) are commonly used for the treatment of CRPC patients.

In addition, a GnRH/GnRH-R axis, widely reported to be associated with a substantial
antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity, is also expressed
in CRPC cells. In line with these data, a high expression of GnRH-R in PCa tissues correlates
with a better clinical outcome in CRPC patients. Interestingly, in cancer cells expressing the
GnRH receptor, GnRH antagonists trigger the same antitumor activity of GnRH agonists,
suggesting that differences in the molecular structure/mechanisms of these receptors might
exist at the tumor vs. pituitary level.

In accordance with these observations, ADT interventions, based on a gonadotropin-
releasing hormone agonist, with or without an antiandrogen drug (AR antagonist or
inhibitor of androgen synthesis), represent a mainstay treatment for PCa, even in the
CRPC stage [255,257,258]. Recent clinical trials (PROSPER, SPARTAN, ARAMIS) reported
a synergistic positive effect of AR antagonists (enzalutamide, apalutamide, darolutamide)
and GnRH analog-based ADT on clinical outcomes (PSA levels and doubling time, median
time to metastasis, PFS, OS, risk of death) in non-metastatic CRPC patients [262,293–296].
Results from these trials demonstrate that “initiating therapy at early stage of the disease is
more effective than waiting until mCRPC development” [38]. The optimal sequencing and
combination of these standard treatment strategies for CRPC patients is still a matter of
debate [255,257].

In spite of these promising results, the incidence of PCa is still increasing. Under-
lying the molecular pathways of PCa development and progression towards the most
aggressive, castration-resistant stage is mandatory for the identification of novel molecular
markers/targets and therapeutic approaches for CRPC patients.

Assessing the AR status, and, specifically, the AR gene copy number, in plasma DNA
is a minimally invasive tool for the identification of the development of resistance in PCa
patients escaping enzalutamide- or abiraterone-based therapies. Recently, Beltran and
coworkers reported that CRPC patients with high plasma AR copy number do not have
a worse response to taxane-based chemotherapy compared with patients with normal
plasma AR. These authors speculate that the analysis of plasma levels of AR copy number
in the different stages of PCa might improve therapy selection for CRPC patients [297].

Several studies are presently ongoing with the aim to solve the issue of the role and
subsequent potential targeting of AR mutations in PCa. As discussed in this review, specific
AR mutations not only confer resistance to antiandrogens (such as enzalutamide) but can
also convert these compounds in AR agonists, indicating a rapid development of drug
resistance. In recent papers, by means of molecular docking and molecular dynamics
simulations, novel AR antagonists were developed and found to exert a significant anti-
tumor effect in CRPC cells as well as in PCa cells engineered to overexpressed the F876L
mutant AR [298,299]. Moreover, a full characterization of AR mutations, achieved by
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genomic studies, will likely increase the treatment options for CRPC patients, in terms of
personalized therapy. Recently, mutant ARs were reported to be easily detectable in cfDNA
from CRPC patients [58,75–77]. It is now accepted that AR inhibition can be achieved also
through its degradation. Selective AR degraders (SARDs) have been recently developed
and demonstrated to exert significant antitumor activities in PCa [250,300]. However,
further experimental studies as well as clinical trials are needed to confirm the utility of
these novel approaches in the clinical setting.

AR-V7 is the most frequent AR splice variant detected in PCa, and, specifically, in
CRPC tissues and its levels of expression, appears to be strictly correlated to resistance to
enzalutamide and abiraterone. CTCs are now considered a clinically relevant biomarker of
disease progression in different pathologies, including PCa. Recently, it has been reported
that AR-V7 mRNA expression, assessed via the Adna test platform and the EPIC sciences
CTC-based platform (an immunofluorescence-based detection assay that measures the
AR variant protein localized in the nucleus), can be detected in the plasma from patients
with mCRPC treated with enzalutamide. Compared with AR-V7 negative patients, AR-V7
positive patients treated with enzalutamide showed a shorter PFS and OS [301,302]. Thus,
the assessment of the expression of different mutant/variant forms of the AR in CTCs is
now considered an effective predictive biomarker of PCa progression and a useful tool for
choosing the right therapeutic approach in terms of precision medicine.

Extracellular vesicles (EVs, previously called exosomes) carry different types of bioac-
tive molecules to recipient cells in the tumor microenvironment. EVs mediate intercellular
communications, including re-education of stromal cells, modulation of cancer metabolism,
and also development drug resistance. The bioactive molecule profiles/signatures of
tumor-derived Es change over time, reflecting the real-time status of cancer cells. Specifi-
cally, different bioactive molecules have been identified in PCa-derived EVs, such as AR
and AR-V7, caveolin-1 (involved in cancer cell stemness), has-miRNA-940 (involved in
the osteogenic differentiation of mesenchymal stem cells), integrin αvβ3 and αvβ6 (in-
volved in PCa cell metastatic behavior), miR-409 (involved in prostate tumorigenesis),
TGFβ (involved in the differentiation of mesenchymal stem cell into pro-invasive and
pro-angiogenic myofibroblasts) and MDR-1 (multidrug resistance-1, involved in drug ef-
flux) [95,303]. Based on these observations, PCa-derived EVs are now considered valuable
diagnostic and prognostic biomarkers in progressing PCa, supporting their potential role
in disease management.

As discussed in this review, GnRH receptors, associated with a significant antiprolifer-
ative activity, are expressed in PCa, and, specifically, in CRPC cells and tumors. Moreover,
GnRH-R expression was also demonstrated in PCa stem cells isolated from explants of
human prostate tumors. PCa patients expressing high levels of GnRH receptors, have a
better clinical response to the GnRH-analog based therapy. GnRH analogs, either alone or
together with AR inhibitors or taxane derivatives, still represent the mainstay therapy for
CRPC patients.

Based on this observation, GnRH analog (GnRH, GnRH-II and GnRH-III)-based
cytotoxic bioconjugates have been recently developed with the aim to specifically carry
the cytotoxic drug (doxorubicin, daunorubicin) to cancer cells expressing the GnRH-R,
while sparing normal cells. In particular, the bioconjugate AEZS-108 (AN-152) consists of
a GnRH derivative linked to the cytotoxic drug doxorubicin. This compound was found
to significantly inhibit the growth of CRPC cells, both in vitro and in vivo. Phase I and II
clinical trials showed that AEZS-108 efficiently reduces PSA levels and increases PFS in
CRPC patients. Further studies are needed to confirm these as promising.

In conclusion, a deeper clarification of the expression and activities of both the andro-
gen/AR and GnRH/GnRH-R axes in the CRPC stage will likely lead to the identification
of novel predictive biomarkers as well as to the improvement of the therapeutical options
for this almost untreatable disease, in terms of precision medicine.
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