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Abstract
We consider the Random Euclidean Assignment Problem in dimension d = 1, with linear
cost function. In this version of the problem, in general, there is a large degeneracy of the
ground state, i.e. there are many different optimal matchings (say, ∼ exp(SN ) at size N ). We
characterize all possible optimal matchings of a given instance of the problem, and we give
a simple product formula for their number. Then, we study the probability distribution of
SN (the zero-temperature entropy of the model), in the uniform random ensemble. We find
that, for large N , SN ∼ 1

2N log N + Ns + O (log N ), where s is a random variable whose
distribution p(s) does not depend on N . We give expressions for the moments of p(s), both
from a formulation as a Brownian process, and via singularity analysis of the generating
functions associated to SN . The latter approach provides a combinatorial framework that
allows to compute an asymptotic expansion to arbitrary order in 1/N for the mean and the
variance of SN .

Keywords Random combinatorial optimization · Euclidean correlations · Assignment
problem

1 Introduction

The Euclidean Assignment Problem (EAP) is a combinatorial optimization problem in which
one has to pair N white points to N black points minimizing a total cost function that depends
on the Euclidean distances among the points. The Euclidean Random Assignment Problem
(ERAP) is the statistical system in which these 2N points are drawn from a given probability
measure. In the latter version of the problem, one is interested in characterizing the statistical
properties of the optimal solution, such as its average cost, average structural properties,
etc…
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The EAP problem has applications in Computer Science, where it has been used in com-
puter graphics, image processing andmachine learning [20], and it is also a discretised version
of a problem in functional analysis, called optimal transport problem, where the N -tuples of
points are replaced by probability measures. The optimal transport problem has recently seen
a growing interest in pure mathematics, where it has found applications in measure theory
and gradient flows [2].

To be more definite, the EAP problem is the optimization problem defined by

min
π∈SN

HJ (π) (1)

where

– J = ({wi }, {b j }) is the instance of the problem, i.e., in theEuclidean version in dimension
d , the datum of the positions of N white points {wi } and N black points {b j } in R

d ;
– π is a bijection between the two sets of points, linking biunivocally each white point to

a unique black point. In other words, is a perfect matching. We denote bySN the set of
all possible bijections between sets of size N ;

– HJ (π) is the cost function

HJ (π) =
N∑

i=1

c
(
dist

(
wi , bπ(i)

))
(2)

i.e. the sum of the costs of the links of π , where a link is weighted using a link cost
function c(x) : R

+ → R, depending only on the Euclidean distance among the two
points.

In the EAP, J is considered as fixed, while in the ERAP, J is a random variable with a fixed
probability distribution.

It is a longstanding project to understand the “phase diagram” of the model, in the plane
(p, d), say, for definiteness, in the version of this problemwhere J is given by 2N i.i.d. points
from the d-dimensional hypercube [0, 1]d , and the link cost function is given by c(x) = x p .
Even the definition of phase diagram requires a clarification, as it is not obvious which
observable should be adopted as order parameter. A first relevant quantity is the scaling in N
of the cost of the optimal matching, a quantity that, as we will see in a moment, undergoes
phase transitions that are connected to changes in the structural properties of the optimal
matchings.

This phase diagram is, to a certain extent, still mysterious, although some progress has
been made recently (see for example [1]), and all the information collected so far is coherent
with the assumption that, for all (p, d), there exist exponents γ and γ ′ such that the optimal
cost at size N scales as EN ∼ N γ (ln N )γ

′
, where γ = γ (p, d) is continuous and piece-wise

smooth, and γ ′ = γ ′(p, d) is zero everywhere except possibly on the lines of discontinuity
of γ (p, d) (which are the critical lines). It is possible that one critical line is the half-line
d = 2 and p ≥ 1, and two other critical lines reach a tricritical point (p, d) = (1, 2), starting
from d = 0, and passing through p = 1

2 and p = 1 when d = 1. In particular, when d = 1,
the analytical characterization of optimal solutions is quite tractable [4,16], and the emerging
landscape is as follows:
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– For p > 1, the optimal matching is ordered1 independently on J , and this is due to the
fact that the link cost function is increasing and convex. In this case, plenty of results
have been obtained on the statistics of the average optimal cost [7–9,11].

– For 0 < p < 1, the optimal matching is non-crossing, meaning that pairs of matched
points are either nested one inside the other, or disjoint (that is, matched pairs do not
interlace) [16]. This property is imposed by the concavity of the link cost function. In
this case, the optimal matching is not uniquely determined by the ordering of the points
(although the viable candidates are typically reduced, roughly, from n! to √

n!), and a
comparatively smaller number of results has been found so far for the random version of
the problem [3,5,10,15]. Note that, remarkably, it is expected that, within this interval,
there are two transitions: one at p = 1, with γ ′(1, 1) = 0, somewhat corresponding to
the ordered /non-crossing structural transition, and one at p = 1

2 , with γ ′( 12 , 1) = 1,
corresponding to a transition in which, in the cost of the optimal matching, the leading
contribution comes from the few longest edges (of lengthO(1), when p > 1

2 ) or from the
many shortest edges (of length O(N−1), when p < 1

2 ), and the logarithmic correction
at p = 1

2 comes from the fact that, in this case, all length scales contribute to the leading
part of the optimal cost [5].

– For p < 0, due to the fact that an overall positive factor in c(x) is irrelevant in the
determination of the optimal matching, it is questionable if one should consider the
analytic continuation of the cost function c(x) = x p (which has the counter-intuitive
property that the preferred links are the longest ones), or of the cost function c(x) = p x p

(which has the property that the preferred links are the shortest ones, and that the limit
p → 0 is well-defined, as it corresponds to c(x) = log x , but has the disadvantage
of having average cost −∞ when p ≤ −d). In the first case, the optimal matching is
cyclical, meaning that the permutation that describes the optimal matching has a single
cycle, and some result on the average optimal cost where obtained in [7]. In the second
case, in the pertinent range −d < p ≤ 0, it seems that the qualitative features of the
0 < p < 1

2 regime are preserved.

We notice that in all the cases above, as well as in all the cases with d 
= 1 and any p, the
optimal matching is ‘effectively unique’, meaning that it is almost surely unique, and, even in
presence of an instance showing degeneracy of ground states, almost surely an infinitesimal
perturbation immediately lifts the degeneracy.

This generic non-degeneracy property does not hold only for the d = p = 1 case (note
that p = 1 is the exponent at which the cost function changes concavity, that is, the critical
point for the ordered /non-crossing structural transition). It is known [4] that in this case there
are (almost surely) at least two distinct optimal matchings for each instance of the problem,
the ordered matching and the Dyck matching [5] which coincide only in the rather atypical
case (with probability N !/(2N − 1)!!) in which, for all i , the i-th white and black points are
consecutive along the segment.

These observations suggest some fundamental questions for the (d, p) = (1, 1) problem:

1. is it possible to characterize all the optimal matchings of a fixed instance J of the EAP?
2. how many optimal configurations are there for a fixed instance J of the EAP?
3. for random J ’s, what are the statistical properties of the number of optimal configurations?

The aim of this paper is to answer the three questions above.

1 The ordered matching is the one in which the first white point from the left is matched with the first black
point and so on, and is represented by the identity permutationπord(i) = i if the points are sorted by increasing
coordinate.
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Our interest is not purely combinatorial. In fact, the ERAP is a well-known and well-
studied toymodel of Euclidean spin glass [6,17–19]. The characterization of the setZJ ⊆ SN

of the optimal matchings of J is thus related to the computation of the zero-temperature
partition function Z J = |ZJ | of the disordered model, and of its zero-temperature entropy
SN (J ) = log(Z J ).

In this manuscript we will focus on the statistical properties of the zero-temperature
entropy, the thermodynamic potential that rules the physics of the model when the disorder
is quenched, i.e. when the timescale of the dynamics of the disorder degrees of freedom
of the model is much larger than that of the microscopic degrees of freedom. We leave to
future investigations the study of the annealed and replicated partition functions Z J and Zk

J ,
which are less fundamental from the point of view of statistical physics, but, as we will show
elsewhere, have remarkable combinatorial and number-theoretical properties.

1.1 Summary of Results

In Sect. 2.1 we prove that, given a fixed instance J of the (d, p) = (1, 1) EAP problem, a
matching π is optimal if and only if

kLB(z) = kπ (z) (3)

where kLB(z) is a function of J that counts the difference of the numbers of white and black
points on the left of z, and kπ (z) counts the number of links of π whose endpoints lie on
opposite sides of z.

In Sect. 2.2, we show thatZJ , the set of optimal matchings, depends on J only through the
ordering of the points, while it is independent on their positions (provided that the ordering
is not changed). Using a straightforward bijection between the ordering of bi-colored point
configurations on the line and a class of lattice paths (the Dyck bridges), we provide a
combinatorial recipe to construct the setZJ . As a corollary, we obtain a rather simple product
formula for the cardinality Z J := |ZJ |, that is, roughly speaking,

Z J =
∏

descending
steps

height of the step
(4)

where the product runs over the descending steps of the Dyck bridge associated with the
ordering of the points of configuration J , and the height of a step is, roughly speaking, the
absolute value of its vertical position. This implies an analogous sum formula for the entropy
SN (J ) = log(Z J ) (we stress that the size of J equals 2N using a subscript).

Then, we study the statistics of SN (J ) when J is a random instance of the problem of
fixed size N . Our techniques apply equally well, and with calculations that can be performed
in parallel, to two interesting statistical ensembles of 2N points:

Dyck bridges: the case in which white and black points are just i.i.d. on the unit interval.
Dyck excursions: the restriction of the previous ensemble to the case in which, for all
z ∈ [0, 1], there are at least as many white points on the left of z than black points.

The fact that we can study these two ensembles in parallel is present also in our study for the
distribution of the energy distribution of the “Dyck matching”, that we perform elsewhere
[5,10].
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In Sect. 3.1, we highlight a connection between SN (in the two ensembles) and the observ-
able

s[σ ] =
∫ 1

0
dt log (|σ (t)|) (5)

over Brownian bridges (or excursions) σ . Simple scaling arguments imply that

s = lim
N→∞

SN − 1
2N log N

N
(6)

is a random variable with a non-trivial limit distribution for large N .
We provide integral formulas for the integer moments of s, and we use these formulas to

compute analytically its first two moments in the two ensembles.
In Sect. 3.2, we complement this analysis with a combinatorial framework at finite size N .

We use this second approach to provide an effective strategy for the computation of finite-size
corrections, that we illustrate by calculating the first and second moment, for both bridges
and excursions.

In particular, we can establish that

SN
d= 1

2N log N + Ns + O(log(N )) (7)

where s is a random variable whose distribution depends on the ensemble (among bridges
and excursions). For Dyck bridges we have

〈s〉B = −γE + 2

2
+ O

(
log N√

N

)

〈s2〉B = 4

3
+ γ 2

E

4
+ γE − π2

72
+ O

(
(log N )2√

N

) (8)

and for Dyck excursions we have

〈s〉E = −γE

2
+ O

(
log N√

N

)

〈s2〉E = γ 2
E

4
+ 5π2

24
− 2 + O

(
(log N )2√

N

) (9)

In Sect. 4 we provide numerical evidence that the distribution of the rescaled entropy s is
non-Gaussian (but we leave unsolved the question whether the centered distribution for the
excursions is an even function), and we confirm that the predicted values for the first two
moments match with the simulated data.

With both our approaches it seems possible to access also higher-order moments, however
we cannot prove at present that, for any finite moment, the evaluation can be performed in
closed form, and that (as we conjecture) the result is in the form of a rational polynomial that
only involves γE and (multiple) zeta functions. We will investigate these aspects in future
works.

2 Optimal Matchings at p = 1

In the following,we focus on the EAPwith p = d = 1.We have N white pointsW = {wi }Ni=1
and N black points B = {bi }Ni=1 on a segment [0, L] (i.e., we have ‘closed’ boundary
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conditions, instead of ‘periodic’, as we would have if the points were located on a circle).
We assume that the instance is generic (i.e., no two coordinates are the same), and we label
the points so that the lists above are ordered (wi < wi+1 and bi < bi+1).

2.1 Characterization of Optimal Matchings

We start by giving an alternate, integral representation of the cost function HJ (π). For a
given matching π , and every z ∈ R which is not a point of W or B, define the function

kπ (z) =
N∑

i=1

κ(z, wi , bπ(i)) κ(z, x, y) =
{
1 if x < z < y or y < z < x
0 otherwise

(10)

In words, κ(z, x, y) is just the indicator function over the segment with extreme points x and
y, and kπ (z) counts the number of links of π that have endpoints on opposite sides of z.

Furthermore, define the function

kLB(z) = ∣∣#(W ∩ [0, z]) − #(B ∩ [0, z])∣∣ , (11)

where #(I ) denotes the cardinality of the set I . As well as kπ (z), also kLB is defined for all
z ∈ R \ (W ∪ B), and counts the excess of black or white points on the left of z.

Then, we have two simple observations

Proposition 1 At p = 1

HJ (π) =
∫
dz kπ (z) . (12)

Moreover, at p = 1, for all π and all z,

kπ (z) ≥ kLB(z) . (13)

This has the immediate corollary that, for all π ,

HJ (π) ≥ HLB
J :=

∫
dz kLB(z) . (14)

Now, call πid the identity permutations, that is the so-called ordered matching. By simple
inspection, we have that HJ (πid) = HLB

J . This implies thatπid is optimal, andmore generally

Corollary 1 π ∈ ZJ iff the functions kLB and kπ coincide.

See Fig. 1 for the description of all optimal matchings at N = 2.
In the following we will provide a simple algorithm to construct the optimal matchings of

a given instance. In order to do this, we shall now give another characterization of optimal
matchings:

Definition 1 Let π be a matching. Let us call P = (p1, . . . , p2N ) the ordered list of the
points in W ∪ B. For 1 ≤ i ≤ 2N , we call Pi (π) the stack of π at i , that is, the set of points
in {p1, . . . , pi } that are paired by π to points in {pi+1, . . . , p2N } (see Fig. 2).

Proposition 2 π ∈ ZJ iff, for all 1 ≤ i ≤ 2N, the stack of π at i is either empty or
monochromatic, i.e. if Pi (π) ∩ W = ∅ or Pi (π) ∩ B = ∅.
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π1

π2

Optimal configurations

Fig. 1 Optimal matchings at p = 1 for 2N = 4 points. π1 is the matching in which the first white point is
matched with the first black point; π2 is the only other possible matching. All optimal configurations satisfy
kπ (x) = kLB(x)

P5 = {w1, b2, w3}

P2 = {w1, w2} P8 = ∅

P10 = {w5, b5}

Fig. 2 The stack of a matching at position i is given by all the points on the left side of point i (including i
itself) that are matched to a point on the right side of point i . In the picture, wi is the i-th white point from the
right, and analogously bi is the i-th black point from the right. At the locations specified by the dashed lines,
we show the stack of the represented matching

Proof Suppose that for, some 1 ≤ i ≤ 2N , the stack of π at i is non-empty and non-
monochromatic. Then there are pw ∈ Pi (π) ∩ W and pb ∈ Pi (π) ∩ B which are matched
to qb ∈ Pc

i (π) ∩ B and qw ∈ Pc
i ∩ W , respectively. In the matching π ′ in which we swap

these two pairs, we have kπ ′(z) = kπ (z) − 2 for all max(pw, pb) < z < min(qw, qb), and
kπ ′(z) = kπ (z) elsewhere, thus, by Corollary 1, π cannot be optimal.

Viceversa, let π have only empty or monochromatic stacks. This means that, in a right
neighbourhood of pi , the cardinality of the stack, which by definition coincides with kπ (x), is
exactly given by kLB. Furthermore, both these functions are constant on the intervals between
the points (where they jump by±1), so the two functions coincide everywhere on the domain.
This means, by Corollary 1, that π must be optimal. ��

2.2 Enumeration of Optimal Matchings

Weare now interested in enumerating the optimalmatchings at p = 1 for a fixed configuration
J of size N . First of all, we give an alternative representation of J (already adopted in [5])
that will be useful in the following. A configuration J can be encoded by sorting the 2N
points in order of increasing coordinate (as in Definition 1 above), and defining

– a vector of spacings s(J ) ∈ (R+)2N , given by s(J ) = (p1, p2 − p1, p3− p2, . . . , p2N −
p2N−1);
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– a vector of signs, σ (J ) ∈ {−1,+1}2N such that if pi is white (resp. black), σi = +1
(resp. −1). Note that

∑
i σi = 0.

It is easily seen that the criterium in Proposition 2 is stated only in terms of σ (J ). This makes
clear that the set ZJ itself is fully determined by σ (J ). Thus, from this point onward, we
understand that Z(σ ), Z(σ ) and S(σ ) are synonims of the quantities ZJ , Z J and SJ , for any
J with σ (J ) = σ .

Binary vectors can be represented as lattice paths, i.e. paths in the plane, starting at the
origin and composed by up-steps (or rises) (+1,+1) and down-steps (or falls) (+1,−1). So
we have a bijection among zero-sum binary vectors σ and lattice bridges, in which the i-th
step of the path is (i, σi ). The bijection between color orderings, binary vectors and lattice
paths is so elementary that in the following, with a slight abuse of notation, we will just
identify the three objects.

We are interested in two classes of binary vectors / lattice paths:

– Dyck bridges BN of semi-lenght (size) N . These are lattice paths with an equal number
of up- and down-steps. They are precisely in bijection with the color orderings of N
white and N black points, i.e. with the color ordering of all the possible configurations
J . There are BN = |BN | = (2N

N

)
Dyck bridges of size N .

– Dyckpaths CN of semi-length (size) N . These are lattice bridges that never reach negative
ordinate (wewill also call them excursions, in analogywith their continuumcounterparts).
They are in bijection with configurations J in the forementioned “Dyck excursions”
ensemble. There are CN = |CN | = 1

N+1 BN Dyck paths of size N .

In the following, the generating function of the series BN and CN will turn useful. We have

B(z) =
∑

N≥0

BN z
N = (1 − 4z)−

1
2 ,

C(z) =
∑

N≥0

CN z
N = 1 − √

1 − 4z

2z
.

(15)

Our notion of height will be associated to the steps of the path. We call hi (σ ) the height of
the path at step i , that is, the height of the midpoint of the i-th step of the path, that in terms
of the binary vector reads

hi (σ ) = σ1 + σ2 + · · · + σi−1 + σi

2
. (16)

The choice of the midpoint to compute the height is arbitrary, but has the advantage of being
a symmetric definition with respect to reflections w.r.t. the x-axis, while taking values in an
equispaced range of integers. We can then define h̄i as the positive integers

h̄i = |hi | + 1

2
. (17)

Then we have

Lemma 1

Z(σ ) =
∏

i=1,...,2N
hiσi<0

h̄i (σ ) . (18)
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Proof The proof goes through the characterisation of the stacks of optimal configurations,
given in Proposition 2. First of all, notice that the list of positions given by the condition
hiσi < 0 is the one at which the stack at i − 1 decreases its size, because one point in the
stack is paired to the i-th point. We shall call closing steps the elements of this set (and
closing points the associated points in P), and opening steps those in the complementary set.
Indeed, the cardinality of the stack at i − 1 is exactly h̄i , while the sign of hi determines the
colour of the points in the stack at i − 1 (which is also the colour of the stack at i , unless the
latter is empty). So, there are exactly h̄i choices for the pairing at i , while, if i is not in the
list above, the choice is unique. As the cardinalities of the stacks are the same for all optimal
configurations, the choice at i does not affect the number of possible choices at j > i , and
we end up with Eq. (18). ��

Notice that Eq. (18) is trivially equivalent to

Z(σ ) =
2N∏

i=1

√
h̄i (σ ) =

∏

i=1,...,2N
σi=−1

h̄i (σ ) . (19)

The proof above has a stronger implication. Write each optimal matching π ∈ Z j in the
form π = ((i1, j1), . . . , (iN , jN )} where ia and ja are in the range {1, . . . , 2N }, and are
the indices of the white and black points (altogether), ordered from left to right. Order the
pairs canonically, by setting ia < ja for all a = 1, . . . , N , and the ia’s in increasing order.
Observe that, calling i(π) the list of the ia’s in the resulting order, we have that all the optimal
matchings have the same list i (and no non-optimal matching has this same list). Then, call
j(π) the list of the ja’s, in the order induced by the ia’s. Finally, order the set Z J according
to the lexicographic order of the strings j(π).

Despite the fact that, as is apparent from Lemma 1, the typical values of Z J are potentially
at least exponential in N , we can construct the m-th of the Z J solutions (in the order above)
by a polynomial-time algorithm (which takes on average time ∼ N log N and space ∼ √

N
if the suitable data structure is used). The algorithm goes as follows. First, rewrite m in the
form m − 1 = a1 + a2h̄1 + a3h̄1h̄2 + · · · + aN h̄1h̄2 · · · h̄N−1, with 0 ≤ a j < h̄ j . Then, say
that i( j) = i if the j-th closing point is pi . Now, produce the N pairs of the m-th optimal
matching by pairing the closing points, in order of increasing j , by pairing this point to the
a j -th of the stack in i( j) − 1, when this is sorted in increasing order.

3 Statistical Properties of SN

We are now interested in the statistical properties of the entropy

SN (σ ) = log Z(σ ) = 1

2

2N∑

i=1

log(h̄i (σ )) (20)

when σ (J ) is a random variable induced by some probability measure on the space of
configurations J of 2N points, and N tends to infinity. The subscript N reminds us that we
are at size |W | = |B| = N .

In matching problems, the typical choices for the configurational probability measure are
factorized over a measure on the spacings and a measure on the color orderings, i.e.

μ(J ) = μspacing(s(J )) μcolor(σ (J )) (21)
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3 Page 10 of 27 S. Caracciolo et al.

(see [5] for more details and examples). As SN (J ) = SN (σ (J )), we can again forget about
the spacing degrees of freedom, and study the statistics of SN (σ ) induced by some measure
μcolor(σ ). In particular, we will study the cases in which σ is uniformly drawn from the set
of Dyck paths, or uniformly drawn from the set of Dyck bridges.

3.1 Integral Formulas for the Integer Moments of SN viaWiener Processes

It is well known (see Donsker’s theorem [12]) that lattice paths such as Dyck paths and
bridges converge, as N → ∞ and after a proper rescaling, to Brownian bridges andBrownian
excursions. Brownian bridges are Wiener processes constrained to end at null height, while
Brownian excursions are Wiener processes constrained to end at null height and to lie in the
upper half-plane. The correct rescaling of the steps of the lattice paths that highlights this

convergence is given by (+1,±1) →
(
+ 1

N ,± 1√
N

)
.

These scalings suggest to consider a rescaled version of the entropy

s(σ ) = SN (σ ) − 1
2N log N

N
= 1

2N

2N∑

i=1

log

(
h̄i (σ )√

N

)
. (22)

In the limit N → ∞, the rescaled entropy will converge to an integral operator over Wiener
processes

s[σ ] =
∫ 1

0
dt log (|σ (t)|) (23)

where σ (x) is a Brownian bridge/excursion.
The integer moments of s[σ ] can be readily computed as correlation functions of the

Brownian process:

〈(s[σ ])k〉B/E =
∫

DB/E[σ ]
∫ 1

0
dt1 . . . dtk

k∏

a=1

log (|σ (ta)|)

= k!
∫

Δk

dt1 . . . dtk

∫

R

dx1 . . . dxk

k∏

a=1

log (|xa |)
∫

DB/E[σ ]
k∏

a=1

δ(σ (ta) − xa) ,

(24)

where Δk ⊂ R
k is the canonical symplex {0 = t0 < t1 < t2 < · · · < tk < tk+1 = 1},

and DB/E[σ ] is the standard measure on the Brownian process of choice among bridges and
excursions. The last integral is the probability that the Brownian process we are interested
in starts and ends at the origin and visits the points (t1, x1), . . . , (tk, xk), while subject to its
constraints.

Let us consider Brownian bridges first. In this case, the probability that a Wiener process
travels from (ti , xi ) to (t f , x f ) is given byN (x f − xi |2(t f − ti ))whereN (x |σ 2) is the p.d.f.
of a centered Gaussian distribution with variance σ 2. The factor 2 comes from Donsker’s
theorem, and is due to the fact that the variance of the distribution of the steps in the lattice
paths is exactly 2. Thus, for Brownian bridges

∫
DB[σ ]

k∏

a=1

δ(σ (ta) − xa) =
√
4π

∏k
a=0

√
4π(ta+1 − ta)

exp

[
−

k∑

a=0

(xa+1 − xa)2

4(ta+1 − ta)

]
(25)

123



The Number of Optimal Matchings... Page 11 of 27 3

where x0 = 0, xk+1 = 0 and the factor
√
4π is a normalization, so that

〈(s[σ ])k〉B = k!
∫

Δk

dt1 . . . dtk

∫

R

dx1 . . . dxk

√
4π
∏k

a=1 log (|xa |)∏k
a=0

√
4π(ta+1 − ta)

exp

[
−

k∑

a=0

(xa+1 − xa)2

4(ta+1 − ta)

]
.

(26)

Brownian excursions can be treated analogously using the reflection principle. In this case,
the conditional probability that aWiener process travels from (ti , xi ) to (t f , x f )without ever
reaching negative heights, given that it already reached (ti , xi ), is given byN (x f − xi |2(t f −
ti )) − N (x f + xi |2(t f − ti )) for xi, f > 0, while for xi = 0 and x f = x (or viceversa) it
equals |x |

2(t f −ti )
N (x |2(t f − ti )). Moreover, now all xi ’s are constrained to be positive. Thus,

for Brownian excursions

〈(s[σ ])k〉E = k!
∫

Δk

dt1 . . . dtk

∫

[0,+∞)

dx1 . . . dxk

√
4πx1xk

∏k
a=1 log (xa)

t1(1 − tk)
∏k

a=0

√
4π(ta+1 − ta)

× exp

[
− x21
4t1

− x2k
4(1 − tk)

]
k−1∏

a=1

{
exp

[
− (xa+1 − xa)2

4(ta+1 − ta)

]
− exp

[
− (xa+1 + xa)2

4(ta+1 − ta)

]}
.

(27)

In both cases, the Gaussian integrations on the heights xi can be explicitly performed.
First of all, we replace

log |xa | = 1

2
∂κa

[
x2κaa

]
κa=0 . (28)

Then, we treat the contact terms. In the case of bridges, the contact terms can be rewritten
(under integration) as

exp

[
xa+1xa

2(ta+1 − ta)

]
→ cosh

(
xa+1xa

2(ta+1 − ta)

)
, (29)

where the hyperbolic sine term is discarded due to the parity of the rest of the integrand in
the variables xa . In the case of excursions, the contact term instead reads

exp

[
xa+1xa

2(ta+1 − ta)

]
− exp

[
− xa+1xa
2(ta+1 − ta)

]
= 2 sinh

(
xa+1xa

2(ta+1 − ta)

)
. (30)

In both cases, we can expand the hyperbolic function in power-series, so that the integrations
in the xa variables are now factorized and of the kind

∫

R

dx x2k exp

[
− x2

λ

]
= Γ

(
k + 1

2

)
λk+

1
2 (31)

(in the case of excursions, a factor 1/2 must be added to take into account the halved inte-
gration domain).

Using these manipulations, the first two moments for both bridges and excursions can be
analytically computed. We detail the computations in Appendix A. The results are:

〈s[σ ]〉B = −γE + 2

2

〈s[σ ]〉E = −γE

2
,

(32)
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where γE is the Euler–Mascheroni constant, and

〈
(s[σ ])2〉B = 4

3
+ γE + γ 2

E

4
− π2

72
〈
(s[σ ])2〉E = γ 2

E

4
+ 5π2

24
− 2 .

(33)

The approach presented in this Section is simple in spirit, and allows to connect our
problem to the vast literature on Wiener processes. Moreover, it is suitable for performing
Monte Carlo numerical integration to retrieve the moments of s(σ ).

In this Section we worked directly in the continuum limit. In the next Section, we provide
a combinatorial approach that allows to recover the values of the first two moments in a
discrete setting, and to compute finite-size corrections in the limit N → ∞.

3.2 Combinatorial Properties of the Integer Moments of SN at Finite N

In this section, we introduce a combinatorial method to compute themoments of SN (σ ) in the
limit N → ∞. This new approach allows to retain informations on the finite-size corrections.

The underlying idea is to reproduce Eq. (24) in the discrete setting for the variable SN (σ ),
and to study its large-N behaviour using methods from analytic combinatorics.

We start again from

SN (σ ) =
∑

i=1...2N
σi=−1

log(h̄i (σ ))
(34)

In the following, the superscript/subscript T = E,B will stand for Dyck paths (excursions,
E) and Dyck bridges (B) respectively, TN = CN , BN and TN = CN ,BN ; we will mantain
the notation unified whenever possible.

The k-th integer moment equals

〈(SN (σ ))k〉T := M (T)
N ,k = 1

TN

∑

σ∈TN

[SN (σ )]k = k!
TN

∑

σ∈TN

∑

1≤t1,...,tk≤2N
σt1=···=σtk =−1

k∏

a=1

log(h̄ta (σ ))

= k!
k∑

c=1

∑

1≤t1<t2<···<tc≤2N
ν1,...,νc≥1

ν1+···+νc=k
h̄1,...,h̄c>0

c∏

a=1

((
log h̄a

)νa

νa !

)
M(T)

N (t1, . . . , tc; h̄1, . . . , h̄c)
TN

(35)

whereM(T)
N (t1, . . . , tc; h̄1, . . . , h̄c) is the number of paths of type T that has closing steps at

horizontal positions t1, . . . tc, and at heights h1 = ±(h̄1 − 1/2), . . . , hc = ±(h̄c − 1/2).
The last equation reproduces, as anticipated earlier, Eq. (24) in the discrete setting. Notice

that here we must take into account the multiplicities νa , while in the continuous setting we
could just set c = k and νa = 1 for all a, as the contribution from the other terms is washed
out in the continuum limit. This suggests that, in this more precise approach, we will verify
explicitly that the leading contributions in the large-N limit comes from the c = k term of
Eq. (35).

In order to study Eq. (35), we take the following route. As this equation depends on N only
implicitly through the summation range, and explicitly through a normalization, we would
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like to introduce a generating function

M (T)
k (z) =

∑

N≥1

zN TN M
(T)
N ,k (36)

that will decouple the summation range over the variables ti+1 − ti . By singularity analysis
[14], the asymptotic expansion for N → ∞ of M (T)

N ,k will be then retrieved by the singular

expansion of M (T)
k (z) around its dominant singularity.

We start by giving an explicit form for M(T)
N for Dyck paths and Dyck bridges.

Proposition 3 In the case of Dyck bridges, we have

M(B)
N (t1, . . . , tc; h̄1, . . . , h̄c)
= 2Bt1−1,h̄1

(
Bt2−t1−1,h̄2−(h̄1−1) + Bt2−t1−1,h̄2+(h̄1−1)

)
. . .

· · ·
(
Btc−tc−1−1,h̄c−(h̄c−1−1) + Btc−tc−1−1,h̄c+(h̄c−1−1)

)
B2N−tc,h̄c−1 ,

(37)

where

Ba,b =
{( a

a+b
2

)
if a, b ∈ Z

+ and a + b is even

0 otherwise
(38)

is the number of unconstrained paths that start at (x, y) and end at (x + a, y + b).
In the case of Dyck paths, we have

M(E)
N (t1, . . . , tc; h̄1, . . . , h̄c)
= Ct1−1,h̄1,0 Ct2−t1−1,h̄2−(h̄1−1),h̄1−1 · · ·
· · ·Ctc−tc−1−1,h̄c−(h̄c−1−1),h̄c−1−1C2N−tc,−(h̄c−1),h̄c−1

(39)

where

Ca,b,d = (
Ba,b − Ba,b+2(d+1)

)
θ(b + d) a, b, d ∈ Z

+ , (40)

is the number of paths that start at (x, y), end at (x + a, y + b) and never fall below height
y − d, and θ(x) = 1 for x ≥ 0 and zero otherwise,

Notice that, while in general the θ factors are necessary for the definition of Ca,b,d in terms
of Ba,b, in our specific case they are all automatically satisfied, as h̄a ≥ 1 for all 1 ≤ a ≤ c.

Proof Let us start by considering Dyck bridges. The idea is to decompose a path contributing
to the count of M(B)

N (t1, . . . , tc; h̄1, . . . , h̄c) around its closing steps:

– the first closing step starts at coordinate
(
t1 − 1,±h̄1

)
. There are Bt1−1,h̄1 + Bt1−1,−h̄1 =

2Bt1−1,h̄1 different portions of path joining the origin to the starting point of the first
closing step.

– the a-th closing step happens ta − ta−1 − 1 steps after the (t − 1)-th one, and, based
on the relative sign of the heights of the two closing steps, their difference in height
equals h̄a − (h̄a−1 − 1) or h̄a + (h̄a−1 − 1). Thus, there are Bta−ta−1−1,h̄a−(h̄a−1−1) +
Bta−ta−1−1,h̄a+(h̄a−1−1) different portions of path connecting the two closing steps.

– the last closing step happens 2N − tc steps before the end of the path and at height
hc = ± (h̄c − 1

2

)
. Thus, there are B2N−tc,h̄c−1 portions of path concluding the original

path.
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The product of the contribution of each subpath recovers Eq. (37).
The case of Dyck paths can be treated analogously, with a few crucial differences. In

fact, each of the portions of path between the i-th and (i + 1)-th closing steps (which, for
excursions, are just down-steps) has now the constraint that it must never fall below the
horizontal axis, i.e. must never reach a height

(
h̄i − 1

2

)
lower with respect to its starting step.

Let us count these paths. A useful trick to this end is the discrete version of the reflection
method, that we already used in Sect. 3.1. Call a the total number of steps, b the relative
height of the final step with respect to the starting step, and c the maximum fall allowed with
respect to the starting step. Moreover, call bad paths all paths that do not respect the last
constraint. A bad path is characterized by reaching relative height −c−1 at some point (say,
the first time after s steps). By reflecting the portion of path composed of the first s steps,
we obtain a bijection between bad paths and unconstrained paths that start at relative height
−2(c + 1), and reach relative height b after a steps. Thus, the total number of good paths
Ca,b,d is given by subtraction as

Ca,b,d = Ba,b − Ba,b+2(d+1) . (41)

This line of thought holds for all values of a, d > 0 and b ≥ −d; if b < −d we just have
Ca,b,d = 0. Moreover, by properties of Ba,b, Ca,b,d = 0 if a + b is not an even number.

Equation (39) can be easily established by decomposing a generic (marked) path around
its closing steps, and by applying our result above. ��
The fact that we want to exploit now is that, while a given binomial factor Ba,b (and its
constrained variant Ca,b,d ) are not easy to handle exactly, their generating function in a have
simple expressions, induced by analogously simple decompositions, that we collect in the
following:

Proposition 4

Bb(z) :=
∑

a

z
a
2 Ba,b = B(z)(

√
zC(z))|b| , (42)

Cb,d(z) :=
∑

a

z
a
2Ca,b,d = B(z)

[
(
√
zC(z))|b| − (

√
zC(z))|b+2(d+1)|] θ(b + d) , (43)

Cb(z) :=
∑

a

z
a
2Ca,b,0 = B(z)

(
1 − zC(z)2

)
(
√
zC(z))bθ(b) , (44)

where, as in (15),

B(z) =
∑

k≥0

zk Bk = 1√
1 − 4z

; C(z) =
∑

k≥0

zkCk = 1 − √
1 − 4z

2z
. (45)

Proof To obtain Eq. (42), observe that a path going from (0, 0) to (a, b) with non-negative
b can be uniquely decomposed as w = w0u1w1u2w2 . . . uhwh where ui is the right-most
up-step of w at height i − 1/2, and wi is a (possibly empty) Dyck path, for all i = 1, . . . , h,
while w0 is a (possibly empty) Dyck bridge. Thus,

Ba,b =
∑


0,...,
b≥0
2
∑b

i=0 
i+b=a

B
0C
1 · · ·C
b .
(46)

For negative b, the same reasoning holdswith ui ’s replaced by down-steps, hence the absolute
value on b in the result. Equation (42) then follows easily.
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Equation (43) follows from Ca,b,d = (
Ba,b − Ba,b+2(d+1)

)
θ(b + d).

Equation (44) can be derived either as a special case of Eq. (43), or as a variation of (42)
where w0 must be a Dyck path. The equivalence of these two decompositions is granted by
the fact that C(z) = (

1 − zC(z)2
)
B(z). ��

Let us introduce the symbol x = x(z) for the recurrent quantity

x(z) = zC(z)2 = C(z) − 1 (47)

which, if used to parametrise the other relevant quantities, gives

z(x) = x

(1 + x)2
; B(z(x)) = 1 + x

1 − x
. (48)

Then, Eq. (36) reads

M (T)
k (z) = k!

k∑

c=1

∑

ν1,...,νc≥1
h̄1,...,h̄c>0∑

a νa=k

c∏

a=1

((
log h̄a

)νa

νa !

)
M(T)(z; h̄1, . . . , h̄c) ,

(49)

where

M(T)(z; h̄1, . . . , h̄c) =
∑

N≥0

zN
∑

1≤t1<t2<...<tc≤2N

M(T)
N (t1, . . . , tc; h̄1, . . . , h̄c) . (50)

Proposition 5 Using x to denote x(z), we have that for bridges

M(B)(z; h̄1, . . . , h̄c) = 2z
c
2 B(z)c+1√x

h̄1(√x
|h̄2−h̄1+1| + √

x
h̄2+h̄1−1)

· · · (√x
|h̄c−h̄c−1+1| + √

x
h̄c+h̄c−1−1)√

x
h̄c−1

,

(51)

and for excursions

M(E)(z; h̄1, . . . , h̄c) = z
c
2 B(z)c+1(1 − x)

√
x
h̄1(√x

|h̄2−h̄1+1| − √
x
h̄2+h̄1+1)

· · · (√x
|h̄c−h̄c−1+1| − √

x
h̄c+h̄c−1+1)

(1 − x)
√
x
h̄c−1

.

(52)

Proof First of all, we notice that

M(T)
N (t1, . . . , tc; h̄1, . . . , h̄c)
= f1(t1 − 1; h̄1) f2(t2 − t1 − 1; h̄2, h̄1) . . . fc(tc − tc−1 − 1; h̄c, h̄c−1) fc+1(2N − tc; h̄c)

(53)

for some functions fi that depend on the type of paths T that we are studying. Thus, by
performing the change of summation variables {t1, . . . , tc, N } → {α1, . . . , αc+1} such that

α1 = t1 − 1 ,

αi = ti − ti−1 − 1 , 2 ≤ i ≤ c ,

αc+1 = 2N − tc ,

(54)
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we have that

M(T)(z; h̄1, . . . , h̄c)
=
∑

N≥0

zN
∑

1≤t1<t2<···<tc≤2N

M(T)
N (t1, . . . , tc; h̄1, . . . , h̄c)

= zc/2
∑

α1,...,αc+1≥0

f1(α1; h̄1)zα1/2 . . . fc(αc; h̄c, h̄c−1)z
α2/2 fc+1(αc+1; h̄c)zαc+1/2 ,

(55)

so that all summations are now untangled. Equations (51) and (52) can now be recovered
by using the explicit form of the functions fi for Dyck paths and Dyck bridges given
in Proposition 3, and the analytical form for the generating functions given in Proposi-
tion 4. Again, notice that the θ functions are all automatically satisfied as h̄i ≥ 1 for all
1 ≤ i ≤ c. ��

At this point, we have obtained a quite explicit expression for M (T)
k (z). In the following

sections, we will study the behaviour near the leading singularities of the quantities above,
for the first two moments, i.e. k = 1, 2. Higher-order moments require a more involved
computational machinery that will be presented elsewhere.

3.2.1 Singularity Analysis for k = 1

We start our analysis from the simplest case, k = 1, to illustrate how singularity analysis is
applied in this context. We expect to recover Eq. (32). From now on, for simplicity, as the h̄
indices are mute summation indices, we will call them simply h. We have

M (B)
1 (z) = 2

√
zB(z)2

∑

h1≥1

(log h1)
√
x
2h1−1 = 2(1 + x)

(1 − x)2
∑

h≥1

log h xh = 2(1 + x)

(1 − x)2
Li0,1(x) ,

(56)

and

M (E)
1 (z) = √

zB(z)2(1 − x)2
∑

h1≥1

(log h1)
√
x
2h1−1 = (1 + x)

∑

h≥1

log h xh = (1 + x)Li0,1(x) ,

(57)

where Lis,r (x) = ∑
h≥1 h

−s (log(h))r xh is the generalized polylogarithm function [13].
In both cases, the dominant singularity is at x(z) = 1, i.e. at z = 1/4. We have

x (z) = 1 − 2
√
1 − 4z + 2(1 − 4z) + O

(
(1 − 4z)

3
2

)
for z → ( 1

4

)−
, (58)

and

Li0,1(x) = L(x) − γE

1 − x
+ O (L(x)) for x → 1− (59)

where L(x) = log
(
(1 − x)−1

)
. Here and in the following, the rewriting of Liα,r (x) (for

−α, r ∈ N) in the form P(L(x))/(1 − x)1−α , with P(y) a polynomial of degree r , can
be done either by matching the asymptotics of the coefficients in the two expressions (and
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appealing to the Transfer Theorem), or by using the explicit formulas in [14, Thm. VI.7]. In
this paper we mostly adopt the first strategy. Passing to the variable z gives

Li0,1 (x(z)) = L(4z) − 2γE − 2 log 2

4
√
1 − 4z

+ O (L(4z)) for z → ( 1
4

)−
. (60)

Thus, the singular expansion of M (T)
1 (z) is given by

M (B)
1 (z) = L(4z) − 2γE − 2 log 2

4(1 − 4z)
3
2

+ O
(
L(4z)

1 − 4z

)
for z → ( 1

4

)−
(61)

and

M (E)
1 (z) = L(4z) − 2γE − 2 log 2

2
√
1 − 4z

+ O (L(4z)) for z → ( 1
4

)−
. (62)

The behaviour of TN M
(T)
N ,1 = [zN ]M (T)

1 (z) for large N can be now estimated by using the
so-called transfer theorem, that allows to jump back and forth between singular expansion
of generating functions and the asymptotic expansion at large order of their coefficients (see
[14], in particular Chapter VI for general informations, the table in Fig. VI.5 for the explicit
formulas). The partinent result is also reported here in Appendix B, namely in Eq. (102). In
practice, we can expand the approximate generating functions given in Eqs. (61) and (62) to
get an asymptotic approximation for TN M

(T)
N ,1. Finally, using the asymptotic expansion for

TN , i.e.

BN = 4N
√

πN
1
2

(
1 + O(N−1)

)
, CN = 4N

√
πN

3
2

(
1 + O(N−1)

)
(63)

for N → ∞, we obtain an asymptotic expansion for the first moment of SN (which agrees
with what we already found in Eq. (32))

M (B)
1,N = B−1

N [zN ]M (B)
1 (z) = 1

2
N log N − γE + 2

2
N + O

(√
N log(N )

)

M (E)
1,N = C−1

N [zN ]M (E)
1 (z) = 1

2
N log N − γE

2
N + O

(√
N log(N )

)
.

(64)

Notice that, although we have truncated our perturbative series at the first significant order,
in principle the combinatorial method gives us access to finite-size corrections at arbitrary
finite order.

3.2.2 Singularity Analysis for k = 2

For k = 2, we compute Eq. (49) by studying separately terms at different values of c. Let us
start from bridges. For c = 1, and thus ν1 = 2, we have

M (B)
2 (z)|c=1 = 4

√
zB(z)2

∑

h1≥1

(log h1)2

2

√
x
2h1−1 = 2(1 + x)

(1 − x)2
Li0,2(x) (65)
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while for c = 2, and thus ν1 = ν2 = 1, we have

M (B)
2 (z)|c=2 = 4zB(z)3

∑

h1,h2≥1

log h1 log h2
√
x
h1
(√

x
|h2−h1+1| + √

x
h2+h1−1

)√
x
h2−1

.

(66)

The presence of the absolute value |h2 − h1 + 1| forces us to consider separately the case
h1 > h2 and h1 ≤ h2. In the first case we get

4zB(z)3
∑

h1>h2≥1

(log h1 log h2)
√
x
h1

(
√
x
h1−h2−1 + √

x
h1+h2−1

)
√
x
h2−1

= 4zB(z)3
( ∑

h1≥1

(log(h1 + 1) log(h1!)) xh1 +
∑

h1>h2≥1

(log h1 log h2) x
h1+h2−1

)
,

(67)

while in the second case we obtain

4zB(z)3
∑

1≤h1≤h2

(log h1 log h2)
√
x
h1

(
√
x
h2−h1+1 + √

x
h1+h2−1

)
√
x
h2−1

= 4zB(z)3
( ∑

h2≥1

(log h2 log h2!) xh2 +
∑

1≤h1≤h2

(log h1 log h2) x
h1+h2−1

)
.

(68)

The combination of these two terms gives

M (B)
2 (z)|c=2 = 4x(1 + x)

(1 − x)3

(∑

h≥1

(
log(h2 + h) log h!) xh + 1

x
(Li0,1(x))

2
)

. (69)

In the case of excursions, the computations are completely analogous, and give

M (E)
2 (z)|c=1 = 2

√
zB(z)2(1 − x)2

∑

h1≥1

(log h1)2

2

√
x
2h1−1 = (1 + x)Li0,2(x) (70)

M (E)
2 (z)|c=2 = 2x(1 + x)

1 − x

(∑

h≥1

(
log(h2 + h) log h!) xh − (Li0,1)

2
)

. (71)

In order to compute the singular expansion of Li0,2(x) and of
∑

h≥1(log(h
2 +h) log(h!)xh),

one can again use the transfer theorem, obtaining

Li0,2(x) = L(x)2 − 2γE L(x) + γ 2
E + π2

6

1 − x
+ O

(
L(x)2

) (72)

and
∑

h≥1

(log(h2 + h) log(h!)zh) =

2 L(x)2 + 2(1 − 2γE )L(x) + π2

3 + 2γ 2
E − 2γE − 2

(1 − x)2
+ O

(
L(x)2

1 − x

)
.

(73)

We see that, for both Dyck bridges and paths, the c = 1 term is subleading with respect
to the c = 2 term, by a factor 1 − x which, after use of the Transfer Theorem, implies a
factor O(N−1). It is easy to imagine (and in agreement with the discussion in Sect. 3.1) that
this pattern will hold also for all subsequent moments, that is, the leading term for the k-th
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Fig. 3 Top: distribution of s for the Dyck excursions (left) and Dyck bridges (right) ensembles at various
sizes N . The shaded fillings are histograms, while the black profiles are kernel density estimates. Bottom:
ratio between empirical and predicted values of the first two moments as a function of the size N , for both
ensembles

moment will be given by the c = k contribution alone, all other terms altogether giving a
correction O(N−1).

After substituting x(z) with its expansion around z = 1/4, and after having performed a
series of tedious but trivial computations, we obtain

M (B)
2,N = 1

4
N 2 (log N )2 − γE + 2

2
N 2 log N +

(
4

3
+ γ 2

E

4
+ γE − π2

72

)
N 2 + O

(
N

3
2 (log N )2

)
,

M (E)
2,N = 1

4
N 2 (log N )2 − γE

2
N 2 log N +

(
γ 2
E

4
+ 5π2

24
− 2

)
N 2 + O

(
N

3
2 (log N )2

)
.

(74)

Finally, we recover the moments of s(σ )

〈(s(σ ))2〉B = 4

3
+ γ 2

E

4
+ γE − π2

72
+ O

(
(log N )2√

N

)
,

〈(s(σ ))2〉E = γ 2
E

4
+ 5π2

24
− 2 + O

(
(log N )2√

N

)
.

(75)

Details for these computations can be found in Appendix B.

4 Numerical Results

To check our analytical predictions, we performed an exact sampling of our configurations,
and collected a statistics on the resulting entropies, from which we estimated the distribution
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of the rescaled entropy

s(σ ) = 1

N

(
SN (σ ) − 1

2
log N

)
. (76)

For both bridges and excursions, and for values of N = 103, 104, 105, 106, we sampled
uniformly 105 random paths.

Figure 3 summarises our results. We clearly see that as N grows larger and larger, the
prediction for the first two moments of s matches better and better the empirical value in both
ensembles. The distribution of s is clearly non-Gaussian in the case of Dyck bridges. For
Dyck excursions, a quick Kolmogorov test rules out the Gaussian hypothesis (in particular,
more easily, the 4-th centeredmoment is only∼ 2.7 times the 2-nd centeredmoment squared,
instead of a factor 3 required for gaussianity). However, at the present statistical precision
we cannot rule out the hypothesis that the centered distribution is symmetric, i.e. that all the
centered odd moments vanish, although we have no theoretical argument for conjecturing
this fact, neither from the probabilistic approach of Sect. 3.1, nor from the combinatorial
approach of Sect. 3.2. It would be interesting to understand the reasons of this unexpected
(to us) apparent symmetry in the distribution for Dyck excursions.

The code and the raw data used to produce Fig. 3 are available at https://github.com/
vittorioerba/EntropyMatching.
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A The First TwoMoments of the Rescaled Entropy in the Integral
Representation

In this Appendix we provide the computation for the first two moments of the rescaled
entropy in the bridges ensemble, using the integral representation. The case of excursion can
be treated analogously.
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A.1 Useful Formulas

We start by providing some useful identities.
We start giving an explicit representation for the non-integer Gaussian moments:

∫ ∞

−∞
dy y2ke− y2

λ = Γ

(
k + 1

2

)
λk+

1
2 . (77)

In the following we shall also use the duplication formula for the Gamma function

Γ (s)Γ

(
s + 1

2

)
= 21−2s√πΓ (2s) , (78)

and the expansion for the hyperbolic cosine

cosh(2z) =
∑

s≥0

(2z)2s

(2s)! = √
π
∑

s≥0

1

Γ
(
s + 1

2

)
z2s

s! . (79)

Finally, we recall the definition of the hypergeometric function

2F1(a, b; c; z) = Γ (c)

Γ (a)Γ (b)

∑

s≥0

Γ (s + a)Γ (s + b)

Γ (s + c)

zs

s! , (80)

and the Euler identity

2F1(a, b; c; z) = (1 − z)c−b−a
2F1(c − a, c − b; c; z) (81)

which implies that

∑

s≥0

Γ (s + a)Γ (s + b)

Γ (s + c)

zs

s! = (1 − z)c−b−a Γ (a)Γ (b)

Γ (c − a)Γ (c − b)

∑

s≥0

Γ (s + c − a)Γ (s + c − b)

Γ (s + c)

zs

s! .

(82)

A.2 First Moment

We wish to compute

〈s[σ ]〉B =
∫ 1

0
dt
∫ ∞

−∞
dx

log x2

2

e− x2
4t(1−t)√

4π t(1 − t)
= 1

2

∫ 1

0
dt I1(t) . (83)

First of all, we substitute log x2 → x2k . We will later take the derivative in k and evaluate
our expressions for k = 0 to obtain back the logarithmic contribution.

Thus, we start from

I1(t, k) =
∫ ∞

−∞
dxx2k

e− x2
4t(1−t)√

4π t(1 − t)
= λk+ 1

2 Γ
(
k + 1

2

)
√

πλ
= λkΓ

(
k + 1

2

)
√

π
(84)

where λ = 4t(1 − t) so that

I1(t, k) = [4t(1 − t)]k√
π

Γ

(
k + 1

2

)
(85)
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Then,

I1(t) = ∂k I1(t, k)|k=0 =
[
log[4t(1 − t)] + ψ0

(
1

2

)]
(86)

where ψ0(z) = d
dz logΓ (z) is the digamma function, and

ψ0

(
1

2

)
= −γE − log 4 . (87)

Finally,

〈s[σ ]〉B = 1

2

∫ 1

0
dt{log[t(1 − t)] − γE } = −2 + γE

2
. (88)

A.3 SecondMoment

We wish to compute

〈
(s[σ ])2〉B = 2!

∫

Δ2

dt1dt2
1

4π
√
t1(t2 − t1)(1 − t2)

×
∫ ∞

−∞
dxdy

log x2

2

log y2

2
exp

[
− x2

4t1
− (x − y)2

4(t2 − t1)
− x2

4(1 − t2)

]

= 1

2

∫

Δ2

dt1dt2 I2(t1, t2) .

(89)

Again, we substitute log x2 → x2k1 and log y2 → y2k2 , and we will recover the correct
logarithmic factors by taking derivatives in k1 and k2 later. We start by dealing with the
contact term:

exp

[
− (x − y)2

4(t2 − t1)

]
= exp

[
− x2 + y2

4(t2 − t1)

]
cosh

(
xy

2(t2 − t1)

)

= exp

[
− x2 + y2

4(t2 − t1)

]∑

s≥0

√
π

Γ
(
s + 1

2

)
s!
(

xy

4(t2 − t1)

)2s (90)

where the hyperbolic sine was discarded due to parity in x and y. With this substitution, the
integrals in x and y are decoupled, and can be evaluated as

I2(t1, t2, k1, k2) =

= 1

4π
√
t1(t2 − t1)(1 − t2)

∫ ∞

−∞
dxdy x2k1 y2k2 exp

[
− x2

4t1
− (x − y)2

4(t2 − t1)
− x2

4(1 − t2)

]

= 2

π
√

Δ1Δ2Δ3

∑

s≥0

√
π

Γ
(
s + 1

2

)
s!Δ2s

2
∫ ∞

−∞
dxx2(s+k1) exp

[
− x2

λ1

] ∫ ∞

−∞
dyy2(s+k2) exp

[
− y2

λ2

]

= 2λ
k1+ 1

2
1 λ

k2+ 1
2

2√
πΔ1Δ2Δ3

∑

s≥0

Γ
(
k1 + s + 1

2

)
Γ
(
k2 + s + 1

2

)

Γ
(
s + 1

2

)
s!

(
λ1λ2

Δ2
2

)s

(91)

123



The Number of Optimal Matchings... Page 23 of 27 3

where

λ1 = 4t1(t2 − t1)

t2
, λ2 = 4(t2 − t1)(1 − t2)

1 − t1
, Δi = 4(ti − ti−1) , (92)

(we recall that t0 = 0 and t3 = 1 by convention). We also notice that the following identity
holds

2
√

λ1λ2√
Δ1Δ2Δ3

(
1 − λ1λ2

Δ2
2

)− 1
2

= 1 (93)

as it can be explicitly verified by substituting the definitions.
By using the previous identity and Eq. (82), we can rewrite I2(t1, t2, k1, k2) as

I2(t1, t2, k1, k2) =

= λ
k1
1 λ

k2
2√

π

(
1 − λ1λ2

Δ2
2

)−k1−k2
Γ
(
k1 + 1

2

)
Γ
(
k2 + 1

2

)

Γ (−k1) Γ (−k2)

∑

s≥0

Γ (s − k1) Γ (s − k2)

Γ
(
s + 1

2

)
s!

(
λ1λ2

Δ2
2

)s

= k1k2

⎡

⎣√
π
∑

s≥1

Γ (s) Γ (s)

Γ
(
s + 1

2

)
s!

(
λ1λ2

Δ2
2

)s

+ O(k1)O(k2)

⎤

⎦

+ λ
k1
1 λ

k2
2

π

(
1 − λ1λ2

Δ2
2

)−k1−k2

Γ

(
k1 + 1

2

)
Γ

(
k2 + 1

2

)
,

(94)

where in the last line we used the fact that Γ (−k) = k−1 + . . . as k goes to zero to highlight
the linear dependence in k1 and k2 in the first term. Notice that

∑

s≥1

Γ (s) Γ (s)

Γ
(
s + 1

2

)
s!

(
λ1λ2

Δ2
2

)s

= 2√
π
arcsin2

(√
z
)

. (95)

We can now take the derivative with respect to k1 and k2 and evaluate the expression in
k1 = k2 = 0 to obtain I2(t1, t2)

I2(t1, t2) = ∂2k1,k2 I2(t1, t2, k1, k2)|k1=k2=0

= 2 arcsin2
(√

λ1λ2

Δ2
2

)

+
[
ψ0

(
1

2

)
+ log λ1 − log

(
1 − λ1λ2

Δ2
2

)]

[
ψ0

(
1

2

)
+ log λ2 − log

(
1 − λ1λ2

Δ2
2

)]

= 2 arcsin2
(√

t1(1 − t2)

(1 − t1)t2

)

+
[
ψ0

(
1

2

)
+ log (4t1(1 − t1))

] [
ψ0

(
1

2

)
+ log (4t2(1 − t2))

]
.

(96)

123



3 Page 24 of 27 S. Caracciolo et al.

The second line is easily treated by noting that it is symmetric under t1 → 1− t1, giving

1

2

∫ 1

0
dt1

∫ 1

t1
dt2

[
ψ0

(
1

2

)
+ log (4t1(1 − t1))

] [
ψ0

(
1

2

)
+ log (4t2(1 − t2))

]

= 1

4

∫ 1

0
dt1

∫ 1

0
dt2

[
ψ0

(
1

2

)
+ log (4t1(1 − t1))

] [
ψ0

(
1

2

)
+ log (4t2(1 − t2))

]

=
[
1

2

∫ 1

0
dt (log (t(1 − t)) − γE )

]2

=
(

−γE + 2

2

)2

= (〈s[σ ]〉B)2 .

(97)

Thus, the variance of s[σ ] is given by

〈
(s[σ ])2〉B − (〈s[σ ]〉B)2 = 1

2

∫ 1

0
dt1

∫ 1

t1
dt2 2 arcsin

2

(√
t1(1 − t2)

(1 − t1)t2

)

=
∫ 1

0
dt
∫ 1

0
dz

t(1 − t)

(t + z − t z)2
arcsin2

(√
z
)

=
∫ 1

0
dz

[
−2(1 − z) + (1 + z) log z

(1 − z)3

]
arcsin2

(√
z
)

= 1

3
− π2

72
.

(98)

B Computations Needed in Sect. 3.2.2

In this Appendix, we present in greater detail the computations sketched in Sect. 3.2.2.
First of all, let us state the transfer theorem of singularity analysis in a slightly unprecise,

but operatively correct form. See [14, Chapter VI] for the details.

Theorem 1 Let f (z), g(z) and h(z) be generating function with unit radius of convergence,
and let fn, gn and hn be their coefficients. Then

f (z) = g(z) + O(h(z)) z → 1− (99)

if and only if

fn ∼ gn + O(hn) n → ∞ . (100)

In practice, one builds a standard scale of functions whose coefficient expansion is known,
expands a generic generating function over the standard scale (assuming that the scale is rich
enough to admit the generating function of interest in its linear span), and uses the transfer
theorem to guarantee that an asymptotic equivalence at the level of the generating functions
implies (and is implied) by an asymptotic equivalence of their coefficients. A standard scale
adopted already in [14, Section VI.8], and which is rich enough for our purposes, is given by
functions of the form

f (z) =
∑

n≥0

fnz
n =

(
1

1 − x

)α

L(x)β (101)

123



The Number of Optimal Matchings... Page 25 of 27 3

where L(x) = log
(
(1 − x)−1

)
. In this case, if α is not a negative integer, the coefficients fn

satisfy

fn = [zn]
(

1

1 − x

)α

L(x)β ∼ 1

Γ (α)
Nα−1 logβ(N ) (102)

for n → ∞. See [14, Fig. VI.5] for the behaviour of subleading corrections.

B.1 Singular Behaviour of Li0,2(x)

The coefficient of Li0,2(x) equals log2(h). It is easy to see, using [14, Fig. VI.5], that the
singular expansion of Li0,2(x) onto the standard scale must be made by the terms (1 −
x)−1L(x)2, (1−x)−1L(x), (1−x)−1 andhigher-order terms.The coefficient of the expansion
can be retrieved by basic linear algebra:

– the coefficient of (1 − x)−1L(x)2 must be 1 to reconstruct the log(h)2 term;
– the coefficient of (1− x)−1L(x) must be −2γE to cancel the log(h) term introduced by

the first standard scale function;
– the coefficient of (1− x)−1 must be ζ(2)+γ 2

E = π2/6+γ 2
E to cancel the constant terms

introduced in the expansion by the previous standard scale functions.

The error term can be obtained by observing that all expansions used above are valid up to
order O

(
h−1 log h

)
. Thus

Li0,2(x) = L(x)2 − 2γE L(x) + γ 2
E + π2

6

1 − x
+ O

(
L(x)2

)
. (103)

B.2 Singular Behaviour of
∑

h≥1
(
log(h2 + h) log h!) xh

The procedure is analogous to the computation for the Li0,2(x). We just need to use Stirling’s
approximation for log h! to obtain the expansion of the coefficients in h. We have, for the
coefficient of order k of this function,

(
log(h2 + h) log h!)

= 2h log2(h) − 2h log(h) + log2(h)

+ (1 + log(2) + log(π)) log(h) − 1 + O
(
log(h)

h

) (104)

so that the singular expansionmust bemade by the terms (1−x)−2L(x)2, (1−x)−2L(x), (1−
x)−2, and higher-order ones. The coefficients can be found using the same strategy adopted
for Li0,2(x), obtaining

∑

h≥1

(
log(h2 + h) log h!) xh

= 2L(x)2 + 2(1 − 2γE )L(x) + 2γ 2 + π2

3 − 2 − 2γE
(1 − x)2

+ O
(
L(x)2

1 − x

)
.

(105)
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B.3 The Change of Variable x(z)

First of all, we rewrite the change of variable x(z) = C(z) − 1 in terms of the singular
variables X = (1 − x)−1 and Z = (1 − 4z)−1. We have that

X(Z) = 1

2

(√
Z + 1

)
(106)

so that

(1 − x)−α = Xα =
(√

Z

2

)α (
1 + α√

Z
+ O(Z−1)

)
,

L(x)k = logk(X) =
(
1

2
log Z − log 2 + O(1/

√
Z)

)k

=
(
1

2
log Z − log 2

)k

+ O
(
logk−1(Z)√

Z

)
.

(107)

These relations are enough to convert singular expansions in X into singular expansions in
Z at the leading algebraic order. The formulas of this subsection are useful, in principle, also
at higher moments.

B.4 Explicit Expressions forM(T)
2 (z)

We report here the explicit expression of M (T)
2 (z) both as a function of x and as a function

of z:

M (E)
2 (z(x)) = 4L(x)2 + 8(1 − γE )L(x) − 8 − 8γE + 4γ 2

E + 4π2

3

(1 − x)3
+ O

(
L(x)2

(1 − x)2

)

M (E)
2 (z) =

(
1

8
L(4z)2 − 1 − γE − log(2)

2
L(4z)

)
1

(1 − 4z)
3
2

+ π2 − 6 + 3γE (γE − 2 + log(4)) + (log(2) − 2) log(8)

6(1 − 4z)
3
2

+ O
(
L(4z)2

1 − 4z

)

M (B)
2 (z(x)) = 24L(x)2 + 16(1 − 3γE )L(x) − 16 − 16γE + 24γ 2

E + 8π2

3

(1 − x)5
+ O

(
L(x)2

(1 − x)4

)

M (B)
2 (z) =

(
3

16
L(4z)2 − 3γE + 1 − 3 log(2)

4
L(4z)

)
1

(1 − 4z)
5
2

+ 9γ 2
E + π2 − 6 + 6γE (log(8) − 1) + (log(8) − 2) log(8)

12(1 − 4z)
5
2

+ O
(

L(4z)2

(1 − 4z)2

)
.

(108)

These expressions can be easily recalculated also with smaller error terms, repeating the
procedure of the previous paragraphs with more terms in the Taylor expansions, and provide
an evaluation of the variance of our quantities of interest, at the desired order in N .
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