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RECTIFIABILITY OF THE SINGULAR SET

OF MULTIPLE-VALUED

ENERGY MINIMIZING HARMONIC MAPS

JONAS HIRSCH, SALVATORE STUVARD, AND DANIELE VALTORTA

Abstract. In this paper we study the singular set of energy minimizing Q-
valued maps from Rm into a smooth compact manifold N without bound-
ary. Similarly to what happens in the case of single valued minimizing har-
monic maps, we show that this set is always (m− 3)-rectifiable with uniform
Minkowski bounds. Moreover, as opposed to the single-valued case, we prove
that the target N being nonpositively curved but not simply connected does
not imply continuity of the map.

0. Introduction

Multiple-valued harmonic functions (Dir-minimizers) were originally introduced
by Almgren in [Alm00] as first-order approximations for the branching singularities
of minimal surfaces in codimension higher than one. Roughly speaking, a Q-valued
Dirichlet minimizer is a function which attains Q different values (counted with
multiplicity) for each point in the domain, and it minimizes a suitably defined
Dirichlet energy with respect to boundary data.

Even though at first sight it might seem that Q-valued functions are easy gener-
alizations of classical (single-valued) functions, there are some crucial differences.
For instance, the space of such functions is not linear, in the sense that the sum
of two Q-valued functions is not a well-defined notion. These differences make the
study of such objects both more complicated than their classical counterparts and
more interesting. For a recent survey on results of this kind, we direct the reader
to [DLS11], where the authors revisit Almgren’s original regularity theory of Dir-
minimizing Q-valued functions, and they suggest a more intrinsic approach which
has its roots in new techniques developed in the last two decades for performing
analysis on metric spaces.

Several generalizations of the original Q-valued Dir-minimizing functions have
been studied in literature, both in the direction of analyzing multiple-valued func-
tions taking values in more general target spaces than R

n and in the sense of more
general functionals to minimize. Here we limit ourselves to mentioning some of
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these works. In the direction of functionals more general than the Dirichlet energy,
there are the works [Mat83, DLFS11], as well as the recent work [Stu17a] where
a complete multivalued theory for the stability operator is studied. The papers
[DLGT04,Gob09,BDPW15,BDPG15,Stu17b] focus instead on more general target
spaces.

The work [Hir16b] started analyzing Q-valued harmonic maps into compact Rie-
mannian manifolds, introducing appropriate definitions and developing basic con-
tinuity theory for such objects. In particular, using a suitably modified version of
the Federer–Almgren dimension-reduction argument, [Hir16b] proves that

Theorem 0.1 ([Hir16b, Theorem 0.1]). Given a smooth compact Riemannian man-
ifold N and a Q-valued map u : Ω ⊂ Rm → AQ(N ) locally minimizing the Dirichlet
energy, the singular set of u defined as

singH(u) := {x ∈ Ω s.t. u is not continuous in a neighborhood of x}(0.1)

is a closed set of Hausdorff dimension at most m − 3. Moreover, outside this set
the map u is locally C0,α-continuous, with α = α(m,Q) > 0.

Note that this is the multivalued counterpart of the classical Schoen–Uhlenbeck
results in [SU82] for the singularities of (single-valued) harmonic maps between
manifolds. Also observe that if the target manifold N is replaced by Euclidean
space R

n, then it actually holds singH(u) = ∅ (see [DLS11, Theorem 0.9]). In
fact, in the classical regularity theory for AQ(R

n)-valued energy minimizing maps,
the singular set sing(u) consists of those points x ∈ Ω having the following prop-
erty: there is no neighborhood U of x where the map u admits a decomposition

u =
∑Q

�=1�u�� in classical smooth harmonic functions u� : U → Rn such that for
any �, �′ ∈ {1, . . . , Q} either u� ≡ u�′ in U or u�(y) �= u�′(y) for every y ∈ U .
For such a singular set, it holds that dimH(sing(u)) ≤ m − 2 (see [Alm00] and
[DLS11, Theorem 0.11]). The same definition of sing(u) can be naturally extended
to the case when u is AQ(N )-valued, by simply replacing the decomposition in har-
monic functions with a decomposition in N -valued smooth harmonic maps. With
this definition, it evidently holds that singH(u) ⊂ sing(u). Furthermore, the two
singular sets coincide if Q = 1, as in this case Hölder continuity can be upgraded to
full smoothness by standard elliptic regularity theory. In contrast, no information
is available at the moment on sing(u) for AQ(N )-valued energy minimizing maps
when Q > 1.

The goal of this work is, instead, to improve the result in Theorem 0.1 and to
prove (m−3)-rectifiability for the singular set singH(u) along with uniform (m−3)
Minkowski bounds. In particular, we want to show that

Theorem 0.2. Given an energy-minimizing Q-valued map u : B2 (0) ⊆ Rm →
AQ(N ) with energy bounded by Λ, if Br (singH(u)) :=

⋃
x∈singH(u)Br(x), then we

have

Vol (Br (singH(u) ∩B1 (0))) ≤ Cr3 ,(0.2)

where C = C(m,N , Q,Λ). Moreover, singH(u) is (m− 3)-rectifiable.

In order to prove this result, we are going to apply the techniques developed in
[NV17], which roughly speaking rely on a quantitative version of the dimension-
reduction argument. However, here we will present an alternative definition of the
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quantitative stratification used in [NV17] that was originally introduced by Cheeger
and Naber in [CN13a,CN13b].

More precisely, the quantitative stratification is based on the analysis of symme-
tries and approximate symmetries of the map u at different points and scales, and
roughly speaking the quantitative stratum Sk

ε,r is the set of points x for which u
on Br (x) is ε-far away from being homogeneous and invariant with respect to a k-
dimensional subspace. While the notion of closeness employed by [CN13a,CN13b]
relies on the L2-distance of the map u from some homogeneous and k-symmetric
model map h, we propose a notion that focuses on the L2-norm of the gradient of
u restricted to arbitrary k-subspaces. The advantage of the new definition is that
it is more tailored toward the available ε-regularity theorems. This stratification is
introduced in detail in section 3.

In section 8, we also consider the special case of nonpositive sectional curvatures
in the target N . For classical harmonic maps, this assumption implies full-blown
continuity of the map u everywhere. On the other hand, in the case of Q-valued
maps, this is true only if N is assumed to be also simply connected. We will provide
a counterexample to show that this assumption is needed. This example is based
on the fact that the graph of a Q-valued map can have a different topology from
the one of its domain, and it shows once more that the properties of Q-valued maps
can be very different from their single-valued counterparts.

The plan of the paper is the following. First, we introduce Q-valued energy
minimizers and quickly review the standard properties of these maps. In particular,
we study the normalized energy E (x,Br(x)) := r2−m

´
Br(x)

|Du|2 and its mollified

version, which, although morally similar to the classical one, will prove itself to be
more useful in quantitative estimates.

We then move on to the study of different versions of the ε-regularity theorem
for Q-valued maps. Soon after, we prove the main estimates on the singular set of u
and its stratification. This result relies on a sharp version of Reifenberg’s theorem,
which we quote from literature. Finally, we close the paper with the analysis of the
case of nonpositively curved target manifolds.

1. Notation and preliminaries

Throughout this paper, we will denote by Ω an open subset of Euclidean space
Rm, m ≥ 2, and by N a smooth compact Riemannian manifold of dimension n
with empty boundary. Without loss of generality, we regard N as an isometrically
embedded submanifold of a Euclidean space RN . The symbol A will denote the
second fundamental form of the embedding N ↪→ R

N .
The Euclidean scalar product in RN is denoted by 〈·, ·〉. Since the metric on N

is induced by the flat metric on RN , the same symbol will also be adopted for the
scalar product between tangent vectors to N . The standard connection in Rm is
denoted by D. If {ei}mi=1 is an orthonormal basis of Rm, we will denote by Di the
directional derivative operator Dei .

The open ball with center x and radius r in Rm is denoted Br(x). If 1 ≤ k ≤ m−1
and L ⊂ Rm is a linear subspace of dimension dim(L) = k, then we will denote the
disc (x+ L) ∩Br(x) by BL

r (x), or often with the simpler notation Bk
r (x).

1.1. Multiple-valued functions. Fix an integer Q ≥ 1. We will assume that
the reader is familiar with the theory of Almgren’s Q-valued functions, for which
we refer to [DLS11]. In what follows, we briefly recall the main definitions and
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properties we are going to need in the rest of this paper. The space of Q-points in
RN is denoted AQ(R

N ) and is defined by

AQ(R
N ) :=

{
T =

Q∑
�=1

�p�� : each p� ∈ R
N

}
,

where �p�� is the Dirac delta measure centered at p�. Observe that, by definition,
a Q-point T is a purely atomic measure of mass Q in RN which is obtained as the
linear combination of Dirac deltas with integer multiplicities. If T ∈ AQ(R

N ), the
symbol spt(T ) will denote the support of the aforementioned measure. We endow
AQ(R

N ) with the structure of complete metric space determined by the distance
G(T1, T2) given by

G(T1, T2)
2 := min

σ∈PQ

Q∑
�=1

|p� − qσ(�)|2,

where PQ denotes the group of permutations of {1, . . . , Q}, and T1 =
∑

��p��,
T2 =

∑
��q��.

Any map f : Ω → AQ(R
N ) will be called a Q-valued function. It is a simple

observation (see [DLS11, Proposition 0.4]) that if f is a measurable Q-valued func-
tion, then there are measurable maps f� : Ω → RN for � = 1, . . . , Q such that

f(x) =
∑Q

�=1�f�(x)� at a.e. x ∈ Ω. Any choice of {f�}Q�=1 as above is called a
measurable selection for f .

For p ∈ [1,∞], the spaces Lp(Ω,AQ(R
N )) consist of those measurable f : Ω →

AQ(R
N ) for which

‖f‖pLp :=

ˆ
Ω

G(f(x), Q�0�)p dx < ∞ when 1 ≤ p < ∞ ,

‖f‖L∞ := ess sup
x∈Ω

G(f(x), Q�0�) < ∞ .

For the sake of notational simplicity, we will often set |T | := G(T,Q�0�) if T ∈
AQ(R

N ). We remark that if Q > 1, then AQ(R
N ) is not a linear space; hence,

despite of the notation, T �→ |T | is not a norm.
A map f : Ω → AQ(R

N ) belongs to the Sobolev space W 1,p(Ω,AQ(R
N )) if there

exists ψ ∈ Lp(Ω) such that for every Lipschitz function φ : AQ(R
N ) → R it holds

that:

(i) φ ◦ f ∈ W 1,p(Ω);
(ii) |D(φ ◦ f)(x)| ≤ Lip(φ)ψ(x) at a.e. x ∈ Ω.

By [DLS11, Proposition 4.2], if f ∈ W 1,p(Ω,AQ(R
N )), then for every i ∈ {1, . . . ,m}

there exists a unique gi ∈ Lp(Ω) such that

(i) |Di(G(f, T ))| ≤ gi a.e. for every T ∈ AQ(R
N );

(ii) if hi ∈ Lp(Ω) is such that |Di(G(f, T ))| ≤ hi a.e. for every T ∈ AQ(R
N ),

then gi ≤ hi a.e.

We will call the function gi the metric derivative of f in the direction ei.
As usual, W 1,p

loc (Ω,AQ(R
N )) consists of those measurable functions which are in

W 1,p(Ω′,AQ(R
N )) for every Ω′ � Ω.

A Q-valued function f : Ω → AQ(R
N ) is differentiable at a point x ∈ Ω if there

exist Q linear maps λ� : R
m → RN satisfying

(i) G(f(y),
∑

��f�(x) + λ� · (y − x)�) = o(|y − x|) for |y − x| → 0;
(ii) λ� = λ�′ if f�(x) = f�′(x).
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If f is differentiable at x, then the Q-point
∑Q

�=1�λ�� ∈ AQ(R
N×m) is the dif-

ferential of f at x and will be denoted Df(x) or Df |x. We will write Df�(x)
for the map λ�, so that Df(x) =

∑
��Df�(x)�, and we establish the notation

Dτf(x) :=
∑

��Df�(x) · τ� =
∑

��Dτf�(x)� ∈ AQ(R
N ) for the directional deriv-

ative in the direction τ ∈ Rm. We will also sometimes write Df(x) · τ for Dτf(x),
so that Df(x) · τ =

∑
��Df�(x) · τ�.

It is a consequence of the Lipschitz approximation theorem for Sobolev Q-
valued functions [DLS11, Proposition 2.5] and of the Q-valued counterpart of
Rademacher’s theorem [DLS11, Theorem 1.13] that every Sobolev Q-valued map
is approximately differentiable at a.e. x ∈ Ω. Furthermore, as shown in [DLS11,
Proposition 2.17], if f ∈ W 1,2(Ω,AQ(R

N )), then for every i ∈ {1, . . . ,m} it holds
that

g2i = G(Dif,Q�0�)2 = |Dif |2 a.e. in Ω.

This makes unambiguous the use of the notation |Dif | for the metric derivative gi.

In particular, for f ∈ W 1,2
loc (Ω,AQ(R

N )), there is a well-defined notion of (rescaled)
Dirichlet energy in a ball Br(x) � Ω, given by

E (f,Br(x)) := r2−m

ˆ
Br(x)

|Df(y)|2 dy = r2−m

ˆ
Br(x)

m∑
i=1

|Dif(y)|2 dy.

1.2. Q-valued energy minimizing maps. Now, set

W 1,2
loc (Ω,AQ(N )) :=

{
u ∈ W 1,2

loc (Ω,AQ(R
N )) : spt(u(x)) ⊂ N for a.e. x ∈ Ω

}
.

(1.1)

Definition 1.1 (Energy minimizers, see [Hir16b, Definition 1.1]). A map u ∈
W 1,2

loc (Ω,AQ(N )) is a local minimizer, or simply minimizer, of the Dirichlet energy
if for any Br(x) � Ω the following holds:

(1.2) E (u,Br(x)) ≤ E (v,Br(x))

for every v ∈ W 1,2
loc (Ω,AQ(N )) such that v ≡ u in a neighborhood of ∂Br(x).

The Q-valued energy minimizers defined in Definition 1.1 are the multivalued
counterpart of classical energy minimizing harmonic maps. We refer the reader
to the beautiful monographs of Simon [Sim96], Moser [Mos05] or Lin and Wang
[LW08] for more about classical (single-valued) energy minimizing maps.

As anticipated in the introduction, a partial regularity theory forQ-valued energy
minimizers was developed in [Hir16b]. For further reference, and for the reader’s
convenience, let us briefly collect the main results of [Hir16b] which will be used in
the rest of this paper.

A first important observation is that if u ∈ W 1,2
loc (Ω,AQ(N )) is energy minimizing

and if Br(x) � Ω, then one can test the minimality of u along suitably chosen
families uε of competitors in order to infer that u satisfies some integral equations,
known as variational equations, which turn out to be of fundamental importance
for regularity theory. There are two important kinds of variations that one may
consider in this context: the inner variations (obtained by perturbing u by means
of right compositions with diffeomorphisms in the domain) and the outer variations
(obtained by perturbing u by means of left compositions with diffeomorphisms in
the target).
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Proposition 1.2 (Variational equations, see [Hir16b, Equations (2.2) and (2.5)]).

Fix Br(x) � Ω, and let u ∈ W 1,2
loc (Ω,AQ(N )) be energy minimizing. Then, for every

vector field X =
(
X1, . . . , Xm

)
∈ C1

c (Br(x),R
m), the following inner variation

formula holds:

(1.3)

ˆ
Br(x)

m∑
i,j=1

(
|Du|2δij − 2

Q∑
�=1

〈Diu�, Dju�〉
)
DiX

j dy = 0.

Moreover, for any vector field Y ∈ C1(Br(x)× R
N ,RN ) such that Y (y, p) = 0 for

y in a neighborhood of ∂Br(x), we have the following outer variation formula:

(1.4)

ˆ
Br(x)

m∑
i=1

Q∑
�=1

(〈Diu�, Di(Y (y, u�))〉+ 〈Au�
(Diu�, Diu�), Y (y, u�)〉) dy = 0.

Recall that in the classical case where Q = 1, a map u ∈ W 1,2
loc (Ω,N ) satisfying

identity (1.4) for any Y is referred to as a weakly harmonic map, whereas a map u
for which both (1.3) and (1.4) hold for any choice of X and Y is called a stationary
harmonic map. Analogously, we will call stationary Q-harmonic any map u ∈
W 1,2

loc (Ω,AQ(N )) for which both equations (1.3) and (1.4) hold. Of course, by
Proposition 1.2 every Q-valued energy minimizing map u is stationary Q-harmonic.
On the other hand, some of the results that we present here hold true under the
weaker assumption that u is stationary Q-harmonic rather than minimizing, since
their proofs are a consequence solely of the variational equations. We will explicitly
emphasize in our statements every time that the result applies also to stationary
Q-harmonic maps.

A first powerful result stemming from the variational equations is the mono-
tonicity of the map r ∈ (0, dist(x, ∂Ω)) �→ E (u,Br(x)) for every fixed point x ∈ Ω;
see [Hir16b, Equation (2.6)]. As a consequence, if u is stationary Q-harmonic, then
for every x ∈ Ω the density Θu(x) of u at x is well-defined by the formula

Θu(x) := lim
r↓0

E (u,Br(x)) .

Multiple-valued energy minimizers also enjoy the following compactness theorem.

Theorem 1.3 (Compactness, see [Hir16b, Lemma 4.1]). Let

{uh}∞h=1 ⊂ W 1,2(Ω,AQ(N ))

be a sequence of Q-valued minimizing harmonic maps with suph≥1 E (uh,
Br(x)) < ∞ for each ball Br(x) � Ω. Then, there is a subsequence uhj

and a

minimizing harmonic map u ∈ W 1,2(Ω,AQ(N )) such that

(i) limj→∞
´
Ω
G(uhj

, u)2 dy = 0;
(ii) limj→∞ E (uhj

, Br(x)) = E (u,Br(x)) for every ball Br(x) � Ω.

The monotonicity of the rescaled energy at a fixed point x0 ∈ Ω together with the
Compactness Theorem 1.3 allow us to conclude the existence of tangent maps. In
particular, for every sequence rh of radii with rh ↓ 0, there exists a subsequence rh′

such that the maps Tu
x0,rh′ (y) := u(x0 + rh′y) converge in L2 and locally in energy

to a Q-valued energy minimizing map φ ∈ W 1,2
loc (R

m,AQ(N )). Any map φ arising
as a limit of a sequence Tu

x0,rh
for some sequence rh ↓ 0 is called a tangent map to u

at x0; see [Hir16b, Definition 6.1]. Every tangent map φ is homogeneous of degree
zero with respect to 0 ∈ Rm, and thus it satisfies E (φ,Bρ(0)) ≡ Θφ(0) = Θu(x0)
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for every ρ > 0. Furthermore, the map y ∈ Rm �→ Θφ(y) attains its maximum at
y = 0. The set of points y ∈ Rm, for which Θφ(y) = Θφ(0), is classically called the
spine of φ, and it is denoted S(φ). It turns out that, exactly as in the classical case,
S(φ) is a linear subspace of Rm, and φ is invariant with respect to compositions
with translations by elements in S(φ), that is φ(x + y) = φ(x) for every x ∈ Rm,
for any y ∈ S(φ). The dimension of S(φ) is the number of independent directions
along which φ is invariant. Now, if u is Hölder continuous in a neighborhood of x0,
then it is easy to see that Θu(x0) = 0, and thus u admits in x0 a tangent map φ
for which S(φ) = Rm, and φ is constant. The set singH(u) of points x such that
u is not Hölder continuous in a neighborhood can instead be classically stratified
according to the number of symmetries that the tangent maps at points in it have.
In particular, for 0 ≤ k ≤ m− 1 one defines

Sk(u) := {x ∈ singH(u) : dimS(φ) ≤ k for every tangent map φ to u at x} .

(1.5)

The following ε-regularity theorem in the spirit of Schoen and Uhlenbeck [SU82]
is the core of [Hir16b] and the key to completing partial regularity theory.

Theorem 1.4 (Q-valued ε-regularity, see [Hir16b, Lemma 5.2]). There exist con-
stants ε0 > 0, α > 0, and C > 1 depending on m,N , Q with the property that if
u ∈ W 1,2

loc (Ω,AQ(N )) is energy minimizing in BR0
(x0) with

E (u,BR0
(x0)) ≤ ε0 ,

then the following energy decay estimate holds:

E (u,Br(x)) ≤ C
( r

R

)2α
E (u,BR(x)) ∀x ∈ BR0

2
(x0) , ∀ 0 < r ≤ R ≤ R0

2
.

In particular, u ∈ C0,α(BR0
2
(x0),AQ(N )).

By the ε-regularity theorem, the set singH(u) coincides with the set {x : Θu(x) >
0}. Using this information, it is standard to conclude that if u is minimizing, then
Hm−2(singH(u)) = 0. On the other hand, if x0 ∈ singH(u), then for any tangent
map φ one has Θφ(0) = Θu(x0) > 0, and thus the spine S(φ) is a subset of
singH(φ). Since S(φ) is a linear subspace and since Hm−2(singH(φ)) = 0, we have
that dimS(φ) ≤ m − 3. Hence, Sm−1(u) = Sm−2(u) = Sm−3(u) = singH(u). By
a variation of the standard Federer–Almgren dimension-reduction argument, one
then concludes that dimH(singH(u)) = dimH(Sm−3(u)) ≤ m− 3.

In the next sections we will turn our attention to quantitative stratification for
Q-valued minimizing maps, which will allow us to obtain better information on the
fine properties of singular strata Sk(u). Before doing that, we will slightly modify
the definition of the rescaled energy; the new mollified energy that we are going to
introduce in the coming section will be more useful for quantitative estimates.

2. Mollified Dirichlet energy and its monotonicity

Definition 2.1 (Mollified energy). Let ϕ = ϕ(t) be any nonnegative function in
C1

c ([0, 1)) which is constant in a neighborhood of t = 0.

Then, for any u ∈ W 1,2
loc (Ω,AQ(N )) and for any Br(x) ⊂ Ω, we define the

quantity

(2.1) θu(x, r) := r2−m

ˆ
ϕ

(
|x− y|

r

)
|Du(y)|2 dy.
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When the map u is fixed, we will simply write θ(x, r) for the sake of notational
simplicity. In what follows, we show that, under suitable assumptions on ϕ, the
function r �→ θ(x, r) is monotone nondecreasing for fixed x, and we explicitly com-
pute its derivative.

Notation 2.2. For any x ∈ R
m, we shall denote by rx the radial unit vector field

with respect to x, defined by

rx(y) :=
y − x

|y − x| for every y ∈ R
m \ {x}.

Lemma 2.3. Let u ∈ W 1,2
loc (Ω,AQ(N )) be a stationary Q-harmonic map, and let

x ∈ Ω. For any ϕ as in Definition 2.1, the following identity holds true for all r
such that Br(x) ⊂ Ω:

(2.2)
d

dr
θ(x, r) = −2r2−m

ˆ
ϕ′
(
|x− y|

r

)
|x− y|
r2

|Drxu(y)|
2 dy.

In particular, if we let ψ = ψ(t) denote a primitive function of ϕ′(t)tm−2, then for
0 < s < r < dist(x, ∂Ω) we have

θ(x, r)− θ(x, s) =

ˆ (
ψ

(
|x− y|

r

)
− ψ

(
|x− y|

s

))
|x− y|2−m |Drxu(y)|

2
dy.

(2.3)

In case we choose ϕ to be nonincreasing, we have that r �→ θ(x, r) is nondecreasing;
furthermore, if −ϕ′(t) ≥ (1− t)+, then it holds that

(2.4) θ(x, r)− θ(x, r/2) ≥ C

ˆ
B r

2
(x)

|x− y|
rm−1

|Drxu(y)|
2
dy

for some positive constant C = C(m).

Proof. The identity (2.2) follows from the inner variation formula, equation (1.3).
Indeed, for any fixed x ∈ Ω and 0 < r < dist(x, ∂Ω), define the vector field X(y) :=

ϕ
(

|x−y|
r

)
(y − x). If we plug this choice of X into (1.3), we easily deduce the

identity

(m− 2)

ˆ
ϕ

(
|x− y|

r

)
|Du(y)|2 dy

+

ˆ
ϕ′
(
|x− y|

r

)
|x− y|

r

(
|Du(y)|2 − 2 |Drxu(y)|

2
)
dy = 0.

To conclude, we can differentiate the quantity θ(x, r) in r and obtain the differential
identity (2.2).

Now, let ψ be a primitive function of ϕ′(t)tm−2. We have

d

dr
ψ

(
|x− y|

r

)
= −1

r
ϕ′
(
|x− y|

r

)(
|x− y|

r

)m−1

,

and thus we can rewrite (2.2) as

d

dr
θ(x, r) = 2

d

dr

ˆ
ψ

(
|x− y|

r

)
|x− y|2−m |Drxu(y)|

2
dy.

Integrating immediately leads to (2.3).
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If we choose ϕ′(t) ≤ 0, then (2.2) implies that r �→ θ(x, r) is nondecreasing. In
case −ϕ′(t) ≥ (1− t)+, we have for 0 < a ≤ 1

2

ψ(a)− ψ(2a) = −
ˆ 2a

a

ϕ′(t)tm−2 ≥ am−1

(
2m−1 − 1

m− 1
− a

2m − 1

m

)
≥ Cmam−1.

(2.5)

Hence, the estimate (2.4) can be deduced from (2.3) by using the fact that ψ is
nonincreasing to estimate

θ(x, r)− θ(x, r/2) ≥
ˆ
B r

2
(x)

(
ψ

(
|x− y|

r

)
−ψ

(
2|x− y|

r

))
|x− y|2−m |Drxu(y)|

2 dy,

(2.6)

and then using the inequality in (2.5) with a = |x−y|
r for y ∈ B r

2
(x). �

Assumption 2.4. For the rest of the paper, we will assume that ϕ has been fixed,
and that it satisfies the condition −ϕ′(t) ≥ (1 − t)+, so that the inequality (2.4)
holds.

3. Quantitative stratification

The first step toward the definition of the quantitative singular strata is to in-
troduce the notion of model maps having a given number of symmetries. This
definition is analogous to [NV17, Definition 1.1].

Definition 3.1 (k-symmetric maps). A map h ∈ W 1,2
loc (R

m,AQ(N )) is said to be
the following:

• It is homogeneous with respect to x ∈ Rm if

h(x+ λv) = h(x+ v) for all λ > 0, for every v ∈ R
m,

or, equivalently, if

Drxh = Q�0� a.e. in R
m.

• It is k-symmetric if it is homogeneous with respect to the origin and there
exists a linear subspace L ⊂ Rm with dim(L) = k along which h is invariant,
that is

h(x+ v) = h(x) for every x ∈ R
m, for all v ∈ L,

or, equivalently, such that

Dvh(x) = Q�0�, for a.e. x ∈ R
m, for all v ∈ L.

Observe that if h ∈ W 1,2
loc (R

m,AQ(N )) is stationary and homogeneous with
respect to x, then θh(x, s) = θh(x, r) for every 0 < s < r by (2.3). Also, if h is
k-symmetric with invariance subspace L, then the energy of h in the direction of
any v ∈ L vanishes. Hence, it is very natural to give the following definition, which
is the starting point for introducing the quantitative stratification.

Definition 3.2. Given a stationary Q-harmonic map u ∈ W 1,2
loc (Ω,AQ(N )), we

say that a ball Br(x) with B2r(x) ⊂ Ω is (k, ε)-symmetric for u if and only if the
following conditions hold.

(a) θu(x, 2r)− θu(x, r) < ε.
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4312 J. HIRSCH, S. STUVARD, AND D. VALTORTA

(b) There exists a linear subspace L ⊂ Rm with dim(L) = k such that

r2−m

ˆ
Br(x)

|DLu(y)|2 dy ≤ ε,

where

ˆ
Br(x)

|DLu(y)|2 dy :=

ˆ
Br(x)

k∑
i=1

|Deiu(y)|2 dy,

for any orthonormal basis {ei}ki=1 of L.

Remark 3.3. Observe that conditions (a) and (b) above are scale-invariant in the
following sense. For x ∈ Ω and r > 0 such that B2r(x) ⊂ Ω, consider the blow-up
map Tu

x,r given by

Tu
x,r(y) := u(x+ ry).

Then Br(x) is (k, ε)-symmetric with respect to u if and only if B1(0) is (k, ε)-
symmetric with respect to Tu

x,r.

Definition 3.4 (Quantitative stratification). Let u ∈ W 1,2
loc (Ω,AQ(N )) be station-

ary Q-harmonic, and let ε, r > 0 and k ∈ {0, . . . ,m}. We will set

Sk
ε,r(u) := {x ∈ Ω : for no r ≤ s < 1

is the ball Bs(x) (k + 1, ε)-symmetric with respect to u} .

It is an immediate consequence of the definition that if k′ ≤ k, ε′ ≥ ε, and r′ ≤ r,
then

Sk′

ε′,r′(u) ⊆ Sk
ε,r(u).

Hence, we can set

Sk
ε (u) :=

⋂
r>0

Sk
ε,r(u)

and consider the union ⋃
ε>0

Sk
ε (u) .

Remark 3.5. Note that from Theorem 1.4 one easily deduces that if u ∈
W 1,2

loc (Ω,AQ(N )) is energy minimizing and a ball Br(x) is (m, ε0)-symmetric for
u, with the ε0 given in there, then u is Hölder continuous in B r

2
(x), and thus in

particular Sk
ε (u) ∩ B r

2
(x) = ∅ for every k ≤ m − 1 and for every ε > 0. In fact,

we can also conclude that
(⋃

ε>0 Sm
ε (u)

)
\
(⋃

ε>0 Sm−1
ε (u)

)
= Ω \

(⋃
ε>0 Sm−1

ε (u)
)

coincides with the set regH(u) := Ω \ singH(u) of points of Hölder continuity for u,
and singH(u) =

⋃
ε>0 Sm−1

ε (u).

In the following proposition, we show that if u is energy minimizing, then the
set
⋃

ε>0 Sk
ε (u) coincides with the kth singular stratum Sk(u) as defined in (1.5).

Proposition 3.6. Let u ∈ W 1,2(Ω,AQ(N )) be energy minimizing. Then⋃
ε>0

Sk
ε (u) = {x : no tangent map to u at x is (k + 1)-symmetric} = Sk(u) .
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SINGULAR SET OF ENERGY MINIMIZING HARMONIC MAPS 4313

Proof. First recall that for any x ∈ Ω, there exists at least one tangent map φ ∈
W 1,2

loc (R
m,AQ(N )) to u at x, and that all tangent maps are energy minimizing and

0-symmetric.
Now let x be a point such that there exists a tangent map φ to u at x which is

(k + 1)-symmetric. Then, there is a sequence rj ↘ 0 of radii such that the corre-
sponding sequence of blow-up maps uj := Tu

x,rj satisfies G(uj , φ) → 0 in L2
loc(R

m)
as j → ∞ and, furthermore,

θφ(0, ρ) = lim
j→∞

θuj
(0, ρ) ∀ ρ > 0.

In particular, since φ is homogeneous with respect to the origin, and thus θφ(0, 2)−
θφ(0, 1) = 0 by (2.3), for any ε > 0 there exists j0 = j0(ε) such that

(3.1) θuj
(0, 2)− θuj

(0, 1) < ε ∀ j ≥ j0.

Moreover, since φ is (k+1)-symmetric, there exists a linear subspace L ⊂ Rm with
dim(L) = k+ 1 such that DLφ = Q�0� a.e. in R

m. Hence, from the convergence of
energy for minimizers, we deduce that if j0 is chosen suitably large, then also

(3.2)

ˆ
B1(0)

|DLuj |2 dy ≤ ε ∀ j ≥ j0.

Together, equations (3.1) and (3.2) imply that Brj (x) is (k+ 1, ε)-symmetric for u

if j ≥ j0(ε), and thus x /∈
⋃

ε>0 Sk
ε (u). This proves the first inclusion, namely⋃

ε>0

Sk
ε (u) ⊆ {x ∈ Ω : no tangent map to u at x is (k + 1)-symmetric} .

In order to prove the other inclusion, assume that x /∈
⋃

ε>0 Sk
ε (u). Then, for

every j ∈ N there exist a radius rj > 0 and a (k + 1)-dimensional linear subspace
Lj ⊂ Rm such that if we set uj := Tu

x,rj , then

(3.3) θuj
(0, 2)− θuj

(0, 1) <
1

j

and

(3.4)

ˆ
B1(0)

|DLj
uj |2 dy ≤ 1

j
.

Modulo a simple right composition of each uj with a rotation, we can assume that
the invariant subspace is a fixed (k + 1)-dimensional subspace L ⊂ Rm. By the
compactness theorem for Q-valued energy minimizing maps, a subsequence (not
relabeled) of the uj ’s converges in L2

loc and in energy to an energy minimizing map
φ. From (3.3) together with (2.4) we deduce that the limit map φ is homogeneous
with respect to the origin. Furthermore, (3.4) implies that φ is invariant along the
subspace L, and thus φ is (k + 1)-symmetric. Now, if a subsequence of the rj ’s
converges to 0, then φ is by definition a tangent map to u at x. If, on the other
hand, the rj ’s are bounded away from 0, then u ≡ φ on a ball of positive radius
centered at x, and thus, in particular, all tangent maps to u at x coincide with φ.
In either case, this completes the proof. �

Corollary 3.7. Let u ∈ W 1,2(Ω,AQ(N )) be energy minimizing. Then(⋃
ε>0

Sm−1
ε (u)

)
\
(⋃

ε>0

Sm−3
ε (u)

)
= ∅.
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4314 J. HIRSCH, S. STUVARD, AND D. VALTORTA

Hence,

singH(u) =
⋃
ε>0

Sm−3
ε (u) .

Proof. This is a direct consequence of Proposition 3.6, since the identity
Sm−1(u) = Sm−3(u) holds for standard stratification. �

Notation 3.8. From now on, we will simply write Sk(u) to denote the union⋃
ε>0 Sk

ε (u) of quantitative strata whenever u is stationary Q-harmonic. Following

Proposition 3.6, this set coincides with the classical Sk(u) when u is also energy
minimizing.

The definition of quantitative stratification that we have proposed differs from
the original one introduced by Cheeger and Naber in [CN13a, CN13b] and then
used by Naber and Valtorta in [NV17]. Of course, the Cheeger–Naber quantitative
stratification can be extended without any difficulties to the Q-valued context. We
recall the definition here, in order to compare it with Definition 3.4.

Definition 3.9. Let u ∈ W 1,2
loc (Ω,AQ(N )), and fix k ∈ {0, . . . ,m} and ε > 0. A ball

Br(x) with B2r(x) ⊂ Ω is said to be (k, ε)-symmetric for u in the sense of Cheeger
and Naber, or briefly [CN] (k, ε)-symmetric, if there exists some k-symmetric map

h ∈ W 1,2
loc (R

m,AQ(N )) such that

(3.5)

 
Br(x)

G(u(y), h(y − x))2 dy ≤ ε.

The definitions of [CN] (ε, r)-singular strata and [CN] ε-singular strata can be then
obtained straightforwardly according to the definition of [CN] (k, ε)-symmetry. In
particular, Sk

[CN](u) :=
⋃

ε>0 Sk
ε,[CN](u) classically consists of all points x ∈ Ω having

the property that there exists ε > 0 such that no ball Br(x) is [CN] (k + 1, ε)-
symmetric with respect to u.

The following simple proposition shows that if u is a minimizing Q-valued map,
then Definitions 3.2 and 3.9 are equivalent, in the sense that they generate the same
stratification.

Proposition 3.10. For every ε > 0, there exists δ = δ(m,N , N,Q,Λ, ε) > 0
such that for any Q-valued Dirichlet minimizing u ∈ W 1,2(B10(0),AQ(N )) with
E (u,B10(0)) ≤ Λ, and for any x, r such that B2r(x) ⊂ B10(0):

(i) if Br(x) is (k, δ)-symmetric for u, then it is [CN] (k, ε)-symmetric for u;
(ii) if Br(x) is [CN] (k, δ)-symmetric for u, then it is (k, ε)-symmetric for u.

Proof. Since both the definitions of symmetry are scale-invariant, modulo transla-
tions and dilations, it suffices to show the validity of the proposition for x = 0 and
r = 1. We start by proving the first claim. Assume by contradiction that there
exist ε0 > 0 and a sequence {uj}j∈N of maps that satisfy the assumptions of the
proposition and are such that B1 is (k, j−1)-symmetric but with

 
B1

G(uj(y), h(y))
2 dy > ε0 for every k-symmetric function h, for every j ∈ N.

(3.6)
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SINGULAR SET OF ENERGY MINIMIZING HARMONIC MAPS 4315

Modulo rotations, we can assume that the k-dimensional linear subspace L such
that condition (b) in Definition 3.2 is satisfied is fixed along the sequence: namely,
we can assume without loss of generality that

θuj
(0, 2)− θuj

(0, 1) < j−1

and that ˆ
B1

|DLuj(y)|2 dy ≤ j−1

for some fixed k-dimensional plane L ⊂ Rm. Now the compactness theorem for
Q-valued energy minimizing maps implies that a subsequence of the uj ’s (not rela-
beled) converges in L2(B10(0),AQ(R

N )) and in energy to a Q-valued energy mini-
mizing map h for which

θh(0, 2)− θh(0, 1) = 0

and
DLh = Q�0� a.e. in B1.

Hence, by (2.4) the map h|B1
can be extended to a k-symmetric map (which we

still denote by h), and the fact that G(uj , h) → 0 in L2(B1) contradicts (3.6).
For the converse, assume again by contradiction that there exist ε0, a sequence

{uj}j∈N of maps satisfying the assumptions of the proposition, and a sequence

{hj}j∈N ⊂ W 1,2
loc (R

m,AQ(N )) of k-symmetric maps such that

(3.7)

 
B1

G(uj(y), hj(y))
2 dy ≤ j−1

and such that the ball B1 is not (k, ε0)-symmetric. Again, after applying suitable
rotations, we can assume that the invariant subspace for the maps hj is a fixed
k-dimensional plane L ⊂ Rm. By compactness, the maps uj converge, up to subse-
quences, to an energy minimizing u ∈ W 1,2(B10(0),AQ(N )). By (3.7), also hj → u
strongly in L2(B1,AQ(N )). Since the space of k-symmetric maps is L2-closed, we
deduce that u is k-symmetric. Since the uj ’s converge to u also in energy, the ball
B1 must be (k, ε0)-symmetric for uj if j is sufficiently large, which is the required
contradiction. �

Corollary 3.11. Let u be as above. Then, for every k ∈ {0, . . . ,m}, one has

(3.8) Sk(u) = Sk
[CN](u).

Using more quantitative estimates, the comparison between the two notions of
quantitative symmetry can be carried to the case of stationary Q-harmonic maps.

Proposition 3.12. There exists a constant C = C(m,N , N,Q) > 0 with the

following property. Let u ∈ W 1,2
loc (Ω,AQ(N )) be a stationary Q-harmonic map. If

a ball Br(x) � Ω is (k, ε)-symmetric for u, then B r
4
(x) is (k, C|ε ln(ε)|)-symmetric

for u in the sense of Cheeger and Naber.

Proof. Without loss of generality, we prove the claim for x = 0 and r = 1. The idea
of the proof is to explicitly construct from u a k-symmetric map in B 1

4
. Modulo a

rotation, we can assume that the k-dimensional plane L of ε-almost symmetry is
L = {xi = 0 : i > k} = Rk × {0}. For convenience, we will denote the variables
of R

k with y, y′ and the variables of R
m−k with z, z′. The point x ∈ R

m will
therefore be given coordinates x = (y, z) ∈ Rk × Rm−k. With a slight abuse of
notation, we will also sometimes regard y and z as vectors in Rm, thus avoiding
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the cumbersome, although more correct, writings (y, 0) and (0, z). Finally, when
we integrate a function with respect to the variable y over a ball Bk

r ⊂ Rk, we will
use the notation By

r as domain of integration (and analogously for the variables
y′, z, z′).

In order to construct the k-symmetric map, we need to prove two simple inequal-
ities for multiple-valued functions.

Claim 1. There exists a constant C = C(k,N,Q) with the following property. For

any function f = f(y, z) in W 1,2
(
Bk

1 ×Bm−k
1 ,AQ(R

N )
)
, one has

(3.9)

ˆ
By′

1

ˆ
By

1×Bz
1

G(f(y, z), f(y′, z))2 ≤ C

ˆ
By

1×Bz
1

|DLf |2.

Claim 2. Let 0 < s0 < a < 1. There exists a constant C = C(d, a,Q) such
that for any f ∈ W 1,2(Bd

1 ,AQ(R
N )) and every a < t ≤ 1 such that f |∂Bd

t
∈

W 1,2(∂Bd
t ,AQ(R

N )) the following holds:

(3.10)

ˆ
Bd

1\Bd
s0

G
(
f(x), f

(
t
x

|x|

))2

≤ C|ln(s0)|
ˆ
Bd

1\Bd
s0

|Df(x) · x|2 .

Proof of Claim 1. The proof is a consequence of thePoincaré inequality formultiple-
valued functions; see [DLS11, Proposition 4.9]. Indeed, first observe that for a.e.

z ∈ Bm−k
1 the map y �→ f(y, z) is in W 1,2(Bk

1 ,AQ(R
N )). Hence, by the aforemen-

tioned Poincaré inequality, for any such z there exists a point f̄(z) ∈ AQ(R
N ) such

that
ˆ
By

1

G(f(y, z), f̄(z))2 ≤ C

ˆ
By

1

|DLf(y, z)|2 ,

where C = C(k,N,Q). Hence, by the triangle inequality we infer that

ˆ
By

1

ˆ
By′

1

G(f(y, z), f(y′, z))2

≤ 2Hk(Bk
1 )

(ˆ
By

1

G(f(y, z), f̄(z))2 +
ˆ
By′

1

G(f(y′, z), f̄(z))2
)

≤ C

ˆ
By

1

|DLf(y, z)|2 .

Integrating now this inequality in z ∈ Bm−k
1 gives (3.9). �

Proof of Claim 2. First note that for Hd−1-a.e. w ∈ ∂Bd
1 , the map r �→ gw(r) :=

f(rw) is in W 1,2((0, 1) ,AQ(R
N )). By the W 1,2-selection theorem for multiple-

valued functions of one variable (see [DLS11, Proposition 1.2]), there exist W 1,2

functions gw� : (0, 1) → RN for � = 1, . . . , Q such that
∣∣ d
drg

w
� (r)

∣∣ ≤ |Dwf(rw)| for
a.e. r ∈ (0, 1). Now, fix t ∈ (a, 1). Then, by one-dimensional calculus, we have for
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s0 < s ≤ t and for every � ∈ {1, . . . , Q} that

|gw� (s)− gw� (t)|2 ≤
(ˆ t

s

r−d−1dr

)(ˆ t

s

∣∣∣∣ ddr gw� (r)
∣∣∣∣2 rd+1dr

)

≤ s−d

d

ˆ 1

s0

|Df(rw) · w|2 rd+1dr

=
s−d

d

ˆ 1

s0

|Df(rw) · rw|2 rd−1dr.

For t ≤ s ≤ 1 the same computation holds true interchanging t and s; in this case,

we estimate t−d

d ≤ a−d

d s−d. Hence, in both cases we have

|gw� (s)− gw� (t)|2 ≤ Cs−d

ˆ 1

s0

|Df(rw) · rw|2 rd−1dr.

Summing over � ∈ {1, . . . , Q} and recalling the definition of the metric G this
produces

G(f(sw), f(tw))2 ≤ Cs−d

ˆ 1

s0

|Df(rw) · rw|2 rd−1dr for every s ∈ (s0, 1) ,

where C = C(d, a,Q). Multiply by sd−1 and integrate in s between s0 and 1 to
obtain ˆ 1

s0

G(f(sw), f(tw))2sd−1ds ≤ C|ln(s0)|
ˆ 1

s0

|Df(rw) · rw|2 rd−1dr.

Integrating now in w ∈ ∂B1 gives inequality (3.10). �

We are now ready to prove the proposition. Let u ∈ W 1,2(Ω,AQ(N )) be a
stationary Q-harmonic map, and assume that B1 is (k, ε)-symmetric for u. By
(b) in Definition 3.2, we can fix 1

4 ≤ t ≤ 1√
2
such that x ∈ ∂Bt �→ u(x) is in

W 1,2(∂Bt,AQ(N )) and satisfies
´
∂Bt

|DLu|2 ≤ C
´
B1

|DLu|2.
For a.e. y′ ∈ Bk

t , we have that the map z �→ vy′(z) := u(y′, z) is in

W 1,2(Bm−k
t ,AQ(N )). Hence, by the scaled version of (3.10) with d = m − k,

we have for any 0 < s0 < 1
4 that

ˆ
Bz

t \Bz
s0

G
(
vy′(z), vy′

(
t
z

|z|

))2

≤ C|ln(s0)|
ˆ
Bz

t

|Du(y′, z) · z|2 ,

where C = C(m,Q). Integrating this now in y′ ∈ Bk
t , we obtain

ˆ
By′

t

ˆ
Bz

t \Bz
s0

G
(
vy′(z), vy′

(
t
z

|z|

))2

≤ C|ln s0|
ˆ
Bk

t ×Bm−k
t

|Du(y, z) · z|2 dydz.

Adding the scaled version of (3.9), since Bk
t ×Bm−k

t ⊂ B1, we obtain

ˆ
By′

t

(ˆ
By

t ×Bz
t

G(u(y, z), vy′(z))2 +

ˆ
Bz

t \Bz
s0

G
(
vy′(z), vy′

(
t
z

|z|

))2
)

≤ C

(ˆ
B1

|DLu|2 + |ln(s0)|
ˆ
B1

|Du(x) · x|2
)
.
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Hence there exists y′0 ∈ Bk
t such that

ˆ
By

t ×Bz
t

G(u(y, z), vy′
0
(z))2 +

ˆ
Bz

t \Bz
s0

G
(
vy′

0
(z), vy′

0

(
t
z

|z|

))2

≤ C

Hk(Bk
t )

(ˆ
B1

|DLu|2 + |ln(s0)|
ˆ
B1

|Du(x) · x|2
)

≤ C(1 + |ln(s0)|)ε,

where in the last inequality we have used that the ball B1 is, by assumption, (k, ε)-
symmetric for u together with (2.4).

Set h(x) = h(y, z) := vy′
0

(
t z
|z|

)
∈ W 1,2(Bt,AQ(N )). Note that, by definition, h

is homogeneous with respect to 0. Furthermore, h is k-symmetric. An application
of the triangle inequality givesˆ

By
t ×Bz

t

G(u(y, z), h(x))2 ≤2

ˆ
By

t ×Bz
t

G(u(y, z), vy′
0
(z))2

+ 2

ˆ
By

t ×(Bz
t \Bz

s0
)

G(vy′
0
(z), h(x))2

+ 2

ˆ
By

t ×Bz
s0

G(vy′
0
(z), h(x))2.

As we have shown above, the first two integrals can be bounded by C(1+ |ln(s0)|)ε.
As for the last integral, we estimate it brutally by fixing a point p ∈ N and com-
putingˆ

By
t ×Bz

s0

G(vy′
0
(z), h(x))2 ≤ 2 sup

x∈B1

G(u(x), Q�p�)2Hk(Bk
1 )Hm−k(Bm−k

s0 )

≤ CQdiam(N )2sm−k
0 .

Hence, choosing s0 = ε proves the proposition, since we getˆ
Bt

G(u(x), h(x))2 ≤ C|ε ln(ε)|. �

Corollary 3.13. Let u ∈ W 1,2
loc (Ω,AQ(N )) be a stationary Q-harmonic map. Then

Sk
[CN](u) ⊂ Sk(u).

We conclude the section with two propositions about the characterization of the
singular set for minimizing and stationary maps. The first one is the following
effective version of Corollary 3.7.

Proposition 3.14. There exists ε = ε(m,N , N,Q,Λ) such that for any Q-valued
Dirichlet minimizing u ∈ W 1,2(B10(0),AQ(N )) with E (u,B10(0)) ≤ Λ, the follow-
ing holds:

B1 ∩
(
Sm−1(u) \ Sm−3

ε (u)
)
= ∅.

Proof. The proof is by contradiction. Assume, therefore, that for every j ∈ N

there exists uj satisfying the assumptions of the proposition with a point xj ∈
B1 ∩

(
Sm−1(uj) \ Sm−3

j−1 (uj)
)
. Since xj /∈ Sm−3

j−1 (uj), there exists 0 < rj < 1 and a
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linear subspace Lj ⊂ Rm with dim(Lj) = m− 2 such that

θuj
(xj , 2rj)− θuj

(xj , rj) ≤ j−1 ,(3.11)

r2−m
j

ˆ
Brj

(xj)

|DLj
uj |2 ≤ j−1 .(3.12)

As usual, without loss of generality we assume that the (m − 2)-planes of
j−1-almost symmetry are a fixed subspace L along the sequence. Set vj(y) :=
uj(xj + rjy), and rewrite the equations (3.11) and (3.12) in terms of vj :

θvj (0, 2)− θvj (0, 1) ≤ j−1 ,(3.13) ˆ
B1

|DLvj |2 ≤ j−1 .(3.14)

Now by an elementary computation it is immediate to see that for every ρ ∈ (0, 8)
one has

ρ2−m

ˆ
Bρ

|Dvj |2 = (ρrj)
2−m

ˆ
Bρrj

(xj)

|Duj |2 ≤ CmΛ.

Hence, by the Compactness Theorem 1.3, the sequence {vj}j∈N converges up to
subsequences in L2(B8,AQ(R

N )) and in energy to a Q-valued energy minimizing
map v for which

θv(0, 2)− θv(0, 1) = 0 ,(3.15) ˆ
B1

|DLv|2 = 0 .(3.16)

In particular, v|B1
can be extended to an (m − 2)-symmetric energy minimizer.

This implies that a fortiori 0 ∈ regH(v). Thus, 0 /∈ Sm−1(vj) for j large, which
contradicts the fact that xj ∈ Sm−1(uj). �

In the single-valued case Q = 1, we have the following result on the quantitative
stratification for stationary harmonic maps.

Proposition 3.15. There exists ε = ε(m,N ) such that for any single-valued sta-

tionary harmonic map u ∈ W 1,2
loc (Ω,N ) the following holds:

Sm−1(u) \ Sm−2
ε (u) = ∅.

Proof. Proposition 3.15 is a consequence of the inner variation formula. First we
derive a general estimate and show afterward how it implies the proposition.

Let us consider a single-valued harmonic map u in B1 that satisfies the inner
variation formula (1.3) withQ = 1. We fix two nonnegative, nonincreasing functions

ψ, ϕ ∈ C1
c

([
0, 1√

2

))
and a k-dimensional subspace L ⊂ Rm. After a rotation, we

may assume that L = {xi = 0: i = k + 1, . . . ,m}. To make the notation a bit
simpler, we will write x = (y, z) ∈ L × L⊥ and, by a slight abuse of notation,
we shall again consider z = (0, z) as a vector in Rm. Consider the vector field

X(y, z) := ψ(|y|)ϕ(|z|)z = ψϕz. We have DX = ψϕP⊥ + ψϕ′

|z| z ⊗ z + ψ′ϕ
|y| z ⊗ y,

where P⊥ denotes the orthogonal projection onto L⊥. We use this vector field in
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the inner variation formula (1.3) and obtain

0 =

ˆ
|Du|2 ((m− k)ψϕ+ ψϕ′|z|)

− 2

(
ψϕ|DL⊥u|2 + ψϕ′ 1

|z| |Du · z|2 + ψ′ϕ

〈
Du · z,Du · y

|y|

〉)
.

Observe that

(m− k)ψϕ|Du|2 − 2ψϕ|DL⊥u|2 = (m− k − 2)ϕψ|Du|2 + 2ψϕ|DLu|2.
Furthermore, we can write z = x− y to estimate

|Du · z|2 ≤ 2|Du · x|2 + 2|Du · y|2,〈
Du · z,Du · y

|y|

〉
≤ 1

2
|Du · x|2 + 1

2

∣∣∣∣Du · y

|y|

∣∣∣∣2 .
Combining all together and recalling that ϕ′, ψ′ ≤ 0, we obtain the inequalityˆ

− ((m− k − 2)ψϕ+ ψϕ′|z|) |Du|2

≤
ˆ

2ψϕ |DLu|2 +
ˆ −4ψϕ′

|z|
(
|Du · x|2 + |Du · y|2

)
−ψ′ϕ

(
|Du · x|2+

∣∣∣∣Du · y

|y|

∣∣∣∣2
)
.

(3.17)

We are ready to prove the proposition. Fix ε > 0 to be determined later, and
suppose by contradiction that there is a point x ∈ Sm−1(u) \ Sm−2

ε (u). Since
x /∈ Sm−2

ε , there exists r = r(ε) > 0 and an (m−1)-dimensional subspace L = L(ε)
such that r2−m

´
Br(x)

|DLu|2 < ε and θ(x, 2r) − θ(x, r) < ε. By translation and

scaling (i.e., passing to Tu
x,r), we may assume that x = 0 and r = 1. However, for

notational convenience, we will still write u for Tu
x,r. After a further rotation we

may assume that L = {xm = 0}. Now, we have B 1
2
⊂ Bm−1

1√
2

×
(
− 1√

2
, 1√

2

)
⊂ B1.

Fix a function η ∈ C1 with η′ ≤ 0 and η(t) = 1 for t ≤ 1
2 , η(t) = 0 for t ≥ 1√

2
.

Set ϕ = ψ := η in (3.17). Recall that in our situation k = m − 1, and thus

−(m− k− 2) = 1. Furthermore, we have ψϕ ≥ 1B 1
2

, and |4ψϕ′|
|z| , |ψ′ϕ| are bounded

and supported in B1. Hence (3.17) reads in our caseˆ
B 1

2

|Du|2 ≤ C

ˆ
B1

(
|x||Dru|2 + |DLu|2

)
,

where r(x) = r0(x) = x
|x| . By (2.4), we deduce that

´
B 1

2

|Du|2 ≤ Cε. If ε > 0 is

chosen sufficiently small (i.e., Cε < ε0 where ε0 = ε0(m,N ) is the threshold in the
ε-regularity theorem for stationary harmonic maps (see [Bet93,RS08])), this allows
us to infer that u is Hölder continuous in B 1

4
, and hence 0 is a regular point. This

contradicts the assumption that 0 ∈ Sm−1. �

Remark 3.16. Note that the above proposition could be extended (with exactly the
same proof) to the case of stationary Q-harmonic maps if an ε-regularity theorem
was available in that case.
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Remark 3.17. A converse to Corollary 3.13 cannot hold in general due to an example
of [HLP92]. They show the existence of a stationary harmonic map u : B1 ⊂ R3 →
S
2 that has a constant tangent map at a singularity x. Hence we have

x ∈ Sm
[CN](u) \ Sm−1

[CN] (u).

On the other hand, due to the ε-regularity theorem in [Bet93], it cannot be that
x /∈ Sm−1(u).

Nevertheless, if one knows a priori that N has the property that there is no
smooth harmonic map v : S2 → N , Lin in [Lin99, Lemma 3.1, Remark 3.2] implies
that every blow-up sequence Tu

x,rk
converges in fact strongly in energy to one of

its tangent maps T . In this case, the proof of Proposition 3.10 applies as well for
stationary maps, and hence Sk

[CN](u) = Sk(u).

3.1. Main theorem on the quantitative strata. Since the relevant terminology
has been introduced now, we can finally state the main estimates that we are going
to prove on the singular strata.

Theorem 3.18 (Main Theorem). Given a stationary Q-valued map u : B2 (0) ⊆
Rm → AQ(N ) with E (u,B2(0)) ≤ Λ, let Sk

ε,r(u) be its quantitative singular strata.

Then, if Br

(
Sk
ε,r(u)

)
:=
⋃

x∈Sk
ε,r(u)

Br(x), we have

Vol
(
Br

(
Sk
ε,r(u) ∩B1 (0)

))
≤ C(m,N , Q,Λ, ε)rm−k .(3.18)

Moreover, Sk
ε (u) is k-rectifiable for all ε ≥ 0.

Remark 3.19. This theorem is similar in spirit to [NV17, Theorem 1.3].

Note that this and the ε-regularity theorem for Q-valued energy minimizers
immediately imply Theorem 0.2 as a corollary. Indeed, we have

Corollary 3.20 (Theorem 0.2). Given an energy minimizing Q-valued map
u : B2 (0) ⊆ Rm → AQ(N ) with energy bounded by Λ, if

Br (singH(u)) :=
⋃

x∈singH(u)

Br(x),

then we have

Vol (Br (singH(u) ∩B1 (0))) ≤ Cr3 ,(3.19)

where C = C(m,N , Q,Λ). Moreover, singH(u) is (m− 3)-rectifiable.

Proof. By Remark 3.5 and Proposition 3.14, there exists an ε such that

Sm−3
ε (u) ∩B1 (0) = singH(u) ∩B1 (0) .(3.20)

Thus, Theorem 3.18 immediately proves the volume estimates and rectifiability for
singH(u). �

We postpone the proof of Theorem 3.18 to Section 7, following a discussion of a
few technical tools needed to complete it.
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4. Quantitative ε-regularity theorems

In this section we are going to present the proof of a quantitative version of the
ε-regularity theorem for Q-valued minimizers (see Theorem 4.3 below), which in
turn implies Corollary 4.4, providing sufficient conditions under which the singular
set singH(u) is constrained to live in the tubular neighborhood of an affine subspace
of Rm of appropriate dimension. We start with the following definition, analogous
to [NV17, Definition 4.5].

Definition 4.1. Let y0, y1, . . . , yk be (k+ 1) points in B1(0) ⊂ R
m, and let ρ > 0.

We say that these points ρ-effectively span a k-dimensional affine subspace if

(4.1) dist(yi, y0 + span[y1 − y0, . . . , yi−1 − y0]) ≥ 2ρ for every i = 1, . . . , k.

A set F ⊂ B1(0) ρ-effectively spans a k-dimensional subspace if there exist points
{yi}ki=0 ⊂ F which ρ-effectively span a k-dimensional subspace.

Remark 4.2. It is easy to see that if the points {yi}ki=0 ρ-effectively span a k-
dimensional affine subspace, then for every point

x ∈ y0 + span[y1 − y0, . . . , yk − y0]

there exists a unique set of numbers {αi}ki=1 such that

x = y0 +
k∑

i=1

αi(yi − y0), |αi| ≤ C(m, ρ)|x− y0|.

Furthermore, the notion of ρ-effectively spanning a k-dimensional affine subspace
passes to the limit: if for every j ∈ N the points {yji }ki=0 ρ-effectively span a k-

dimensional subspace and there exist the limits yi := limj→∞ yji , then also the
points {yi}ki=0 ρ-effectively span a k-dimensional subspace.

We can now state the main theorem of this section.

Theorem 4.3. Let ε, ρ > 0 be fixed. There exists δ, r > 0, depending on m, ρ,Λ, ε,
with the following property. Let u ∈ W 1,2(B10(0),AQ(N )) be a stationary
Q-harmonic map with energy bounded by Λ, let r ≤ 1, and let

F := {y ∈ Br(0) : θ(y, 4r)− θ(y, 2r) < δ}.

If F (ρ · r)-effectively spans a k-dimensional subspace L, then

(4.2)
(
Sk
ε,rr(u) ∩B r

2
(0)
)
⊂ Bρr(L) .

Corollary 4.4. For every ρ > 0, there exists δ = δ(m,N , N,Q,Λ, ρ) > 0 with
the following property. Let u : B10(0) ⊂ R

m → AQ(N ) be a W 1,2 map with energy
bounded by Λ, and let r ≤ 1.

(i) In case u is energy minimizing, if there exist m−2 points {yi}m−3
i=0 ⊂ Br(0)

which (ρ·r)-effectively span an (m−3)-dimensional affine subspace L ⊂ R
m

and such that

θ(yi, 4r)− θ(yi, 2r) < δ for every i = 0, . . . ,m− 3,

then

singH(u) ∩B r
2
(0) ⊂ Bρr(L).
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(ii) In case u is single-valued and stationary harmonic, if there exist m−1 points
{yi}m−2

i=0 ⊂ Br(0) which (ρ·r)-effectively span an (m−2)-dimensional affine
subspace L ⊂ R

m and such that

θ(yi, 4r)− θ(yi, 2r) < δ for every i = 0, . . . ,m− 2,

then

singH(u) ∩B r
2
(0) ⊂ Bρr(L) .

In particular, if m = 3 and u is a Q-valued energy minimizer and if θ(y0, 4r) −
θ(y0, 2r) < δ, then

B r
2
(y0) \Bρr(y0) ⊂ regH(u) .

The same holds if m = 2 and u is single valued and stationary.

Proof of Corollary 4.4. This follows immediately from Theorem 4.3 and Proposi-
tions 3.14 for the minimizing case and from Proposition 3.15 for the stationary
harmonic case. �

For the proof of Theorem 4.3 we will need the following lemma.

Lemma 4.5. Let u ∈ W 1,2(B10(0),AQ(N )) be a stationary Q-harmonic map, and
let r ≤ 1. If {yi}ki=0 ⊂ Br(0) (ρ · r)-effectively span a k-dimensional affine subspace
L ⊂ Rm, then
(4.3)

r−m

ˆ
Br(0)

(
r2|DL̂u(z)|

2 + |Dvu(z)|2
)
dz ≤ C(m, ρ)

k∑
i=0

(θ(yi, 4r)− θ(yi, 2r)) ,

where L̂ is the linear part of L and v is the vector field v(z) := D
(
1
2dist

2(z, L)
)
.

Proof. It is an immediate consequence of (2.4) that there exists a constant C =
C(m) such that

r−m

ˆ
Br(x)

|Du(z) · (z − x)|2 dz ≤
ˆ
Br(x)

|z − x|
rm−1

∣∣∣∣Du(z) · z − x

|z − x|

∣∣∣∣2 dz(4.4)

≤ C(m) (θ(x, 2r)− θ(x, r))

whenever B2r(x) ⊂ B10(0). Now, assume that y0, y1, . . . , yk are as in the statement,

and observe that for every unit vector e in the linear part L̂ of L there exists a
unique set of numbers {αi}ki=1 such that

e = r−1
k∑

i=1

αi(yi − y0), |αi| ≤ C(m, ρ).
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Hence, we get

r2−m

ˆ
Br(0)

|Deu(z)|2 dz ≤ C(m, ρ)r−m
k∑

i=1

ˆ
Br(0)

|Du(z) · (yi − y0)|2 dz

≤ C(m, ρ)r−m
k∑

i=0

ˆ
Br(0)

|Du(z) · (z − yi)|2 dz

≤ C(m, ρ)r−m
k∑

i=0

ˆ
B2r(yi)

|Du(z) · (z − yi)|2 dz

(4.4)

≤ C(m, ρ)

k∑
i=0

(θ(yi, 4r)− θ(yi, 2r)) .

Summing over an orthonormal basis e1, . . . , ek of L̂ produces

(4.5) r2−m

ˆ
Br(0)

∣∣DL̂u(z)
∣∣2 dz ≤ C(m, ρ)

k∑
i=0

(θ(yi, 4r)− θ(yi, 2r)) .

As for the second term, let z ∈ Br(0), and let π := πL(z) be the orthogonal
projection of z onto L. Of course,

v(z) := D

(
1

2
dist2(z, L)

)
= z − π.

On the other hand, we have as usual that

π = y0 +
k∑

i=1

αi(yi − y0), |αi| ≤ C(m, ρ)|π − y0| ≤ C(m, ρ)r,

and thus

v(z) = z −
(
y0 +

k∑
i=1

αi(yi − y0)

)
.

Arguing as above, one concludes that also

(4.6) r−m

ˆ
Br(0)

|Dvu(z)|2 dz ≤ C(m, ρ)
k∑

i=0

(θ(yi, 4r)− θ(yi, 2r)) ,

which together with (4.5) completes the proof of (4.4). �

For k = m − 2, the conclusions of the previous lemma can be improved using
again the inner variation formula. Although we are not going to use this lemma
explicitly in the following pages, we want to record it here for its own sake and
because it is a quantitative version of Proposition 3.15.

Lemma 4.6. Let u ∈ W 1,2(B10(0),AQ(N )) be a stationary Q-harmonic map, and

let r ≤ 1. If {yi}m−2
i=0 ⊂ Br(0) (ρ · r)-effectively span an (m− 2)-dimensional affine

subspace L ⊂ Rm, then

(4.7) r−m

ˆ
Br(0)

(
r2|DL̂u|

2 + |DL̂⊥u|2|v|2
)
≤ C(m, ρ)

m−2∑
i=0

(θ(yi, 8r)− θ(yi, 4r)) ,

where L̂ is the linear part of L, L̂⊥ is its orthogonal complement in Rm, and v is
the vector field v(x) := D

(
1
2dist

2(x, L)
)
.
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Proof. The proof is very similar to the one of Proposition 3.15. Also in this case,
we will make use of the stationary equation with a suitable choice of the vector field
X. Without loss of generality, we can assume that r = 1. Furthermore, modulo
translations and rotations we can assume that L = {xi = 0 : i = m − 1,m}. As
usual, coordinates on L and L⊥ will be denoted by y and z, respectively, and in
order to simplify our notation, the vectors (y, 0) and (0, z) in L×L⊥ will be simply
denoted by y and z. Observe that under these assumptions one has v(x) = z for
every x = (y, z) ∈ B1. Now, let ψ = ψ(y) be a cut-off function of the variable y ∈ L,
with ψ ≡ 1 in Bm−2

1 , spt(ψ) ⊂ Bm−2
2 , and |Dψ| ≤ 1. Let also ϕ(t) := max{1−t, 0},

and consider the vector field X(y, z) := ψ(y)ϕ(|z|2)z = ψϕz. We can immediately
compute DX = ψϕP⊥ + ϕz ⊗Dψ + 2ψϕ′z ⊗ z. With this choice of X, the inner
variation formula (1.3) reads

0 =

ˆ
|Du|2

(
2ψϕ+ 2ψϕ′|z|2

)
− 2
(
ψϕ|DL⊥u|2 + ϕ〈Du · z,Du ·Dψ〉+ 2ψϕ′|Du · z|2

)
= 2

ˆ
ψϕ|DLu|2 + ψϕ′|Du|2|z|2 −

(
ϕ〈Du · z,Du ·Dψ〉+ 2ψϕ′|Du · z|2

)
.

In particular, since ϕ′(|z|2) = −χ{|z|≤1}, ψ|{|y|≤1} ≡ 1, and B1 ⊂ Bm−2
1 ×B2

1 ⊂ B2,

we immediately deduceˆ
B1

|Du|2|z|2 ≤ C

ˆ
B2

(
|DLu|2 + |Du · z|2

)
.

The estimate (4.7) then follows from Lemma 4.5. �
We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Since the statement is scale-invariant, there is no loss of
generality in proving it only in the case r = 1. Let {yi}ki=0 ⊂ F ρ-effectively span
the k-dimensional subspace L, and let x be any point in B 1

2
(0) \ Bρ(L). The goal

is to prove that x /∈ Sk
ε,r(u) for some r > 0, and thus that there exists r > 0 and

a radius rx ∈ [r, 1) such that the ball Brx(x) is (k + 1, ε)-symmetric for u. Let
0 < δ � 1 be chosen later. Since x ∈ B 1

2
(0), Bσ(x) ⊂ B1(0) for every 0 < σ < 1

2 .

Hence, we deduce from Lemma 4.5 thatˆ
Bσ(x)

|DL̂u|
2 ≤ C(m, ρ)δ

for any such σ. In order to gain another direction along which the energy is small, we

let v(z) := D
(
1
2dist

2(z, L)
)
, and we set e := v(x)

|v(x)| . Note that |v(x)| = dist(x, L) ≥
ρ. Again by Lemma 4.5 and by the monotonicity of the function r �→ E (u,Br(x)),
we haveˆ

Bσ(x)

|Deu|2 ≤ ρ−2

ˆ
Bσ(x)

|Du(z) · v(x)|2

≤ 2ρ−2

(ˆ
Bσ(x)

|Du(z) · v(z)|2 +
ˆ
Bσ(x)

|Du(z) · (v(z)− v(x))|2
)

≤ C

ˆ
B1(0)

|Dvu|2 + Cσ2

ˆ
Bσ(x)

|Du|2

≤ Cδ + CΛσm,
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where C = C(m, ρ). Hence, if V := L̂⊕ span(e), then

(4.8)

ˆ
Bσ(x)

|DV u|2 ≤ Cδ + CΛσm

for every 0 < σ < 1
2 . Note that dim(V ) = k + 1.

Fix now ε > 0, and let σ = σ(m, ρ,Λ, ε) < 1
2 be such that CΛσ2 ≤ ε

2 . We claim
that for any 0 < τ � 1 there exists τσ ≤ rx < σ such that

(4.9) θ(x, 2rx)− θ(x, rx) ≤
2c1(m)Λ

− log2(2τ )
.

Indeed, otherwise for any integer M ∈
(
3
4 log2

(
1
2τ

)
, log2

(
1
2τ

))
we would get

c1(m)Λ ≥ θ(x, σ) ≥
M∑
i=0

θ(x, 2−iσ)− θ(x, 2−(i+1)σ) ≥ M
2c1(m)Λ

− log2(2τ )
≥ 3

2
c1(m)Λ,

which is impossible. Hence, if we fix τ = τ (m,Λ, ε) so small that 2c1(m)Λ
− log2(2τ)

≤ ε, the

above argument allows us to conclude that if we set r := τσ, then there is a radius
rx ∈ (r, σ) such that

(4.10) θ(x, 2rx)− θ(x, rx) ≤ ε.

Furthermore, formula (4.8) with rx in place of σ implies that

(4.11) r2−m
x

ˆ
Brx (x)

|DV u|2 ≤ Cδr2−m + CΛσ2.

We can finally chose δ = δ(m, ρ,Λ, ε) such that Cδr2−m ≤ ε
2 . From equations

(4.10) and (4.11) we infer that Brx(x) is (k + 1, ε)-symmetric for u. �

We conclude the section with the following proposition, according to which if
the mollified energy is pinched enough at (k+1) points spanning a k-plane L, then
it is almost constant along this L.

Proposition 4.7. Let u ∈ W 1,2(B10(0),AQ(N )) be a stationary Q-harmonic map
with E (u,B10(0)) ≤ Λ, and let r ≤ 1. Let 0 < ρ < 1 and η > 0 be fixed. There exists
δ0 = δ0(m,Λ, ρ, η) > 0 with the following property. Let F := {y ∈ Br(0) : θ(y, 8r)−
θ(y, ρr) < δ0}. If there are points y0, . . . , yk ∈ F which (2ρ · r)-effectively span a
k-dimensional affine subspace L ⊂ Rm, then

|θ(x, ρr)− θ(yj , ρr)| < η for every x ∈ L ∩Br(0), for every j ∈ {0, . . . , k}.

Proof. Due to the scaling invariance of the problem, we may without loss of gener-
ality assume that r = 1. We calculate the derivative of x �→ θ(x, ρ) along a direction
v of the linear part of L:

Dvθ(x, ρ) = ρ2−m

ˆ
ϕ′
(
|x− y|

ρ

)
(x− y) · v
ρ|x− y| |Du|2(y) dy.
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If we consider the vector field X(y) := ρ2−mϕ( |x−y|
ρ )v in the inner variation formula

(1.3), we obtain from there

ρ2−m

ˆ
ϕ′
(
|x− y|

ρ

)
(x− y) · v
ρ|x− y| |Du|2(y) dy

= −2ρ2−m

ˆ
ϕ′
(
|x− y|

ρ

)
Dvu(y) · Du(y) · (y − x)

ρ|y − x| dy

≤ 2

(
ρ−m

ˆ
Bρ(x)

|Dvu|2 dy
) 1

2
(
ρ2−m

ˆ
Bρ(x)

|Du|2 dy
) 1

2

.

Observe that by the monotonicity formula we have ρ2−m
´
Bρ(x)

|Du|2 ≤ Λ for all

x ∈ B1. Using (4.3), we have that

ρ−m

ˆ
Bρ(x)

|Dvu|2 dy ≤ ρ−m

ˆ
B1+ρ(0)

|DLu|2 dy

≤ C(m, ρ)

k∑
i=0

(θ(yi, 4(1 + ρ))− θ(yi, 2(1 + ρ))) ≤ C(m, ρ)(k + 1)δ0.

Hence we conclude that for all x ∈ B1

|Dvθ(x, ρ)| ≤ C(m, ρ) ((k + 1)Λδ0)
1
2 .

Integrating along a path from a point yi to any point x ∈ L ∩B1, we obtain that

|θ(x, ρ)− θ(yi, ρ)| ≤ C(m, ρ) ((k + 1)Λδ0)
1
2 .

Choosing δ0 > 0 sufficiently small, we obtain the proposition. �

5. Reifenberg theorem

This section is dedicated to Reifenberg-type results needed for the proof of the
main theorem. The results will only be quoted without proof, and they are, in
some sense, a quantitative generalization of Reifenberg’s topological disk theorem
(see [Rei60]). Many generalizations of this landmark theorem are available in the
literature, but we limit ourselves to citing [Tor95, DT12]. Here we will need two
versions of this theorem originally proved in [NV17].

Before quoting the theorems, we need the following definition of the so-called
Jones’s β2 numbers.

Definition 5.1. Given a positive Borel measure μ defined in Rm, for all positive
radii r > 0 and dimensions k ∈ N, we define

Dk
μ(x, r) := min

{ˆ
Br(x)

dist2(y, V )

r2
dμ(y)

rk
: V ⊂ R

m(5.1)

is an affine subspace with dim(V ) = k

}
.

Usually in literature this quantity is referred to as Jones’s β2 number βk
2,μ(x, r)

2.

D captures in a scale invariant way the distance between the support of μ and
some k-dimensional subspace V . Indeed, the factor r−2 in the distance term makes
the integrand scale invariant, while r−kμ takes care of the scaling properties of the
measure μ.
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Here we mention two easy and crucial properties of D.

Lemma 5.2 (Bounds on D). Given two measures μ, μ′ such that μ′ ≤ μ, for all
x, r and k ∈ N, we can bound

Dk
μ′(x, r) ≤ Dk

μ(x, r) .(5.2)

Also, for all x, y, r such that |x− y| ≤ r

Dk
μ(x, r) ≤ 2k+2Dk

μ(y, 2r) .(5.3)

Proof. The proof follows immediately from the definition. �

5.1. Quantitative Reifenberg theorems. Assuming a sort of integral Carleson-
type condition on the D numbers, we can obtain uniform scale invariant properties
on the measure μ. For the reader’s convenience, here we quote two key theorems
that will be used in order to get the final estimates on the singular set of Q-valued
minimizers. The first one is about upper Ahlfors bounds for discrete measures and
is quoted from [NV17, Theorem 3.4]. This theorem is enough for our purposes, but
we mention that some generalizations have been obtained in [ENV16]. The second
important theorem is about rectifiability properties for general μ, and is quoted
from [AT15, Theorem 1.1].

Theorem 5.3 ([NV17, Theorem 3.4]). For some constants δR(m) and CR(m)
depending only on the dimension m, the following holds. Let {Brx/10 (x)}x∈D ⊆
B3 (0) ⊂ R

m be a collection of pairwise disjoint balls with their centers x ∈ B1 (0),
and let μ ≡

∑
x∈D rkxδx be the associated measure. Assume that for each Br(x) ⊆ B2

ˆ
Br(x)

(ˆ r

0

Dk
μ(y, s)

ds

s

)
dμ(y) < δ2Rr

k .(5.4)

Then, we have the uniform estimate∑
x∈D

rkx < CR(m) .(5.5)

Condition (5.4) prescribes some integral Carleson-type control over the quan-
tity D(x, r). Estimates of this kind are extensively studied in the literature, as
they provide important information concerning the rapidity of oscillation of a given
quantity (e.g., the gradient of the solution of a PDE) at small scales, see for instance
[KM07]. In our context, if the measure μ is the k-dimensional Hausdorff measure
restricted to some S, this bound is enough to guarantee also the rectifiability of S,
as seen in the following theorem. Note that in [AT15] the theorem is presented in
a more general form.

Theorem 5.4 ([AT15, Corollary 1.3]). Given a Borel measurable subset S of Rm,
let μ := Hk S be the k-dimensional Hausdorff measure restricted to S. The set S
is countably k-rectifiable if and only if

ˆ 1

0

Dk
μ(x, s)

ds

s
< ∞ for μ-a.e. x.(5.6)
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6. Best approximating plane

In this section, we record the main technical lemma needed for the final proof of
Theorem 3.18. Although several technical points need to be addressed, this lemma
contains most of the important estimates in the paper and provides an estimate on
the D numbers using the normalized energy θ(x, r).

The basic ideas behind the estimates in this section are similar to the ones in
[NV17, Theorem 7.1]; however, the new definition of (k, ε)-symmetries allows for
more quantitative and easier proofs.

For any f ∈ W 1,2(Ω,AQ(N )) and for all Br (x) ⊆ Ω, we introduce the quantity,

Pf (x, r) := r−m

ˆ
Br(x)

|Df(y) · (y − x)|2 dy .(6.1)

Note that in the case where u is an energy minimizing Q-valued harmonic map,
we have by (4.4),

Pu(x, r) ≤ C(m) [θ(x, 2r)− θ(x, r)] .(6.2)

However, here we carry out the estimates in a very general setting, and we will
exploit this bound only at the very last step in our main proof.

Theorem 6.1. Let u ∈ W 1,2(B2 (0) ,AQ(N )), and fix ε > 0, 0 < r ≤ 1, and
some x ∈ B1 (0). Also let μ be any positive Radon measure supported on B1 (0).
Assuming that

inf

{
r2−m

ˆ
Br(x)

|DV u|2 : V ⊂ Rm linear with dim(V ) = k + 1

}
≥ ε ,(6.3)

we conclude

Dk
μ(x, r) ≤

(m− k)(k + 1)2m

εrk

ˆ
Br(x)

Pu(y, 2r) dμ(y) .(6.4)

Remark 6.2. We remark that (6.4) does not change if μ is multiplied by a positive
constant, thus for convenience for the rest of this section we are going to assume
without loss of generality that μ is a probability measure. Moreover, we can also
assume without loss of generality that x = 0 and r = 1.

Note that for this theorem we will not exploit any property specific to energy
minimizers. For future convenience, we record a simple corollary that rephrases
the previous theorem with the language of energy minimizers and quantitative
stratification.

Corollary 6.3. For any Q-valued Dirichlet minimizing u ∈ W 1,2(B10(0),AQ(N ))
with E (u,B10(0)) ≤ Λ, and for all ε > 0, 0 < r ≤ 1, and x ∈ B1 (0), the following
holds. Let μ be any positive Radon measure supported on B1 (0). Assuming that
Br (x) is (k, ε)-symmetric but NOT (k + 1, ε)-symmetric, we conclude

Dk
μ(x, r) ≤

C(m)

εrk

ˆ
Br(x)

[θ(y, 4r)− θ(y, 2r)] dμ(y) .(6.5)

Proof. The proof follows immediately from the definition of (k + 1, ε)-symmetry
and the bound in (6.2). �
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6.1. Properties of the best approximating plane. For fixed k, and given any
probability measure μ, for all (x, r) we set V (x, r) to be the k-dimensional affine
subspace minimizing ˆ

Br(x)

dist2(y, V ) dμ(y) ,(6.6)

so that, in particular,

Dk
μ(x, r) = r−(k+2)

ˆ
Br(x)

dist2(y, V (x, r)) dμ(y) .(6.7)

Since in this section we focus on x = 0 and r = 1, we will in fact mostly consider
only the k-dimensional subspace V (0, 1).

First of all, note that necessarily V (x, r) will pass through the center of mass of
μ in Br(x), defined as

xm(μ, x, r) = xm :=

ˆ
Br(x)

x dμ(x) .(6.8)

It will be convenient to phrase some of the estimates needed for Theorem 6.1 in
terms of a suitable quadratic form on Rm, defined as

R(w) :=

ˆ
B1(0)

|〈x− xm, w〉|2 dμ(x) .(6.9)

By standard linear algebra, there exists an orthonormal basis {e1, . . . , em} of eigen-
vectors for R with nonnegative eigenvalues λ1, . . . , λm, which we will take for con-
venience in decreasing order. Note that by the variational characterization of λk,
we have that

ek ∈ argmax

{ˆ
B1(0)

|〈x− xm, e〉|2 dμ(x) s.t. |e|2 = 1 and 〈e, ei〉 = 0 ∀i ≤ k

}
,

(6.10)

λk =

ˆ
B1(0)

|〈x− xm, ek〉|2 dμ(x) ,(6.11)

and so

Dk
μ(0, 1) =

ˆ
B1(0)

dist2(x, V (0, 1)) dμ(x) =
m∑

i=k+1

λi .(6.12)

Indeed, by minimality of V , V (0, 1) = xm + span [e1, . . . , ek], and thus

ˆ
B1(0)

dist2(x, V (0, 1)) dμ(x) =
m∑

i=k+1

ˆ
B1(0)

|〈x− xm, ei〉|2 dμ(x) =
m∑

i=k+1

λi .

(6.13)

Using simple geometry, it is possible to prove that for any map f ∈ W 1,2 we
have the following estimate involving λk and Pf .

Lemma 6.4. Let f =
∑Q

�=1�f�� ∈ W 1,2(B3r (x) ,AQ(N )), and let μ be a probability
measure on Br (x). Then

λk

ˆ
Br(x)

|Df(z) · ek|2 dz ≤ 2m
ˆ
Br(x)

Pf (y, 2r) dμ(y) for every k = 1, . . . ,m .

(6.14)
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Proof. For simplicity, we assume x = 0 and r = 1. Moreover, note that evidently
we can assume λk > 0, otherwise there is nothing to prove. Fix some z ∈ B1 (0).
By definition of eigenvectors ek, we have for every � ∈ {1, . . . , Q} thatˆ

B1(0)

〈x− xm, ek〉 (Df�(z) · (x− xm)) dμ(x) = λkDf�(z) · ek .(6.15)

By definition of center of mass, we can writeˆ
B1(0)

〈x− xm, ek〉 (z − xm) dμ(x) = 0 ,(6.16)

and so

λkDf�(z) · ek =

ˆ
B1(0)

〈x− xm, ek〉 (Df�(z) · (x− z)) dμ(x) .(6.17)

By the Cauchy–Schwartz inequality and (6.11), we have

λ2
k|Df�(z) · ek|2 ≤ λk

ˆ
|Df�(z) · (x− z)|2 dμ(x) ,(6.18)

and thus, summing over �,

λk|Df(z) · ek|2 ≤
ˆ
|Df(z) · (x− z)|2 dμ(x) .(6.19)

Taking the integral of this inequality in B1 (0) with respect to the volume measure
in z, we obtain the estimate

λk

ˆ
B1(0)

|Df(z) · ek|2 dz ≤
¨

B1(0)×B1(0)

|Df(z) · (x− z)|2 dz dμ(x)

≤
ˆ
B1(0)

ˆ
B2(x)

|Df(z) · (x− z)|2 dz dμ(x) ≤ 2m
ˆ
B1(0)

Pf (x, 2) dμ(x). �

From this proposition, the proof of Theorem 6.1 follows as a simple corollary.

Proof of Theorem 6.1. As before, we assume without loss of generality that x = 0
and r = 1. Moreover, by (6.12) it is sufficient to prove that

λk+1 ≤ C(m)

ε

ˆ
B1(0)

Pu(y, 2) dμ(y) .(6.20)

By the previous lemma, we have

λk+1

k+1∑
j=1

ˆ
B1(0)

|Du · ej |2 ≤
k+1∑
j=1

λj

ˆ
B1(0)

|Du · ej |2 ≤ C(m)

ˆ
B1(0)

Pu(x, 2) dμ(x) .

(6.21)

By the lower bound in (6.3), we must have

k+1∑
j=1

ˆ
B1(0)

|Du · ej |2 ≥ ε ,(6.22)

and this concludes the proof. �
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7. Proof of the main theorem via covering arguments

This section is dedicated to the proof of the Theorem 3.18. We split it into two
pieces, one containing the uniform Minkowski bounds and one with the rectifiability
part. Once the Minkowski bounds are obtained, the rectifiability is almost an
immediate corollary.

The Minkowski bounds will be obtained with a covering argument similar to the
one in [NV16].

Proposition 7.1 (Fine covering). There exist CIII(m) and a small constant δ =
δ(m,N , Q,Λ, ε) > 0 such that the following holds. Let u be a Q-valued Dirichlet
minimizing map u ∈ W 1,2(B10(0),AQ(N )) with E (u,B10(0)) ≤ Λ, and let ε > 0,
p ∈ B1(0), and 0 < r ≤ R , 0 < R ≤ 1 be chosen in an arbitrary fashion. For any
subset S ⊆ Sk

ε,δr(u), setting E = supx∈B2R(p)∩S θ(x, 3R), there exists a covering

S ∩BR (p) ⊆
⋃
x∈D

Brx (x) , with rx ≥ r and
∑
x∈D

rkx ≤ 2CIII(m)Rk .(7.1)

Moreover, for all x ∈ D, either rx = r, or for all y ∈ B2rx (x),

θ(y, 3rx) ≤ E − δ .(7.2)

Remark 7.2. This fine covering will be proved as a corollary of the intermediate
covering stated in Proposition 7.3.

7.1. Proof of Main Theorem 3.18, given Proposition 7.1. Before we move
to the proof of the proposition, we use it to prove the main theorem. This proof is
basically a corollary of the covering Proposition 7.1. We will use this proposition
inductively to produce a family of coverings of

S := Sk
ε,δr(u) ∩B1 (0)(7.3)

indexed by a parameter i ∈ N of the form

S ⊆
⋃

x∈Di

Brx (x) ,
∑
x∈Di

rkx ≤ (c(m)CIII(m))i .(7.4)

Moreover, if E = supx∈Sk
ε,δr(u)∩B2(0) θ(x, 3), we have for all i

rx ≤ r or ∀y ∈ S ∩B2rx (x) , θ(y, 3rx) ≤ E − iδ .(7.5)

Evidently, for i ≥ �E/δ� + 1, the second condition cannot be verified, and so all
the radii in the covering are going to be equal to r. As a consequence, we have the
Minkowski bound

Vol
(
Br

(
Sk
ε,δr(u)

)
∩B1 (0)

)
≤ (c(m)CIII(m))�δ

−1E+1rm−k .(7.6)

Since δ = δ(m, ε,Λ, Q,N ), it is clear that, up to enlarging the constant in the
estimate, the same bound holds also for Sk

ε,r(u) in the place of Sk
ε,δr(u), and this

concludes the proof of the Minkowski bounds in (3.18).
In order to produce the covering in (7.4), we will apply inductively the covering

Proposition 7.1. For i = 1, we can apply this proposition to B1 (0) and obtain
the desired covering. Inductively, consider all the balls {Brx (x)}x∈Di and apply

Proposition 7.1 to these balls. For each x ∈ Di, we obtain a covering of the form

S ∩Brx (x) ⊆
⋃

y∈Dx

Bry (y) ,
∑
y∈Dx

rky ≤ 2CIII(m)rkx ,(7.7)

ry ≤ r or ∀z ∈ S ∩B2ry (y) , θ(z, 3ry) ≤ E − (i+ 1)δ .(7.8)
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Set

Di+1 =
⋃

x∈Di

Dx ,(7.9)

and the induction step is completed.

7.1.1. Proof of the rectifiability of Sk
ε . As for the rectifiability, this is going to be

a corollary of Theorem 5.4, the uniform Minkowski bound (3.18), and the approxi-
mation theorem, Theorem 6.1.

In particular, let μ = Hk
{
Sk
ε (u) ∩B1 (0)

}
. From (3.18) we deduce that this

measure is finite, as

μ(B1(0)) ≤ C(m,Λ, ε).

In turn, by scaling this implies that for all x ∈ B1(0) and r > 0,

μ (Br (x)) ≤ C(m,Λ, ε)rk ,(7.10)

and thus μ is Ahlfors upper k-regular.
We claim that there exists a constant c(m, ε,Λ) > 0 such that for all x ∈ Sk

ε , all
r > 0 and (k + 1)-dimensional subspaces V ,

r2−m

ˆ
Br(x)

|DV u|2 ≥ c(m, ε,Λ) .(7.11)

In order to prove this, fix any r ∈ (0, 1], and consider the sequence of radii ri = r2−i

for i = 0, 1, . . . . Since

∞∑
i=0

[θu(x, ri)− θu(x, ri+1)] ≤ CΛ(7.12)

and since all terms in the sum are nonnegative by monotonicity, at most CΛε−1

of these terms can be bigger than ε. In particular, this implies that for all x ∈ Sk
ε

and r > 0, there exists r′(r, x) ≥ 2−CΛε−1

r such that θ(x, r′) − θ(x, r′/2) < ε.
By definition of Sk

ε and some simple estimates, this implies that for all (k + 1)-
dimensional subspaces V, we have

r2−m

ˆ
Br(x)

|DV u|2 ≥ r2−m

(r′(r, x))2−n
(r′(r, x))2−m

ˆ
Br′(r,x)(x)

|DV u|2(7.13)

≥ r2−m

(r′(r, x))2−m
ε ≥ c(m, ε,Λ) .
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With this lower bound, we can apply the best approximation theorem, Theorem
6.1, and with a simple simple change of variables we can writeˆ

B1(0)

ˆ 1

0

Dk
μ(x, r)

dr

r
dμ(x)(7.14)

≤ C(m, ε,Λ)

ˆ 1

0

ˆ
B1(0)

r−k

ˆ
Br(x)

Pu(y, 2r) dμ(y)dμ(x)
dr

r

≤ C(m, ε,Λ)

ˆ 1

0

ˆ
B1(0)

Pu(y, 2r)

(
r−k

ˆ
Br(y)

dμ(x)

)
dμ(y)

dr

r

≤ C(m, ε,Λ)

ˆ
B1(0)

ˆ 1

0

Pu(y, 2r)
dr

r
dμ(x)

≤ C(m, ε,Λ)Λ ,

where the last inequality follows fromˆ 1

0

Pu(y, 2r)
dr

r

(6.2)

≤
ˆ 1

0

[θ(y, 4r)− θ(y, 2r)]
dr

r

= lim
t→0

ˆ 1

t

[θ(y, 4r)− θ(y, 2r)]
dr

r

=

ˆ 1

1/2

θ(y, 4r)
dr

r
+ lim

t→0

ˆ 1/2

t

θ(y, 4r)
dr

r
−
ˆ 1

2t

θ(y, 2r)
dr

r︸ ︷︷ ︸
=0

− lim
t→0

ˆ 2t

t

θ(y, 2r)
dr

r
≤ C(m)Λ .

(7.15)

The rectifiability of Sk
ε (u) is now a consequence of Theorem 5.4.

By countable additivity, the rectifiability of Sk(u) is a corollary of the rectifia-
bility of Sk

ε (u) for all ε > 0.
It is worth remarking that the uniform Ahlfors upper estimates obtained a priori

for the measure μ = Hk
{
Sk
ε (u) ∩B1 (0)

}
are essential for carrying out this

computation, and actually they are the most difficult part of the estimate. This is
why the proof of the rectifiability property is so easy.

7.2. Proof of Proposition 7.1. Now we turn to the proof of the covering propo-
sition. We split this proof in two pieces by introducing a secondary covering propo-
sition.

Proposition 7.3 (Intermediate covering). Under the assumptions of Proposition
7.1, for all 0 < ρ < 1/100, there exist δ = δ(m,N , Q,Λ, ε, ρ) > 0 and CII(m) such
that the following is true.

There exists a finite covering of S = Sk
ε,δr(u) ∩BR (p) of the form

S ⊆
⋃
x∈D

Brx (x) , with rx ≥ r and
∑
x∈D

rkx ≤ CII(m)Rk .(7.16)

Moreover, for each x ∈ D, either there exists a (k − 1)-dimensional space Wx such
that

Fx,rx ≡ {y ∈ S ∩B2rx (x) with θ(y, ρrx/20) ≥ E − δ} ⊆ Bρrx/10 (Wx)(7.17)

or rx = r.
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Assuming this proposition, we prove Proposition 7.1. The idea is simple: We
consider this second covering, and refine it inductively on each ball with rx ≥ r
and no uniform energy drop, so basically on the sets Fx,rx . Given the last charac-
terization of this set, we only need to refine the covering around a subspace of a
dimension m−1, which allows us to keep uniform m-dimensional covering estimates
on the original set.

Proof of Proposition 7.1, given Proposition 7.3. Let 0 < ρ < 1 be fixed later, and
let A ∈ N be the first integer such that ρA < r. Also assume without loss of
generality p = 0 and R = 1.

For all i = 1, . . . , A, we construct a covering of S of the form

S ∩B1 (0) ⊆
⋃

x∈Ri

Br (x) ∪
⋃

x∈Fi

Brx (x) ∪
⋃

x∈Bi

Brx (x) ,(7.18)

where Ri are the balls of radius r in the covering, Fi are the balls where the uniform
energy drop condition (7.2) is satisfied, and Bi are the bad balls, where neither of
the two conditions is verified. We want to obtain uniform packing bounds on Ri

and Fi, and exponentially small packing bounds on Bi. We will refine our covering
only on bad balls by reapplying the second covering lemma on those, and this is
why we need smallness on their packing bounds. In detail, we want

∑
x∈Ri∪Fi

rkx ≤ CIII(m)

⎛
⎝ i∑

j=0

7−j

⎞
⎠ ,

∑
x∈Bi

rkx ≤ 7−i .(7.19)

7.2.1. Induction step. In this step, we consider a generic ball BR (p) , and we want
to obtain a covering of S ∩BR (p) of the form

S ∩BR (p) ⊆
⋃

x∈Rp∪Fp

Brx (x) ∪
⋃

x∈Bp

Brx (x)(7.20)

such that rx ≥ r and for all x ∈ Rp, rx = r. Moreover, we want to obtain the
covering estimates ∑

z∈Rp∪Fp

rkz ≤ CIII(m)Rk,
∑
z∈Bp

rkz ≤ 7−1Rk ,(7.21)

and we also want to make sure that the balls {Brx (x)}x∈Fp
have a definite energy

drop. In particular, we will prove that for all y ∈ Fx and z ∈ B2·(ρrx/60) (y) =
B2ry (y),

θ(z, 3ry) < E − δ .(7.22)

In order to do so, we first apply the second covering in Proposition 7.3 to the
ball BR (p). We obtain a covering of the form

S ∩BR (p) ⊆
⋃
x∈D

Brx (x) , with rx ≥ r and
∑
x∈D

rkx ≤ CII(m)Rk .(7.23)

We split D into two disjoint sets: D = Dr ∪D+, where x ∈ Dr if rx ≤ 60ρ−1r, and
x ∈ D+ otherwise. Observe that if x ∈ D+, then (7.17) is valid.

We refine slightly this covering by recovering each of the balls in Dr and D+

separately. In particular, for all x ∈ Dr, consider a simple covering of Brx (x) by
balls of radius r with number bounded by c(m)ρ−m, and let Rp be the union of all
centers in these coverings. Note that if rx = r, we can keep Brx (x) unchanged.
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For all x ∈ D+, consider a covering of Brx (x) made of balls of radius ρrx/60 > r
centered inside this ball and such that the family of balls with half the radius are
pairwise disjoint. In particular, let

Brx (x) ⊆
⋃

y∈Bx

Bρrx/60 (y) ∪
⋃

y∈Fx

Bρrx/60 (y) ,(7.24)

where

Fx,rx ∩
⋃

y∈Fx

B2·(ρrx/60) (y) = ∅ , Bx ⊆ Bρrx (Wx) .(7.25)

Thus, the balls in Fx will have a uniform energy drop. In particular we have that
for all y ∈ Fx and z ∈ B2·(ρrx/60) (y) = B2ry (y),

θ(z, 3ry) < E − δ .(7.26)

Moreover, the number of balls in Bx is well controlled. Indeed, since Bx⊆Bρrx (Wx),{
Bρrx/120 (y)

}
y∈Bx

are pairwise disjoint and Wx is a k-dimensional subspace, then

# {Fx} ≤ c(m)ρ−m , # {Bx} ≤ c(m)ρ1−k .(7.27)

Set Bp =
⋃

x∈D+
Bx and Fp =

⋃
x∈D+

Fx. We have∑
z∈Rp∪Fp

rkz ≤ c(m)ρ−m+k
∑
x∈D

rkx ≤ c(m)ρ−m+kCII(m)Rk ,(7.28)

∑
z∈Bp

rkz ≤ c(m)ρ1
∑
x∈D

rkx ≤ c(m)ρCII(m)Rk .(7.29)

We choose ρ = ρ(m) ≤ 1/100 sufficiently small so that

c(m)ρCII(m) ≤ 1/7 .(7.30)

In this way, we have as desired the estimates∑
z∈Rp∪Fp

rkz ≤ CIII(m)Rk,
∑
z∈Bp

rkz ≤ 7−1Rk ,(7.31)

where CIII(m) = c(m)ρ(m)−m+kCII(m).

7.2.2. Finishing the proof. With the induction step, the proof follows easily. For
i = 1, apply the induction step to B1 (0) , and we obtain (7.18) for i = 1 with
(7.19). In particular, we obtain the covering given in (7.20).

For generic i, we have by induction

S ∩B1 (0) ⊆
⋃

x∈Ri

Br (x) ∪
⋃

x∈Fi

Brx (x) ∪
⋃

x∈Bi

Brx (x) .(7.32)

Apply the induction step on all the balls {Brx (x)}x∈Bi
separately, and define

Ri+1 = Ri ∪
⋃

x∈Bi

Rx , Fi+1 = Fi ∪
⋃

x∈Bi

Fx , Bi+1 =
⋃

x∈Bi

Bx .(7.33)

By construction, we have the estimates

∑
z∈Ri+1∪Fi+1

rkz ≤ CIII(m)

i∑
s=0

7−s,
∑

z∈Bi+1

rkz ≤ 7−i−1 .(7.34)
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Note that at the step i = A all the balls in our covering will either have energy
drop (if they are in FA) or have radius = r (if they are in RA). Equation (7.34)
for i = A gives the desired bound on the final covering. �

Now we turn our attention to the proof of Proposition 7.3, which is the last one
needed to complete the main theorem.

7.3. Proof of Proposition 7.3. For convenience, we assume p = 0 and R = 1.
Fix ε, ρ > 0, and let A be such that ρA ≤ r < ρA−1. The proof is based on an
inductive covering by balls, where the discrete Reifenberg theorem is applied in
order to control the number of these balls.

7.3.1. Construction of the covering. We split the inductive covering into two parts:
at first we simply construct the covering inductively, and then we prove the packing
bounds using the Reifenberg theorem. Specifically, we start by looking for an
inductive (for i = 0, 1, . . . , A) covering for S = Sk

ε,δr(u) ∩BR (p) of the form

S ⊆
⋃

x∈Bi

Brx (x) ∪
⋃
x∈Gi

Brx (x) ,(7.35)

where the elements of Bi are the centers of the bad balls in our covering, and Gi are
the centers of the good balls. In particular, we want the following.

(1) For all i and x ∈ Bi, rx ≥ ρi and there exists a (k−1)-dimensional subspace
Wx such that

Fx,rx ≡ {y ∈ S ∩B2rx (x) such that θ(y, ρrx/20) ≥ E − δ} ⊆ Bρrx/10 (Wx) ,

(7.36)

where δ > 0 is fixed, to be determined later.
(2) For all i = 1, . . . , A and x ∈ Gi, rx = ρi and the set Fx,rx defined above

(ρrx/20)-effectively spans some k-dimensional affine subspace Vx.
(3) For i = A, we have the bound∑

x∈BA∪GA

rkx ≤ CII(m) .(7.37)

Moreover, we request some extra properties of the centers of the covering in order
to apply the discrete Reifenberg theorem:

(4) for all i, the balls in the collection
{
Brx/10 (x)

}
x∈Gi∪Bi

are pairwise disjoint;

(5) for all i ≥ 1 and x ∈ Gi ∪ Bi, we have the energy bound

θ(x, rx) ≥ E − η for some η > 0 to be determined ;(7.38)

(6) there exists a constant cL(m, ε,Λ) such that for all i, x ∈ Gi ∪ Bi and
s ∈ [rx, 1], and for all (k + 1)-dimensional subspaces T , we have

s2−m

ˆ
Bs(x)

|DTu|2 ≥ CT (m,Λ, ε) .(7.39)

At each induction step, we will refine our covering on the good balls, while leaving
the bad balls untouched.

For i = 0, consider the set F0,1. If this set does not ρ/20-effectively span
something k-dimensional, then we call B1(0) a bad ball, set Gi = ∅ for all i, and
{0} = B0 = BA with r0 = 1. This covering immediately satisfies all the properties
of Proposition 7.3, and we stop our construction here.
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In the other case, set G0 = {0} with r0 = 1, and we proceed with our construction
with this as our base case.

Induction step. Assuming by induction that all the properties listed above
are valid up to the index i, we want to produce the covering for i + 1. In order
to do so, we want to refine our covering on good balls, and leave the previous bad
balls intact.

Fix an arbitrary x ∈ Gi, and consider the set Fx,rx . Since Bρi (x) is a good ball,
by definition this set [ρi+1/20]-effectively spans a k-dimensional affine subspace Vx.
By applying Theorem 4.3 to the ball B4ρi (x), we find that there exists a δ(m,Λ, ε, ρ)
sufficiently small so that

Sk
ε,δr(u) ∩B2ρi (x) ⊂ Bρi+1/10 (Vx) .(7.40)

Consider the set

K =
⋃
x∈Gi

(
Bρi (x) ∩ Vx

)
\
⋃

x∈Bi

B4rx/5 (x) .(7.41)

Given the inclusion (7.40) and since we have chosen ρ ≤ 1/100, we have

S \
⋃

x∈Bi

Brx (x) ⊆ Bρi+1/5 (K) .(7.42)

Let DK ⊆ K be a maximal subset of points at least ρi+1/5 apart, so that
the balls

{
Bρi+1/10 (x)

}
x∈DK

are pairwise disjoint. Note that these balls are also

disjoint from
{
Brx/3 (x)

}
x∈Bi

by construction. Moreover, by maximality of the

subset DK , we have the inclusion

S \
⋃

x∈Bi

Brx (x) ⊆
⋃

x∈DK

B2ρi+1/5 (x) .(7.43)

We can discard from this collection all the balls B2ρi+1/5 (x) that have empty in-
tersection with S. Now consider the collection{

Bρi+1 (x)
}
x∈DK

,(7.44)

and classify these points into good and bad balls according to whether or not (7.36)
is satisfied. In particular, if Fx,ρi+1

(
ρi+2/20

)
-effectively spans a k-dimensional

subspace Vx, then we say that x ∈ G̃i+1, and x ∈ B̃i+1 otherwise. We set

Bi+1 = Bi ∪ B̃i+1 , Gi+1 = G̃i+1 .(7.45)

This makes sure that requirements (1) and (2) for the inductive construction are
met.

Now fix any x ∈ DK . By construction, there exists an x′ ∈ Gi such that x ∈
Vx′ ∩ Brx′ (x

′). Hence, we can apply Proposition 4.7, and prove that for all η > 0
there exists a δ(m,N , Q,Λ, ρ, η) sufficiently small so that

θ
(
x, ρi+1/40

)
≥ E − η .(7.46)

Moreover, there also exists some x′ ∈ S ∩ B2ρi+1/5 (x). Fix any s ∈ [ρi+1, 1], and

for A ∈ N, A ≥ 10Λ
ε consider the sequence of radii s0, . . . , sA where s0 = s/5 and

sk = 2−ks0/5. We claim that there exists ī ∈ [1, A] such that

θ(x, si)− θ(x, si+1) ≤ ε .(7.47)
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This is an easy consequence of the monotonicity and the relation

Λ ≥
A∑
i=1

θ(x′, si)− θ(x′, si+1) .(7.48)

If δ ≤ 2−10Λ/ε, by definition of S = Sk
ε,δr, we have that for every (k+1)-dimensional

subspace T , (sī
s

)2−m

s2−m

ˆ
Bs(x)

|DTu|2 ≥ s2−m
ī

ˆ
Bsī

(x′)

|DTu|2 ≥ ε .(7.49)

Thus we have proved (7.39) with CT (m,Λ, ε) =
(
sA
s

)m−2
ε.

i = A. For i = A, one can use the same construction as above, but with
radius r instead of radius ρA. At this stage, one also does not need to make any
distinction between good and bad balls.

At this stage, we define D of Proposition 7.3 to be

D = BA ∪ GA .(7.50)

We are left to prove the packing estimates (7.16).

7.3.2. Volume estimates. We will apply the discrete Reifenberg theorem to the
measure

μD =
∑
x∈D

rkxδx .(7.51)

In order to do so, we need to check that (5.4) is satisfied for this μ, and we exploit
the best approximation theorem, Theorem 6.1. However, as will be evident later on,
we cannot apply this theorem directly. Instead, we will prove the volume estimate
with an upward induction.

7.3.3. Inductive statement. For convenience, we define the one-parameter family of
measures μt by setting

Dt = D ∩ {rx ≤ t} , μt = μD Dt ≤ μD .(7.52)

Let T be such that 2T−1r < 1/70 ≤ 2T r. We will prove by induction on j =
0, 1, . . . , T that there exists a constant CI(m) such that for all x ∈ B1 (0) and
s = 2jr,

μs (Bs (x)) ≡
∑

y∈Ds∩Bs(x)

rky ≤ CI(m)sk .(7.53)

Once this has been proved, with a simple covering argument we can turn the
estimates for j = T into the estimates (7.16), replacing CI(m) with CII(m) =
c(m)CI(m) if necessary.

Base step in the induction, j = 0. The first step of the induction is easy. Since by
construction rx ≥ r for all x ∈ D, and since the balls

{
Brx/10 (x)

}
x∈D are pairwise

disjoint, a standard covering argument shows that for all x ∈ B1 (0),

μr (Br (x)) ≤ C0(m)rk .(7.54)
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7.3.4. Induction step. The induction step is divided into two parts. First, we are
going to prove a weak packing bound for balls of radius 2j+1r. Second, we will
use this estimate in order to apply the discrete Reifenberg theorem and deduce a
uniform scale invariant upper bound for the measure, which in turn lets us complete
the induction.
Coarse bounds . Assuming that the induction step j is proved, we can easily obtain
a rough bound for j + 1. Indeed, let x ∈ B1 (0) be arbitrary, and consider the ball
B2j+1r (x). By covering this ball with c(m) balls of half the radius and by using
the induction hypothesis, we can estimate

μ2jr (B2j+1r (x)) ≤ c(m)CI(m)(2j+1r)k .(7.55)

With a similar covering argument, we can estimate the “new contributions” in
μ2j+1r. To be precise, since

{
Brx/10 (x)

}
x∈D are all pairwise disjoint, we have

D̄ =
{
y ∈ D ∩B2j+1r (x) with ry ∈ (2jr, 2j+1r]

}
,
∑
y∈D̄

rky ≤ C0(m)(2j+1r)k .

(7.56)

Thus, choosing CI(m) ≥ C0(m), we have

μ2j+1r (B2j+1r (x)) ≤ c(m)CI(m)(2j+1r)k .(7.57)

Refined estimate. In order to refine this last estimate, we need to apply the discrete
Reifenberg theorem, Theorem 5.3. An essential tool is given by the estimates in
Corollary 6.3. Fix any B2j+1r (z) for z ∈ D. For convenience, hereafter we will
denote

μ2j+1r B2j+1r (x) ≡ μ .(7.58)

Set also for y ∈ D,

(7.59) WD(y, s) =

{
θ(y, 4s)− θ(y, 2s) for s ≥ ry/10 ,

0 for s < ry/10 .

By construction, and in particular by the estimates in (7.39) and (7.38) (i.e., by
points (5) and (6) in the inductive construction on p. 4337), for η ≤ η(m, δ, ε,Λ, Q,N )
sufficiently small we can apply Theorem 6.1 to μ and any ball Bs (x) with x ∈ D
and s ∈ [rx, 1] and obtain

Dk
μ(x, s) ≤ c(m)ε−1s−k

ˆ
Bs(x)

WD(y, s) dμ(y) .(7.60)

As a corollary of this and (5.3), we can extend this relation for all s ∈ [rx/10, 1]
and obtain

Dk
μ(x, s) ≤ c(m)ε−1s−k

ˆ
B10s(x)

WD(y, 10s) dμ(y) .(7.61)

Note that this relation is trivially true also for s ≤ rx/10, because in this case the
support of the measure μ inside the ball Brx/10 (x) is an isolated point.

We can use this estimate to prove (5.4) for the measure μ. Indeed, fix any y ∈
B2j+2r (x), t ∈ (0, 2j+1r], and in turn choose any s ∈ [0, t]. For these parameters,
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we can bound

ˆ
Bt(y)

Dk
μ(z, s) dμ(z)

(7.61)

≤ c(m)ε−1s−k

ˆ
Bt(y)

[ˆ
B10s(z)

WD(p, 10s) dμ(p)

]
dμ(z) .

(7.62)

Considering that

{(p, z) s.t. |z − y| ≤ t and |p− z| ≤ 10s}(7.63)

⊂ {(p, z) s.t. |p− y| ≤ t+ 10s and |p− z| ≤ 10s} ,

we can exchange the variables of integration and estimate

ˆ
Bt(y)

Dk
μ(z, s) dμ(z) ≤ c(m)ε−1

ˆ
B11t(y)

μ(B10s (p))

sk
WD(p, 10s) dμ(p)

≤ c(m)ε−1CI

ˆ
B11t(y)

WD(p, 10s) dμ(p) .

(7.64)

Recall that by (7.58), μ(A) = μ(A∩B2rj+1r (x)). Note that the induction hypothesis
and the coarse estimates have been used to obtain the last inequality.

By integrating this inequality on
´ t

0
ds
s , we get

ˆ
Bt(y)

(ˆ t

0

Dk
μ(z, s)

ds

s

)
dμ(z) ≤ c(m)ε−1CI

ˆ
B11t(y)

[ˆ t

0

WD(z, 10s)
ds

s

]
dμ(z) .

(7.65)

Note that for all x ∈ D, θ(0, 1)− θ(0, rx) ≤ η. Thus since t ≤ 1/70, we have

ˆ t

0

WD(x, 10s)
ds

s
=

ˆ t

rx

[θ(x, 40s)− θ(x, 20s)]
ds

s
(7.66)

=

ˆ t

t/2

θ(x, 40s)
ds

s
+

ˆ t/2

rx

θ(x, 40s)
ds

s
−
ˆ t/2

2rx

θ(x, 20s)
ds

s︸ ︷︷ ︸
=0

−
ˆ 2rx

rx

θ(x, 20s)
ds

s

(7.67)

=

ˆ t

t/2

[
θ(x, 40s)− θ

(
x, 40

rx
t
s
)] ds

s
≤ cη .(7.68)

This in turn implies

ˆ
Bt(y)

(ˆ t

0

Dk
μ(z, s)

ds

s

)
dμ(z) ≤ c(m)ε−1CIηt

k .(7.69)

By picking η sufficiently small (in turn, by picking δ(m,N , Q,Λ, ε, η) sufficiently
small), we can apply the discrete Reifenberg theorem to μ and prove that

μ2j+1r (B2j+1r (x)) ≤ CR(m)(2j+1r)k .(7.70)

By picking CII(m) = max {C0(m), CR(m)}, we complete the induction step and,
in turn, the proof of this proposition.
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8. Continuity in nonpositively curved spaces

This section is devoted to the proof of the following result.

Theorem 8.1. Let N be a complete, simply connected manifold all of whose sec-
tional curvatures are nonpositive. Then, every minimizing harmonic map u ∈
W 1,2(Ω,AQ(N )) satisfies

singH(u) = ∅.
The proof will be split into two parts. In the first part of the argument we will

show a general lemma, Lemma 8.2. Then, in subsection 8.1 we will show how the
lemma implies the theorem.

Observe that in the single-valued case Q = 1, the hypothesis that π1(N ) = {0}
is not necessary; indeed, in subsection 8.2, we will show how the same result holds
whenQ = 1 under the weaker assumption thatN is connected. The proof will follow
from the simply connected situation by means of lifting of Lipschitz-continuous
functions into covering spaces. The hypothesis that N is simply connected, instead,
is indispensable when Q > 1; in subsection 8.3 we will provide an example of a
singular Q-valued minimizing harmonic map in a flat target manifold N .

Lemma 8.2. Let f : N → R be a C2-regular function such that ∇2f ≥ 0 on TpN
for all p ∈ N . Then

f ◦ u =

Q∑
�=1

f(u�) = const.

for any 0-homogeneous energy minimizer u : Rm → AQ(N ).

Proof. We will split the proof of the lemma into two steps: �
Claim 1. For any energy minimizer u : Ω → AQ(N ), Ω ⊂ R

m open, we have that
f ◦ u : Ω → R is subharmonic in the sense of distributions; i.e.,

(8.1) Δ(f ◦ u) ≥ 0 .

Claim 2. Any 0-homogeneous subharmonic function is constant.

The lemma is an immediate consequence of Claims 1 and 2.

Proof of Claim 1. Let f̂ be any extension of f to RN such that f̂ is C2 (for in-

stance, take f̂(p) := φ(p)f(Π(p)), where Π(p) : Uδ(N ) → N is the nearest point
projection from a δ-tubular neighborhood Uδ(N ) and φ is a nonnegative smooth
bump function supported in Uδ(N ) and constantly equal to 1 in a small neighbor-

hood of N ). Observe that for every p ∈ N , we have ∇2f = (D(Df̂)Tp)Tp , where
vTp denotes the orthogonal projection of v onto TpN . In order to deduce the claim,
let ϕ = ϕ(x) ∈ C1

c (Ω) nonnegative be given and define the vector field

Y (x, p) := ϕ(x)∇f̂(p) = ϕ(x)(Df̂(p))TΠ(p) .

The outer variation formula (1.4) now provides

0 =

ˆ
Ω

m∑
i=1

Q∑
�=1

(
〈Diu�,∇f̂(u�)〉Diϕ+ 〈Diu�, D∇f̂ ·Diu�〉ϕ

)

=

ˆ
Ω

m∑
i=1

(
Di(f ◦ u)Diϕ+

Q∑
�=1

∇2f(u�)(Diu�, Diu�)ϕ

)
.
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In the last line we have used that Diu� ∈ Tu�
N , and so 〈Diu�, D∇f̂ · Diu�〉 =

∇2f(u�)(Diu�, Diu�). Since the last term is nonnegative we deduce the claim,
ˆ
Ω

〈D(f ◦ u), Dϕ〉 ≤ 0 for all ϕ ∈ C1
c (Ω), ϕ ≥ 0. �

Proof of Claim 2. Let h ∈ W 1,2(Rm) be 0-homogeneous and subharmonic in the
sense of distributions, i.e.,

(8.2)

ˆ
〈Dh,Dϕ〉 ≤ 0 for all ϕ ∈ C1

c (R
m), ϕ ≥ 0.

Suppose h is not constant. Then there exists a > 0 such that h is not constant on
the super-level set {x : h(x) ≥ −a}, which in turn implies (h+ a)+ is not constant.
Take any nonnegative η(t), satisfying η(t) = 0 for t > R (possibly a smooth approx-
imation of (R− t)+), and consider the test function ϕ(x) = η(|x|2)(h+a)+ in (8.2).
Observe that Diϕ = η(|x|2)Di(h+a)++η′(|x|2)2xi(h+a)+. But

∑
i Dih(x)x

i = 0
for a.e. x in Rm because h is 0-homogeneous. Hence we deduce

0 ≥
ˆ
|D(h+ a)+|2η(|x|2).

But this contradicts the assumption that (h+ a)+ is not constant. �

8.1. Proof of Theorem 8.1. In this subsection we conclude the proof of Theo-
rem 8.1. Recall that the hypotheses on N imply by the Cartan–Hadamard theorem
that expp : TpN → N is a covering map for every p ∈ N . Furthermore, since N is

assumed to be smooth, we have distN (q, p) = |exp−1
p (q)|. As a further consequence

we deduce that for each p the map q �→ d2p(q) := distN (q, p)2 is smooth. By the

second variation formula for length, we deduce that ∇2d2p ≥ 0.

Proof of Theorem 8.1. Again we split the proof into two parts: �

Claim 1. Every 0-homogeneous and locally minimizing u : Rm → AQ(N ) is con-
stant.

Claim 2. Claim 1 implies that every locally minimizing map u ∈ W 1,2(Ω,AQ(N ))
is continuous.

Obviously, Claim 2 is equivalent to the theorem. Let us first show how Claim 2
follows from Claim 1.

Proof of Claim 2. Let u ∈ W 1,2(Ω,AQ(N )) be locally energy minimizing, and sup-
pose by contradiction that singH(u) �= ∅. Due to the characterization of the Hölder
regular set by means of the tangent maps [Hir16b, Lemma 6.1], there is y ∈ singH(u)
with a nonconstant tangent map Tu

y at y. But every tangent map is 0-homogeneous
and locally minimizing, and thus constant by Claim 1. This is the required contra-
diction. �

Proof of Claim 1. Let u ∈ W 1,2(Rm,AQ(N )) be any 0-homogeneous locally min-
imizing map. As a consequence of the previous discussion, for every k > 1 and
p ∈ N , the function q ∈ N �→ f(q) := (dp(q)

2)k is C2 regular and satisfies ∇2f ≥ 0
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on TqN since t �→ tk is convex. Hence, we can apply Lemma 8.2 and deduce that
for all p ∈ N , k > 1,

(8.3) d2kp ◦ u =

Q∑
�=1

d2kp (u�)

is constant. To conclude, we need the following small algebraic fact, whose proof
we postpone and which we first show the end of the argument. �

Lemma 8.3. Let {a�}Q�=1, {b�}
Q
�=1 be two families of nonnegative real numbers.

Suppose that for some sequence ki → ∞, we have

Q∑
�=1

aki

� =

Q∑
�=1

bki

� .

Then, {a�}Q�=1 = {b�}Q�=1.

In order to conclude the proof, fix any x, y ∈ Rm, and let u(x) =
∑Q

�=1 �p�� ,
u(y) =

∑Q
�=1 �q��. For a fixed pj we have by (8.3) that for all k > 1

Q∑
�=1

distN (p�, pj)
2k =

Q∑
�=1

distN (q�, pj)
2k.

But thus Lemma 8.3 implies that the number of zeros of the left- and right-hand
side are the same. So we conclude that #{� : p� = pj} = #{� : q� = pj}. Since pj
was arbitrary, we have u(x) = u(y), that is u is constant.

It remains to give the proof of the lemma.

Proof of Lemma 8.3. This lemma follows by induction on Q. For Q = 1 the claim
is obvious.

Suppose the claim is proven for Q′ < Q. We may assume that the families are
ordered; i.e., a1 ≥ a2 ≥ · · · ≥ aQ and b1 ≥ b2 ≥ · · · bQ. If a1 = 0, the claim follows.
Hence we may assume a1 > 0. The hypothesis implies that for all ki,

Q∑
�=1

(
a�
a1

)ki

=

Q∑
�=1

(
b�
a1

)ki

.

If we consider the limits for ki → ∞, we deduce that the left-hand side converges
to #{� : a� = a1}. If b1 > a1, the right-hand side converges to +∞. If b1 < a1, on
the other hand, the right-hand side converges to 0. Hence, b1 = a1. Furthermore
the right-hand side converges therefore to #{� : b� = b1 = a1} which must be the

same number as for the family {a�}Q�=1. Hence we conclude that the assumption
can now be written as∑

� : a�=a1

aki
1 +

∑
� : a� �=a1

aki

� =
∑

� : b�=a1

bki
1 +

∑
� : b� �=a1

bki

� .

As we have just shown the first sum on the left agrees with the first sum on the
right, hence we deduce equality for the second sums for all ki. The lemma follows
now by induction hypothesis. �
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8.2. The improved result when Q = 1. Although it is a known result, we want
to give a short proof of how the previous implies Theorem 8.4. The important fact
to remember is that for the single-valued case, the topology of the target does not
play a role.

Theorem 8.4. Let N be a complete, connected manifold all of whose sectional cur-
vatures are nonpositive. Then, every locally energy minimizing map u ∈ W 1,2(Ω,N )
is smooth.

Proof. It is classical that every continuous harmonic map is smooth; hence it is
sufficient to prove the continuity of the harmonic map. We will show this by
induction on the dimension m of the base space Ω ⊂ R

m. In fact, we will proceed
similarly to the simply connected situation:

Claim 1. Every 0-homogeneous locally energy minimizer u : Rm → N is constant.

Claim 2. Every locally energy minimizing map u ∈ W 1,2(Ω,N ) is continuous. �
Proof of Claim 1. Assume Claim 1 is proven for m′ < m. In a first step we want
to show that the map u|

Sm−1 is continuous. For m ≤ 3, this holds true since
Hm−2(sing(u)) = 0; see [Sim96, Lemma 1, section 2.10]. Now let u : Rm → N
be 0-homogeneous and energy minimizing, but suppose by contradiction that when
restricted to the sphere Sm−1 u is not continuous; i.e., sing(u) ∩ Sm−1 �= ∅. Hence
we can find y ∈ sing(u) ∩ Sm−1 at which there is a tangent map T with at least
one line of symmetry; i.e., such that for some z ∈ Rm one has T (x + λz) = T (x)
for all λ ∈ R, for all x. But this implies that T is a locally energy minimizing
0-homogeneous map from Rm−1 to N . By the induction hypothesis T must be
constant. Hence sing(u) ∩ Sm−1 = ∅. �

We have thus concluded that v := u|
Sm−1 : Sm−1 → N is continuous and

thus smooth. Let P : Ñ → N be an isometric covering map; e.g., we can take
P = expp : TpN → N by the Cartan–Hadamard theorem. Since Sm−1 is simply

connected, we have that u∗(π1(S
m−1)) ⊂ P∗(π1(R

n)), and hence there exists a lift

ṽ : Sm−1 → Ñ of v, that is with P ◦ ṽ = v; see [Hat02, Proposition 1.33]. The
0-homogeneous extension ũ(x) := ṽ( x

|x| ) must be locally energy minimizing since P

is isometric. (Indeed, if w̃ is a local competitor for ũ, then w := P ◦ w̃ is a local
competitor for u, and

´
Ω
|Dw|2 =

´
Ω
|Dw̃|2; hence, ũ must be locally minimizing if

u is.) But as proven in the simply connected situation every 0-homogeneous locally

energy minimizing map ũ : Rm → Ñ is constant; compare Claim 1 in subsection
8.1 with Q = 1. This shows the claim.

Proof of Claim 2. Assume sing(u) �= ∅. Hence we can find y ∈ sing(u) at which
there is a nontrivial tangent map T . But the existence of T is ruled out by
Claim 1. �
8.3. Q-valued counterexample. In this subsection we want to present an ex-
ample that the continuity fails for Q-valued functions if the target is not simply
connected. Due to the results in subsection 8.1 we already know that the reason
must be of topological nature.

Proposition 8.5. There is a 2-valued energy minimizing map u from B3 ⊂ R
3

into the flat torus T2 = C/Z2 with the property that u|S2 is Lipschitz continuous,
singH(u) � B3, and singH(u) �= ∅.
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Proof. The construction of the example proceeds as follows.

(1) We present an explicit example of a branched covering π : V → S2, where

V is a torus. V is constructed as a complex variety in Ĉ× Ĉ.
(2) Using π, we construct a 2-valued, Lipschitz continuous map v from S2 into

the flat torus T2 = C/Z2 with finite energy.
(3) Let u be a minimizer of the Dirichlet energy with respect to the boundary

datum g(x) := v( x
|x| ) in B3 = B3

1(0). We will show that u cannot be

continuous. This last step is based on the fact that if u were continuous,
then u

�
S2

�
would belong to the trivial homology in the sense of currents,

a contradiction.

Let us now present the details to the outlined steps.

Step 1. Let Ĉ be the Riemann sphere. We fix two nonzero, unequal complex
numbers a, b and define the meromorphic function m(z) := z z−a

z−b . Consider the
complex variety

V :=

{
(w, z) ∈ Ĉ× Ĉ : w2 = z

z − a

z − b

}
.

Consider the projection π : Ĉ × Ĉ → Ĉ onto the second component. Restricted to
V , we obtain a ramified covering map

π : V → Ĉ.

The map π by definition is a 2-valued covering with ramification points in P1 =
(0, 0), P2 = (0, a), P3 = (∞, b), and P4 = (∞,∞). We claim that π takes the form
π(ζ) = ζ2 at each of the ramifications points Pi. Furthermore, this implies that V
is smoothly embedded, i.e., does not have any singular points.

Set p1 = 0 = p′4 , p2 = a , p′3 = 1
b (p3 = b = 1

p′
3
, p4 = +∞ = 1

p′
4
).

At P1, P2 we have m(z) = (z − pi)hi(z − pi) with hi holomorphic in a neighbor-
hood Ui of 0 and hi(0) �= 0. We deduce that ϕi(z) := (z − pi)hi(z − pi) = m(z) is
locally a holomorphic diffeomorphism between pi + Ui and a neighborhood Vi ⊂ C

of 0. Now it is straightforward to check that

Φi : ζ ∈ Vi �→ (ζ, ϕ−1
i (ζ2))

is a local parametrization of V around Pi; i.e., ϕi ◦ π ◦Φi(ζ) = ζ2. Changing Ui we
may assume that Vi = Dri for each i = 1, 2, where Dr is the disc centered at 0 ∈ C

with radius r. Furthermore, since Φi is a smooth regular map, Pi is not a singular
point of V .

To analyze the ramification points P3, P4, we use the inversion I : Ĉ → Ĉ with
I(z) = 1

z . Observe that (w, z) ∈ V if and only if (w′ = I(w), z′ = I(z)) is a solution

of (w′)2 = m′(z′) with m′(z) = I ◦m ◦ I = b
a z′

z′− 1
b

z′− 1
a

or

I(V) =
{
(w′, z′) ∈ Ĉ× Ĉ : w′2 =

b

a
z′
z′ − 1

b

z′ − 1
a

}
.

Now we can argue for P3, P4 as for P1, P2 interchanging p1, p2 with p′4 and p′3 (and
denote with U ′

i , i = 3, 4 the related neighborhoods of 0). As a conclusion we can
apply the Riemann–Hurwitz formula, and obtain

χ(V) = −4 +

4∑
i=1

(2− 1) = 0.
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Hence V is a torus.

Step 2. In the following we equip V with the pull-back metric g := ι∗δ of its
immersion ι : V ↪→ Ĉ × Ĉ. Observe that the metric g is compatible with the
conformal structure considered in Step 1.

The construction of v will be done in two steps. First, since π : V → Ĉ is
a branched conformal covering of degree 2, there is a natural way to define two-
valued maps with finite energy. These maps are not Lipschitz continuous, in fact
only C0, 12 , but we are able to find a Lipschitz continuous map with similar properties
nearby.

Let f : V → N be any smooth function from the Riemann surface V into a

manifold N . We define a two-valued map u = uf : Ĉ → A2(N ) using the branched

covering map π : V → Ĉ,

u(z) :=
∑

P∈π−1(z)

�f(P )� ,
counting multiplicities; i.e., u(pi) = 2 �f(Pi)� for i = 1, . . . , 4.

We claim that u ∈ W 1,2(S2,A2(N )) with

(8.4)

ˆ
S2

|∇u|2 =

ˆ
V
|∇f |2.

Let γ be a smooth path connecting p1, p2, p3, p4. We obtain a simply connected
domain Ω ⊂ C setting

Ω := Ĉ \

⎛
⎝ ⋃

i=1,2

(pi + Ui) ∪
⋃

i=3,4

I(p′i + U ′
i) ∪ γ

⎞
⎠ .

Hence there exist two holomorphic maps ψi : Ω → π−1(Ω) with ψ1(Ω) ∪ ψ2(Ω) =
π−1(Ω) such that

u(z) = �f ◦ ψ1� + �f ◦ ψ2� for every z ∈ Ω .

Since the Dirichlet energy is conformally invariant (see [DLS11, Lemma 3.12]), we
have ˆ

Ω

|∇u|2 =

ˆ
π−1(Ω)

|∇f |2.

Now we consider a ramification point, for instance P1 and the related neighborhood
p1 + U1. Using the previously introduced parametrization Φ1, we have

u ◦ ϕ−1
1 (ζ) =

�
f ◦ Φ1(ζ

1
2 )

�
+

�
f ◦ Φ1(−ζ

1
2 )

�
.

Both maps ζ ∈ Dr21
�→ ±ζ

1
2 together parameterize Dr1 . Hence, as before, due to

the conformal invariance of Dirichlet energy, we obtainˆ
ϕ−1

1 (D
r21

)

|∇u|2 =

ˆ
Φ1(Dr1

)

|∇f |2.

Summing up all the pieces and using that H2(γ) = 0, we obtain (8.4).

By Step 1 V is a smoothly embedded torus in Ĉ×Ĉ; hence, there exists a smooth
diffeomorphism F : V → T2. Apply the above construction with the specific choice
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f = F to obtain

ṽ(z) :=
∑

P∈π−1(z)

�F (P )� ∈ W 1,2(Ĉ,A2(T
2)).

For the further argument let us note the following. We may fix a point z0 ∈ Ω
and set qi := F ◦ ψi(z0) for i = 1, 2. Since F is a diffeomorphism, there is ε > 0
such that |F ◦ ψ1(z0) − F ◦ ψ2(z0)| ≥ 8ε. Hence we can find a ball Br0(z0) ⊂ Ω
s.t. |F ◦ ψi(z0) − F ◦ ψi(z)| ≤ ε for all z ∈ Br0(z0), i = 1, 2. Also, since F is a
diffeomorphism there is a δ > 0 such that

distT2(F (q), F ◦ ψi(z0)) ≥ 2δ for all q ∈ V s.t. π(q) /∈ Br0(z0) and i = 1, 2.

Observe that this implies that

(8.5) ṽ|Br0
(z0) = �ṽ1� + �ṽ2� ,

with ṽ1, ṽ2 Lipschitz continuous and |ṽ1(z) − ṽ2(z
′)| ≥ 4ε for z, z′ ∈ Br0(z0). Fur-

thermore, we have

(8.6) distT2(spt(ṽ(z)), spt(ṽ(z0))) ≥ 2δ for all z /∈ Br0(z0).

It remains to show that there is v ∈ Lip(Ĉ,A2(T
2)) nearby. This will be a

consequence of the following approximation lemma.

Lemma 8.6. Given w ∈ W 1,2(Ω,AQ(N ))∩C0(Ω,AQ(N )), for every Ω′ � Ω there
exists wj ∈ W 1,2(Ω,AQ(N )) ∩ C0(Ω,AQ(N )) with

wj ∈ Lip(Ω′,AQ(N )); wj = w in a neighborhood of ∂Ω

‖G(wj , w)‖L∞(Ω′) → 0;

ˆ
Ω′
|Dwj |2 →

ˆ
Ω′
|Dw|2 as j → ∞.

In particular, if w is Lipschitz continuous on Ω\Ω′, each wj is Lipschitz continuous
on the whole set Ω.

Before coming to the proof of this lemma, let us present how to conclude. Apply
the lemma to the 0-homogeneous extension of ṽ in the annulus Ω := B3

2(0) \B3
1
4

(0)

to obtain an approximating sequence

vj ∈ W 1,2(B3
2(0) \B3

1
4
(0),A2(T

2)) ∩ Lip(B3
3
2
(0) \B3

1
2
(0),A2(T

2).

Choosing j sufficiently large, we can guarantee that (8.5) and (8.6) hold as well for
the vj . Now fix such j sufficiently large and set v := vj |Ĉ . The 0-homogeneous ex-
tension of v (i.e., g(x) := v( x

|x| ) for x ∈ B1 ⊂ R3) is an element of W 1,2(B1,A2(T
2))

and is Lipschitz continuous outside of 0. Now we may apply the direct method
to obtain an energy minimizing map u : B1 → A2(T

2) with u|S2 = g|S2 ; see
[DLS11, Theorem 0.8].

Proof of Lemma 8.6. Since N ↪→ RN is smooth isometrically, there exists a smooth
nearest point projection Π : Uδ(N ) → N for some δ > 0. Let ξξξBW : AQ(R

N ) →
RM be the locally isometric “improved” Almgren–B. White embedding of AQ(R

N );
see [DLS11, Section 2]. We will denote with ρρρBW : RM → AQ(R

N ) the related
Lipschitz retraction, satisfying ρρρBW ◦ξξξBW = id on AQ(R

N ); see [DLS11, Corollary
2.2].

Since w is assumed to be continuous, there exists w̃j with w̃j → ξξξBW ◦ w in
L∞(Ω,RM )∩W 1,2(Ω,RM ), w̃j ∈ Lip(Ω′,RM ) for every Ω′ � Ω, and w̃j = ξξξBW ◦w
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in a neighborhood of ∂Ω. For instance, one may take w̃j = (1−θ) ξξξBW ◦w+θ ηεj �
(ξξξBW ◦ w) for an appropriate cut-of-function θ and a sequence of mollifiers ηεj .

Since ρρρBW is a Lipschitz retraction and ξξξBW is a local isometry, we conclude
that the sequence

ŵj := ρρρBW ◦ w̃j : Ω → AQ(R
N )

has the claimed properties up to the fact that ŵj does not necessarily take values
in N . But for sufficiently large j, we have G(ŵj(x), w(x)) <

1
2δ for all x ∈ Ω; hence

wj(x) := Π ◦ ŵj(x) =

Q∑
�=1

�Π((ŵj(x))�)�
is well-defined and has all the claimed properties. It is clearly Lipschitz continuous
on Ω′ since Π is smooth and Lipschitz. The sequence wj converges uniformly to w
since Π is the identity on N , and finallyˆ

Ω

|∇w|2 ≤ lim inf
j→∞

ˆ
Ω

|∇wj |2 ≤ lim inf
j→∞

ˆ
Ω

|∇ŵj |2
(1− dist(ŵj(x),N )C)2

=

ˆ
Ω

|∇w|2.

In the first inequality we used the lower-semicontinuity of the Dirichlet energy, and
in the second, an estimate on the derivative of the nearest point projection Π; see
[Hir16b, Remark 2.1 (iv)]. �
Step 3. That singH(u) � B3 follows from the fact that u|S2 is Lipschitz continuous
and is a boundary regularity result for Q-valued locally energy minimizing maps,
which can be obtained from the analogous result of [Hir16a] for “classical” R

N -
valued Dir-minimizers modulo slight modifications of the arguments. Precisely, this
is how to proceed in order to obtain the boundary regularity result [Hir16a, Theorem
0.1] in the manifold valued setting for s = 1. Only, in the proof of Proposition 3.3,
one replaces the application of Lemma B.2 to obtain the interpolation ϕ(k′) by the
application of the Q-valued Luckhaus lemma (see [Hir16b, Lemma 3.1]) to obtain
ϕ(k′). Due to the L∞-bound in the Luckhaus lemma, one can apply the nearest
point projection Π : Uδ(N ) → N and obtain an interpolation function Π ◦ ϕ(k′)
that satisfies the same bounds.

To show that singH(u) �= ∅, the idea is to use the degree of u|S2 to show that
u cannot be continuous. We will use the notion of “degree” suggested by the
theory of Cartesian currents. We will need the following fact about pushforwards
of integral currents by Q-valued proper Lipschitz continuous functions (see, for
instance, [DS15, Section 1] or [Stu17b]). Let Ω ⊂ Rm be open (not necessarily
connected) with smooth boundary ∂Ω, let Σ ⊂ Ω be any smooth k-dimensional
surface, and let f : Ω → AQ(N ) be Lipschitz and proper. Then, the following hold.

• T := f �Ω� is an m-dimensional integer-rectifiable current in N , and S :=
f �Σ� is a k-dimensional integer rectifiable current in N .

• It holds that ∂T = f �∂Ω�.
In case Ω is three-dimensional and Σ and N are two-dimensional without boundary,
the constancy theorem for integral currents implies that

(i) T = f �Ω� = 0 since T is a three-dimensional current supported in a two-
dimensional manifold;

(i) S = f �Σ� = θΣ �N � for some θΣ ∈ Z since S is a two-dimensional inte-
ger rectifiable current without boundary supported in a two-dimensional
manifold;
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(iii) the identity

(8.7) 0 = ∂T = f �∂Ω� = J∑
j=1

θΣj
�N �

holds true, where Σj are the different components of ∂Ω; i.e., ∂Ω =
⋃J

j=1 Σj .

Now we can conclude Step 3. Assume by contradiction that u is continuous.
First extend u to B2 setting u(x) = u( x

|x| ) for |x| > 1. Apply the approximation

lemma, Lemma 8.6, to u with Ω = B 3
2
and Ω′ = B1 to obtain a sequence uj ∈

W 1,2(B 3
2
,A2(T

2)) with uj |∂B 3
2

= u|∂B 3
2

for all j. Since u is Lipschitz continuous

on B2 \ B1, we have that uj ∈ Lip(B 3
2
,A2(T

2)). Modifying uj slightly, we can

assume that uj is constant in a small ball Br(0). This can be achieved for instance
by composing uj with a Lipschitz function of the form

ψ(x) :=

⎧⎪⎨
⎪⎩
x for |x| ≥ 2r,
|x|−r

r x for r ≤ |x| < 2r,

0 for |x| < r.

Now consider the set Ω = B 3
2
\ B r

2
with smooth boundary components Σ1,Σ2

given by �Σ1� =
�
∂B 3

2

�
and �Σ2� = −

�
∂B r

2

�
in the sense of currents. Since uj is

constant on Br, we have (uj) �Σ2� = 0 by the very definition of pushforward. The
identity (8.7) implies that

(8.8) 0 = (uj) �Σ1� = u

�
∂B 3

2

�
= u �∂B1� .

We used that uj = u on ∂B 3
2
for all j and u is 0-homogeneous on B2 \ B1. Now

note that u satisfies (8.5) and (8.6), so that a small region around F ◦ ψ1(z0) is
covered only once; hence u �∂B1� �= 0. This contradicts (8.8). �

8.4. Example of a “nonclassical” tangent map. In this section we want to
observe that tangent maps of Q-valued locally energy minimizing maps may have
different structures than classical one-valued tangent maps.

Following the classical scheme, we make the following definition:

Definition 8.7. Let u ∈ W 1,2(Ω,AQ(N )) be energy minimizing. A point x ∈
singH(u) is called a regular-singular point if for every tangent map T at x there
are classical one-valued tangent maps T� : Rm → N (i.e., 0-homogeneous locally
energy minimizing maps), such that

T =

Q∑
�=1

�T�� .
It is worth noting that every continuity point of a locally energy minimizing map

has the property above by the identification of regular points by the existence of a
constant tangent map; see [Hir16b, Lemma 6.1 (iii)].

We now show the following.

Proposition 8.8. Let u : B1(0) ⊂ R
3 → A2(T

2) be the energy minimizing map
constructed in the previous section. Then singH(u) does not contain any regular-
singular point.
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Proof. It was shown in Step 3 of the previous section that singH(u) �= ∅ and
singH(u) � B3; hence at every point x ∈ singH(u) a tangent map exists. Let
T : R3 → A2(T

2) be an arbitrary tangent map at some some y ∈ singH(u). As-
sume by contradiction that there are classical tangent maps T1, T2 : R3 → T2 such
that

T = �T1� + �T2� .
Each Ti is 0-homogeneous and locally energy minimizing. Since T2 is flat, each Ti

satisfies the assumptions of Claim 1 in the proof of Theorem 8.4, hence Ti must be
constant. But this contradicts that T is a nonconstant tangent map, and concludes
the proof of the proposition. �
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