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Abstract. In this paper we study general transportation problems in Rn, in which m different
goods are moved simultaneously. The initial and final positions of the goods are prescribed by
measures µ−, µ+ on Rn with values in Rm. When the measures are finite atomic, a discrete
transportation network is a measure T on Rn with values in Rn×m represented by an oriented
graph G in Rn whose edges carry multiplicities in Rm. The constraint is encoded in the relation
div(T ) = µ− − µ+. The cost of the discrete transportation T is obtained integrating on G a
general function C : Rm → R of the multiplicity. When the initial data

(
µ−, µ+

)
are arbitrary

(possibly diffuse) measures, the cost of a transportation network between them is computed by
relaxation of the functional on graphs mentioned above. Our main result establishes the ex-
istence of cost-minimizing transportation networks for arbitrary data

(
µ−, µ+

)
. Furthermore,

under additional assumptions on the cost integrand C, we prove the existence of transportation
networks with finite cost and the stability of the minimizers with respect to variations of the
given data. Finally, we provide an explicit integral representation formula for the cost of rec-
tifiable transportation networks, and we characterize the costs such that every transportation
network with finite cost is rectifiable.

Keywords: Transportation networks, Branched transportation, Multi-material transport
problem, Normal currents, Currents with coefficients in groups.

MSC : 49Q10, 49Q15, 49Q20.

Contents

1. Introduction 2
2. Basic notation 4
3. Multi-material transport problem 6
3.1. Multi-material fluxes 6
3.2. The cost functional 8
3.3. Statement of the problem and main existence result 9
3.4. Stability of minimizers 9
4. Currents with coefficients in Rm 10
4.1. Rm-valued covectors and forms 10
4.2. Currents with coefficients in Rm 10
4.3. Boundary and mass 11
4.4. Currents with finite mass 11
4.5. Rectifiable currents with coefficients in Rm 12
4.6. Flat norm and flat currents with coefficients in Rm 12
4.7. Currents and vector-valued measures 12
4.8. Energy functional on spaces of currents with coefficients in Rm 13
4.9. Decomposition of flat currents 13
4.10. Representation of the cost of rectifiable currents 13
5. Preliminaries to the existence theory 14
5.1. Properties of the multi-material transportation cost 15

1



5.2. Properties of the energy functional on flat currents 17
5.3. Rectifiability of currents with finite energy: proof of Proposition 4.4 18
5.4. Monotonicity of the energy 19
6. Proof of the existence Theorem 3.10 21
6.1. Removing cycles 22
7. Existence of multi-material fluxes with finite energy and stability 24
7.1. Proof of the stability Theorem 3.12 27
8. Chains with coefficients in groups 28
8.1. Polyhedral chains with coefficients in a normed group 28
8.2. Rectifiable chains with coefficients in a normed group 29
8.3. Boundary and flat norm 29
8.4. Flat G-chains 30
8.5. The case G = Rm: comparison with Section 4 30
8.6. Restriction and slicing 30
9. The representation theorem on rectifiable G-chains 31
References 43

1. Introduction

In several transportation problems one may be interested in the minimization of a cost func-
tional which privileges the aggregation of mass particles during the transportation and prevents
diffusion. This automatically produces optimal transportation networks with branched struc-
tures. The branching behavior of optimal transportation systems emerges in many natural phe-
nomena, such as the structure of the nerves of a leaf and the roots of a tree, of river basins and of
the bronchial, the cardiovascular, and the nervous system, as well as in several human-designed
supply-demand systems, like water and energy distribution or urban planning.

The most popular Eulerian formulation of branched transportation was proposed by Xia in
[30]: in this model, a 1-rectifiable vector-valued measure on the underlying ambient space Rn
(also called a 1-dimensional rectifiable current) T = ~T‖T‖ is regarded as a transportation net-
work connecting an initial positive measure µ− to a target positive measure µ+ with the same
mass. Here, ‖T‖ is a positive Radon measure which is absolutely continuous with respect to the
Hausdorff measure H1 restricted to a 1-rectifiable set E ⊂ Rn, and ~T is a unit vector field on
Rn, which is tangent to E at ‖T‖-almost every point. The condition that T transports µ− onto
µ+ is encoded in the relation div T = µ− − µ+, which generalizes the classical Kirchhoff circuit
laws. At every point x in the ambient space, the direction of the flow of mass through x and the
intensity of the flow are represented respectively by ~T (x) and by the Radon-Nikodým density
θ(x) of ‖T‖ with respect to the measure H1 restricted to E. The cost of such a transportation
network is obtained integrating on E a fractional power α ∈ (0, 1) of the density θ. In [20], an
equivalent model was proposed by Maddalena, Morel, and Solimini, who presented a Lagrangian
formulation of the problem, in which one traces the trajectory of each mass particle, thus gaining
the possibility to introduce stricter types of constraint (see the description of the mailing problem
in [2]). The equivalence of the Eulerian and Lagrangian formulations has recently been extended
to models corresponding to different cost functionals, see e.g. [4].

The model introduced above describes the transportation of a single material. In the present
paper, we are interested in the possibility to transport simultaneously a number m of different
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types of goods or commodities. We want to allow the interaction between different commodities
to be independent: for instance, aggregating two unit masses of a certain pair of commodities
might be more or less convenient than aggregating two unit masses of a different pair. In particu-
lar, the cost per unit length of the transportation of a collection of goods will depend not only on
the total mass of that collection, but on the actual array whose components represent the masses
(and the directions) of each single commodity. An example which justifies our interest is given
by the power line communication technology (PLC), which uses the electric power distribution
network for data transmission; see [23] and references therein. Even though electricity and data
signal can be transported along the same network, they should not be treated as a single ma-
terial, for example because the users’ concentration and demands are not necessarily proportional.

In analogy with the model proposed by Xia, our given datum is an m-tuple of initial (positive)
measures (µ−1 , . . . , µ

−
m) on Rn, and an m-tuple of target (positive) measures (µ+

1 , . . . , µ
+
m). For

j = 1, . . . ,m, µ−j and µ+
j represent the initial and the target distribution of the j-th commodity

respectively (and therefore they must have equal masses). The difference between the initial
and the target m-tuples can be written as a vector-valued measure ν on Rn with values in Rm.
The equality between the masses of each component is rephrased by requiring that ν(v) = 0
for every constant vector field v : Rn → Rm. A transportation network connecting the initial
measures to the target ones is a vector-valued measure T = ~T‖T‖, where ‖T‖ is a positive Radon
measure on Rn and ~T : Rn → Rn×m is a unit vector field. The constraint is given by the relation
div T = ν. In the language of Geometric Measure Theory, such objects are 1-dimensional normal
currents in Rn with coefficients in Rm, and the divergence constraint corresponds to prescribing
the boundary of the currents.

The cost of a multi-material transportation network is defined as follows. We consider a rather
general function C : Rm → [0,∞), and we use it to first define the cost functional on a special
class of measures, those which in the language of currents are called 1-dimensional polyhedral
currents in Rn with coefficients in Rm. These are Rn×m-valued measures on Rn of the form

T =
∑

e∈E(G)

(τe ⊗ θ(e))H1 e ,

thus supported on a finite union of non-overlapping segments e (the edges of a finite graph G)
oriented by τe ∈ Rn and with multiplicities θ(e) ∈ Rm; see the formal definition in Subsection
3.1. The cost functional, or energy E, for such a T is simply obtained integrating on the finite
graph G the function C(θ1(e), . . . , θm(e)) with respect to the measure H1, namely

E(T ) :=
∑

e∈E(G)

C(θ1(e), . . . , θm(e))H1(e),

which is well-defined and lower semi-continuous on the class of polyhedral currents, under min-
imal assumptions on the function C (see Definition 3.5). Heuristically, C(θ1, . . . , θm) represents
the cost per unit length for the joint transportation of an amount θ1 of the commodity indexed
by 1, together with an amount θ2 of the commodity indexed by 2, etc... Different signs of the θj ’s
encode the possibility to transport the corresponding commodities with two possible orientations
along each stretch of the transportation network. The energy of a general transportation network
T is defined via relaxation.

The model of multi-material transport presented above is the natural extension of the dis-
crete model proposed in [23]. We remark that the possibility to describe the transportation of a
vector-valued quantity via 1-dimensional currents with coefficients in Rm was also suggested in
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the final comments of [5]. In the present work, we show the existence of transportation networks
minimizing the energy E for any admissible choice of the source and target measures, under
minimal assumptions on the cost function C. Under mild additional assumptions, we prove that
for any admissible given data the corresponding minimizers have finite energy. Under the same
assumptions, we also show that the multi-material transportation problem is stable: namely, a
sequence of minimizers corresponding to a converging family of given data converges to a mini-
mizer of the limit problem. Finally, we provide an explicit representation formula for the energy
of a class of transportation networks exhibiting a nice geometric structure, more precisely for
those networks which can be described by rectifiable 1-currents. This is an important class of
solutions: indeed, under very natural assumptions on C all transportation networks with finite
energy are necessarily rectifiable. In these cases, one expects the solutions to exhibit fractal-type
behaviors, as it happens in the single-material setting; see e.g. [3, 25].

The rest of the paper will be divided in 8 sections. After briefly introducing some basic
notation in Geometric Measure Theory in Section 2, Section 3 will contain a formal introduction
to the multi-material transportation problem together with the statement of our main results.
For the sake of simplicity, we will adopt the language of vector-valued measures in order to
obtain such first phrasing of the problem, even though the formalism which is best tailored
to describe multi-material optimal transport is that offered by the theory of normal currents
with coefficients in Rm. Indeed, as it will become apparent in the sequel, standard tools in
the theory of currents allow a natural description of the geometric operations on transportation
networks that are essential in our proofs; see e.g. the role of the slicing operators in the proof
of our existence Theorem 3.10, in particular Proposition 5.5. For these reasons, Section 4 is
fully devoted to the development of the formalism of normal currents with coefficients in Rm
and to the rephrasing of the multi-material transport problem within such framework. After a
thorough analysis of the basic properties of the energy functional carried out in Section 5, we
prove the general existence theorem of minimizers in Section 6. In Section 7 we discuss, instead,
the existence of transportation networks with finite energy and the stability of the problem with
respect to perturbations of the source and target measures. The representation formula for the
energy of rectifiable networks concludes the paper. It is proved in Section 9 in the general setting
of rectifiable chains of arbitrary dimension k and with coefficients in a normed Abelian group G,
of which rectifiable k-currents with coefficients in Rm are a special case: the relevant preliminaries
on G-chains are collected in Section 8 for the reader’s convenience.

Acknowledgments. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the grant agreement No. 752018 (CuMiN). The
first and second named authors have benefited from partial support from INdAM-GNAMPA.
The third named author has been supported by the NSF Grants DMS-1565354, DMS-1361122
and DMS-1262411. The fourth named author has been partially supported by the SNF Grant
182565.

2. Basic notation

We shall always work in Euclidean space Rn with n ≥ 2. The standard orthonormal basis of
Rn is denoted by (e1, . . . , en), and the coordinates of a vector a ∈ Rn with respect to this basis are
(a1, . . . , an). Given a ∈ Rn and b ∈ Rm, we denote by a⊗ b the element of Rn×m ∼ Mat(n×m)
defined by (a⊗ b)ij := aibj for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. We will make use of standard
notation in multilinear algebra. In particular, the vector spaces of k-vectors and k-covectors in
Rn (1 ≤ k ≤ n) are denoted, respectively, by Λk(Rn) and Λk(Rn). We shall regard Λk(Rn) and
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Λk(Rn) as normed vector spaces with the mass norm | · | and comass norm ‖ · ‖ respectively (see
[15, 1.8.1]). We write B(x, r) for the open ball of center x ∈ Rn and radius r > 0. The symbol | · |
will always denote the Euclidean norm in Rn, and we will set Sn−1 := {x ∈ Rn : |x| = 1}. The
characteristic function of a set A, taking values 0 and 1, is denoted by 1A. We denote by M (Rn)
the space of signed Radon measures on Rn, namely the vector space of real-valued measures µ
on the σ-algebra of Borel sets whose negative and positive parts

µ− :=
‖µ‖ − µ

2
and µ+ :=

‖µ‖+ µ

2
.

are Radon measures. Here, as usual, ‖µ‖ denotes the total variation of µ ∈M (Rn). We denote
also by M+(Rn) the subset of positive measures. Given a normed vector space V with dual V ∗,
the duality pairing between two elements w ∈ V ∗ and v ∈ V is denoted by 〈w, v〉. We denote
by M (Rn, V ) the space of vector-valued measures with values in V . By the Radon-Nikodým
theorem, every measure T ∈M (Rn, V ) can be uniquely written as

T = ~T‖T‖ , (2.1)

where ‖T‖ ∈M+(Rn) is the total variation measure of T and ~T : Rn → V is a unit vector field,
in the sense that ‖~T (x)‖V = 1 for ‖T‖-a.e. x ∈ Rn. The equality (2.1) means that, for every
continuous vector field w : Rn → V ∗ with compact support, it holds

T (w) =

ˆ
Rn

〈w, ~T 〉 d‖T‖.

The mass of a measure T ∈M (Rn, V ) is the quantity

M(T ) := ‖T‖(Rn).

We denote by

spt(µ) :=
⋂
{C ⊂ Rn : C is closed and ‖µ‖(Rn \ C) = 0}

the support of µ. We say that µ is supported on a Borel set E if ‖µ‖(Rn \ E) = 0. We say that
µ is atomic if it is supported on a countable set, and discrete or finite atomic if it is supported
on a set of finitely many points. If µ is a Radon measure in Rn and f ∈ L1

loc(Rn, (0,∞) ;µ) then
we let f µ denote the Radon measure

(f µ)(E) :=

ˆ
E
f dµ .

In particular, for a measure µ ∈ M (Rn) and a Borel set E ⊂ Rn, µ E is the restriction of µ
to E, i.e. the measure 1E µ. We say that two measures µ and ν are mutually singular if there
exists a Borel set E such that ‖µ‖ = ‖µ‖ E and ‖ν‖ = ‖ν‖ Ec, where Ec := Rn \E. If {µh}∞h=1
is a sequence in M (Rn, V ), we say that µh weakly-* converges to µ ∈M (Rn, V ), and we write
µh

∗
⇀ µ, if

lim
h→∞

µh(w) = µ(w) for every w ∈ Cc(Rn, V ∗) .

We use Hk to denote the k-dimensional Hausdorff measure, see [27]. A Hk-measurable set E ⊂
Rn is (countably) k-rectifiable if it can be covered by countably many k-dimensional Lipschitz
graphs up to aHk-negligible set, that is if there are countably many Lipschitz functions fh : Rk →
Rn such that

Hk
(
E \

∞⋃
h=1

fh(Rk)

)
= 0 .
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A fundamental property of a k-rectifiable set E in Rn is the existence of an approximate tangent
plane Tan(E, x) at Hk-a.e. x ∈ E. This is a unique k-plane Π in Rn characterized by the
following property: there exists a function g ∈ L1

loc(E, (0,∞) ;Hk) such that

g(x+ r ·)Hk
(
E − x
r

)
∗
⇀ g(x)Hk Π

as Radon measures in Rn when r → 0+; see [27, Definition 11.4].

3. Multi-material transport problem

A discrete model for the multi-material transport problem is described in [23], using 1-
dimensional integral currents with coefficients in Rm (m being the number of transported com-
modities). In that paper, the particles are assumed to have integer-valued masses (or, equiva-
lently, integer multiples of a fixed real number). Here we describe a continuous model, obtained
via relaxation of a cost functional (similar to that introduced by Gilbert [17]) defined on discrete
transportation networks represented by directed graphs with multiplicities in Rm. Although a
proper description of the model would require notions from the theory of currents with coeffi-
cients in groups, in this section we present the model and we state the main results of the paper
using the language of vector-valued measures, in order to make the content of the paper more
accessible also to readers who are not familiar with the theory of currents. A drawback of this
simplified presentation is the fact that, in the definition of cost functional, we need to use a
notion of convergence (called flat-convergence) which is defined for currents and it would not
have a natural definition for vector-valued measures. Hence, we will postpone the definition of
such convergence to Section 4, where we present a brief summary of the notions from the theory
of currents with coefficients in Rm that are used throughout the paper.

3.1. Multi-material fluxes. A 1-dimensional polyhedral current in Rn with coefficients in Rm
is a matrix-valued measure T ∈M (Rn,Rn×m) of the form

T =
∑

e∈E(G)

(τe ⊗ θ(e))H1 e ,

where:
(i) G ⊂ Rn is a finite graph, i.e. a set consisting of a finite union of closed line segments.

The collection of all such segments is denoted E(G), and each element e ∈ E(G) is called
an edge of the graph G. We will assume that the edges are non-overlapping, i.e. two
edges may intersect only at the end-points;

(ii) for each edge e ∈ E(G), τe ∈ Sn−1 is a fixed orientation of e, and θ(e) :=
(θ1(e), . . . , θm(e)) ∈ Rm. Thus, τe ⊗ θ(e) is a rank-1 (n ×m)-matrix with all columns
parallel to e. We will call θ(e) the vector-valued multiplicity associated to e (note that
θ(e) is defined up to a sign, given that both τe and −τe are suitable orientations for e).

Let us call xe and ye the end-points of e, with the convention that ye−xe is a positive multiple of
τe. It is easy to check that the distributional divergence of T , namely the Rm-valued distribution
defined by

div T (φ) := −T (Dφ) for every φ ∈ C∞c (Rn, (Rm)∗) ,

(with the obvious identifications) satisfies

div T =
∑

e∈E(G)

θ(e)(δxe − δye),
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where we denoted with δP the Dirac mass at the point P ∈ Rn. The latter observation motivates
the following definition.

Definition 3.1 (Discrete multi-material flux). Given two discrete vector-valued measures
µ−, µ+ ∈ M (Rn,Rm), and given T ∈ M (Rn,Rn×m) a 1-dimensional polyhedral current in Rn
with coefficients in Rm, we say that T is a discrete multi-material flux between µ− and µ+ if
div T = µ− − µ+.

Observe that a necessary condition for the existence of a discrete multi-material flux between
two discrete vector-valued measures µ− and µ+ is that µ−(v) = µ+(v) for every constant vector
field v : Rn → Rm. The condition is also sufficient: indeed, given µ− :=

∑L
`=1 θ

−
` δx` and

µ+ :=
∑H

h=1 θ
+
h δyh , the cone T over µ+ − µ− with vertex 0 satisfies div T = µ− − µ+. This is

defined as

T :=
H∑
h=1

(τ+
h ⊗ θ

+
h )H1 S+

h −
L∑
`=1

(τ−` ⊗ θ
−
` )H1 S−` , (3.1)

where we denoted τ+
h and τ−` the unit vectors obtained normalizing yh and x` respectively (or 0

if the corresponding point is the origin) and by S+
h and S−` the segments joining yh and x` to the

origin. The general definition of a multi-material flux between two (possibly diffuse) measures
involves “general” matrix-valued measures.

Definition 3.2 (Multi-material flux). Given two vector-valued measures µ−, µ+ ∈M (Rn,Rm)
with compact support, a matrix-valued measure T ∈ M (Rn,Rn×m) is a multi-material flux be-
tween µ− and µ+ if its support is compact and div T = µ− − µ+.

Again, a necessary and sufficient condition for the existence of a multi-material flux between
two compactly supported vector-valued measures µ− and µ+ is that µ−(v) = µ+(v) for every
constant vector field v : Rn → Rm. In this case, we say that the vector-valued measures µ− and
µ+ are compatible. To check that the condition is sufficient one should generalize the argument
given for the discrete setting, via the so called cone construction (see [15, 4.3.14]).

Remark 3.3 (Normal currents with coefficients in Rm and multi-material fluxes). In the language
of currents (which we introduce in Section 4), every compactly supported one-dimensional normal
current T in Rn with coefficients in Rm having boundary µ+−µ− is a multi-material flux between
µ− and µ+. The non-emptiness of the class of competitors is guaranteed again by the cone
construction.

Remark 3.4 (Multi-material fluxes as transportation networks). Let ν = ~ν‖ν‖ be the difference
µ− − µ+. Writing ~ν in components with respect to the standard basis of Rm, one can represent
ν via an m-tuple of real-valued measures νj (j = 1, . . . ,m) (the components of ν), where, for
j = 1, . . . ,m, we denoted

νj(A) := ν(ej1A) for every Borel set A ⊂ Rn.

Similarly, a multi-material flux T between µ− and µ+ can be represented via an m-tuple of
vector-valued measures Tj ∈M (Rn,Rn) (the components of T ) by

Tj(v) := T (v ⊗ ej) for every Borel vector field v : Rn → Rn.

Denoting, for j = 1, . . . ,m, (νj)− and (νj)+ the negative and the positive part of the real-valued
measure νj respectively, the vector-valued measures Tj are “classical” mass-fluxes between the
measures (νj)− and (νj)+ as in [5, Definition 2.1]. In conclusion, the multi-material flux T can
be interpreted as a transportation network which moves simultaneously the mass (νj)− of the
commodity indexed by j onto the mass (νj)+, for every j = 1, . . . ,m.
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3.2. The cost functional. Generalizing [30] (see also [5]), we define a general multi-material
transportation cost C : Rm → [0,∞), and we define the cost functional (also called energy and
therefore denoted E) of a discrete multi-material flux T associated to a finite graph G with mul-
tiplicity θ in Rm, integrating C(θ) on G with respect to H1. The cost functional of a general
multi-material flux is defined via relaxation.

We first define a partial order � on Rm as follows: we write η � θ if and only if
sign(ηj) sign(θj) ≥ 0 and |ηj | ≤ |θj |, for every j ∈ 1, . . . ,m. Notice that points which belong to
the interior of distinct orthants are not comparable.

Definition 3.5 (Multi-material transportation cost). A multi-material transportation cost is a
function C : Rm → [0,∞) such that

(i) C is even and C(θ) = 0 if and only if θ = 0;
(ii) C is lower semi-continuous;
(iii) C is subadditive, i.e. C(η + θ) ≤ C(η) + C(θ);
(iv) C is monotone non-decreasing, i.e. C(η) ≤ C(θ) if η � θ.

Remark 3.6. It is worth noticing that the conditions (i) to (iv) on C are natural assumptions in
the problem we want to describe. The transportation cost is non-negative, it vanishes only when
there is no mass to transport, and it does not depend on the orientation of the net flow of each
commodity, which justifies (i); without (iii), it would be easy to produce counterexamples to the
existence of solutions; furthermore, the validity of (iii) with a strict inequality (whenever η and
θ are non-zero) produces branched solutions; as a consequence of (iv), the cost does not decrease
if the net flow of each single commodity does not decrease, as one would expect; finally, (ii) is
necessary to ensure that the relaxed functional E induced by C on general multi-material fluxes
coincides with the original one on discrete multi-material fluxes as described in Definition 3.7
below.

Definition 3.7 (Cost functional).
(i) (Discrete case) Given a discrete multi-material flux T associated to a finite graph G with

multiplicity θ in Rm, its cost functional (or energy) is the quantity

E(T ) :=
∑

e∈E(G)

C(θ(e))H1(e).

(ii) (General case) Given two compactly supported, compatible vector-valued measures µ−, µ+ ∈
M (Rn,Rm) and given T ∈M (Rn,Rn×m) a multi-material flux between µ− and µ+, we
define

E(T ) := inf{lim inf
h

E(Th) : F(Th − T )→ 0},

where Th are discrete multi-material fluxes between discrete measures µ−h and µ+
h , all sup-

ported on a common compact set, and F denotes the flat-distance between the associated
flat currents (see §4.6).

Remark 3.8 (Comments on the definition).
(i) (Discrete case) Observe that the energy is well-defined: in particular, since C is even, E

does not depend on the orientation chosen on each edge e ∈ E(G).
(ii) (General case) We will give a precise definition of flat-distance later. For the moment,

we can anticipate that, whenever

sup
h
{M(Th) + M(µ−h − µ

+
h )} <∞,
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it holds

F(Th − T )→ 0 ⇐⇒ (Th
∗
⇀ T and (µ−h − µ

+
h )

∗
⇀ (µ− − µ+)).

Nevertheless, we remark that the condition F(Th−T )→ 0 does not imply in general that
the masses of the Th’s and of the (µ−h − µ

+
h )’s are equi-bounded.

The existence of discrete multi-material fluxes Th between discrete measures µ−h and
µ+
h with F(Th− T )→ 0 (and thus with F((µ−h − µ

+
h )− (µ−− µ+))→ 0) is a consequence

of the polyhedral approximation theorem for normal currents; see [15, Theorem 4.2.24].

3.3. Statement of the problem and main existence result. Now we can naturally define
the following minimization problem.

Definition 3.9 (Multi-material transport problem). Given a pair of compactly supported, com-
patible vector-valued measures µ− and µ+ ∈ M (Rn,Rm), we say that a multi-material flux
T ∈M (Rn,Rn×m) between µ− and µ+ is a solution of the multi-material transport problem for
the pair (µ−, µ+) if

E(T ) ≤ E(S), for every multi-material flux S between µ− and µ+.

We will prove the following result.

Theorem 3.10 (Existence of minimizers). Let µ− and µ+ ∈M (Rn,Rm) be a pair of compactly
supported, compatible vector-valued measures. Then the associated multi-material transport prob-
lem admits a solution.

3.4. Stability of minimizers. Once the existence of solutions has been guaranteed, it is natural
to ask whether minimizers of multi-material transport problems enjoy a stability property, that
is, whether, under suitable assumptions, they converge to minimizers of the limit problem. Such
a property is clearly crucial in view of numerical simulations. In particular, it paves the way to
exploiting the calibration technique introduced in [21, 22] and extended to the discrete multi-
material transport problem in [23]. We begin with the following remark.

Remark 3.11 (Multi-material fluxes with finite energy). Even if the class of competitors for
a given pair of compatible measures (µ−, µ+) is always non-empty, the multi-material transport
problem could be trivial: namely, it is possible that there is no multi-material flux between µ− and
µ+ with finite energy. In this case, we can say that every competitor is a solution. In Section 7,
we give a sufficient condition on the multi-material transportation cost C for the problem to be
non-trivial, namely for every pair of compactly supported, compatible measures (µ−, µ+) to admit
a competitor with finite energy. Following [5], we call such multi-material transportation costs
admissible (see Definition 7.1).

Without any assumptions on the cost functional C, stability results for branched transportation
problems are not elementary (see e.g. [9, 8, 7]). In §7.1 we prove that, if the multi-material
transportation cost is admissible, then the multi-material transport problem is stable.

Theorem 3.12 (Stability of minimizers). Let C be an admissible multi-material transportation
cost. Let µ−h , µ

+
h be a sequence of pairs of compatible vector-valued measures in M (Rn,Rm) all

supported on a common compact set K, and let Th be minimizers of the multi-material transport
problem for the pair (µ−h , µ

+
h ). Assume, moreover, that

µ±h
∗
⇀ µ±∞ and sup

h
{M(Th)} <∞ .

Then, up to subsequences, Th
∗
⇀ T∞, where T∞ is a minimizer of the multi-material transport

problem for the pair (µ−∞, µ
+
∞).
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4. Currents with coefficients in Rm

As anticipated in the introduction, in order to tackle the multi-material transport problem we
will take advantage of the formalism and the tools that are typical of the theory of currents. In
this section we define currents with coefficients in Rm as the dual of a suitable space of differential
forms. When we write classical forms/currents, we refer to forms/currents with coefficients in
R as in [15, Section 4]; a concise exposition, mostly sufficient to our aims, can also be found in
[5, 2.5]. The main goal of this section is to convey the idea that the properties of a current with
coefficients in Rm can be studied by applying the results of the classical theory to the m-tuple
of its components.

4.1. Rm-valued covectors and forms. A map

ω : Λk(Rn)× Rm → R (4.1)

is an Rm-valued k-covector on Rn (1 ≤ k ≤ n) if:
(1) ∀τ ∈ Λk(Rn), ω(τ, ·) ∈ (Rm)∗;
(2) ∀v ∈ Rm, ω(·, v) : Λk(Rn)→ R is a classical k-covector.

The evaluation will be denoted with ω(τ, v). The space of Rm-valued k-covectors on Rn is de-
noted ΛkRm(Rn). We also set Λ0

Rm(Rn) := (Rm)∗.

For every k, the space of Rm-valued k-covectors on Rn is a normed vector space when endowed
with the norm

‖ω‖ := sup{|ω(τ, ·)| : |τ | ≤ 1 , τ is simple} ,
where we have called simple any τ ∈ Λk(Rn) which can be given the form τ = τ1 ∧ . . . ∧ τk with
each τl ∈ Rn. We can write the action of an Rm-valued k-covector as

ω(τ, v) =
m∑
j=1

vjωj(τ) ,

where vj are the components of v in the standard basis {e1, . . . , em} of Rm, and, for j = 1, . . . ,m,
the functions ωj : τ 7→ ω(τ, ej) are classical k-covectors, called the components of ω.

An Rm-valued differential k-form on Rn is a map

ω : Rn → ΛkRm(Rn).

We say that ω is smooth if every component ωj is a classical smooth differential k-form. We
denote by

Dk
Rm(Rn) := C∞c (Rn,ΛkRm(Rn))

the vector space of smooth Rm-valued differential k-forms on Rn with compact support.
The exterior differential of an Rm-valued differential k-form ω on Rn is defined as the Rm-valued
differential (k+1)-form dω on Rn whose components satisfy (dω)j = d(ωj), for every j = 1, . . . ,m.
Moreover, the functional ‖ω‖c := supx∈Rn ‖ω(x)‖ defines a norm on Dk

Rm(Rn), called the comass
norm.

4.2. Currents with coefficients in Rm. Let T be a linear functional on Dk
Rm(Rn). The

components of T are the linear functionals on Dk(Rn) := C∞c (Rn,Λk(Rn)) defined by Tj(ω) :=
T (ω̂j), where ω̂j is the Rm-valued differential k-form on Rn whose j-th component coincides with
ω and all other components are zero. We say that T is continuous if and only if every component
Tj is a classical k-dimensional current. The space of continuous linear functionals on Dk

Rm(Rn) is

10



called the space of k-dimensional currents with coefficients in Rm, and will be denoted DRm

k (Rn).
We will sometimes write T = (T1, . . . , Tm) if T ∈ DRm

k (Rn) has components T1, . . . , Tm.

4.3. Boundary and mass. Let T ∈ DRm

k (Rn), with 1 ≤ k ≤ n. The boundary of T is the
current ∂T ∈ DRm

k−1(Rn) defined by

∂T (φ) := T (dφ), ∀φ ∈ Dk−1
Rm (Rn).

Observe that (∂T )j = ∂Tj , namely that ∂T = (∂T1, . . . , ∂Tm) if T = (T1, . . . , Tm). Also note
that ∂(∂T ) = 0 for every T ∈ DRm

k (Rn).
The functional on Dk

Rm(Rn) defined by

M(T ) := sup{|T (ω)| : ‖ω‖c ≤ 1} (4.2)

is called mass. A current T with coefficients in Rm such that M(T ) + M(∂T ) < +∞ is called
normal. The space of k-dimensional normal currents on Rn with coefficients in Rm will be
denoted by N Rm

k (Rn).

4.4. Currents with finite mass. To every current T ∈ DRm

k (Rn) with finite mass one can
associate a finite Borel measure ‖T‖ ∈M+(Rn) defined on open sets by

‖T‖(Ω) := sup{T (ω) : ω ∈ Dk
Rm(Rn) , ‖ω‖c ≤ 1 , spt(ω) ⊂ Ω}.

Let Tj be the components of T , for j = 1, . . . ,m. Since every Tj is a classical current with
finite mass, Riesz’s representation theorem allows to represent Tj by integration, in the sense
that

Tj(ω) =

ˆ
Rn

〈ωx, τj(x)〉 d‖Tj‖(x) ∀ω ∈ Dk(Rn) , (4.3)

where the measure ‖Tj‖ is defined on open sets as above by

‖Tj‖(Ω) := sup{Tj(ω) : ω ∈ Dk(Rn) , ‖ω‖c ≤ 1 , spt(ω) ⊂ Ω} ,
and where τj : Rn → Λk(Rn) is a ‖Tj‖-measurable classical k-vector field with mass |τj | = 1 at
‖Tj‖-almost every point.

Now, the very definition of components easily implies that each measure ‖Tj‖ is absolutely con-
tinuous with respect to ‖T‖. Hence, by the Radon-Nikodým theorem, there exist ‖T‖-integrable,
non-negative functions tj : Rn → R with tj ≤ 1 ‖T‖-almost everywhere such that ‖Tj‖ = tj‖T‖.
Let ω ∈ Dk

Rm(Rn) be an Rm-valued differential k-form, let ωj be its components, and let again
ω̂j denote the Rm-valued differential k-form having ωj as its jth component and all the other
components set equal to zero. Then, ω =

∑
j ω̂j , and we can compute

T (ω) = T

 m∑
j=1

ω̂j

 =

m∑
j=1

T (ω̂j) =

m∑
j=1

Tj(ωj) =

m∑
j=1

ˆ
Rn

〈(ωj)x, τj(x)〉 d‖Tj‖(x)

=

ˆ
Rn

m∑
j=1

ωx(τj(x), tj(x)ej) d‖T‖(x) .

(4.4)

If we let AT : Rn → Λk(Rn)⊗ Rm denote the ‖T‖-measurable tensor field given by

AT :=

m∑
j=1

τj ⊗ tjej ,

we can formally write T = AT ‖T‖, which has to be understood in the sense that the action of T
on any ω ∈ Dk

Rm(Rn) is as prescribed by equation (4.4). The jth component of T is represented
by the jth “column” of the tensor field AT , as we can write Tj = τj tj‖T‖ for every j = 1, . . . ,m.
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4.5. Rectifiable currents with coefficients in Rm. Let T be a k-current with coefficients
in Rm and finite mass. We say that T is rectifiable, and we write T ∈ RRm

k (Rn), if it can be
represented as T = (τ ⊗ θ)Hk E, where:

(i) E is a countably k-rectifiable set in Rn;
(ii) τ is a simple k-vector field with |τ(x)| = 1 and τ(x) is orienting the approximate tangent

space Tan(E, x) at Hk-a.e. x ∈ E: that is, τ(x) = τ1(x)∧ . . .∧ τk(x) for an orthonormal
basis {τ1(x), . . . , τk(x)} of Tan(E, x);

(iii) θ : E → Rm belongs to L1(E,Rm;Hk E).
The k-vector field τ and the function θ will be called an orienting k-vector and the multiplicity

vector of T , respectively. A rectifiable current is called polyhedral if E is a finite union of
k-dimensional simplexes with disjoint relative interiors and τ, θ are constant on the relative
interior of each simplex. The space of polyhedral k-currents with coefficients in Rm is denoted
PRm

k (Rn). Notice that this definition is coherent with the content of Section 3: in particular,
the class PRm

1 (Rn) contains precisely the polyhedral currents with coefficients in Rm introduced
in Subsection 3.1.

4.6. Flat norm and flat currents with coefficients in Rm. The flat norm is defined for
T ∈PRm

k (Rn) as:

F(T ) := inf{M(S) + M(R) : T = R+ ∂S ,R ∈PRm

k (Rn) , S ∈PRm

k+1(Rn)}.

The space of k-dimensional flat currents with coefficients in Rm, denoted FRm

k (Rn), is defined
as the completion of the space PRm

k (Rn) in DRm

k (Rn) with respect to the flat norm. In partic-
ular, T ∈ DRm

k (Rn) is a k-dimensional flat current with coefficients in Rm if and only if every
component Tj of T is a classical flat current. Moreover, it holds

F(T ) ≤
m∑
j=1

F(Tj), (4.5)

and clearly F(Tj) ≤ F(T ) for every j. Hence, the convergence in flat norm for currents with
coefficients in Rm is equivalent to the convergence in flat norm of every component.

Remark 4.1. We remark here that a current with coefficients in Rm is rectifiable, polyhedral,
flat, normal or with finite mass if and only if all of its components are so. The classical theory of
real currents, therefore, provides all the tools needed to work with currents with coefficients in Rm.
At the same time, flat currents with coefficients in Rm may be introduced as a particular instance
of the theory of flat chains with coefficients in a normed Abelian group G, as pioneered by Fleming
[16] and extensively studied in the literature (see e.g. [28, 29, 12, 13]), when G = (Rm,+) equipped
with the standard Euclidean norm. For the purposes of the present paper, the two approaches
may be considered equivalent (see also Section 8 for more details on this point).

4.7. Currents and vector-valued measures. The following fundamental result holds.

Theorem 4.2. If K ⊂ Rn is a compact set, and r ≥ 0, then the set

{T ∈ N Rm

k (Rn) : spt(T ) ⊂ K , M(T ) + M(∂T ) ≤ r}
is F-compact in FRm

k (Rn).

For a proof of this theorem in the general case of currents with coefficients in groups see [16,
Lemma 7.4].

As we have seen in §4.4, currents of finite mass with coefficients in Rm are identified with finite
measures with values in Λk(Rn)⊗ Rm. Hence, the previous compactness result and the density
with respect to the uniform topology of smooth forms in continuous ones guarantees that the flat
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convergence and the weak-∗ convergence of the associated measures coincide in a class of normal
currents with equi-bounded masses and masses of the boundaries. Observe that in Definition
3.7 no bound on the masses and masses of the boundaries is guaranteed on the sequence Th
of polyhedral currents which are converging to T in the flat norm. Hence, in principle, the
functional E defined in there might not coincide with the lower semi-continuous relaxation made
with respect to the weak-∗ convergence of the vector-valued measures and of their distributional
divergences.

4.8. Energy functional on spaces of currents with coefficients in Rm. Now that we
have developed the terminology, let us rephrase the definition of the functional E in terms of
currents with coefficients in Rm. We will give the definition for currents of arbitrary dimension
k, although the dimensions k = 0 and k = 1 are the only relevant in view of the application to
the multi-material transport problem.

Let C : Rm → R be as in Definition 3.5. If P ∈PRm

k (Rn) is a polyhedral current of the form

P =

N∑
`=1

(τ` ⊗ θ`)Hk σ`

for orienting k-vectors τ` ∈ Λk(Rn), multiplicities θ` ∈ Rm and non-overlapping k-dimensional
simplexes σ`, then we set

E(P ) :=

N∑
`=1

C(θ`)Hk(σ`) . (4.6)

The functional E is extended to FRm

k (Rn) by relaxation: if T ∈ FRm

k (Rn) then

E(T ) := inf

{
lim inf
h→∞

E(Ph) : {Ph}h ⊂PRm

k (Rn) with F(T − Ph)→ 0

}
. (4.7)

4.9. Decomposition of flat currents. In the coming sections, we will use the following result,
the proof of which can be found in [26, Theorem 4.2] in the case of classical flat currents; the
proof in the case of a flat current T with coefficients in Rm can be easily deduced by applying
the classical result to each of the m components of T .

Theorem 4.3. Let T ∈ FRm

k (Rn) be a flat current with finite mass. Then, we can decompose

T = Trec + Tdiff ,

where:
(1) Trec ∈ RRm

k (Rn);
(2) ‖Tdiff‖(A) = 0 for every k-rectifiable set A ⊂ Rn.

We will call Trec and Tdiff the rectifiable part and the diffuse part of T respectively. The decom-
position is unique.

4.10. Representation of the cost of rectifiable currents. The multi-material transporta-
tion energy E is defined via (4.7) on all flat currents with coefficients in Rm, and the finiteness
of E(T ) does not imply, in general, any further information on the geometry of T . There is,
however, a simple condition which is both necessary and sufficient for all flat currents with finite
mass and finite energy to be rectifiable. For a multi-material cost C as in Definition 3.5, we will
define the directional derivatives

∂+C
∂ej

(0) := lim
t→0+

C(tej)
t

.

The latter exist (possibly infinite) due to Lemma 5.1(1) below.
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Proposition 4.4. Let C be as in Definition 3.5. The condition

∂+C
∂ej

(0) = +∞ for every j = 1, . . . ,m (4.8)

holds if and only if every T ∈ FRm

1 (Rn) with M(T ) + E(T ) <∞ is rectifiable.

The previous result naturally generalizes the analogous result in the single-material framework
(see Proposition 2.8 of [10]). We postpone the proof of Proposition 4.4 to Section 5.

Remark 4.5. Observe that the condition (4.8) is natural in branched transportation models. For
instance, in the case m = 1 it holds for the standard α-mass functional originally studied by Xia
[30], defined by C(θ) = |θ|α for α ∈ (0, 1).

In turn, the cost E(T ) of a rectifiable current T can be given an explicit integral representation.
More precisely, we can prove the following theorem.

Theorem 4.6 (Representation formula for rectifiable currents). Let T ∈ FRm

1 (Rn) be a flat
current with finite mass such that T = Trec = (τ ⊗ θ)H1 E. Then:

E(T ) =

ˆ
E
C(θ(x)) dH1(x) . (4.9)

Notice that (4.9) reduces to (4.6) if T is polyhedral. Theorem 4.6 holds in fact in the much
more general framework of arbitrary k-dimensional rectifiable chains with coefficients in a normed
Abelian group G (see Section 8), and we will prove it in that setting in Section 9; see Theorem
9.1. The validity of Theorem 9.1 was first stated by B. White in [28], but the proof was only
sketched. A self-contained, complete proof of the result when G = R was then proposed in [10],
and has motivated further research on the topic of functionals on flat chains defined by relaxation
(see e.g. the recent paper [6]). When we combine Proposition 4.4 and Theorem 4.6, we have the
following corollary.

Corollary 4.7. Let C be as in Definition 3.5. The condition

∂+C
∂ej

(0) = +∞ for every j = 1, . . . ,m (4.10)

holds if and only if

E(T ) =

{´
E C(θ(x)) dH1(x) if T = (τ ⊗ θ)H1 E ∈ RRm

1 (Rn) ,

+∞ if T ∈ FRm

1 (Rn) ∩ {M(T ) <∞} \RRm

1 (Rn) .
(4.11)

We remark that, in the single-material case, namely when m = 1, Brancolini and Wirth have
obtained, in [5, Proposition 2.32], an explicit representation for the energy E(T ) in all cases when
(4.10) fails, even when T has a non-zero diffuse part Tdiff . It would be interesting to investigate
the possibility to extend the results of [5] to the multi-material case.

5. Preliminaries to the existence theory

In this section we collect the main preliminary technical results towards the proofs of the main
theorems of this work.
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5.1. Properties of the multi-material transportation cost. We begin our program with
the following lemma, which contains a detailed analysis of the properties of multi-material trans-
portation costs.

Lemma 5.1. Let C : Rm → R be a multi-material transportation cost as in Definition 3.5. Then:

(1) the right-derivative of C in the direction v at 0, defined as limt→0+
C(tv)
t , and denoted with

∂+C
∂v (0), exists (possibly infinite) for every v ∈ Rm. Moreover,

∂+C
∂v

(0) = sup
t>0

C(tv)

t
∀ v ∈ Rm . (5.1)

(2) the function v 7→ ∂+C
∂v (0) is positively 1-homogeneous, even, strictly positive on Rm \ {0},

subadditive, and monotone with respect to the partial order � on Rm;
(3) the set V := {v ∈ Rm : ∂+C

∂v (0) < +∞} is a vector subspace of Rm, and a basis for V is
given by B := {ej : ∂+C

∂ej
(0) < +∞};

(4) the function v ∈ V 7→ ∂+C
∂v (0) is bounded on Sm−1 ∩ V , with estimates:

∂+C
∂v

(0) ≤
∑

j : ej∈B
|vj |

∂+C
∂ej

(0) ≤ m∂+C
∂v

(0) ∀ v =
∑

j : ej∈B
vjej ∈ Sm−1 ∩ V ; (5.2)

(5) v 7→ ∂+C
∂v (0) is continuous on V ;

(6) for every δ > 0 there exists a constant c = c(δ) > 0 such that

|v| ≤ c C(v) ∀ v ∈ B(0, δ) . (5.3)

Proof. The proof of (1) can be found in [19, Theorem 16.3.3]. In order to apply that theorem,
we only need to show that, for every v ∈ Rm, it is either limt→0+ C(tv) = 0 or lim inft→0+ C(tv) >
0. To prove that for a multi-material cost this is always verified, we simply observe that the
function t 7→ C(tv) is non-decreasing for t > 0. Therefore, the limit limt→0+ C(tv) exists, and,
since C is a non-negative function, it is either 0 or positive.

We now prove (2). The fact that the directional derivatives are positively 1-homogeneous
functions is due to basic properties of the limit. To simplify the notation, we denote ∂+C

∂v (0)
with f(v). f is even because such is C. Its strict positivity is a direct consequence of the strict
positivity of C and (5.1). Subadditivity is checked in the following way. Write

C(t(v1 + v2)) ≤ C(tv1) + C(tv2) ∀t > 0 , ∀ v1, v2 ∈ Rm.

Dividing by t and taking the limit we get the desired inequality. Finally, by the monotonicity of
C, we also have

C(tv1) ≤ C(tv2) ∀t > 0 , v1 � v2.

Once again passing to the incremental quotients we infer the same inequality for f .
To prove (3) it is sufficient to write every vector v ∈ Rm in components as v =

∑m
j=1 vjej and

observe that

f(v) ≤
m∑
j=1

f(vjej),

by subadditivity. Observe that, since f is even, f(sign(vj)ej) = f(ej), ∀j ∈ {1, . . . ,m}. There-
fore, by subadditivity, positive homogeneity and evenness we deduce

f(v) ≤
m∑
j=1

|vj |f(sign(vj)ej) =

m∑
j=1

|vj |f(ej). (5.4)
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This inequality proves that span(B) ⊆ V . On the other hand, suppose that v =
∑m

j=1 vjej is
such that v` 6= 0 for some ` such that e` /∈ B. We need to show that

f(v) = +∞.

This is a consequence of the monotonicity of f . Indeed, since f is even, we can always suppose
that v` is positive, and write

f(v`e`) ≤ f(v). (5.5)
By homogeneity we infer that f(v`e`) = v`f(e`) = +∞. We obtain that V = span(B) and we
conclude the proof of (3).

Conclusion (4) has already been proved with equations (5.4) and (5.5). We will now prove (5).
We will let r := dimV and identify V with Rr. Consider a sequence {vh}h∈N in V converging
to v ∈ V . We prove the continuity of f by proving separately upper and lower semi-continuity.
The upper semi-continuity is proved as follows. By subadditivity,

C(tvh) ≤ C(t(vh − v)) + C(tv) ∀h ∈ N .

Denote with wh := vh − v. Then, using equation (5.1) and the homogeneity of f , we have:

C(t(vh − v)) ≤ f
(
wh

|wh|

)
t|wh| ∀ t > 0 , ∀h ∈ N .

Since, by (4), f is bounded by a constant L on the sphere of V , we obtain:

sup
t>0

C(t(vh − v))

t
≤ f

(
wh

|wh|

)
|wh| ≤ L|wh| ∀h ∈ N .

Hence
C(tvh)

t
≤ L|wh|+ C(tv)

t
≤ L|wh|+ sup

t>0

C(tv)

t
= L|wh|+ f(v) ∀h ∈ N .

Taking the limit as t→ 0+, we get

f(vh) ≤ L|wh|+ f(v) ∀h ∈ N ,

and finally
lim sup

h
f(vh) ≤ f(v) .

Lower semi-continuity is completely analogous. It suffices to use subadditivity to write, ∀h ∈ N,

C(tv) ≤ C(t(vh − v)) + C(tvh),

and repeat the proof of the upper semi-continuity.
We will now prove (6). Since ∂+C

∂ej
(0) is strictly positive for every j = 1, . . . ,m, there exist

α > 0 and ε > 0 such that, whenever v =
∑m

j=1 vjej ∈ Rm satisfies |v| < ε, one has:

|vj | ≤ α C(|vj |ej) = α C(vjej) ∀ j = 1, . . . ,m .

By the monotonicity of the cost, we can write

|vj | ≤ α C(v) ∀ j ∈ {1, . . . ,m} ,

and, by taking the maximum over j,

|v|∞ ≤ α C(v) ∀ v ∈ B(0, ε) ,

which evidently implies
|v| ≤

√
mα C(v) ∀ v ∈ B(0, ε) . (5.6)
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On the other hand, since C is lower semi-continuous, the function v 7→ |v|
C(v) is upper semi-

continuous on every set not containing the origin. Therefore, the inequality in (5.6) holds, with
a constant depending on δ and ε, also in B(0, δ) \B(0, ε). This completes the proof. �

5.2. Properties of the energy functional on flat currents. We turn now our attention to
study the properties of the energy functional, regarded as a map

E : FRm

1 (Rn)→ [0,+∞] ,

as defined in (4.6)-(4.7) when k = 1.
Here and in the sequel, we are going to adopt the following notation.

Notation 5.2 (Lift of a component). If T ∈ DRm

k (Rn) is a current with coefficients in Rm, and
Tj is the jth component of T , we let T̂j denote the current in DRm

k (Rn) having the jth component
equal to Tj and all other components set equal to zero. We will call T̂j the lift of the component
Tj to DRm

k (Rn). Note that any current with coefficients in Rm can be decomposed into the sum
of the lifts of its components, namely

T =

m∑
j=1

T̂j , T ∈ DRm

k (Rn) . (5.7)

The following lemma states that, if a flat current T coincides with the lift of one of its
components, then one can find a (polyhedral) recovery sequence for its energy enjoying the same
property.

Lemma 5.3. Let T ∈ FRm

1 (Rn) be a flat current such that T = T̂j for some j ∈ {1, . . . ,m}.
Then, there exists a sequence {P h}h∈N with P h ∈PRm

1 (Rn) such that

P h = P̂ hj for every h ∈ N , (5.8)

and
F(P h − T )→ 0 , E(P h)→ E(T ) as h→∞ . (5.9)

Proof. Let T h be a recovery sequence for E(T ): namely, assume that {T h}h is a sequence of
polyhedral currents with coefficients in Rm such that

F(T − T h)→ 0 and E(T h)→ E(T ) as h→∞ .

Recall that the flat norm of a current with coefficients in Rm is comparable to the sum of the
flat norms of its components, cf. §4.6. For every h ∈ N, simply set P h := T̂ hj . In other
words, P h is obtained by projecting the multiplicities of T h onto the subspace span [ej ] ⊂ Rm,
so that if T h =

(
T h1 , . . . , T

h
j , . . . , T

h
m

)
then P h =

(
0, . . . , T hj , . . . , 0

)
. Obviously, (5.8) holds by

construction, and F(P h−T )→ 0 as h→∞. Finally, the procedure does not increase the energy,
by monotonicity of the multi-material transportation cost C. Hence:

E(T ) ≤ lim inf
h→∞

E(P h) ≤ lim sup
h→∞

E(P h) ≤ lim sup
h→∞

E(T h) = E(T ) ,

which completes the proof. �

Proposition 5.4. Let C be a multi-material transport cost. The associated energy E has the
following properties:

(1) If T ∈ FRm

1 (Rn), then

E(T̂j) ≤ E(T ) for every j = 1, . . . ,m .
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(2) If T, S ∈ FRm

1 (Rn), then

E(T + S) ≤ E(T ) + E(S).

In particular,

E(T ) ≤
m∑
j=1

E(T̂j) ≤ mE(T ) . (5.10)

(3) If A and B are disjoint Borel sets and T ∈ FRm

1 (Rn) has finite mass, then

E(T (A ∪B)) = E(T A) + E(T B). (5.11)

In particular,

E(T ) = E(Trec) + E(Tdiff) . (5.12)

Proof. The proof of (1) is analogous to that of Lemma 5.3, by means of projecting the
multiplicities of a polyhedral recovery sequence onto the direction span[ej ]. Concerning (2),
observe that the subadditivity of E holds on polyhedral currents simply by the subadditivity of
the cost C. The result naturally extends to flat currents by approximation, and thus (5.10) is an
immediate consequence of (5.7) and (1). Finally, the proof of (5.11) can be found in [28, 6.1(3)].
If we apply Theorem 4.3 to decompose

T = Trec + Tdiff ,

then evidently the measures ‖Trec‖ and ‖Tdiff‖ are mutually singular, and in fact Trec = T E and
Tdiff = T Ec for some 1-rectifiable set E ⊂ Rn. Hence, (5.12) readily follows from (5.11). �

5.3. Rectifiability of currents with finite energy: proof of Proposition 4.4. The tech-
nical lemmas of the previous paragraphs are sufficient to show the validity of Proposition 4.4.
Notice that, using the terminology of Lemma 5.1, the condition in (4.8) can be rephrased as
B = ∅, or equivalently V = {0}. The proof will be obtained by working in components as a
corollary of the corresponding statement in the case m = 1, which can be found in [10, Proposi-
tion 2.8].

Proof of Proposition 4.4. We first claim that the condition in (4.8) is necessary for ev-
ery flat current with finite mass and energy to be rectifiable. Indeed, suppose that (4.8)
does not hold, and assume without loss of generality that ∂+C

∂e1
(0) < ∞. Define a sequence

{P h}h of polyhedral currents of the form P h =
(
P h1 , 0, . . . , 0

)
, where P h1 are as in the cor-

responding counterexample in [10, Proof of Proposition 2.8]. As h ↑ ∞, P h converges to
T = (T1, 0, . . . , 0) ∈ FRm

1 (Rn) ∩ {M(T ) <∞} \RRm

1 (Rn) and E(T ) ≤ lim infh→∞ E1(P h1 ) <∞,
where E1 is the single-material transportation energy induced by C1(θ) := C(θ, 0, . . . , 0).

Conversely, we show that if (4.8) holds then every T with M(T ) + E(T ) < ∞ is rectifiable.
To this aim, it suffices to prove that every component Tj is rectifiable. Fix j, and let T̂j be the
lift of the component Tj . By Proposition 5.4, M(T̂j) + E(T̂j) <∞. By Lemma 5.3, there exists
a recovery sequence for E(T̂j) of the form P h =

(
0, . . . , P hj , . . . , 0

)
, so that E(P h) = Ej(P hj ), Ej

being the single-material cost functional induced by Cj(t) := C(tej) for t ∈ R. Since F(P hj −Tj)→
0, we have that Ej(Tj) ≤ lim infh→∞ E(P h) = E(T̂j) <∞. Since Cj satisfies limt→0+

Cj(t)
t = +∞,

we conclude from [10, Proposition 2.8] that Tj is rectifiable. �

18



5.4. Monotonicity of the energy. In Proposition 5.4 (1) we have concluded that any com-
ponent of T (or, better said, the lift of any component of T ) has less energy than T . Our next
goal is to obtain an analogous result when we look at pieces of T rather than components. Let
us first define what a piece of a current is.

Let T ∈ D1(Rn) be a classical current with finite mass. We say that T ′ ∈ D1(Rn) is a piece of
T if

M(T ) = M(T ′) + M(T − T ′).
By [15, Section 4.1.7] one can see that if T is represented by integration as T = τµ, with τ a
Borel vector field in Rn and µ ∈M+(Rn), then a piece T ′ of T can be written as T ′ = λτµ, for
a Borel function λ : Rn → [0, 1]. For T, T ′ ∈ FRm

1 (Rn) we say that T ′ is a piece of T if every
component T ′j of T is a piece of the corresponding component Tj of T , for j = 1, . . . ,m.

The following is the anticipated monotonicity result for pieces of a flat current with coefficients
in Rm, which will play a fundamental role in our existence theory.

Proposition 5.5. Let T ∈ FRm

1 (Rn) have finite mass, and let T ′ be a piece of T . Then E(T ′) ≤
E(T ).

The result in Proposition 5.4 (1) stems from the analogous result valid in the case of polyhedral
currents, which in turn is an immediate consequence of the monotonicity properties of the func-
tion C. The proof of Proposition 5.5 will also follow from a polyhedral approximation argument;
the difficulty here lies precisely in the construction of a suitable polyhedral approximation. The
slicing theory for classical normal currents is one of the ingredients that we are going to need for
the proof. We recall here that if S ∈ Nk(Rn), f : Rn → R is a Lipschitz function, and r is a real
number, then 〈S, f, r〉 denotes the slice of the current S via the map f at level r. Intuitively,
〈S, f, r〉 may be thought of as the (k − 1)-dimensional current obtained by “intersecting” S with
the level set {f(x) = r}: this interpretation is actually entirely correct (modulo specifying the
orientation of the resulting object) when S is the current associated with a smooth k-surface in
Rn.

Proof of Proposition 5.5. Following the discussion in §4.4, write T = (τ1µ, . . . , τmµ), with
µ ∈M+(Rn) and τ1, . . . , τm Borel vector fields in Rn satisfying |τj | ≤ 1 µ-almost everywhere for
every j. Let λ1, . . . , λm : Rn → [0, 1] be Borel functions such that T ′j = λjτjµ, for j = 1, . . . ,m.
Fix ε > 0 and k ∈ N. For every ` = (`1, . . . , `m) ∈ {0, . . . , k}m, denote

D` :=

{
x ∈ Rn : λj(x) ∈

[
`j
k
,
`j + 1

k

)
, j = 1, . . . ,m

}
.

For every `, we also let K` ⊂ D` be a compact set such that

µ(D` \K`) <
ε

(k + 1)m
. (5.13)

Since µ(Rn \
⋃
`D`) = 0, it follows from (5.13) that

µ

(
Rn \

⋃
`

K`

)
< ε. (5.14)

Observe that, since the D`’s are finitely many disjoint sets, the mutual distances between the
K`’s are bounded from below by a number 2ρ0 ≤ 1. Therefore, for every ρ < ρ0 the open sets

Aρ` := {x ∈ Rn : dist(x,K`) < ρ}
are mutually disjoint. For every j = 1, . . . ,m, for every ρ < ρ0, we denote

T ′′j :=
∑
`

`j
k
Tj Aρ` ,

19



and we let T ′′ ∈ FRm

1 (Rn) be the current with components T ′′1 , . . . , T ′′m.
It follows from (5.14) and the definition of D` that, for j = 1, . . . ,m, for every ρ < ρ0 we have

M(T ′′j − T ′j) ≤ 2µ

(
Rn \

⋃
`

K`

)
+ M

(
(T ′′j − T ′j)

⋃
`

K`

)
≤ 2ε+

∑
`

M(T ′′j K` − T ′j K`)

≤ 2ε+
1

k
µ(Rn) .

(5.15)

Now, let us consider a recovery sequence {P h}h∈N for the energy of T , namely P h ∈PRm

1 (Rn)
with F(P h − T ) → 0 and E(P h) → E(T ). We denote, for j = 1, . . . ,m, for every h ∈ N, for
ρ < ρ0,

Qhj :=
∑
`

`j
k
P hj Aρ` ,

and we let Qh ∈ RRm

1 (Rn) be the current with components Qh1 , . . . , Qhm. Observe that every
Qhj is supported on a relatively open subset Uhj (ρ) of the support of P hj . Therefore, for every
h and for j = 1, . . . ,m, Uhj (ρ) is the union of at most countably many line segments. Hence,
there exists a set Ehj (ρ) ⊂ Uhj (ρ), which consists of finitely many line segments, such that
P ′hj := Qhj Ehj (ρ) ∈P1(Rn) and

M(Qhj (Uhj (ρ) \ Ehj (ρ))) < ε , for every h, for j = 1, . . . ,m and for every ρ < ρ0. (5.16)

Finally, for every h ∈ N, we denote P ′h ∈ PRm

1 (Rn) the current with components P ′h1 , . . . , P ′hm .
Clearly, P ′h is a piece of P h for every h, and thus, by monotonicity of C, we have E(P ′h) ≤ E(P h)
for every ρ < ρ0.

We claim that there exists ρ < ρ0 such that

F(P ′h − T ′) ≤ C(k, ε) for infinitely many h ∈ N , (CLAIM)

where C(k, ε) vanishes in the limit as k →∞ and ε→ 0. This would imply that E(T ′) ≤ E(T )
and conclude the proof.

As we observed in (4.5) we have F(P ′h − T ′) ≤
∑m

j=1 F(P ′hj − T ′j), hence it is sufficient to
prove that there exist ρ < ρ0 and an infinite set of indices H := {h1, h2, . . .}, such that for each
j = 1, . . . ,m, we have

F(P ′hj − T ′j) ≤ C(k, ε) for every h ∈ H.
For every h ∈ N, for every j ∈ {1, . . . ,m}, we have by (5.15) and (5.16)

F(P ′hj − T ′j) ≤ F(Qhj − T ′′j ) + M(Qhj − P ′hj ) + M(T ′j − T ′′j ) ≤ F(Qhj − T ′′j ) + 3ε+
1

k
µ(Rn)

≤
∑
`

`j
k
F((Tj − P hj ) Aρ` ) + 3ε+

1

k
µ(Rn) .

Hence, in order to prove the claim it suffices to show that there exist a positive constant C
(independent of ε and k) and a radius ρ < ρ0, such that for every `

F((Tj − P hj ) Aρ` ) < C
ε

(k + 1)m
for every j = 1, . . . ,m and for infinitely many h ∈ N .

In order to see this, fix an index j ∈ {1, . . . ,m}. For every p = 1, 2, . . . let hp ∈ N (with
hp > hp−1 for p ≥ 2) be such that

F(Tj − P hj ) <
ε

(k + 1)m
ρ0

2p+2
for every h ≥ hp .
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Then, by the well-known characterization of the flat norm of classical currents (cf. [15, Section
4.1.12]), for every h ≥ hp there are currents Rh ∈ D1(Rn) and Sh ∈ D2(Rn) such that

Tj − P hj = Rh + ∂Sh , M(Rh) + M(Sh) ≤ ε

(k + 1)m
ρ0

2p+1
. (5.17)

Observe that (5.17) implies that Sh is a normal current. Hence, by the classical slicing formula
for normal currents (see [15, Section 4.2.1]) we have for every ` ∈ {0, . . . , k}m that

(Tj − P hj ) Aρ` = Rh Aρ` + (∂Sh) Aρ`

= Rh Aρ` − 〈S
h,dist(·,K`), ρ〉+ ∂(Sh Aρ` )

(5.18)

for a.e. ρ < ρ0. On the other hand, since (see again [15, Section 4.2.1])
ˆ ρ0

0
M(〈Sh,dist(·,K`), ρ〉) dρ ≤M(Sh Aρ0` ) ≤ ε

(k + 1)m
ρ0

2p+1
,

then there exists a set Ih ⊂ (0, ρ0) of length |Ih| ≤ ρ0
2p+1m

such that

M(〈Sh,dist(·,K`), ρ〉) ≤
mε

(k + 1)m
for every ρ ∈ (0, ρ0) \ Ih, for every h ≥ hp . (5.19)

Set H := {hp}p≥1, I :=
⋃
p I

hp , and observe that |I| ≤ ρ0
2m . Hence, if we choose ρ ∈ (0, ρ0) \ I

we conclude that (5.19) holds true for every h ∈ H. In turn, this allows us to estimate from
(5.18) that

F((Tj − P hj ) Aρ` ) ≤M(Rh) + M(〈Sh, dK`
, ρ〉) + M(Sh) ≤ 2mε

(k + 1)m

for every h ∈ H, thus completing the proof. �

6. Proof of the existence Theorem 3.10

The proof is by direct methods. Since we know that (by definition) the energy E is lower semi-
continuous with respect to the convergence in flat norm, our goal is to embed the minimization
problem introduced in Definition 3.9 in a class of 1-currents with coefficients in Rm which is
compact with respect to the topology induced by the flat norm. Let {T h}h∈N be a sequence of
multi-material fluxes between µ− and µ+ which is minimizing the energy E. The sequence T h
consists of normal 1-currents with coefficients in Rm having a common boundary. Moreover, we
can assume that the currents T h are all supported on a common compact set (because the push-
forward with respect to the closest-point projection from Rn onto a convex polytope containing
the support of µ−−µ+ does not increase the energy E, by the subadditivity of the cost). We can
also assume that the infimum of the energies E(T h) is finite. Nevertheless, the (finite) masses
of the T h might in principle be unbounded along the sequence. We will prove that one can
perform an operation on each T h (which roughly speaking consists in removing all its cycles)
which preserves the boundary and does not increase the energy. Moreover the modified currents
T ′h satisfy

M(T ′h) ≤ CE(T ′h) ≤ CE(T h) .

This bound recasts the problem in a compact regime, hence the minimality of each element of
the (non-empty) class of subsequential limits of {T ′h}h∈N is guaranteed by direct methods.
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6.1. Removing cycles. Let T ∈ N1(Rn) be a (classical) 1-dimensional normal current. We
say that S ∈ N1(Rn) is a cycle contained in T if

∂S = 0 and M(T ) = M(T − S) + M(S). (6.1)

In other words, a cycle contained in T is any piece of T with zero boundary. We say that T is
acyclic if there is no non-zero cycle contained in T . By [24, Proposition 3.8] one can identify the
largest cycle contained in a normal current T , i.e. a cycle S contained in T such that T ′ := T −S
is acyclic. We will call T ′ the acyclic part of T . First of all, let us observe that, since T ′ is a
piece of T , if T = ~T‖T‖, with unit orientation ~T , then T ′ can be written as

T ′ = λ~T‖T‖, (6.2)

where λ : Rn → [0, 1] is a measurable function. Also note that evidently ∂T ′ = ∂T , since T − T ′
has zero boundary.

The following lemma contains a crucial observation for the proof of the existence theorem.

Lemma 6.1. Let T be an acyclic normal 1-current, and let R = τ θH1 E ∈ R1(Rn) be its
rectifiable part, according to the decomposition Theorem 4.3. Then |θ(x)| ≤ 1

2M(∂T ) for H1-a.e.
x ∈ E.
Proof. Without loss of generality, write T = τ(|θ|H1 E+µ), where τ is unitary and µ(E′) = 0

for every 1-rectifiable set E′. The proof is a small variation of the proof of Prop. 3.6 (2) of [7],
and we refer to that paper for the relevant notation. We just recall that one can identify T with
a positive measure π on the space Lip of Lipschitz parametrized curves, in the sense that

T (ω) =

ˆ
Lip

JγK(ω) dπ(γ) ∀ω ∈ D1(Rn) ,

where JγK denotes the multiplicity one 1-current canonically associated with γ ∈ Lip. The
measure π satisfies the identity 2M(π) = M(∂T ). We can then compute, for every smooth
compactly supported test function φ : Rn → R,ˆ

E
φ |θ| dH1 +

ˆ
Rn\E

φdµ =

ˆ
Rn

φd(|θ|H1 E + µ)

=

ˆ
Lip

(ˆ
E
φ1Imγ dH1 +

ˆ
Rn\E

φ1Imγ dH1

)
dπ(γ) (6.3)

=

ˆ
E
φ

(ˆ
Lip

1Imγ dπ(γ)

)
dH1 +

ˆ
Rn\E

φdν ,

where ν is a measure supported on Rn \ E. The equality implies that

|θ(x)| =
ˆ

Lip
1Imγ(x) dπ(γ) ≤M(π) =

1

2
M(∂T ) for H1-a.e. x ∈ E ,

which concludes the proof. �

Proof of Theorem 3.10. In this proof we will implicitly identify vector-valued measures
T ∈ M (Rn,Rn×m) and µ ∈ M (Rn,Rm) with 1-dimensional and 0-dimensional currents with
coefficients in Rm and finite mass, respectively, and thus we will write T = AT ‖T‖ and µ = ~µ‖µ‖
for a ‖T‖-measurable tensor field AT : Rn → Λ1(Rn)⊗Rm ' Rn×m and a ‖µ‖-measurable vector
field ~µ : Rn → Rm . Similarly, recalling the notation of Remark 3.4, for j = 1, . . . ,m, a component
Tj of T and a component µj of µ are identified respectively with a (classical) 1-dimensional and
0-dimensional current of finite mass.

Let T be a multi-material flux between µ− and µ+, whose components are (T1, . . . , Tm). For
each component Tj , let T ′j denote the acyclic part of Tj . By the definition of acyclic part of a
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current, T ′j is a piece of Tj for every j, and thus the current T ′ ∈ FRm

1 (Rn) defined in components
by T ′ = (T ′1, . . . , T

′
m) is a piece of T . From Proposition 5.5 it follows that

E(T ′) ≤ E(T ) . (6.4)
Furthermore, ∂T ′ = ∂T , and thus T ′ is also a multi-material flux between µ− and µ+.
Next, we claim that there exists a constant C > 0 such that

M(T ′) ≤ CE(T ) . (6.5)

In order to see this, let us write, recalling Notation 5.2,

T =
∑
j

T̂j , T ′ =
∑
j

T̂ ′j .

Let us decompose each Tj according to Theorem 4.3 into its rectifiable and diffuse part:

Tj = ξj θjH1 Ej + τj µj ,

where Ej ⊂ Rn is 1-rectifiable, |ξj(x)| = 1 at H1-a.e. x ∈ Ej , |τj(x)| = 1 µj-almost everywhere,
and µj(E) = 0 for every 1-rectifiable subset E. By definition of acyclic part of a current, we can
represent T ′j as

T ′j = ξj θ
′
jH1 Ej + τjλj µj ,

for some measurable λj : Rn → [0, 1] and for θ′j(x) ≤ θj(x) at H1-a.e. x ∈ E. Also, correspond-
ingly we have the representation

T̂j = (ξj ⊗ θjej)H1 Ej + (τj ⊗ ej)µj , T̂ ′j = (ξj ⊗ θ′jej)H1 Ej + λj(τj ⊗ ej)µj .
Then, from Lemma 5.3 it immediately follows that

E(T̂ ′j) = inf

{
lim inf
h→∞

E(Ph) : {Ph}h sequences in Pj with F(T̂ ′j − Ph)→ 0

}
, (6.6)

where Pj is the class of polyhedral P ∈PRm

1 (Rn) of the form

P =

N∑
`=1

(τ` ⊗ ej)θ`H1 σ` ,

where σ` are finite unions of segments with disjoint relative interiors. In turn, the quantity on
the right-hand side of (6.6) is equivalent to

inf

{
lim inf
h→∞

Ej(Ph) : {Ph}h sequences in P1(Rn) with F(T ′j − Ph)→ 0

}
,

where

Ej(P ) :=

N∑
`=1

C(θ` ej)H1(σ`) for P =

N∑
`=1

τ` θ`H1 σ` .

Hence, by [5, Proposition 2.32] we can explicitly compute

E(T̂ ′j) =

ˆ
Ej

C(θ′j(x)ej) dH1(x) +
∂+C
∂ej

(0)

ˆ
Rn

λj(x) dµj(x) . (6.7)

Note that, by the above formula, if j ∈ {1, . . . ,m} is such that ∂+C
∂ej

(0) =∞ (namely, if ej /∈ B,
using the notation of Lemma 5.1) then µj = 0 and T ′j = (T ′j)rec.

In particular,

M(λj(τj ⊗ ej)µj) =

ˆ
Rn

λj(x) dµj(x) =

(
∂+C
∂ej

(0)

)−1

E(λj(τj ⊗ ej)µj) , (6.8)
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with the formula valid also when ej /∈ B if we use the convention that ∞−1 = 0.
At the same time, from Lemma 6.1 we deduce that the ratio |θ′j(x)|/C(θ′j(x)ej) can be bounded

by max|θ|≤M(µ−−µ+) |θ|/C(θ) for almost every x ∈ E. Hence

M((ξj ⊗ θ′jej)H1 Ej) =

ˆ
Ej

|θ′j | dH1

≤
(

max
{θ∈Rm : |θ|≤M(µ−−µ+)}

|θ|
C(θ)

)
E((ξj ⊗ θ′jej)H1 Ej) . (6.9)

Combining (6.8) and (6.9), and using (5.3) together with (5.12), we get that

M(T̂ ′j) ≤ CE(T̂ ′j) ,

where the constant C depends only on C and the quantity M(µ− − µ+). Finally, we conclude
from (5.10) and (6.4):

M(T ′) ≤
∑
j

M(T̂ ′j) ≤ CE(T ′) ≤ CE(T ) .

By the discussion at the beginning of this Section, this implies that one can choose a minimizing
sequence {T ′h}h∈N for E which is precompact (with respect to the topology induced by the flat
norm), hence the multi-material transport problem admits a minimizer. �

7. Existence of multi-material fluxes with finite energy and stability

The aim of this section is to identify a class of multi-material transportation costs C : Rm → R
(that we call admissible) having the property that for any pair of compatible vector-valued
measures µ−, µ+ ∈ M (Rn,Rm) there exists a multi-material flux T ∈ M (Rn,Rn×m) between
µ− and µ+ with E(T ) <∞. We follow the strategy presented in [5]. We deduce a stability result
for the multi-material transport problem associated to admissible multi-material transportation
costs.

Definition 7.1. A multi-material transportation cost C : Rm → R is admissible in Rn if there
exists a concave, non-decreasing function β : [0,∞) → [0,∞) such that C(x, . . . , x) ≤ β(x) for
every x ∈ [0,∞) and moreover ˆ 1

0

β(x)

x2− 1
n

dx < +∞ . (7.1)

Remark 7.2. Observe that the validity of (7.1) implies that β(0) = limx→0+ β(x) = 0. In turn,
β(0) = 0, together with the concavity of β, readily implies that for every a ≥ 0

β(ab) ≤ β(a) b whenever b ≥ 1 .

Given a function β : [0,∞)→ [0,∞), we define, for all k ∈ N and n = 1, 2, . . .

Sβ(n, k) := 2(n−1)kβ(2−nk) and Sβ(n) :=

∞∑
k=1

Sβ(n, k).

We have the following lemma (see [5, Lemma 2.15])

Lemma 7.3. Let β : [0,∞)→ [0,∞) satisfy (7.1). Then Sβ(n) <∞.

Proposition 7.4. Let C : Rn → R be an admissible multi-material transport cost. Let µ−, µ+ ∈
M (Rn,Rm) be a pair of compatible measures with compact support. Then, there exists a multi-
material flux T between µ− and µ+ with E(T ) <∞.
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Before proving Proposition 7.4, we need to introduce the following notation. For x ∈ Rn and
d > 0 we denote by Qd(x) ⊂ Rn the cube centered at x with diameter d, and faces parallel to
the coordinate hyperplanes, henceforth called a coordinate cube. Given a coordinate cube Q and
a number k ∈ N, we denote

Λ(Q, k) := {Q`}2kn`=1

the collection of the 2kn cubes obtained dividing each edge of Q into 2k subintervals of equal
length. We denote by

S(Q, k) :=
2kn⋃
`=1

∂Q`

the (n− 1)-skeleton of the grid Λ(Q, k).

Lemma 7.5. Let Q′ ⊂ Rn be a coordinate cube. Let {µh}h∈N∪{∞} ⊂ M+(Rn) be a countable
family of positive measures supported on Q′. Then there exists a coordinate cube Q ⊃ Q′ such
that

µh(S(Q, k)) = 0, ∀ k ∈ N , ∀h ∈ N ∪ {∞}. (7.2)

Proof. Since the statement concerns only sets with measure zero, we can assume that
M(µh) = 1 for every h. Denote µ := µ∞ +

∑
h∈N 2−hµh. Let Q′′ be a coordinate cube such

that dist(Q′, (Rn \ Q′′)) ≥ 1. We can assume that the edge length of Q′′ is an integer number.
For every i = 1, . . . , n and k ∈ N we denote Hi,k the union of 2k + 1 hyperplanes, orthogonal to
ei, intersecting Q′′ and partitioning it into 2k slabs of equal volume. Denote also

Li :=
⋃
k∈N

Hi,k.

Since Li + r ei is disjoint from Li + s ei whenever r − s ∈ R \ Q, then for every i there exists
ρi ∈ [0, 1] such that

µ(Li + ρi ei) = 0.

We conclude that Q := Q′′ +
∑

i ρi ei contains Q
′ and yields (7.2). �

Proof of Proposition 7.4. Let us denote, as in Remark 3.4, ν := µ+ − µ− and νj its com-
ponents, for j = 1, . . . ,m. We also denote, for every j, (νj)− and (νj)+ respectively the negative
and the positive part of νj , and finally we let ν− and ν+ be the vector-valued measures whose
components are respectively the (νj)−’s and the (νj)+’s. Consider a coordinate cube Q obtained
by Lemma 7.5 applied to the finite family of measures {(νj)±}.

For every k ∈ N we consider the discrete approximation σk± of ν± subject to the grid Λ(Q, k),
namely

σk± :=
2kn∑
`=1

θ±` δx` ,

where x` are the centres of the cubes Q` ∈ Λ(Q, k) and θ±` := ν±(Q`) ∈ Rm. The core of the
proof is the estimate of the energy for the simplest possible (discrete) multi-material flux between
σk± and σk+1

± .
For ` = 1, . . . , 2kn we consider the cones C`± over σk+1

± Q` with vertex x` (see (3.1)). Denoting

T k± :=
2kn∑
`=1

C`±,

we observe that
div(T k±) = σk± − σk+1

± ,
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hence T k± is a discrete multi-material flux between σk± and σk+1
± .

Consider a cube Q` ∈ Λ(Q, k) and the cubes Q`,i ∈ Λ(Q, k + 1) (i = 1, . . . , 2n) generated
by Q`, namely those cubes in the grid Λ(Q, k + 1) that are contained in Q`. Denoting x`,i the
centers of the Q`,i’s, and θ±`,i the corresponding multiplicities, the energy of T k± is exactly

E(T k±) = 2−k−2diam(Q)
2kn∑
`=1

2n∑
i=1

C(θ±`,i) .

Similarly, denoting (T k±)j the components of T k±, we have

E((̂T k±)
j
) = 2−k−2diam(Q)

2kn∑
`=1

2n∑
i=1

C((θ±`,i)j ej) ,

where θj is the jth component of θ. By the definition of admissible multi-material transport
cost, and using that C is non-decreasing with respect to the order relation � in Rm, we have, for
j = 1, . . . ,m,

E((̂T k±)
j
) ≤ 2−k−2diam(Q)

2kn∑
`=1

2n∑
i=1

β((θ±`,i)j) . (7.3)

Moreover, since
2kn∑
`=1

2n∑
i=1

(θ±`,i)j = (νj)±(Q),

then, by concavity of β, we have
2kn∑
`=1

2n∑
i=1

β((θ±`,i)j) = 2(k+1)n
2kn∑
`=1

2n∑
i=1

2−(k+1)nβ((θ±`,i)j) ≤ 2(k+1)nβ(2−(k+1)n(νj)±(Q)).

Therefore we deduce from (7.3) that

E((̂T k±)
j
) ≤ 1

2
diam(Q)2(k+1)(n−1)β(2−(k+1)n(νj)±(Q))

=
1

2
diam(Q)2(k+1)(n−1)β(2−(k+1)n)

β(2−(k+1)n(νj)±(Q))

β(2−(k+1)n)

=
1

2
diam(Q)Sβ(n, k + 1)

β(2−(k+1)n(νj)±(Q))

β(2−(k+1)n)
.

Let us write

K(j, k) :=
β(2−(k+1)n(νj)±(Q))

β(2−(k+1)n)
.

If (νj)±(Q) ≥ 1, we have K(j, k) ≤ (νj)±(Q) for every k by Remark 7.2; otherwise, by mono-
tonicity of β, we have K(j, k) ≤ 1 for every k. Summing over j = 1, . . . ,m, we conclude from
Proposition 5.4 (2) that, for every N ≤M ∈ N, it holds

E

(
M∑
k=N

T k±

)
≤

m∑
j=1

E

(
M∑
k=N

(̂T k±)
j

)
≤ m

2
diam(Q)

(
M∑
k=N

Sβ(n, k + 1)

)
max{1,M(ν±)}. (7.4)

By Lemma 5.1 (6), and using that the multiplicities of T k± are bounded by construction, a similar
estimate holds for the mass of

∑M
k=N (T k±). In particular, the sequence {SM± :=

∑M
k=0(T k±)}M∈N

is Cauchy in mass (notice that limk→∞ S
β(n, k) = 0 by Lemma 7.3), and thus it converges in
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mass to a multi-material flux S±. Moreover, T := S+ − S− is a multi-material flux between ν−
and ν+, or equivalently between µ− and µ+. By (7.4), we have

E(T ) ≤ mmax{1,M(ν±)}diam(Q)Sβ(n) <∞ , (7.5)

and the proof is complete. �

7.1. Proof of the stability Theorem 3.12. We will actually prove that every subsequential
limit T∞ is a minimizer for the pair (µ−∞, µ

+
∞). Without loss of generality we can assume that

Th
∗
⇀ T∞. Furthermore, as a consequence of (7.5) and of the lower semicontinuity of the energy,

it holds

E(T∞) ≤ lim inf
h→∞

E(Th) ≤ C(m,diam(K))Sβ(n)

(
1 + sup

h
{M(µ±h )}

)
≤ C(m,n, β, diam(K),M(µ±)) .

(7.6)

Towards a contradiction, let us assume that T∞ is not a minimizer. Then, there exist δ > 0
and a multi-material flux S between µ−∞ and µ+

∞ which satisfies

E(S) ≤ E(T∞)− 7δ.

We will use S to construct a competitor Sh for Th (h large enough) such that E(Sh) < E(Th),
which is a contradiction. By the lower semi-continuity of E, there exists h0 ∈ N such that for
h > h0 it holds

E(T∞) ≤ E(Th) + δ.

Let Q be a cube obtained by Lemma 7.5. By (7.4), there exists l ∈ N such that, for every
h ∈ N ∪ {∞}

E

( ∞∑
k=l

(Th)k±

)
≤ δ,

where
∑∞

k=l(Th)k± =: (T lh)± is a multi-material flux between the discrete approximation (σh)l±
of µ±h (subject to the grid Λ(Q, l)) and the measure µ±h . Since µ

±
h
∗
⇀ µ±∞, then, for every ε > 0,

there exists h1 ≥ h0 such that the multiplicity of (σh)l± − (σ∞)l± has norm less than ε for every
h ≥ h1. Since C(θ) → 0 as θ → 0 (see Remark 7.2), the smallness of the multiplicities of
(σh)l± − (σ∞)l± implies that the cone C over

(σh)l+ − (σ∞)l+ − (σh)l− + (σ∞)l−

with vertex in the centre of the cube Q satisfies E(C) ≤ δ for ε sufficiently small. The final
contradiction is given by the fact that, for h ≥ h1, the vector-valued measure

Sh := S + C + (T lh)+ − (T lh)− − (T l∞)+ + (T l∞)−

is a multi-material flux between µ−h and µ+
h and by subadditivity of the energy, it holds

E(Sh) ≤ E(S) + 5δ ≤ E(T∞)− 2δ ≤ E(Th)− δ . �

Remark 7.6 (Metrization property of the minimal energy). Given two compatible measures
µ−, µ+ ∈M (Rn,Rm), we denote

W (µ−, µ+) := min{E(T ) : T is a multi-material flux between µ− and µ+} .
A simple byproduct of the proof of Theorem 3.12 is the following: if Th are minimizers of the
multi-material transport problem converging to T∞, then necessarily E(Th) → E(T∞). In turn,
this implies that, if the multi-material transport cost C is admissible, then W metrizes the weak-∗
convergence; in other words, if a sequence of pairs of compatible measures {µ−h , µ

+
h }h∈N satisfies

µ±h
∗
⇀ µ for some measure µ ∈M (Rn,Rm), then W (µ−h , µ

+
h )→ 0 as h→∞.
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8. Chains with coefficients in groups

The following two final sections are devoted to the proof of the representation formula for
the energy of a rectifiable multi-material flux stated in Theorem 4.6. The result will be here
obtained as a particular case of a more general theorem valid in the context of k-dimensional
chains with coefficients in a normed Abelian group G; see Theorem 9.1. Such a result is concerned
with the representation, on rectifiable G-chains, of a class of functionals defined on flat G-
chains via relaxation of corresponding energies defined on polyhedral G-chains by integration of
cost functions C analogous to that considered in Definition 3.5. The representation formula for
rectifiable multi-material fluxes simply follows by applying Theorem 9.1 with k = 1 and G = Rm.

Before proceeding, we are going to collect in this section the fundamental notions concerning
k-dimensional chains in Rn with coefficients in a normed group. For a thorough discussion about
this topic, we refer the reader to the seminal paper [16], as well as to the recent contributions
[28, 29, 12, 13].

8.1. Polyhedral chains with coefficients in a normed group. Let G = (G,+) denote an
Abelian additive group. A norm on G is any function

‖ · ‖ : G→ R

satisfying the following properties:

(i) ‖g‖ ≥ 0 for every g ∈ G, and ‖g‖ = 0 if and only if g = 0 ∈ G;
(ii) ‖ − g‖ = ‖g‖ for every g ∈ G;

(iii) ‖g + h‖ ≤ ‖g‖+ ‖h‖ for every g, h ∈ G.

We will assume that there is a well defined norm ‖ · ‖ on G which makes G a complete metric
space with respect to the canonical distance d(g, h) := ‖g − h‖ for g, h ∈ G.

Let K be a convex compact subset of Rn. If σ ⊂ K is a k-dimensional oriented simplex, then
we denote by JσK the classical integral k-current canonically associated with σ.

A k-dimensional polyhedral chain with coefficients in G (or simply a polyhedral G-chain) is a
formal finite linear combination

P =
N∑
`=1

g`Jσ`K (8.1)

of non-overlapping oriented k-simplexes σ` with coefficients g` ∈ G. A refinement of P is any
k-dimensional polyhedral G-chain of the form

N∑
`=1

H∑̀
h=1

gh` Jσh` K

where σh` ∪ . . .∪σ
H`
` = σ` and gh` = g` if σh` has the same orientation of σ` or gh` = −g` otherwise.

Two k-dimensional polyhedral G-chains are equivalent if they have a common refinement.
The set of k-dimensional polyhedral G-chains in K can be given the structure of additive

group, denoted with PG
k (K), as follows. The sum of two polyhedral G-chains P1 and P2 is

obtained by firstly finding refinements of P1 and P2 such that the corresponding simplexes are
either non-overlapping or they coincide, and then taking their formal sum with the identification
g1 JσK + g2 JσK = (g1 + g2) JσK.

Notice that an element P ∈ PG
0 (K) is a G-valued discrete measure of the form P =∑

a∈A g(a)JaK: here, A ⊂ K is a finite set, g(a) ∈ G for every a ∈ A, and the G-valued
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measure g(a)JaK is defined by

g(a)JaK(E) :=

{
g(a) if a ∈ E
0 otherwise .

If P is as in (8.1), then the mass of P is defined by

M(P ) :=
N∑
`=1

‖g`‖Hk(σ`) . (8.2)

8.2. Rectifiable chains with coefficients in a normed group. More generally, a k-
dimensional Lipschitz G-chain in K has the form

N∑
`=1

g` · (γ`)]Jσ`K , (8.3)

where each σ` is an oriented k-simplex in Rk, g` ∈ G, γ` : σ` → Rn is Lipschitz with γ`(σ`) ⊂ K,
and γ] is the push-forward operator associated to the Lipschitz map γ. Analogous considerations
to those made in the definition of k-dimensional polyhedral G-chains allow to define the group
of k-dimensional Lipschitz G-chains in K, denoted L G

k (K), and to extend the mass functional
to L G

k (K).
The M-completion of L G

k (K) is the group RG
k (K) of k-dimensional rectifiable chains with

coefficients in G. Observe that an element R ∈ RG
0 (K) is a G-valued atomic measure of the

form R =
∑

a∈A g(a)JaK for some countable A ⊂ K, and g(a) ∈ G for every a ∈ A such that
M(R) =

∑
a∈A ‖g(a)‖ <∞. The mass M(·) is a norm on the group RG

k (K).
Let V ⊂ Rn be a k-dimensional vector subspace. A G-valued orientation of V is an equivalence

class of pairs (τ, g), where τ ∈ Λk(Rn) is a unit mass orientation of V (that is, τ = τ1 ∧ . . . ∧ τk
for an orthonormal basis {τ1, . . . , τk} of V ) and g ∈ G, defined by the equivalence relation

(τ, g) ≡ (ξ, h) if and only if (τ = ξ and g = h) or (τ = −ξ and g = −h) .

We introduce the notation τ ⊗ g for the ≡-equivalence class [(τ, g)], since, despite being non-
standard, it is coherent with the one used in the previous sections when k = 1 and G = Rm.

If E ⊂ Rn is (countably) k-rectifiable, then a G-valued orientation of E is a Hk-measurable
choice of an orientation (τ ⊗ g)(x) for the (Hk-a.e. well defined) approximate tangent spaces
Tan(E, x). It can be seen that if R ∈ RG

k (K) then R is associated with a k-rectifiable set E ⊂ K
having an Hk-integrable G-orientation defined on it (see [12, Section 3.6]). In this case, we shall
write R = JE, τ ⊗ gK. Furthermore, it holds

M(R) =

ˆ
E
‖g‖ dHk . (8.4)

8.3. Boundary and flat norm. If P ∈PG
k (K) is a k-dimensional polyhedral G-chain of the

form

P =

N∑
`=1

g`Jσ`K ,

then the boundary of P is the (k − 1)-dimensional polyhedral G-chain defined by

∂P :=
N∑
`=1

g`∂Jσ`K , (8.5)

where ∂JσK is the classical boundary of JσK in the sense of integral currents.
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Let P ∈PG
k (K). The flat norm of P is

F(P ) := inf
{
M(Q) + M(P − ∂Q) : Q ∈PG

k+1(K)
}
. (8.6)

Observe that F(P ) ≤ M(P ) by definition, and that F(∂P ) ≤ F(P ) (note that, as usual,
∂(∂Q) = 0 for every polyhedral Q).

8.4. Flat G-chains. The F-completion of PG
k (K) is the group FG

k (K) of k-dimensional flat
G-chains in K. The same group of flat G-chain would be obtained by completing the Lipschitz
G-chains L G

k (K) with respect to an analogously defined flat norm. It holds true that RG
k (K) ⊂

FG
k (K) with continuous inclusion with respect to the mass topology on RG

k (K) and the flat
topology on FG

k (K). By [12, Theorem 5.3.1], if R ∈ RG
k (K), then its flat norm is given by

F(R) = inf
{
M(S) + M(Z) : S ∈ RG

k (K) and Z ∈ RG
k+1(K) with R = S + ∂Z

}
. (8.7)

The boundary operator ∂ : PG
k+1(K)→PG

k (K) admits a continuous extension

∂ :
(
FG
k+1(K),F

)
→
(
FG
k (K),F

)
such that ∂(∂T ) = 0 and F(∂T ) ≤ F(T ) for every T ∈ FG

k+1(K).

8.5. The case G = Rm: comparison with Section 4. The constructions outlined in the
previous paragraphs evidently apply as well to the case when G = Rm, thus leading to seemingly
different definitions of the classes of chains with coefficients in Rm compared to those given in
Section 4. It is easily seen that the two approaches are in fact equivalent. This follows directly
from the following observations:

(i) the classes of polyhedral currents and chains defined, respectively, in Subsections 4.5 and
8.1 coincide; analogously, the mass functional, and therefore the flat norm, are defined
in the same way on polyhedral currents;

(ii) rectifiable k-currents with coefficients in R (as defined in Section 4 with m = 1) are the
M-completion of k-dimensional Lipschitz R-chains by [15, Theorem 4.1.28]; analogously,
flat k-currents with coefficients in R (as defined in Section 4 with m = 1) are the F-
completion of k-dimensional polyhedral chains by [15, 4.1.23];

(iii) a k-current in Rn with coefficients in Rm (as defined in Section 4) is polyhedral, rectifiable,
flat, or of finite mass if and only if all its components are such.

By virtue of these considerations, and as already anticipated, Theorem 4.6 is just a rewriting of
Theorem 9.1 below in the case G = Rm with k = 1.

8.6. Restriction and slicing. We will denote by R U the restriction of a rectifiable R ∈
RG
k (K) to a Borel subset U (cf. [12, Section 3.4]). In particular, if R ∈ RG

0 (K) has the form

R =
∑
a∈A

g(a)JaK ,

then
R U =

∑
a∈A∩U

g(a)JaK .

Recall that if E ⊂ Rn is k-rectifiable, and if f : Rn → Rp is Lipschitz with p ≤ k, then the set
E∩f−1({y}) is (k−p)-rectifiable for (Lebesgue) almost every y ∈ Rp. If R = JE, τ⊗gK ∈ RG

k (K),
then for a.e. y ∈ Rp it is well defined (see [12, Section 3.7]) the slice of R via f at y, denoted

〈R, f, y〉 ∈ RG
k−p(K) .

For these y, the rectifiable G-chain 〈R, f, y〉 has supporting set on E ∩ f−1({y}), and at Hk−p-
a.e. x ∈ E ∩ f−1({y}) the G-orientation of 〈R, f, y〉 at x is ±(τ ⊗ g)(x), where the ± sign is
determined depending on the behaviour of f in a neighborhood of x.
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The following formulae involving the operations just introduced will be very useful in the
sequel.

Proposition 8.1 ([12, Theorems 3.7.1 and 5.2.4]). Suppose that S, T ∈ RG
k (K), U is a Borel

measurable subset of Rn, and f : Rn → Rp is Lipschitz, with p ≤ k. Then, the following conclu-
sions hold true:

(S + T ) U = S U + T U ; (8.8)

〈S + T, f, y〉 = 〈S, f, y〉+ 〈T, f, y〉 for a.e. y ∈ Rp ; (8.9)

〈T U, f, y〉 = 〈T, f, y〉 U for a.e. y ∈ Rp ; (8.10)

M(T U) ≤M(T ) ; (8.11)

ˆ
Rp

M(〈T, f, y〉) dy ≤ Ck,p(Lip(f))pM(T ) . (8.12)

Furthermore, if p = 1 and ∂T is also rectifiable then one has:

〈T, f, y〉 = ∂(T {f ≤ y})− (∂T ) {f ≤ y} for a.e. y ∈ R . (8.13)

We will also need the following result.

Proposition 8.2 ([29, Theorem 2.1]). There exists a group homomorphism (typically known as
the augmentation map) χ : FG

k (K)→ G with the following properties:
(i) χ (

∑
a g(a)JaK) =

∑
a g(a);

(ii) χ(∂T ) = 0 for every T ∈ FG
1 (K);

(iii) ‖χ(T )‖ ≤ F(T );
(iv) F(T ) ≤ ‖χ(T )‖+ M(T )diam(spt(T )).

9. The representation theorem on rectifiable G-chains

Let (G, ‖ · ‖) be a normed Abelian additive group as above.
We will consider a cost function

C : G→ [0,∞)

satisfying the following properties:
(C1) C is even, that is C(−g) = C(g) for every g ∈ G, and furthermore C(g) = 0 if and only if

g = 0 ∈ G;
(C2) C is lower semi-continuous, namely

C(g) ≤ lim inf
h→∞

C(gh) ,

whenever {gh}∞h=1 is a sequence in G such that ‖g − gh‖ → 0 as h ↑ ∞;
(C3) C is subadditive, that is

C(g1 + g2) ≤ C(g1) + C(g2) for every g1, g2 ∈ G .

Observe that, when G = Rm, any cost function as above which, in addition, is monotone
non-decreasing is a multi-material transportation cost as in Definition 3.5.

Let now K ⊂ Rn be a convex compact set. If P ∈ PG
k (K) is a k-dimensional polyhedral

G-chain of the form

P =

N∑
`=1

g`Jσ`K
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for some g` ∈ G and σ` non-overlapping oriented k-simplexes, then we can define the energy of
P by setting

E(P ) :=

N∑
`=1

C(g`)Hk(σ`) . (9.1)

Observe that E(P ) = M(P ) with the choice C(g) = ‖g‖.
This definition naturally extends via relaxation to any k-dimensional flat G-chain T , thus

allowing to define the functional
E : FG

k (K)→ R
by setting

E(T ) := inf

{
lim inf
h→∞

E(Ph) : {Ph} ⊂PG
k (K) with F(T − Ph)→ 0

}
. (9.2)

The following theorem is the anticipated result concerning the representation of E(T ) when
T ∈ RG

k (K).

Theorem 9.1. Let R ∈ RG
k (K). If R = JΣ, τ ⊗ gK is associated with the k-rectifiable set Σ and

the G-valued orientation τ ⊗ g, then

E(R) =

ˆ
Σ
C(g(x)) dHk(x) . (9.3)

Notation 9.2. From now on, if R = JΣ, τ ⊗ gK ∈ RG
k (K), we shall set

E0(R) :=

ˆ
Σ
C(g(x)) dHk(x) . (9.4)

Remark 9.3. Note that, by property (C1), the energy E0 is well defined on RG
k (K), in the sense

that the integrand only depends on the G-orientation τ ⊗ g := [(τ, g)]≡ of R, and not on the
specific representative (τ, g).

The first step towards a proof of Theorem 9.1 consists of showing that the energy E0 is lower
semi-continuous with respect to flat convergence of rectifiable G-chains.

Proposition 9.4 (Lower semi-continuity of E0). Let A ⊂ Rn be an open set. Let Rh, R ∈ RG
k (K)

be such that F(R−Rh)→ 0 as h ↑ ∞. Then

E0(R A) ≤ lim inf
h→∞

E0(Rh A) . (9.5)

We are going to need the following result, which extends a formula typically known in the
literature as integral-geometric identity. To state it, we will make use of the following notation.
With Gr(n, k) we denote the Grassmannian of linear k-dimensional subspaces of Rn. The Haar
measure on Gr(n, k) is denoted γn,k: recall that γn,k(Gr(n, k)) = 1. Finally, if V ∈ Gr(n, k) then
pV : Rn → V denotes orthogonal projection onto V .

Lemma 9.5 (Integral-geometric identity). There exists a constant c = c(n, k) such that for any
R ∈ RG

k (K) it holds:

E0(R) = c

ˆ
Gr(n,k)×Rk

E0

(
〈R,pV , y〉

)
d(γn,k ⊗Hk)(V, y). (9.6)

Proof. The identity is a consequence of [15, 3.2.26; 2.10.15], which states that if E ⊂ Rn is
k-rectifiable then

Hk(E) = c

ˆ
Gr(n,k)

ˆ
Rk

H0(p−1
V ({y}) ∩ E) dHk(y) dγn,k(V ). (9.7)
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for some c = c(n, k). Indeed, for any Borel set A ⊂ Rn, denoting f = 1A, (9.7) implies thatˆ
E
f(x) dHk(x) = c

ˆ
Gr(n,k)

ˆ
Rk

ˆ
E
f(x)1p−1

V ({y})(x) dH0(x) dHk(y) dγn,k(V ). (9.8)

Since the previous equality is linear in f , it holds also when f is piecewise constant. Since
the measure Hk E is σ-finite, the equality can be extended to any measurable function f ∈
L1(Hk E). The case f /∈ L1(Hk E) follows from the Monotone Convergence Theorem via a
simple truncation argument.

Taking R = JE, τ ⊗ gK, and applying (9.8) with f(x) = C(g(x)), we deduce that

E0(R) = c

ˆ
Gr(n,k)

ˆ
Rk

ˆ
E∩p−1

V ({y})
C(g(x)) dH0(x) dHk(y) dγn,k(V ).

We observe that the right-hand side coincides with the right-hand side in (9.6), since, for Hk-
a.e. y ∈ Rk, the 0-dimensional chain 〈R,pV , y〉 is associated with the set E ∩ p−1

V (y) with
G-orientation at H0-a.e. x ∈ E ∩ p−1

V ({y}) equal to ±(τ ⊗ g)(x). �

Proof of Proposition 9.4. Let us first assume k = 0. If R = JΣ, τ ⊗ gK and Rh = JΣh, τh ⊗
ghK then we can formally write

R A =
∑

x∈Σ∩A
τ(x)g(x)JxK ,

and
Rh A =

∑
x∈Σh∩A

τh(x)gh(x)JxK ,

where Σ = {xi}i∈N and Σh = {xhi }h∈N are countable sets, and τ, τh ∈ {−1, 1}.
Fix ε > 0, and let N = N(ε) ∈ N be such that

E0(R A)−
N∑
i=1

C(g(xi)) ≤ ε if E0(R A) <∞ ,

N∑
i=1

C(g(xi)) ≥
1

ε
otherwise .

(9.9)

By the properties of the cost functions C, for every i ∈ {1, . . . , N} there exists a number
ηi = ηi(ε, C(g(xi))) > 0 such that

C(g) ≥ (1− ε)C(g(xi)) (9.10)

whenever ‖g − τ(xi)g(xi)‖ ≤ ηi. Also, let 0 < ri < min{dist(xi, ∂A), 1} be such that the balls
B(xi, ri) are mutually disjoint and moreover∥∥∥∥∥∥τ(xi)g(xi)−

∑
x∈Σ∩B(xi,ρ)

τ(x)g(x)

∥∥∥∥∥∥ ≤ ηi
2

for every ρ ≤ ri . (9.11)

Set η0 := min1≤i≤N ηi and r0 := min1≤i≤N ri. We claim the following: there exist h0 ∈ N and
ρi ∈

(
r0
2 , r0

)
such that

F((R−Rh) B(xi, ρi)) ≤
η0

2
for every h ≥ h0 . (9.12)

In order to see this, let h0 ∈ N be such that

F(R−Rh) ≤ η0r0

16(1 + C1,1)
for every h ≥ h0 ,

33



where C1,1 is the constant from formula (8.12).
Then, by (8.7) there are Sh ∈ RG

0 (K) and Zh ∈ RG
1 (K) such that

R−Rh = Sh + ∂Zh , and M(Sh) + M(Zh) ≤ η0r0

8(1 + C1,1)
.

Observe that also ∂Zh ∈ RG
0 (K). Hence, for a.e. ρ ∈

(
r0
2 , r0

)
we can use equations (8.8) and

(8.13) to write

(R−Rh) B(xi, ρ) = Sh B(xi, ρ) + (∂Zh) B(xi, ρ)

= Sh B(xi, ρ)− 〈Zh, di, ρ〉+ ∂(Zh B(xi, ρ)) ,
(9.13)

where di(y) := |y − xi|.
Since, by the slicing coarea formula (8.12)ˆ r0

r0
2

M(〈Zh,di, ρ〉) dρ ≤ C1,1 M(Zh (B(xi, r0) \B(xi,
r0

2
))) ≤ η0r0

8
,

it immediately follows from Fatou’s lemma that there exists ρi ∈
(
r0
2 , r0

)
such that

lim inf
h→∞

M(〈Zh,di, ρi〉) ≤
η0

4
, (9.14)

and thus (9.13) implies that for every h ≥ h0, up to possibly passing to a subsequence,

F((R−Rh) B(xi, ρi)) ≤M(Sh B(xi, ρi)) + M(〈Zh, di, ρi〉) + M(Zh B(xi, ρi))

≤ η0r0

8
+
η0

4
<
η0

2
.

(9.15)

Notice that it is possible to take one subsequence such that (9.15) holds for every i, since the
index i ranges in a finite set.

Invoking Proposition 8.2(iii), and denoting χ : FG
0 (K) → G the augmentation homomor-

phism, we have that for h ≥ h0

‖χ((R−Rh) B(xi, ρi))‖ ≤ F((R−Rh) B(xi, ρi)) ≤
η0

2
. (9.16)

On the other hand, by Proposition 8.2(i) we also see that

χ((R−Rh) B(xi, ρi)) =
∑

x∈Σ∩B(xi,ρi)

τ(x)g(x)−
∑

x∈Σh∩B(xi,ρi)

τh(x)gh(x) . (9.17)

Together, equations (9.11), (9.16), and (9.17) imply that∥∥∥∥∥∥τ(xi)g(xi)−
∑

x∈Σh∩B(xi,ρi)

τh(x)gh(x)

∥∥∥∥∥∥ ≤ ηi for every h ≥ h0 . (9.18)

By (9.10) and using that the cost function C is even, subadditive and lower semi-continuous
(and, thus, countably subadditive), we can therefore conclude that

C(g(xi)) ≤
1

1− ε
C

 ∑
x∈Σh∩B(xi,ρi)

τh(x)gh(x)

 ≤ 1

1− ε
∑

x∈Σh∩B(xi,ρi)

C(gh(x)) . (9.19)

Summing over i ∈ {1, . . . , N} and using that the balls B(xi, ρi) are pairwise disjoint, we obtain
that for every h ≥ h0

N∑
i=1

C(g(xi)) ≤
1

1− ε
E0(Rh A) . (9.20)
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Passing to the lim inf as h ↑ ∞ and using the fact that ε was arbitrary, this allows to conclude
equation (9.5) when k = 0 in both cases considered in (9.9).

Now, we turn our attention to the case k ≥ 1. Without loss of generality, let us assume that

lim
h→∞

E0(Rh A) = lim inf
h→∞

E0(Rh A) .

By the slicing coarea formula for the flat norm in [12, Theorem 5.2.1(4)], for every plane
V ∈ Gr(n, k) one has ˆ

Rk

F(〈R−Rh,pV , y〉) dy ≤ CkF(R−Rh) . (9.21)

By integrating equation (9.21) in the variable V ∈ Gr(n, k) with respect to the Haar measure
γn,k on Gr(n, k), and taking the limit as h ↑ ∞, we see that

lim
h→∞

ˆ
Gr(n,k)×Rk

F(〈R−Rh,pV , y〉) d(γn,k ⊗Hk)(V, y) = 0 . (9.22)

Thus, along a subsequence (not relabeled), we can conclude that

lim
h→∞

F(〈R−Rh,pV , y〉) = 0 for γn,k ⊗Hk-a.e. (V, y) ∈ Gr(n, k)× Rk . (9.23)

By (8.9), from this it follows that 〈Rh,pV , y〉 F-converges to 〈R,pV , y〉 for γn,k ⊗ Hk-a.e.
(V, y) ∈ Gr(n, k)× Rk. Then, the result for k = 0 and (8.10) yield

E0(〈R A,pV , y〉) ≤ lim inf
h→∞

E0(〈Rh A,pV , y〉) for γn,k ⊗Hk-a.e. (V, y) ∈ Gr(n, k)× Rk .
(9.24)

We conclude the proof by applying twice the integral-geometric identity (9.6). Indeed, we
easily have:

E0(R A) = c

ˆ
Gr(n,k)×Rk

E0(〈R A,pV , y〉) d(γn,k ⊗Hk)(V, y)

≤ c
ˆ

Gr(n,k)×Rk

lim inf
h→∞

E0(〈Rh A,pV , y〉) d(γn,k ⊗Hk)(V, y)

≤ lim inf
h→∞

(
c

ˆ
Gr(n,k)×Rk

E0(〈Rh A,pV , y〉) d(γn,k ⊗Hk)(V, y)

)
= lim inf

h→∞
E0(Rh A) .

(9.25)

�

The second ingredient needed for the proof of Theorem 9.1 is the following technical lemma.
Here, we shall adopt the following notation. Let R = JE, τ ⊗ gK be a rectifiable G-chain. Let
also x ∈ E be such that Tan(E, x) exists. Denote πx the affine k-plane πx := x + Tan(E, x) =
x+ span[τ(x)]. Then, for any r > 0 we will let Sx,r be the rectifiable G-chain defined by Sx,r :=
Jπx∩Br(x), τ(x)⊗g(x)K: this is the chain supported on the disc πx∩Br(x) with orientation τ(x)
and constant density g(x) ∈ G. In other words, we may write Sx,r = g(x) · Jπx ∩Br(x), τ(x), 1K.

Lemma 9.6. Let R = JE, τ ⊗ gK be a k-dimensional rectifiable G-chain in K, and let µ :=
‖g‖Hk E. Then it holds:

lim
r→0+

F(R B(x, r)− Sx,r)
M(R B(x, r))

= 0 for µ-a.e. x . (9.26)
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In the proof of the above lemma, we are going to need a suitable version of the classical
Lebesgue points theorem (see e.g. [1, Corollary 2.23]) adapted to the framework of G-valued
maps. In fact, the same proof can be extended to the case when the target is an arbitrary
(possibly not complete) metric space (X,d), hence we state the result (Proposition 9.8 below)
under this more general assumption. We shall need a few preliminaries concerning metric space-
valued maps. Let Ω ⊂ Rn be an open set, let (X,d) be a metric space, and let f : Ω→ X. If µ is
a positive finite Borel measure on Ω, and f is (Borel) measurable, we say that f is µ-integrable,
and we write f ∈ L1(Ω, X;µ) provided

there exists p ∈ X such that
ˆ

Ω
d(f(x), p) dµ(x) <∞ . (9.27)

Observe that, since µ(Ω) <∞, the condition (9.27) is in fact equivalent to the strongerˆ
Ω

d(f(x), p) dµ(x) <∞ for every p ∈ X . (9.28)

Next, we recall the following elementary fact, known in the literature as Kuratowski’s embed-
ding (see e.g. [18]): every metric space (X,d) embeds isometrically into the Banach space L∞(X)
of bounded functions ϕ : X → R endowed with the sup-norm ‖ϕ‖∞ := sup {|ϕ(p)| : p ∈ X}.
Such an embedding can be easily obtained by fixing a point p0 ∈ X and associating, to every
p ∈ X, the function ϕp ∈ L∞(X) defined by

ϕp(q) := d(q, p)− d(q, p0) for every q ∈ X .

Notice that the embedding is not canonical, since it depends on the choice of p0. If f : Ω → X
is as above, and if Φ denotes a Kuratowski embedding (that is, Φ(p) = ϕp as above), then
F := Φ ◦ f maps Ω into the Banach space B = L∞(X), and f ∈ L1(Ω, X;µ) if and only ifˆ

Ω
‖F (x)− Φ(p)‖∞ dµ(x) <∞ for every p ∈ X , (9.29)

or, equivalently, if and only if ˆ
Ω
‖F (x)‖∞ dµ(x) <∞ . (9.30)

Finally, we recall a few notions concerning Banach space-valued maps. If (B, ‖ · ‖B) is a (real)
Banach space, a map s : Ω→ B is simple if there exist N ∈ N, Borel sets E1, . . . , EN ⊂ Ω, and
ϕ1, . . . , ϕN ∈ B such that

s(x) =
N∑
i=1

ϕi 1Ei(x) ∀x ∈ Ω ,

where 1E is the indicator function of E. A function F : Ω→ B is called:
• weakly µ-measurable if for every ϕ∗ ∈ B∗ the (real-valued) function x ∈ Ω 7→ 〈ϕ∗, F (x)〉
is measurable;
• strongly µ-measurable if there exists a sequence s` of simple functions s` : Ω → B such
that lim`→∞ ‖F (x)− s`(x)‖B = 0 for µ-a.e. x ∈ Ω;
• almost separably-valued if there exists a set Z0 ⊂ Ω with µ(Z0) = 0 such that F (Ω\Z0) =
{F (x) : x ∈ Ω \ Z0} ⊂ B is separable.

The following theorem, known in the literature as Pettis’ measurability theorem, establishes
the fundamental relationship between the three notions just introduced, providing a necessary
and sufficient condition for a Banach space-valued function F to be strongly µ-measurable.

Theorem 9.7 (Pettis’ measurability theorem, see [14, Theorem 2 in Chapter II]). A map F : Ω→
B is strongly µ-measurable if and only if it is weakly µ-measurable and almost separably-valued.
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We are now ready to state and prove the anticipated Lebesgue point theorem for metric
space-valued maps.

Proposition 9.8 (Lebesgue points theorem for metric space-valued maps). Let µ be a positive
finite Borel measure in an open set Ω ⊂ Rn, let (X,d) be a metric space, let Φ be a Kuratowski
embedding of X into L∞(X), and let f ∈ L1(Ω, X;µ) be a µ-integrable function such that F :=
Φ ◦ f is strongly µ-measurable. Then, for µ-a.e. point x the following holds:

lim
r→0

1

µ(B(x, r))

ˆ
B(x,r)

d(f(y), f(x)) dµ(y) = 0 . (9.31)

Proof. Since Φ is an isometry, the conclusion, formula (9.31), is equivalent to

lim
r→0

1

µ(B(x, r))

ˆ
B(x,r)

‖F (y)− F (x)‖∞ dµ(y) = 0 for µ-a.e. x ∈ Ω . (9.32)

Since F is strongly µ-measurable, we can apply Pettis’ measurability theorem to find a set
Z0 ⊂ Ω with µ(Z0) = 0 such that Y := F (Ω \ Z0) ⊂ B = L∞(X) is separable. Let {ϕi}i∈N be a
dense set in Y . For every i ∈ N, consider the function x ∈ Ω \ Z0 7→ ‖F (x) − ϕi‖∞. Since this
function is µ-integrable because f ∈ L1(Ω, X;µ) (cf. (9.30)), by the classical Lebesgue points
theorem there exists a set Zi with µ(Zi) = 0 such that whenever x ∈ Ω \ (Z0 ∪ Zi) it holds

‖F (x)− ϕi‖∞ = lim
r→0

1

µ(B(x, r))

ˆ
B(x,r)

‖F (y)− ϕi‖∞ dµ(y) . (9.33)

In particular, setting Z := Z0 ∪
⋃
i∈N Zi one has that equation (9.33) holds for every i ∈ N

whenever x ∈ Ω \ Z. Note that µ(Z) = 0. Fix ε > 0. Let x ∈ Ω \ Z, and let ϕi be such that
‖F (x)− ϕi‖∞ ≤ ε

2 . Then, we have by triangle inequality:

0 ≤ lim sup
r→0+

1

µ(B(x, r))

ˆ
B(x,r)

‖F (y)− F (x)‖∞ dµ(y)

≤ ‖F (x)− ϕi‖∞ + lim sup
r→0+

1

µ(B(x, r))

ˆ
B(x,r)

‖F (y)− ϕi‖∞ dµ(y)

(9.33)
= 2 ‖F (x)− ϕi‖∞ ≤ ε .

The conclusion, formula (9.32), readily follows from the arbitrariness of ε. �

Proof of Lemma 9.6. Since E is countably k-rectifiable, there exist a set E0 with Hk(E0) =
0, countably many k-dimensional planes Πi ⊂ Rn and C1 and globally Lipschitz maps fi : Πi →
Π⊥i such that

E ⊂ E0 ∪
⋃
i∈N

Gr(fi) . (9.34)

Set Σi := Gr(fi) for the graph of fi. For every x ∈
⋃
i Σi, let i(x) be the first index i such

that x ∈ Σi. Furthermore, for every i, let gi be the G-valued map given by

gi(x) :=

{
g(x) if i = i(x),

0 otherwise .

Let us denote Ri := JE ∩ Σi, τ ⊗ giK. Observe that without loss of generality we can assume
that τ |E∩Σi

coincides with the (continuous) orientation ξi induced on Σi by the orientation on
Πi through the map fi: indeed, otherwise it suffices to replace τ |E∩Σi

with ξi|E∩Σi
and simply

change sign to g on the (measurable) set where τ 6= ξi.
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From the definition of gi it follows that R =
∑

iRi and M(R) =
∑

iM(Ri). Hence, for any
fixed ε > 0 there exists N = N(ε) ∈ N such that∑

i≥N+1

M(Ri) ≤ ε . (9.35)

Define the set E′ ⊂ E by

E′ :=

{
x ∈ E ∩

N⋃
i=1

Σi such that x is a Lebesgue point of gi

with respect to Hk Σi for every i ∈ {1, . . . , N}
}
.

(9.36)

In other words, E′ consists of all points x ∈ E ∩
⋃N
i=1 Σi such that

lim
r→0

1

Hk(Σi ∩B(x, r))

ˆ
Σi∩B(x,r)

‖gi(y)− gi(x)‖ dHk(y) = 0 for i = 1, . . . , N .

Observe that M(R (E \ E′)) ≤ ε because of (9.34), (9.35) and Proposition 9.8 applied with
X = G (endowed with the natural metric d(g, h) = ‖g − h‖), f = gi, and µ = Hk (E ∩ Σi).
Notice that, if Φ denotes a Kuratowski embedding of G into L∞(G) then the map F = Φ ◦ gi
is strongly Hk (E ∩ Σi)-measurable. In order to see this, let first {Iji }∞j=1 be a sequence of
k-dimensional Lipschitz G-chains such that M(Ri − Iji ) → 0 as j → ∞. If τ ji ⊗ gji are the
G-orientations of Iji , and if we fix a choice of representative of the equivalence class such that
τ ji = τi Hk-a.e. where they are both defined, then the convergence in mass implies, through
(8.4), that ‖gi− gji ‖ → 0 in L1(Hk (E ∩Σi)) as j →∞. Notice that each map gji takes at most
countably many distinct values in G, obtained as finite sums of elements in the Z-orbit of the
(finitely many) coefficients in G appearing in the definition of Iji . Hence, since M(Iji ) <∞, this
in turn implies that each gji is an L

1-limit of simple functions, so that, in particular, ‖gi−sji‖ → 0

in L1(Hk (E ∩ Σi)) as j →∞ for simple functions sji . Passing to subsequences, this gives the
pointwise convergence, as j →∞, of ‖gi(x)− sji (x)‖ to zero for Hk-a.e. x ∈ E ∩ Σi.

Let us now set

L := max{Lip(fi) : i = 1, . . . , N}. (9.37)

Fix i ∈ {1, . . . , N}. For every x ∈ Σi there exists r > 0 such that whenever j ∈ {1, . . . , N} is
such that Σj ∩B(x,

√
nr) 6= ∅, then x ∈ Σj .

Observe now that the definition of E′ implies that for any x ∈ E′

∃ lim
r→0

M(Rj (Σj ∩B(x, r)))

Hk(Σj ∩B(x, r))
= ‖gj(x)‖ for every j = 1, . . . , N . (9.38)

Now, fix any point x ∈ E′, and consider any index j ∈ {1, . . . , N} such that x ∈ Σj . When
j = i(x), then gj(x) = g(x), with ‖g(x)‖ > 0. In particular, (9.38) implies that when j = i(x)
there exists r > 0 such that for any 0 < ρ ≤

√
nr

M(Rj (Σj ∩B(x, ρ)))

Hk(Σj ∩B(x, ρ))
≥ ‖gj(x)‖

2
> 0. (9.39)
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Again by Proposition 9.8 applied with µ = Hk Σj , X = G, and f = gj , there exists a radius
r > 0 (depending on x) such that

ˆ
Σj∩B(x,ρ)

‖gj(y)− gj(x)‖ dHk(y) ≤ ε‖gj(x)‖
2
Hk(Σj ∩B(x, ρ))

≤ εM(Rj (Σj ∩B(x, ρ)))

Hk(Σj ∩B(x, ρ))
Hk(Σj ∩B(x, ρ))

≤ εM(Rj B(x, ρ)),

(9.40)

for every 0 < ρ ≤
√
nr.

If, instead, j 6= i(x), then gj(x) = 0 and therefore there exists a radius r > 0 (depending on
x) such that for every 0 < ρ ≤

√
nr

ˆ
Σj∩B(x,ρ)

‖gj(y)‖ dHk(y) ≤
ε‖gi(x)(x)‖
N(1 + L)k

Hk(Σj ∩B(x, ρ))

≤ ε

N
‖gi(x)(x)‖ωkρk

(9.39)
≤ 2(1 + L)k

ε

N
M(Ri(x) B(x, ρ)),

(9.41)

where ωk denotes the volume of the unit ball in Rk. Notice that both the second and third
inequalities in (9.41) use the fact that the surfaces Σj are graphs of L-Lipschitz functions (see
(9.37)), so that

ωkρ
k

(1 + L)k
≤ Hk(Σj ∩B(x, ρ)) ≤ (1 + L)k ωkρ

k .

Now, let i = i(x). By representing fi(Πi)∩B(x, r) locally as the graph of a C1 function (still
denoted fi) from the k-plane tangent to Σi at x (still denoted Πi), translating and tilting such
a plane, we can assume that x = 0, Πi = {xk+1 = · · · = xn = 0}, fi(x) = 0, and ∇fi(x) = 0. By
possibly choosing a smaller radius r = r(x) > 0, we may also assume that

|∇fi| ≤ ε in Πi ∩B(x, r). (9.42)

With these conventions, for ρ suitably small the chain Sx,ρ reads Sx,ρ = JB(0, ρ) ∩Πi, τ(0)⊗
gi(0)K. We let Fi : Πi×Π⊥i → Rn be given by Fi(z, w) := (z, fi(z)), and we set R̃i := (Fi)]Sx,ρ ∈
RG
k (K).
Observe that Sx,ρ = gi(0) · S̃x,ρ, with S̃x,ρ := JB(0, ρ)∩Πi, τ(0), 1K, and R̃i = gi(0) · (Fi)]S̃x,ρ.

Thus, by the standard homotopy formula for classical currents (cf. [27, 26.22]), we deduce that

R̃i − Sx,ρ = ∂h](J(0, 1)K× Sx,ρ)− h](J(0, 1)K× ∂Sx,ρ) , (9.43)

where h : (0, 1)×Πi ×Π⊥i → Rn is the affine homotopy defined by h(t, z, w) := tFi(z, w) + (1−
t)(z, 0).
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Hence, if we denote C(x, ρ) := (B(x, ρ)∩Πi)×Π⊥i , and assume without loss of generality that
K ⊃ spt(J(0, 1)K× Sx,ρ), we have by [27, Formula 26.23]

F(R̃i − Sx,ρ) ≤ M(h](J(0, 1)K× ∂Sx,ρ)) + M(h](J(0, 1)K× Sx,ρ))
≤ C‖Fi − (id, 0)‖L∞(C(x,ρ)) (M(Sx,ρ) + M(∂Sx,ρ))

(9.42)
≤ Cερ (M(Sx,ρ) + M(∂Sx,ρ))

≤ Cε‖g(x)‖ωkρk

≤ Cε‖g(x)‖Hk(Σi ∩B(x, ρ))

(9.39)
≤ CεM(Ri B(x, ρ)). (9.44)

Now, recall that we can assume that the orientation τ coincides on E∩Σi with the continuous
orientation ξi of Σi induced by the orientation of Πi×Π⊥i via Fi. Hence, the rectifiable chain R̃i
reads R̃i = JΣi ∩ C(x, ρ), τ ⊗ gi(x)K = gi(x) · JΣi ∩ C(x, ρ), τ, 1K (cf. [27, 27.2]). Therefore, we
can compute:

M(Ri B(x, ρ)− R̃i) ≤ M(Ri B(x, ρ)− R̃i B(x, ρ)) + M(R̃i (C(x, ρ) \B(x, ρ)))

(9.40)
≤ εM(Ri B(x, ρ)) + M(R̃i (C(x, ρ) \B(x, ρ)))

(9.42)
≤ εM(Ri B(x, ρ)) + Cε‖gi(x)‖Hk(Σi ∩B(x, ρ))

(9.39)
≤ CεM(Ri B(x, ρ)). (9.45)

Hence, we conclude:

F(R E′ ∩B(x, ρ)− Sx,ρ) ≤ F(Ri(x) B(x, ρ)− Sx,ρ) +
N∑
j=1

j 6=i(x)

M(Rj B(x, ρ))

(9.41)
≤ F(Ri(x) B(x, ρ)− R̃i) + F(R̃i − Sx,ρ) + 2εM(Ri(x) B(x, ρ))

(9.44),(9.45)
≤ CεM(R B(x, ρ)). (9.46)

This proves the following: for every ε > 0 there exists a set E′ ⊂ E with M(R (E \ E′)) ≤ ε
such that for every x ∈ E′ there exists r = r(x) > 0 such that for every 0 < ρ ≤ r

F(R (E′ ∩B(x, ρ))− Sx,ρ)
M(R B(x, ρ))

≤ ε . (9.47)

Now, in order to conclude we iterate (9.47). In particular, for every i ∈ N let us denote Ei the
set E′ corresponding to the choice ε := 2−i−1, and let Fi ⊂ Ei be the set of Lebesgue points of
1Ei (inside Ei) with respect to µ = ‖g‖Hk E. By [1, Corollary 2.23], the set Fi equals the set
Ei up to a set of µ-measure 0; moreover, for every x ∈ Fi and for ρ sufficiently small (possibly
depending on x) it holds

M(R B(x, ρ)−R (Ei ∩B(x, ρ))) =

ˆ
(E\Ei)∩B(x,ρ)

‖g‖ dHk

≤ 2−i−1

ˆ
E∩B(x,ρ)

‖g‖ dHk = 2−i−1M(R B(x, ρ)).
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Hence by (9.47) for every x ∈ Fi there exists ri(x) > 0 such that for every 0 < ρ < ri(x)

F(R B(x, ρ)− Sx,ρ) ≤M(R B(x, ρ)−R (Ei ∩B(x, ρ))) + F(R (Ei ∩B(x, ρ))− Sx,ρ)
≤ 2−iM(R B(x, ρ))

and
M(R (E \ Fi)) ≤ 2−i−1.

Denoting F :=
⋃
i∈N
⋂
j≥i Fj , and observing that E\F = E∩F c = E∩

⋂
i∈N
⋃
j≥i F

c
j is contained

in
⋃
j≥i F

c
j for every i ∈ N, we have

M(R (E \ F )) ≤ lim
i→∞

∞∑
j=i

M(R (E \ Fj)) ≤ lim
i→∞

∞∑
j=i

1

2j
= 0

and this implies that Hk(E \F ) = 0. Since every x ∈ F belongs definitively to every Fj (namely,
for every x ∈ F there exists i0(x) ∈ N such that x ∈ Fi for every i ≥ i0(x)), we obtain (9.26). �

Proof of Theorem 9.1. First observe that by the well known properties of the lower semi-
continuous envelope and by Proposition 9.5 it trivially holds true that

E0(R) ≤ E(R) for every R ∈ RG
k (K) . (9.48)

We prove the opposite inequality. Let R = JE, τ ⊗ gK ∈ RG
k (K) be a rectifiable G-chain.

Starting from R, we will construct a sequence Ph of polyhedral G-chains with the property that:
(1) limh→∞ F(R− Ph) = 0;
(2) E(Ph) ≤ E0(R) + 1

h ;
(3) M(Ph) ≤M(R) + 1

h .
The due inequality will then follow in a straightforward fashion from (1) and (2). The in-

equality (3) is not necessary towards the proof of our result, but the possibility to produce a
polyhedral flat-approximation of a rectifiable G-current satisfying (2) and (3) simultaneously is
an interesting byproduct of the technique.

As in Lemma 9.6, we adopt the notation πx for the affine k-plane x+ span[τ(x)] at any point
x ∈ E where the approximate tangent plane Tan(E, x) exists, and Sx,r for the rectifiable G-chain
Jπx∩B(x, r), τ(x)⊗g(x)K = g(x)·Jπx∩B(x, r), τ(x), 1K for r > 0. Note thatM(Sx,r) = ‖g(x)‖ωkrk
and E0(Sx,r) = C(g(x))ωkr

k.
Let us also set

µ := ‖g‖Hk E ,

and
ν := C(g)Hk E .

Observe that µ is a positive Radon measure in Rn with µ(Rn) = M(R) <∞, and that ν is finite
if and only if E0(R) <∞. From now on, we will assume the validity of the latter condition, since
the representation formula is evidently true if E0(R) =∞.

Fix ε > 0. We make the following
Claim: There exists a finite family of mutually disjoint balls {Bi}Ni=1 with Bi := B(xi, ri) ⊂ K

being the ball with center xi ∈ E and radius ri > 0, such that the following properties hold:
(i) ri ≤ ε ∀ i = 1, . . . , N and µ(Rn \ (∪Ni=1Bi)) ≤ ε ;

(ii) if we denote Ri := R Bi and Si := Sxi,ri , then

F(Ri − Si) ≤ εµ(Bi) ;

(iii) |µ(Bi)− ‖g(xi)‖ωkrki | ≤ εµ(Bi), ∀ i = 1, . . . , N ;
(iv) if E0(R) <∞, then

C(g(xi))ωkr
k
i ≤ (1 + ε)ν(Bi), ∀ i = 1, . . . , N .
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Let us assume the claim for the moment, and show how to conclude the proof of the theorem.
From point (iii) we deduce that

M(Si) ≤ (1 + ε)M(Ri) , (9.49)

whereas point (iv) implies that if E0(R) <∞ then

E0(Si) ≤ (1 + ε)E0(Ri) . (9.50)

Furthermore, by approximating every disc πxi ∩Bi with simplexes we can conclude that there
exist chains Pi ∈PG

k (K) supported on πxi ∩Bi such that

F(Si − Pi) ≤ εµ(Bi), M(Pi) ≤M(Si) and E(Pi) ≤ E0(Si) . (9.51)

Set P :=
∑N

i=1 Pi. Since the balls Bi are mutually disjoint, we have that

E(P ) =
N∑
i=1

E(Pi) ≤
N∑
i=1

E0(Si)
(9.50)
≤ (1 + ε)

N∑
i=1

E0(Ri) = (1 + ε)E0(R) , (9.52)

and also that

M(P ) =

N∑
i=1

M(Pi) ≤
N∑
i=1

M(Si)
(9.49)
≤ (1 + ε)

N∑
i=1

M(Ri) = (1 + ε)M(R) . (9.53)

Furthermore, we can estimate

F(P −R) ≤
N∑
i=1

F(Pi −Ri) + M

(
R (Rn \

N⋃
i=1

Bi)

)

≤ ε+

N∑
i=1

(F(Pi − Si) + F(Si −Ri))

(ii),(9.51)
≤ ε+ 2ε

N∑
i=1

µ(Bi) = ε(1 + 2M(R)) .

This completes the proof of the theorem, provided that we show how to obtain the claim. In
order to do this, let us consider the set F of all points x ∈ E such that g(x) 6= 0 and the following
conditions are both satisfied:

(a) it holds

lim
r→0+

F(R B(x, r)− Sx,r)
M(R B(x, r))

= 0 ;

(b) setting ηx,r(y) := y−x
r , we have that for r ↓ 0 the following holds true:

µx,r := r−k(ηx,r)](µ B(x, r))
∗
⇀ ‖g(x)‖Hk (πx ∩B1(0)) ,

νx,r := r−k(ηx,r)](ν B(x, r))
∗
⇀ C(g(x))Hk (πx ∩B1(0)) ,

where the weak* convergence is in the sense of measures. Note that µ(E \ F ) = 0: indeed,
condition (a) holds true µ-a.e. by Lemma 9.6; condition (b) holds true µ-a.e. by [11, Theorem
4.8], as both µ and ν are k-rectifiable Radon measures (also observe that µ Î ν because of the
properties of the cost function).

Now, for every x ∈ F there exists a radius 0 < r(x) < ε such that

|µx,r(B(0, 1))− ‖g(x)‖ωk| ≤
ε

2
‖g(x)‖ωk for a.e. r < r(x) ,
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or equivalently

|µ(B(x, r))− ‖g(x)‖ωkrk| ≤
ε

2
‖g(x)‖ωkrk for a.e. r < r(x) . (9.54)

In particular, this implies that(
1− ε

2

)
‖g(x)‖ωkrk ≤ µ(B(x, r)) for a.e. r < r(x) , (9.55)

and thus, plugging (9.55) into (9.54), we get that

|µ(B(x, r))− ‖g(x)‖ωkrk| ≤
ε

2− ε
µ(B(x, r)) ≤ εµ(B(x, r)) for every x ∈ F , for a.e. r < r(x) .

(9.56)
Analogous computations show that

|ν(B(x, r))−C(g(x))ωkr
k| ≤ ε

2− ε
ν(B(x, r)) ≤ εν(B(x, r)) for every x ∈ F , for a.e. r < r(x) .

(9.57)
The claim is then a simple consequence of the Vitali-Besicovitch covering theorem. �
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