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ABSTRACT
The pervasive diffusion of Machine Learning (ML) in many critical

domains and application scenarios has revolutionized implementa-

tion and working of modern IT systems. The behavior of modern

systems often depends on the behavior of ML models, which are

treated as black boxes, thus making automated decisions based on

inference unpredictable. In this context, there is an increasing need

of verifying the non-functional properties of ML models, such as,

fairness and privacy, to the aim of providing certified ML-based

applications and services. In this paper, we propose a methodology

based on Multi-Armed Bandit for evaluating non-functional prop-

erties of ML models. Our methodology adopts Thompson sampling,

Monte Carlo Simulation, and Value Remaining. An experimental

evaluation in a real-world scenario is presented to prove the appli-

cability of our approach in evaluating the fairness of different ML

models.
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• Computing methodologies → Machine learning; • Security
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1 INTRODUCTION
Today, traditional software systems based on deterministic algo-

rithms are increasingly substituted by systems where ML models

reason on data to calculate a solution to individual instances of

a problem [17]. ML models are at the core of these systems and

are deeply changing their design and development, as well as their

monitoring and verification. The verification of non-functional

properties of software systems is a major challenge by itself, which

accompanied all steps of software system evolution from traditional

software based-systems to service-based systems, cloud, and Inter-

net of Things [4]. Assurance techniques [7] have been developed to

address it focusing on the complexity and heterogeneity of systems,

requirements on costs, and resource limitations. This challenge has

been even exacerbated by the development of systems based on

ML models. According to a study by Yoshioka and Ishikawa [46]

involving several industry experts, assessment of non-functional

requirements is the most complex stage of a ML-based software

system development. ML models are in fact less transparent and

difficult to monitor, thus impeding the adoption of traditional as-

surance approaches [7].

This paper presents a methodology based on Multi-Armed Ban-

dit (MAB) for the evaluation of non-functional properties of ML

models, which represent the cornerstone for a future certification

of ML-based software systems. Specifically we consider a scenario

where multiple ML models are available and can be selectively

compared in terms of their non-functional properties. Our solu-

tion can be initially adopted at development time to select the best

model to be integrated in the system (static evaluation) and then

used to monitor the model behavior at run time (dynamic evalua-
tion). In the latter case, ML models evolve over time (e.g., partial

re-training/tuning) and therefore their performance in terms of

non-functional property support is monitored possibly triggering

substitution of the deployed model. In this paper we depart from the

assumption of having the complete training process under control

and consider the worst-case scenario in which pre-trained models

need to be verified (i.e., tested and monitored). We note that our

assumption does not affect the generality of our approach that can

be applied in scenarios with full control of the training process,

complementing the precision-recall evaluation of ML models with

a non-functional property score.

https://doi.org/10.1145/3415958.3433101
https://doi.org/10.1145/3415958.3433101
https://doi.org/10.1145/3415958.3433101
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The contribution of this paper is threefold. Fist, we propose a

taxonomy of non-functional properties of ML models. Second, we

propose a MAB-based methodology evaluating and comparing non-

functional properties of different ML models. Such models can vary

depending on the selected ML algorithm or training process. Third,

we experimentally evaluate our solution in a real-world scenario

focusing on the property fairness.

The paper is organized as follows. Section 2 presents our tax-

onomy of ML non-functional properties. Section 3 describes our

reference scenario focusing on property fairness. Section 4 presents

our MAB-based methodology. Section 5 presents the implementa-

tion of our methodology. Section 6 shows our experimental results.

Section 7 presents the related work and Section 8 draws our con-

clusions.

2 NON-FUNCTIONAL PROPERTY
TAXONOMY

According to [27] a non-functional requirement “describes not what
the software will do but how the software will do it.” The unambigu-

ous specification of a security property is an important aspect for

the correct evaluation of non-functional requirements. For instance,

Glinz et al. [22] presented 11 different definitions of non-functional
properties. Anisetti at al. [5, 6] detailed security non-functional

properties for web services in the context of a certification frame-

work. When applied to machine learning models, however, classic

non-functional properties must be rethought and redefined. ML

models are opaque (black-box) compared to traditional source code

and it is difficult to predict run-time software behavior at design

time.

We then propose a taxonomy on non-functional properties for

ML models as follows.

• Transparency: the property targeted by explainable AI solu-
tions. Many definitions of this property have been proposed;

most have to do with the feasibility of ex-post interpretation,

that is, a human being able to step through the procedure

that the model applied upon receiving an input and reach

the same decision. We specialize it into two sub-properties:

– Explainability: the ability of explaining the model (what

has been learned), on one side, and individual decisions

taken by the model, on the other side. Currently the ability

to explain decisions depends on the learning algorithm

used to train the model [45].

– Interpretability: it expresses a cause and the resulting

effect can be observed. It permits to predict consequences

on models when changes to input data are observed [21].

• Fairness: defined as the absence of discrimination, that is,

prejudice against an individual or a group based on the value

of specific features [26].

• Legality: measuring the compliance to laws and regulation.

The pervasiveness of Artificial Intelligence in fact has pushed

public institutions to legislate on many non-functional as-

pects of AI, including privacy, quality, fundamental human

rights, fairness, civil and criminal liability [23].

• Maintainability: ML models do not shirk the need to be

adapted to new needs or to the changing of the environment.

Maintainability (also known as retrainability) expresses the

ability of going through complete or partial model retrain-

ing [38].

• Modularity: measure the ability to successfully manage

large or highly complex systems. Its applicability depends

on the specific algorithm used for model training [35].

• Performance: the performance of a computation. Usually

evaluated by metrics that depend on the specific problem

solved by the model. Many metrics are available such as

accuracy, precision/recall, Area Under the ROC curve, to

name but a few. Often performance and accuracy are used

interchangeably.

• Privacy: it expresses the notion that ML models do not store

information about their training set, nor such information

can be inferred from the models’ output. Often, this refers to

the compliance to a specific national or international regula-

tion, such as the General Data Protection Regulation (GDPR).

• Reliability: the ability of the software to operate without

failures and to maintain a certain level of performance when

used under normal conditions and for a certain period of

time [32]. Bosnic et al. [12] restricted its meaning for ML

models as the quality of the single prediction, moving more

closely to a concept of accuracy of prediction.

• Safety: “the expectation that a system does not, under defined
conditions, lead to a state in which human life, health, property,
or the environment is endangered” [27]. It is a concept closely
related to the application domain.

• Scalability: ML models follow the usual rule that as the

context grows, the system must be able to adapt and guar-

antee a sufficient level of performance. Property scalability

expresses the capability of handling the increase in the data

volume without affecting the model’s inference time.

• Security: it expresses ML robustness against attacks. ML

techniques include new assets to be protected from attackers,

such as data, models, hyperparameters, weights and coeffi-

cients used by models, and proprietary algorithms. ML can

be attacked with traditional techniques or ad hoc techniques

(e.g., adversarial machine learning techniques).

• Testability: the very nature of ML models makes testing

extremely arduous since, unlike traditional software, output

is not known in advance but it is represented by a predic-

tion. Moreover depending on the algorithms used during

the training, the different generated models can provide dif-

ferent outputs starting from the same input data. It is not

possible to test a model for which there is no predicted data

available. In this case only a functional expert can evaluate

what is predicted by a model based on the same input data

and repeating the cognitive process.

• Usability: it expresses the effort required by users to learn

the software, prepare input data and interpret the results.

3 REFERENCE SCENARIO: PROPERTY
FAIRNESS

We consider a reference scenario where different pre-trained ML

models are compared on the basis of a given non-functional prop-

erty. More in detail we consider i) a static evaluation scenario where
ML models are compared at development time to select the one
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best supporting the non-functional property and ii) a dynamic eval-

uation scenario where the models are partially updated at run time

and compared with the original model possibly triggering model

substitution. The first scenario complements traditional approaches

where ML models are compared in terms of precision and recall

with a comparison based on non-functional property evaluation.

The second scenario considers ML models that are updated (e.g.,

via partial re-training/tuning) based on the operation conditions,

and aims to avoid the possibility of employing a sub-optimal model

whose performance degrades over time.

For conciseness, but with no loss of generality, we focus on a

specific functional property, namely, fairness. Modelling the con-

cept of fairness is extremely complex, since it is affected by ethical,

socio-economic, cultural and religious factors [19, 42]. More than 20

different definitions of fairness are known in literature [44]; among

the most relevant ones we emphasize the following:

• fairness through unawareness, achieved without using explic-
itly protected attributes in the predictive process. Currently

this definition is considered as naive;

• group fairness, stating that the predictor must predict a cer-

tain result for all individuals regardless of their belonging to

a group, making sure that the probability with which a cer-

tain result is assigned is almost equal between groups [15];

• individual fairness, it defines a fair predictor as a predictor
that produces similar results for similar individuals [18].

From an ethical point of view, every individual is worthy of

protection and, moreover, in case of particularly sensitive

application domains, the individual discriminated can appeal

to the appropriate Authority against those who used the

model to make the decision;

• equality of opportunity, it requires no discrimination between

the groups of those receiving the advantageous forecast [25].

Many concrete projects have been developed trying to implement

evaluation of machine learning models fairness [2, 3, 9, 11, 20].

These projects, however, produce reports that show several different

metrics and require an analysis of the results by a human being

with specific skills, in charge of evaluating each case on the basis

of the application context. The proposal in this paper requires no

human intervention. To demonstrate it, we adopt a simple notion of

fairness based on the identification of a set of protected attributes

[19].

4 THE MAB-BASED METHODOLOGY
We propose a methodology based on Multi-Armed Bandit for com-

paratively evaluating the non-functional properties of ML models.

Our methodology permits to compare different models to find the

one with the best support for a specific non-functional property.

Multi-Armed Bandit represents a class of problems where a se-

quential experiment has the purpose of maximizing the reward

earned by performing a single action chosen in a set of different

actions, every action (arm) with a different odds of winning/losing.

Typically there are K arms each of which associated with an un-

known value va representing arm’s reward. The goal of the ex-

periment is to choose the arm with the best reward to pile up the

greatest reward amount across the sequence of experiments. Re-

wards rely on a probability distribution fa (y |θ ) beingy the observed

reward and θ a set of unknown parameters that must be learned

through experimentation. va (θ ) is a function of θ such that if θ is

known, the optimum arm is known as well. This class of problems

is based, from a mathematical point of view, on Bayesian inference.

The success probability is unknown before the execution of each

experiment and is modelled by a probability distribution called Beta
distribution, which is a distribution defined by 2 parameters (α and

β) on the [0,1] interval. This distribution is used within Bayesian

statistics to rule probability p of a Bernoulli process. Beta distri-

bution is a special case of the Dirichlet distribution, is related to

the Gamma distribution, and has the following probability density

function:

f (x ;a,b) =
1

B(α, β)
x (α−1)(1 − x)β−1 (1)

where the normalisation function B is the Euler beta function

B(α, β) =
∫
1

0
tα−1(1 − t)β−1dt .

While the experiment is executed, arms are pulled and their

Beta distributions are updated according to arms’ results. In our

methodology the selected arms refer to the ML models that are eval-

uated against the requested non-functional property. After pulling

an arm, it detects and collects the result, and updates the arm’s

Beta distribution. Then it checks if the experiment can terminate

by evaluating whether the winning arm has been identified. If the

experiment cannot terminate, it chooses the next arm to be pulled

and continues.

4.1 Solving the MAB
Many solutions to the MAB problem have been proposed in liter-

ature. A greedy solution was proposed by Sutton et al. [41], but

it turned out to be suboptimal. In this paper we use Thompson

Sampling [14]. Let us consider yt denoting a set of data observed
at time t ; we define

wat = Pr(a is optimal | yt )

=

∫
l(a = argmaxva (θ )p(θ |yt )dθ

where p(θ |yt ) is the Bayesian posterior probability distribution of

θ considering the data observed at time t . Thompson sampling as-

signs observation at time t +1 to arm a with probabilitywat , which

maximizes the reward. Once an arm has been chosen by Thompson

Sampling, its actual performance must be evaluated by applying

a score function to it; the algorithm can then determine whether

the choice made by Thompson Sampling was good or not. As the

experiment goes on, arms with best performance are rewarded

by updating their Beta distribution in order to recall their good

performance. This causes arms that do not provide good perfor-

mance to be “punished” and ending up being “pulled” fewer times.

Probabilitywat can be calculated with a Monte Carlo simulation

[34] that permits to define an early experiment termination before

having consumed all the runs. Early termination is based on each

arm’s probability to be the winner of the experiment and the notion

of “value remaining in the experiment” [39], according to which

the experiment ends when 95% of the samples of a Monte Carlo

simulation have a residual value less than 1% of the value of the

optimal arm. This is assumed to minimize the “regret” (the missed

reward) for the early termination of the experiment. Formally, let

us denote θ0 as the true value of θ and a∗=argmaxa va (θ0) as the
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very optimal arm; early termination of experiment regret at time

t is given by va∗ (θ0) − va∗t (θ0), which stands for the value of the

difference between the very optimal arm and the seemingly optimal

arm at time t . Basically, regret is not directly observable, but may

be computed by means of a posterior probability distribution. In-

deed, being v∗(θ
(д))=maxa va (θ

(д)) with θ (д) drawn from p(θ |yt ),
we have

r (д) = v∗(θ
(д)) −va∗t (θ0)

deriving from a regret posterior probability distribution. Note that

v∗(θ
(д)) represents the maximum available value within Monte

Carlo draw set д and va∗t (θ0) represents the value (still taken in д)
for the arm considered best among Monte Carlo extractions. Their

difference is usually 0, but can be positive in some cases. The regret’s

statistical distribution can be summarized by high quantile, usually

the 95
th
percentile, to show the potential value remaining (PVR)

of the experiment. It represents the value of the reward, for each

run, that would be lost if the experiment ends at time t . This value
can be expressed in the unit of measure used in the experiment. In

real scenarios, with the need to find an arm that has a very high

reward, a criterion normally used is to end the experiment when

the PVR is lower than a certain significant threshold. In a MAB type

experiment, it is possible that more than one arm show the same

performance. In this case, thanks to PVR, the experiment can end

with two groups of arms: the first containing the arms lower than

the threshold, the second with arms that can be almost equivalent

to each other. From this second group, any arm can be chosen to

conclude the experiment. In addition, it is possible to usewat value

to choose the final arm among potential winners. Lastly, regret may

be calculated (and this is our choice) as the percentage deviation

from the arm currently identified as optimal, so that draws from

the posterior probability are given by

p(д) =
v∗(θ

(д)) −va∗t (θ
(д))

va∗t (θ
(д))

(2)

which represents a percentage value independent from the adopted

unit of measure.

Defining a suitable score function is crucial for our methodol-

ogy, since it is fundamental to determine a winner arm with the

Thompson sampling approach. The score function can be used to

enforce non-functional properties and its definition depends on

the property itself and the scenario (e.g., the available data and the

type of prediction). For instance, the score function for property

fairness in Section 3 is the variance of the prediction varying the

set of protected attributes. We leave the mapping of non-functional

properties in Section 2 to appropriate score functions for our future

work. For instance, the Shapley Additive Explanation function in

[30] can be adapted to our scenario to produce a score function that

is computationally efficient.

5 MAB IMPLEMENTATION
We present the implementation of our methodology in Section 4.1

following the pseudo-code in Figure 1.

The models to be evaluated and the data set used during process-

ing are first loaded and trigger the execution of the methodology.

MAB algorithm (function k_arm_bandit) receives as input i) the
models (arms), ii) the data needed to test the models, iii) parameter

par_alpha, used by value remaining in experiment to terminate

when the (1 - par_alpha)th percentile of residual value is less than

1% of MAB wins of an arm, and iv) the minimum number of it-

erations to be done (burn_in) to prevent the experiment to end

without executing enough draws. MAB algorithm starts setting the

threshold value of a given fairness-related score function, which

is used to decide whether an arm is a winner or a loser. Then, for

every row in the data set:

• it uses function thompson_sampling to choose an arm to

experiment. This is done by drawing a sample from each

arm’s beta distribution in equation (1) and returning the one

with the maximum value;

• once the arm is chosen, function fair_prediction makes a

prediction with the inline data and the chosen model. The

prediction is carried out in an ad hoc function that, starting

from the single input data corresponding to an individual,

generates many different data lines covering all the possible

combinations of those protected attributes that are relevant

for the given score function. Once these data lines (fake rows)

have been generated, they are given as input to the model

that makes the predictions. Then the score function of this

set of predictions is calculated and returned as output;

• if the score value returned as output exceeds the threshold set

at the beginning of the experiment (functionk_arm_bandit),
the model has failed, that is, it has made non-fair predictions.

Otherwise, when the variance is below the threshold, the

prediction is considered fair. Depending on the result, the

positive or negative outcome of the prediction is tracked for

the arm by increasing arm’s alpha or beta values, respec-

tively;

• function monte_carlo_simulation is executed to simulate

probabilities of arms being winners. This is done by creating

a two-dimensional matrix, having dimensions represented

by the number of arms and a fixed number which in our

case is 100, filled with samples extracted from arms’ beta

distributions in equation (1). Then, it counts the frequency

of each arm being winner, and returns the matrix and the

probability of each arm being the winner;

• function k_arm_bandit records current estimates of each

arm’s wins and checks whether the experiment can termi-

nate by verifying whether there have been enough iterations

against (burn_in) and by calling function should_terminate.
The latter checks if value remaining in the experiment is

less than 1% of the number of wins of the winning arm, by

calculating the regret applying equation (2) against the (1

âĂŞ par_alpha)th percentile.

6 EXPERIMENTAL EVALUATION
We experimentally evaluated our MABmethodology in a real-world

scenario.

6.1 Experimental Setup
Let us consider the problem of estimating the bail that an individ-

ual awaiting trial can pay to be set free using a ML approach. In

such a context, fairness of prediction is of paramount importance,

even more important than the precision of the bail prediction. Our
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INPUT
arms[]: models to evaluate

data[]: data set for experiment

OUTPUT
winner_idx : index of winner arm
est_models[]: percentage of estimated

wins for each arm

draws[]: number of draws for each arm

MAIN
Initialize par_alpha: terminate experiment

when the (1- par_alpha)th
percentile of the remaining value is

less than 1% of the winner’s wins

Initialize burn_in: minimum number of

iterations

(winner_idx , est_models[], draws[]) =
k_arm_bandit(arms[],data[],
par_alpha,burn_in)

K_ARM_BANDIT
Initialize VARIANCE : threshold value upon

which prediction is fair

for each item∈data[]
arm= thompson_sampling(arms[])
var= fair_prediction(arm,item)

if (var< VARIANCE)
record arm’s success by increasing

arm’s alpha parameter

else
record arm’s failure by increasing

arm’s beta parameter

(mc[], p_winner []) =
monte_carlo_simulation(arms[])

est_models[] = record current estimates of each

arms[]’ wins as alpha / (alpha + beta)

if (item.index > burn_in) AND
should_terminate(p_winner [], est_models[],
mc[], par_alpha)
break

draws[] = count draws for each arms[]
return(winner_idx , est_models[], draws[])

THOMPSON_SAMPLING
for each arm∈arms[]

sample_p[] = draw sample from arm’s

beta distribution

idx= argmax(sample_p[])
return(idx )

FAIR_PREDICTION
rows[] = item
rows[] += generate test data for all protected

groups against item
predicted_vals[] = arm.predict(rows[])
return(variance(predicted_vals[]))

MONTE_CARLO_SIMULATION
Initialize draws= 100

alphas[], betas[] = arms[]’s alphas and betas

mc[] = matrix [arms .dimension, draws )
of samples from beta distributions of

alphas and betas
counts[] = count frequency of each arm

being winner

for each count ∈counts[]
p_winner [] = count / draws to approximate

probability distribution

return(mc[],p_winner [] )

SHOULD_TERMINATE
winner_idx= argmax(p_winner [])
values_r emaininд = (max(mc ) -mc (winner_idx ))

/mc (winner_idx )
percentile = compute values_r emaininд’

( 1 - par_alpha)th percentile

if (percentile< (0.01 * est_models[winner_idx ]))
return(true)

else
return(false)

Figure 1: Pseudocode of our MAB-Based Methodology.

experimental evaluation used the Connecticut State Department

of Correction data set
1
that provides a daily updated list of people

detained in the Department’s facilities awaiting for a trial. This

data set anonymously discloses data of individual people detained

in the correctional facilities every day starting from July 1
st
, 2016.

It contains attributes such as last admission date, race, gender, age,

type of offence and facility description, in more than 4 millions data

points (at the download date). We partitioned the data set into train-

ing (80% of the available data) and testing (20% of the available data)

sets. We used the training set to train three supervised machine

learning models suitable for the bail prediction (i.e., classification

and regression trees, K-nearest neighbours and naive Bayes classi-

fier) and then considered such models as our pre-trained models

to be compared for fairness. We then partitioned the test set into

4 different experiments defined as follows: i) exp1: 114.135 rows
(a portion of the test set), ii) exp2: 986.977 rows (the entire test

set), iii) exp3: 1.321 rows (a subset of experiment 1), exp4: 50 rows
(very limited test set). In the following, we consider race and gender

as protected attributes for our notion of fairness (Section 3), and

define the score function as the variance of the predicted bails. Our

solution has been implemented in Python and tested on a laptop

with Intel Core i7 processor at 2.60 GHz and with 16.0 GB of RAM

memory running a Microsoft Windows 10 OS. All the scripts used

to implement our methodology and to carry out this experimental

evaluation are available at https://bit.ly/3jCZ3KZ.

1
Available at https://data.ct.gov/Public-Safety/Accused-Pre-Trial-Inmates-in-

Correctional-Faciliti/b674-jy6w and downloaded February 21
st
, 2020 in the form of a

CSV text file

6.2 Experimental Results
The score function threshold was set to 200, a very low threshold

that has been chosen to better pick bail variations among runs. Ta-

ble 1 shows the results of the application of the MAB methodology

in our 4 experiments. Each cell represents the number of times a

model has been chosen by Thompson sampling within our solution.

Table 1: MAB results for each experiments.

Models (arms) / Experiments exp1 exp2 exp3 exp4
Classification and 16 9 9 10

Regression Trees

K-nearest 85 61 17 17

neighbours

Naive Bayes 1300 1331 1295 23

classifier

TOTAL DRAWS 1401 1401 1321 50

Figure 2 shows the percentage of draws made for each exper-

iment on each model. In all experiments the model trained with

Naive Bayes classifier has been the most successful. Experiments 1,

2 and 3 completed much earlier than consuming the whole data set

thanks to the application of the value remaining in experiment, as
the model winning prevailed over others. We can observe that the

models most likely to be the ones with the best performance were

extracted a greater number of times. This clarify how the Thomp-

son sampling with Monte Carlo simulations using value remaining

permitted to identify the “winning” model over the others, choosing

it preferentially, although models with lower performance were

also tested from time to time.

https://bit.ly/3jCZ3KZ
https://data.ct.gov/Public-Safety/Accused-Pre-Trial-Inmates-in-Correctional-Faciliti/b674-jy6w
https://data.ct.gov/Public-Safety/Accused-Pre-Trial-Inmates-in-Correctional-Faciliti/b674-jy6w
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Figure 2: Percentage of draws for each experiment. Naive
Bayes Classifier (NBC), Classification and Regression Trees
(CART), and K-nearest neighbours (KNN).

The explore/exploit trade-off has therefore been fully addressed.

The result was confirmed by experiment exp3, where a data set

forcibly lower than the number of iterations normally sufficient

to stop the experiment was used. In experiments exp3 and exp4,
instead, the algorithm consumed all the input data since the low

cardinality of the input did not allow to terminate the experiment in

advance. The experiment exp4 shows that, given the few available

iterations, the MAB does not highlight a preference for a clear

choice.

6.3 Performance evaluation
The experiments took the following time to complete: i) exp1:
105.711s , ii) exp2: 99.546s , iii) exp3: 81.176s , iv) exp4: 3.588s . We

note that the execution time is more affected by data set rows than

draws. The reason is that the value remaining in experiment allows

experiments to end earlier. So it takes almost the same CPU effort

to Thompson Sampling to solve the MAB problem. Figure 3 shows

processing time (expressed in seconds) for every experiment, the

related test set size and the number of draws. We note that execut-

ing the experiment on the same data multiple times lead to partially

different results, but the same winning arm.

6.4 Discussion on fairness and score function
Let us consider the sample data shown in Table 2 that shows the

details of a series of predictions made during our experiments. The

table focuses on unfair predictions made by models. Column run
refers to the progressive execution, that is, a row has been read from

the data set and has been processed. As already described, for every

row read from the data set, fake rows are generated to cover all the

possible combinations of protected attributes. To better understand

the table, predictions must be read by grouping them by column run.
Column bail contains the result of the prediction (the predicted bail

for the input data) and column variance shows the variance of bail
among the run. Column arm shows the model index in charge of

the prediction chosen by Thompson Sampling. In the case of run 5,

there is a discrimination between females andmales, having females

lower predicted bail. Run 124 shows a discrimination between black
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Figure 3: Performance in terms of seconds compared to ex-
periment’s dataset dimension(in log scale) and number of
draws.

people and other races, having black people lower predicted bail, no

matter for gender. Run 481 shows even more discrimination among

races with three different predicted bail amounts for indeterminate

race, white and asian/black/Hispanic race.

7 RELATEDWORK
Continuous monitoring and evaluation of machine learning model

properties are hot research topics.The increasing adoption of ML

models at the basis of automatic decisions involving humans in

fact calls for a new governance of ML models, allowing users to

understand where and when (if not how) an ML inference came

to be. The research agenda for AI governance [16] aims to define

policies regulating the use of AI according to the desired properties

of AI systems. System properties can be classified in architectural

properties (how the system is structured), functional properties

(what the system can do), and non-functional properties (the one

in this paper) [17, 24]. In this context, some solutions have been

provided to represent architectural properties of AI pipelines via

symbolic representation [28, 37]. Unfortunately, as discussed in

[17], automatic reasoning on formal representations of ML models

is still in its infancy [29], and only solutions to verify robustness

with respect to adversarial perturbations are available [10]. Another

possible verification approach is based on certification [7]; however,

traditional solutions cannot be applied since the new generation

of ML-powered applications challenges the assumption of classic

verification and testing that the business logic of the application,

or at least its design, is stable at verification time.

Many concrete projects have been developed trying to imple-

ment evaluation of machine learning models on specific properties,

most of them focusing on property fairness. FlipTest [11] is a test

methodology that allows to highlight discriminatory trends in clas-

sifier algorithm models. It is a black-box technique that uses the

concept of optimal transport to compare individuals located in

groups of different protected attributes, comparing the behavior of

the model in the face of a variation in sensitive attributes. Agarwal

et al. [2] describe a similar approach based on i) techniques of sym-

bolic execution used for automatic generation of inputs through the
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Table 2: Sample data for unfair runs. CART refers to Classification andRegression Tree arm andKNN toK-Nearest Neighbours.

(Run) Age Offense Id. Facility Id. Detainer Id. Gender Race Bail Variance Arm
5 31 92 35 4 Female Black 10000 60025000000 CART

5 31 92 35 4 Female Indeterminate 10000 60025000000 CART

5 31 92 35 4 Female Asian 10000 60025000000 CART

5 31 92 35 4 Female Hispanic 10000 60025000000 CART

5 31 92 35 4 Female White 10000 60025000000 CART

5 31 92 35 4 Male Indeterminate 500000 60025000000 CART

5 31 92 35 4 Male Asian 500000 60025000000 CART

5 31 92 35 4 Male Black 500000 60025000000 CART

5 31 92 35 4 Male Hispanic 500000 60025000000 CART

5 31 92 35 4 Male White 500000 60025000000 CART

124 30 33 14 7 Male Hispanic 1700000 400000000 KNN

124 30 33 14 7 Female Indeterminate 1700000 400000000 KNN

124 30 33 14 7 Female Asian 1700000 400000000 KNN

124 30 33 14 7 Female Black 1650000 400000000 KNN

124 30 33 14 7 Female Hispanic 1700000 400000000 KNN

124 30 33 14 7 Female White 1700000 400000000 KNN

124 30 33 14 7 Male Indeterminate 1700000 400000000 KNN

124 30 33 14 7 Male Asian 1700000 400000000 KNN

124 30 33 14 7 Male Black 1650000 400000000 KNN

124 30 33 14 7 Male White 1700000 400000000 KNN

481 33 24 35 4 Female Indeterminate 20300 41313600 KNN

481 33 24 35 4 Female Asian 5000 41313600 KNN

481 33 24 35 4 Female Black 5000 41313600 KNN

481 33 24 35 4 Female Hispanic 5000 41313600 KNN

481 33 24 35 4 Female White 15050 41313600 KNN

481 33 24 35 4 Male Indeterminate 20300 41313600 KNN

481 33 24 35 4 Male Asian 5000 41313600 KNN

481 33 24 35 4 Male Black 5000 41313600 KNN

481 33 24 35 4 Male Hispanic 5000 41313600 KNN

481 33 24 35 4 Male White 15050 41313600 KNN

systematic exploration of all the execution paths of a software and

ii) local explainability to provide paths to the symbolic execution

which, compared to a black-box model such as an an ML model,

could not trace all the paths. AIF360 [9] is an open source tool that

allows models to be subjected to an evaluation process that outputs

a series of metrics for accuracy and permits to evaluate data sets

from the point of view of their fairness. It provides algorithms to

be injected into the solutions under scrutiny to make them fairer.

FairDM [3] is a framework for the evaluation of decision models

which permits, among other metrics, to measure metrics of indi-

vidual and group fairness. Themis [20] is an open source software

that proposes to evaluate the fairness of models through automatic

testing, by capturing cause/effect relationships between inputs and

outputs. It automatically generate test cases and evaluate fairness

of outputs based on classic individual and group fairness metrics.

These projects mainly produce reports that need to be interpreted

by expert users. The proposal in this paper requires no human in-

tervention. Other work has been done in the context of ethics of AI

[13]. In particular, research has been conducted to define method-

ologies to implement non-functional properties into ML models at

training time. Two main approaches have been followed training

set filtering [1, 33] and bias shaping [31, 36]. These approaches are

different from the one in this paper because they try to support

properties by design rather than verifying them in operation.

Focusing on the solution in this paper, the idea to use Multi-

Armed bandit to combine multiple machine learning models was

first studied by Auer et al. in [8] who proposed to explore the model

space at run time to find the model variation capable of keeping up

the desired property (accuracy). Multi-Armed bandit implementa-

tions can also verify model variations to maximize a defined score

function representing the desired property [43]. More recently Spiro

at al. [40] points out how model enforcement requires checking

functional and non-functional properties. Much inline with our

approach, Damiani at al. [17] uses BAM in the context of ML model

evaluation based on non-functional properties, presenting some

preliminary discussion and results on the topic. Among the pa-

pers which gave stronger theoretical contribution to our proposal,

Kesner et al. [28] lay the foundations of using statistical analysis to

human decision-making processes. Our approach puts forward the

idea to use it to evaluate machine learning models with regards to

software properties. Chapelle and Li [14] used Thompson Sampling

as an outperforming method to solve Multi-Armed bandit problem.

The use of Monte Carlo simulation to calculate the probability of

an arm to be the winner came out following Metropolis in [34] and,

for the experiment termination, value remaining in experiment was

widely studied by Scott in [39].

8 CONCLUSIONS
We presented a methodology based on Multi-armed Bandit for

evaluating non-functional properties of ML models. The method-

ology used Thompson sampling, Monte Carlo simulations, value

remaining in experiment to effectively select the ML model with
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a specific non-functional property at development time and moni-

tor the continuous support of the non-functional property at run

time, possibly triggering model substitution. While being tested on

property fairness, the proposed solution can be applied to any prop-

erties and scenarios where alternative ML models can be selected.

It can therefore be positioned upstream of a certification authority

in charge of issuing digital certificates that guarantee compliance

to a desired non-functional requirement. The paper leaves space for

future work. First, we will focus on the definition of a score func-

tion for each property in the taxonomy, starting from existing score

functions in literature [30]. Then, we will investigate an analytic

approach to provide sound thresholds to determine arms’ wins or

losses, in absence of a score function. Finally, we will focus on the

definition of a certification scheme based on the approach in this

paper, to the aim of providing certified machine learning models.
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