Bernoulli 27(3), 2021, 2091-2116
https://doi.org/10.3150/20-BEJ1302

Context-specific independencies in stratified
chain regression graphical models

FEDERICA NICOLUSSI! and MANUELA CAZZAROQ?

1University of Milan, Via Conservatorio, 7, 20122 Milano MI, Italy. E-mail: federica.nicolussi@unimi.it
2University of Milan Bicocca, Via Bicocca Degli Arcimboldi 8, 20126 Milano, M1, Italy.
E-mail: manuela.cazzaro @unimib.it

Graphical models are a useful tool with increasing diffusion. In the categorical variable framework, they provide
important visual support to understand the relationships among the considered variables. Besides, particular chain
graphical models are suitable to represent multivariate regression models. However, the associated parameteri-
zation, such as marginal log-linear models, is often difficult to interpret when the number of variables increases
because of a large number of parameters involved. On the contrary, conditional and marginal independencies re-
duce the number of parameters needed to represent the joint probability distribution of the variables. In compliance
with the parsimonious principle, it is worthwhile to consider also the so-called context-specific independencies,
which are conditional independencies holding for particular values of the variables in the conditioning set. In
this work, we propose a particular chain graphical model able to represent these context-specific independencies
through labeled arcs. We provide also the Markov properties able to describe marginal, conditional, and context-
specific independencies from this new chain graph. Finally, we show the results in an application to a real data
set.

Keywords: Graphical models; stratified Markov properties; categorical variables; multivariate regression models;
marginal models

1. Introduction

Different statistical models can study the relationships among a set of categorical variables collected
in a contingency table depending on the focus of the analysis. When the considered variables have
different nature, and the causal interpretation can explain their link, a multivariate regression system
could be a suitable tool. In this case, we can suppose that each variable can assume a different role. It
can be a response variable, hereafter purely response; it can be a covariate, hereafter purely covariate;
or finally, it can be explanatory for some variables and response for others, hereafter a mixed variable.

For this purpose, we take advantage of graphical models. Graphical models rotate around a system
of independencies among variables that they easily represent through graphs. However, the relevance
of the considered models, as we will see, is also because these models always have a smooth likelihood
function, which in general is false.

Different graphical models exist in literature. See, for instance, Lauritzen [15], Wermuth and Cox
[32], and Whittaker [33] for an overview. Here, we take advantage of a particular type of chain graphi-
cal models known as chain regression graphical models (CRGMs) (see Cox and Wermuth [8], Richard-
son and Spirtes [26] and Drton [9]. Indeed, these models describe simplified multivariate regression
models, where each dependent variable cannot be a covariate for another dependent variable considered
at the same level of the first one, Marchetti and Lupparelli [17]).

Marginal and conditional (in)dependencies among a set of variables are deeply studied through
graphical models, though the representation of context-specific independencies (CSIs) is not widely
spread. With the term CSI, we mean conditional independence that holds only in a subspace of the
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outcome of the variables in the conditioning set. The study of these CSIs is dual. First, they allow
to focus on categories of certain variables that truly discriminate between the independence of two
sets of variables. Additionally, and no less important, the CSIs permit the reduction of the number of
parameters needed to represent the joint probability distribution.

Different authors faced the problem of the graphical representation of CSIs by proposing several
possible solutions. The manifold suggestions are clues of the difficulty and non-triviality of this topic.
In particular, Boutilier et al. [4] take advantage of a Bayesian network and represent each conditional
probability distribution through a tree. Likewise, Hgjsgaard [10,11] proposed the “split model”, where
the same graph represents the relationships among a set of variables in correspondence to the different
values of a chosen subset of variables. Furthermore, La Rocca and Roverato [13] and Roverato [27]
depict the CSIs in graphs by considering some categories as variables. Moreover, Sadeghi [29] consider
the CSIs in the discrete ‘determinantal’ point processes represented through undirected and bidirected
graphical models. Finally, Pensar et al. [24], Nyman et al. [23] and [22] generalize the graphical model
(for undirected and directed acyclic graphs) with the so-called stratified graphical model that summa-
rizes the CSIs in only one graph.

In this work, we propose the stratified chain regression graphical model (SCRGM) as a generaliza-
tion of the CRGMs, representing CSIs. We use a parametrization based on the hierarchical multinomial
marginal models (HMMMs) to include also CSIs in the regression models (see for details Bartolucci
et al. [2], Cazzaro and Colombi [6], Nicolussi and Cazzaro [19]).

The work follows this structure. In Section 2, we give the state of the art in CRGMs suitable for
multivariate regression frameworks. Sections 3 and Section 4 are reserved to the original results of this
paper. Indeed, in Section 3, we present a new SCRGM, that extends the CRGMs described in Section 2
by considering also the CSIs. Here, new suitable Markov properties, the rules to extract a list of in-
dependencies from a graph, were proposed by considering either the global or the pairwise approach.
Furthermore, we prove the equivalence of these two approaches. We also state the list of conditional
independencies and CSIs compatible with an SCRGM. In Section 4, we introduce a parameterization
suitable for the SCRGM by taking advantage of the HMMMs. In particular, we use two approaches
for coding the variables in the parameters, the baseline and the local code (see Bartolucci et al. [2]
and Cazzaro and Colombi [5]), in order to have more meaningful parameters in the case of ordinal
variables. We highlight the connection between the SCRGMs and the HMMMs through constraints on
suitable parameters. In Section 5, we provide some applications to a real data set. In Section 6, we re-
port the conclusion. Appendix A.1 contains a dissertation on the existence of the maximum likelihood
estimation. All the proofs of the theorems are listed in Appendix A.2 to improve the readability of the

paper.

2. Chain regression graphical model

A CRGM is a particular chain graph model known as CGM of type IV, see Drton [9]. A summary of
the chain graph model used to represent multivariate regression models follows, such as explained in
Marchetti and Lupparelli [17]. The SCRGM proposed in this work is a generalization of this CRGM.

Formally, a graph G = {V, E} is a collection of two sets, the one of vertices or nodes (V) and
the one of edges or arcs (E). The admitted edges can be directed, represented by an arrow (— ), or
bidirected, represented by a double headed arrow (<>). In the literature, the double headed arrow can
be replaced with dashed segments, as in Marchetti and Lupparelli [17]. We prefer the double headed
arrow representation in order to use an homogeneous notation with the larger class of mixed-graph, see
Lauritzen and Sadeghi [14].

Two vertices linked by a bidirected arc are called adjacent (y <> §). Two vertices linked by an arrow
y — & are parent (y) and child (3), respectively. A path between two nodes y and § is a sequence
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of non repeated nodes linked by directed or bidirected arcs. A collider in a path is a node with two
arrowheads pointing to it, such as — y <—, or <> y <>, or <> y <. The anterior set of the node y,
denoted with ant(y), is the set of nodes linked by a path, containing only directed arcs, pointing to y .
A set of vertices is connected if any pair of nodes in A is linked by a path belonging in A. Otherwise,
the set is said non-connected. A chain graph is a graph G = {V, E} with both directed and bidirected
arcs in E and without either directed or semi-directed cycle. That is, by following the direction of the
arrows, no path starts and ends in the same vertex. Given a set A of vertices, the parent set of A, pag(A)
is composed of all vertices that are parents of at least one vertex in A. The so-called chain components,
denoted by T, ..., Ty, make a partition of the vertices of the chain graph according to the following
conventions: adjacent vertices must belong to the same component. In contrast, vertices linked by
directed arcs must belong to different components. With the term parent component, pay (Ty,), we refer
to the set of components, from which at least one directed arc starts, pointing to the component 7}.
The subscript T refers to the common name used for components, and it is needed to discriminate it
from the parents of a set A, pag(A) mentioned above. We consider the components 71, ..., Ts of a
chain graph as partially ordered, such that if # <, then 7; ¢ pa; (7). Finally, we define the set of
predecessors of a component Tj,, pre(7},), as the union of the components coming before in the chosen
order of the components.

Graphical models take advantage of graphs by representing the connection among a set of variables.
In this work, we focus on a vector of |V| categorical variables, Xy = (X;)ev, taking values iy =
@i1,...,ij,...,0jy)) in the contingency table Z = ({1 x --- x I)y|), with joint probability distribution
P

A probabilistic independence model 7 (P) is a list of independence statements (A, B|C), interpreted
as “A is independent of B given C”, induced by a joint probability distribution P.
Sadeghi and Lauritzen [30] summarized some properties of a generic independence model 7:

Definition 2.1. Given A, B, C, and D disjoint subsets of Xy,

S1 (A, B|C) € J if and only if (B, A|C) € J (symmetry);

S2 if (A, BUD|C) e J,then (A, B|C) € J and (A, D|C) € J (decomposition),

S3 if (A,BUD|C) e J,then (A, B|ICUD) € J and (A, D|C U B) € J (weak union);
S4 (A, B|[CUD)e J and (A, D|C) € J if and only if (A, BU D|C) € J (contraction);
S5 if (A, B|CUD) e J and (A, D|C U B) € J then (A, BU D|C) € J (intersection),
S6 if (A, B|C) € J and (A, D|C) € J then (A, BU D|C) € J (composition);

A graphical model is a representation of the probabilistic independence model 7 (P) of the collec-
tion of variables Xy . In general, each vertex y in the graph represents one variable X, . Any directed
arc from y to § stands for asymmetric dependence between X, and X;, which is the variable X,
affects X and not the reverse. Finally, any bidirected arc between two vertices y and § stands for the
symmetric dependence between the corresponding two variables. As a consequence, each missing arc
(directed or bidirected) denotes an independence relationship.

This ability to depict different relationships makes the CRGM a suitable graphical tool to represent
multivariate regression models. Indeed, in a CRGM, the analyzed variables follow an inherent explana-
tory order where some variables are covariate of other ones, which can be, in turn, covariate of the other
ones. Thus, the partition of the vertices in components comes naturally according to the variables rep-
resented by the vertices. Furthermore, from this “classification” of the variables, the CRGMs are useful
to represent both conditional and marginal independencies.

As shown by Drton [9], given a chain graph, there are different criteria to read off a list of inde-
pendent restrictions among variables. These rules are called Markov properties, and they characterize
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four types of chain graph models. In this work, we consider the approach of Cox and Wermuth [8] and
Richardson and Spirtes [26].

By following Richardson and Spirtes [26], we need to introduce the m-separation criterion in order
to define the list of independence statements.

Thus, given a chain graph G, a path in G is an m-connecting path given the subset of vertices C if
all colliders are in C U ant(C) and all its non-colliders are outside C. Given two disjoint subsets of
vertices A and B, they are m-separates given C if there is no m-connecting paths between A and B.

Definition 2.2. Given a chain graph G, an independence model 7 defined over Xy satisfies the global
Markov property w.r.t. G if, for A, B and C disjoint subsets of Xy, it holds that

if A and B are m-separates given C — (A, B|C) € J. @))
The resulting independence model is said faithful to the graph and it is denoted with 7 (G).

Lauritzen and Sadeghi [14] proved that any independence model faithful to a graph [J(G) satisfies
all the properties in the Definition 2.1.

Example 2.1. Let us consider the chain graph G in Figure 1(a). The paths linking the nodes 3 and 4
are three. In the path 3 <> 5 <> 4, the node 5 is a collider, thus 3 and 4 are m-connected given C = (5).
In the path 3 <— 1 — 4 the node 1 is not a collider, thus the nodes 3 and 4 are m-separated given
C = (1). Finally, in the path 3 <- 1 <> 2 — 4 the nodes 1 and 2 are not a collider, thus the nodes 3
and 4 are m-separated given C = (1,2). In the same way, the node 5 is m-separated from the nodes
(1,2) given the empty set (all paths between the two sets of nodes contains colliders). Further, for
example, the nodes 2 and 3 are m-separated given the node 1. By applying the Markov property in
Definition 2.2, we get, among other, the following list of independence statements: (i) (X3, X4|X1),
(1) (X3, X4|X12), (i) (X2, X3|X1), (iv) (X5, X12|9), and (v) (X35, X2|X1). Note that, not all the
statements are necessary, for instance applying the contraction property (S4) to (ii) and (iii) we obtain
(vi) (X3, X24|X1). Now, from this last, in force of the decomposition (S2) also (i) (X3, X4|X1) holds.
Thus, it is unnecessary to include also the (i) in the list.

3. Stratified chain regression graphical model

For a triplet of disjoint sets A, B, C C V, we say that X 4 and X p are independent given X ¢ if and only
if P(ia,iplic) = P(ialic)P(iplic) for all ic € Z¢. More generally, we say that a context-specific
independence holds if there exists a nonempty subclass K¢ of Z¢ such that the factorization above
holds for all i¢ € K¢, formally

Xall Xp|(Xc =ic), icekKc. ()

In general, in formula (2) it may occur that the above factorization is satisfied for all the values of a
subset of X¢ in combination with a selection of values of the remaining variables in the conditioning
set. In this case, it is possible to partition the conditioning set C as [ U (C\/), and the class ¢ of
values i ¢ can be obtained as K¢ = K; x Z¢\;. This means that the CSI holds for all values icy; € Zcyy,
combining with the values i; € K.

By considering an independence model 7 (P) faithful to a probability distribution P of the Xy
variables, we interpret the statement (A, B|C; ICc) as “X4 is independent of Xp given X¢ when
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Figure 1. A chain graph (a) and a stratified chain graph (b), both with components 73 = (1,2) and 7 = (3,4, 5).
In figure (b) there is a labeled arc representing the stratum between the vertices 3 and 4, with the label /C;.

X is equal to i¢ taking values in the class KC¢”. Trivially, when K¢ = Z¢, the CSI is conditional
independence, and the previous independence statement becomes (A, B|C).
The following lemma highlights that not all the CSI statements are admissible.

Lemma 1. Let consider the probabilistic independence model [J (P) faithful to the joint probability
distribution P of the vector of variables Xy . If (A, B|C) belongs to J(P) then (A, C|B; Kp), with
K # Ip is not representable in the same independence model [J (P).

To represent also the CSIs in a graphical model, we propose the SCRGM based on a stratified chain
graph (SCG) obtained by adding strata to the chain graph presented in the previous section. Thus,
likewise to stratified graphical models (SGMs), proposed by Nyman et al. [23], we represent the CSIs
through labeled arcs, also called strata. Trivially, if there is a stratum between the nodes y and 4,
the label reports the class of category(ies), ¢, according to the arc is missing. Thus, we say that the
variables X, and X, associated to the end-point nodes of the labeled arc, are independent given X ¢,
taking values in K¢.

In order to make less messy the SCG, usually in the label, we specify the class I only for a subset
of variables I C C such that (X, , X;5|C; K; x Zc\@)) € J. Thus, the variables in the conditioning set,
but not quoted in the label are suppose to assume all possible values.

Example 3.1 shows briefly how to interpret the strata in the SCG. The formal definition of the SCG
will follow.

Example 3.1. In Figure 1(b), the label on the arc between the nodes 3 and 4 reports the value Xy,
referring to the variable X . This means that, when the variable X takes values in [ the arc is missing
and the two nodes are not linked anymore but they are m-separated given C = (1) and C = (1, 2) (see
Example 2.1 for details). Thus, the labeled arc stands for the CSI statements (X3, X4|X1; K1) and
(X3, X4|X12; K1 x o).

Definition 3.1. A stratified chain graph G = {V, E, S} is a collection of two sets -the one of vertices
V, the one of arcs E- and a class of strata {;};cs, where S is the class of sets of variables quoted in
all the strata and it is closed under countable unions.
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Since any stratum links two vertices at time, it is natural to formulate the CSIs in a pairwise approach,
which explains the relationship between two paired variables. The pairwise Markov properties defining
an SCRGM are described in the following definition.

Definition 3.2. Given a SCG G, the induced independence model 7(G) obtained by applying the
pairwise stratified Markov properties is composed of the following independence statements:

— For any missing arc between y and § in G:
pM1. (X, X5| Xpreryy)) € T(G), when y, 8 € Tj;
pM2. (X, X5| Xpre(ry)\8) € J(G), when y € T, and § € pre(Tp).
— For any labeled arc between y and § with label X; in G:
pS1. (Xy, Xs| Xpre(ty)s Ki X Tpre(ryy\1) € T(G), when y, § € Tp;
PS2. (Xy, Xs| Xprerip\ss Ki X Lprery\aus)) € J(G), when y € Ty, § € par (Ty).

The first two properties (pMI and pM?2) are the pairwise Markov properties for the CRGM
(Marchetti and Lupparelli [16], Sadeghi and Wermuth [31]). The last two (pSI and pS2) are the equiva-
lent rules for the strata. Note that, moving from the Markov property pM?2 to the Markov property pS2,
the belonging set of § is reduced from pre(7}) to the set pay (7},). Indeed, if absurdly, there could be a
labeled arc between a vertex in 7 and one in pre(7;)\paz (T}), this last vertex, by definition, should
be a parent of 7j,.

Example 3.2. The SCG G in Figure 2(a) has 4 variables, 3 directed arcs and two strata on bidirected
arcs. All strata in G refer to the variable X thus the class S is equal to {(1)}. However, the two strata
have different labels: K1 = {2} on the arc 2 <> 3 and K; = {2; 3} on the arc 3 <> 4. By applying the
pairwise Markov properties in Definition 3.2, according to pS1, we get that, when X; = 2, the three
variables X, X3, and X4 are mutually independent given X: (X7, X3, X4|X1; K1 = {2}). Besides,
when X; = 3, X3 and X4 are independent given X;: (X3, X4|X1; K1 = {3}). Finally, according to
pM]1, the conditional independence (X5, X4|X1) holds.

Example 3.3. The SCG G in Figure 3(a), has two strata: K, = {2; 3} on the arc 1 — 4 and K, = {2}
on the arc 3 — 4. By applying pS2, we have (X1, X4|X»>3; {2; 3} x Z3). Further, we also have
(X3, Xa4|1X12; 71 x {(2)}). Let us suppose that the variable X, as well as the variable X3, is fully
described by three categories labeled (1), (2), and (3). Then the first independence holds for the cate-
gories i73 belonging to {(2, 1); (3, 1); (2, 2); (3,2); (2, 3); (3, 3)}, and the second independence holds
for the categories i 1> belonging to {(1,2); (2,2); (3,2)}.

In order to provide the global Markov property for an SCG, we have to introduce two new graph
definitions.

Definition 3.3. Given a SCG G, the chain graph obtained by replacing all labeled arcs with unlabeled
arcs is called full graph, G¥.

Definition 3.4. Let us consider a SCG G, with the class of strata {/;};cs. For any value i; € K; and
[ € S, the associated reduced chain graph G R (i7) is obtained:

— by deleting all the labeled arcs having the particular value i; in the label KC;;
— by replacing the remaining labeled arcs with unlabeled arcs.
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Figure 2. (a) Stratified chain graph G. (b) Full chain graph GF of G. (c) Reduced chain graph in correspondence
with i1 =2, GX (i; =2). (d) Reduced chain graph in correspondence with i] =3, G® (i; = 3).

Note that, there is only one full graph G associated with one SCG G, while there are many possible
reduced graphs G&, one for each different cell i; € K; and l € S.
Now we have all the elements to define the global Markov property defining a SCRGM.

Definition 3.5. Given an SCG G, the induced independence model 7 (G) defined over Xy satisfies the
global stratified Markov property w.r.t. G if
gM in the full chain graph,

if A and B are m-separates given C — (A, B|C) € J(G)
gS in any reduced chain graph GR(i;),

if A and B are m-separates given C — (A, B|C;i; x Ic\) € J(G)

To avoid unnecessary statements in the independence model J resulting from Definition 3.5, we
apply the following rules.

Definition 3.6. Given an SCG G, let be 7 (G F ) the independence model resulting from the full graph
GF and J(GR(i))) the independence model resulting from any reduced graph G& (i) for any i; € K;
and for any / € S. Then

R1 if (A, B|C) € J(GF) and (A, B|C; K; x Zcy) € J(GR(i))) then (A, BIC) € J(G) (ie., itis
unnecessary to include also the second statements because the first one implies it);
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Figure 3. (a) Stratified chain graph G. (b) Full chain graph G of G. (¢) Reduced chain graph in correspondence
with iy =2, GR(i5 = 2). (d) Reduced chain graph with correspondence with iy = 3, GR (i, = 3).

R2 if <A’ B|C, i XIC\I) c j(gR(il)) and <A’ DlE'7 jm XIC\m) € j(gR(jm))7 withlNm = < or
Linm = J o> then (A, FIG: Kium x Io\qum) € J (G) where F =BUD, G = CUE\(BU D)
and ,C]Um ={(ila jm\l)}

Example 3.4 (Continuation of Example 3.2). In Figure 2(b), the full graph G associated to the SCG
G in Figure 2(a) is depicted. In G© the nodes 2 and 3 are m-separated given 1 because 1 is not a collider
in the path liking the nodes 2 and 4. Thus, (X», X4|X1) € J(G). In Figure 2(c), the reduced graph
GR (i1 =2) is depicted. This graph represents the independence model when the variable X is equal to
2.InGR (i; =2) the nodes 2, 3, and 4 are mutually m-separated given 1, thus (X7, X3, X4/ X1; {(2)}) €
J(G). However, we already stated that, for all values of X1, (X2, X4|X1) € J(G), holds. Therefore,
it is enough to consider (X4, X3|X1; {(2)}) € J(G). Finally, in Figure 2(d) there is the reduced graph
GR (i1 = 3) representing the independence model when the variable X is equal to 3. Here, we have
that the nodes (2, 3) and 4 are m-separates given 1, thus (X3, X4|X1; {(3)}) € T(9).

Example 3.5 (Continuation of Example 3.3). In Figure 3(b) the full graph is depicted. Since this
graph has no missing edges, it represents a model where all variables affect each others. When the
variable X» is equal to 2, the independence model is represented by the reduced graph GR (i, = 2) in
Figure 3(c). By applying the global Markov properties in Definition 3.5, we get the independence
statement (X3, X4|/X2; {(2)}) € J(G). On the other hand, the reduced graph GR(i, = 3) in Fig-
ure 3(d), represents the independence model when the variable X» is equal to 3. Here the statement
(X1, X41X23:{(3)} x I3) € J(G) holds.
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Figure 4. SCRG with components 71 = (1, 2) and 7, = (3) with a non-representable stratum.

Theorem 3.1. Any independence model J(G) faithful to a SCG G, satisfies all the properties in Defi-
nition 2.1.

Corollary 3.1. Given a SCG G, the induced independence model [J (G) obtained by applying the pair-
wise Markov properties in Definition 3.2 is equivalent to the one obtained by applying the global
Markov property in Definition 3.5.

A stratum can be represented both by a bidirected or a directed labeled arc. However, in Lemma 1,
there are restrictions on the independence statements belonging to the same independence model. In
Lemma 2 we use the result of Lemma 1 to define the admissible strata in the SCRGM. The following
example shows the logic of the previous assertion.

Example 3.6. Let us consider the chain graph in Figure 4. According to the gM in Definition 3.5 the
conditional independence (X5, X3|X1) holds, but at the same time, according to gS in Definition 3.5 the
CSI (X1, X3]|X3; K2) holds too. According to the conditional independence P (X3|X12) = P(X3|X1),
the variables X, does not affect the conditional distribution of X3 given X;. However, according to
the CSI, when the values assumed by X, belongs to the class K>, P(X3|X12) = P(X3) and when X»
assumes values do not belonging to K, the previous probability becomes P (X3|X12) = P(X3|X1).
This means that the values of X, effectively affects the probability of X3. The only compatible situation
with the previous statement is that P(X3|X1) = P(X3), but this holds if (X, X3|X>2).

The problem arises if there is at least one variable contained in /, [ € S, that does not point to y and
3, the endpoints of the labeled arc. Nyman et al. [23] dealt with this situation, and in their Theorem 2,
they give the condition for the existence of a stratum in a bidirected graphical model. This result is
generalized to the SCRGM in Lemma 2.

Lemma 2. Given an SCRGM, all the vertices in | referring to the stratum with label KC; must be
e parents of both the endpoints of the labeled arc between y and §, (y < §);

o adjacent to § and parent of y when y € Ty and § € pap (Tj)\pag(y), (¥ — §).

Example 3.7. Figure 2 satisfies the two conditions in Lemma 2, trivially. In Figure 3, in all strata, the
set [ is equal to vertex 2 only. In both strata, the conditions of Lemma 2 hold because the vertex 2 is
adjacent to the other vertices in paz (7).
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4. Parameterization for stratified chain regression graph models

In Sections 2 and 3, we faced with independence models with different types of independence state-
ments. In this section, we consider a parameterization of the probability distribution to represent these
independence models easily, to model through linear constraints on the parameters, and to shape the
dependence relationships through regression models. In particular, we take advantage of the HMMMs
and a re-parameterization of these last. Indeed, in the literature, the marginal models proposed by
Bergsma and Rudas [3] are widely used to parameterize graphical models for categorical variables, see
among other Rudas et al. [28], Marchetti and Lupparelli [16], Marchetti and Lupparelli [17], Nicolussi
[18]. The HMMMs generalize these by admitting a different form of the parameters.

4.1. Parameterization for categorical variables

Briefly, HMMMs are a generalization of the classical log-linear models where the parameters, hence-
forth HMM parameters, are evaluated in opportune marginal distributions Py, with M C V, and they
are specified by assigning a logit type to each variable of the marginal distribution. Let 7o (i o) be
the probability of the cell i o4 of the contingency table Z . In the vector 7 ¢, we collect all the proba-
bilities 7 o4 (i A1) following the lexicographical order. As in the log-linear models when the parameter
refers to a single variable, it becomes a logit; when it refers to more than one variable, it becomes a
contrasts of logits. As simplification, in this section we consider the parameters based on baseline log-
its. Thus, given a marginal set M and an interaction set £, that is, the set of variables that the parameter
refers, the HMM parameter, evaluated in the categories i o, is:

o)=Y (=D ogmpli g 1) 3)
JcL

In the formula, 1, 7 is the vector of coordinates equal to the first category for each variable X ;, such
that j € M\L. It is worthwhile to consider that, if there is at least one j € £, such that i; =1 the
parameter in formula (3) becomes zero.

In general, we define a class of partially ordered marginal sets H = {M ;} by respecting the inclusion
such thatifi < j, then M; ¢ M,. In the HMMM:s, the definition of the parameters within the marginal
distributions must satisfy the properties of completeness and hierarchy, that is, for a subset of variables
L must be only one 7. / where M is the first marginal set in { such that £ € M, see Bergsma and
Rudas [3], Bartolucci et al. [2].

Example 4.1. By considering two variables V = {1, 2}, both with three categories (1,2, 3) and the
hierarchical class of marginal sets 7 = {(1), (12)}, the vector of parameters 7 is

n=[n1Q2),nl3), (2, n}>3), n132,2), 1132, 3), ni3(3,2), 1133, 3)] .

These parameters are

n}<2>=1og<w>, n;2<2>=1og<”(12)),

m(14) w(11)
12 _ (117 (22) 2 _ (117 (32)

(73 2o (7(13)
”1(3)_1°g<n(1+>>’ & (3)_1°g<n(11>)’
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12 _ 7 (1) (23) 12 B 7 (1) (33)
7712(2’3)_log<7r(21)zr(l3)>’ 7712(3’3)_10g<n(31)n(13)>

where the symbol 7 (i+) refers to the marginal probability of X| and where the commas within the
parentheses are omitted for short.

As mentioned in Sections 2 and 3, the approach of the (S)CRGMs seems natural when we want to
explain the effect of some variables (covariates) on a set of dependent variables that can be, in turn,
covariates for other dependent variables. In this section, we present an opportune reparametrization of
the HMM parameters able to capture this regression form. Here, we want to improve the CRGMs, as
presented by Marchetti and Lupparelli [16], by simplifying the regression equations given the CSIs.
Thus, first, we define the appropriate hierarchical class H of marginal sets, likewise in Nicolussi [18],
as the partially ordered marginal sets in /; and H,, where

Hi ={(pap (T UA),h=1,...,5;ACT;} and

(4)
Hy ={(pre(T) UTy), h=1,....s}.

The elements of #; and H, form H, where the elements respect the inclusion property, as specified in
the definition of . Then, focusing on each group of dependent variables, we define the HMM param-
eters (3) evaluated in each conditional distribution identified by the levels of the covariates. This means
that, for each subset of dependent variables A C Tj,, we define the parameters nﬁUpaT(Th) (@ alipay (1))
evaluated in each values ipa,. (7;,) € Zpa, (1) Of the covariates pay (7j). All these parameters can be ex-
pressed as a combination of regression parameters as described in the formula (5). Hereafter, to make
the notation more readable, in the subscript and in the superscript we cancel the union symbol, thus

AU B becomes AB.

Definition 4.1. Given an (S)CRGM, for any subset A of the set of response variables 7}, we have the
following regression model:

n Galipg, )= Y PG, Vh=1,... sACT, )

tCpag (Th)

where M = A U pay(Tj).
Theorem 4.1. The regression parameters ﬂtA (i;) in the regression model (5), are the HMM parameters

BAG) =0/ a), Vi Cpap(Th)#92, (6)

where M = A Upar(Tp).

Example 4.2. Let us consider the SCRGM represented by the SCG G in Figure 1(b) where there
are two components. The vertices in the first represent the covariates X1, while the vertices in the
second component represent the purely dependent variables X345. Thus, according to formula (4), the
class of marginal sets is composed of {(12), (123), (124), (125), (1234), (1235), (1245), (12345)}. By
focusing only on the dependent variable X4, we can express the regression model that explains the
variable X4 as function of X, as follows:

mi2(ialin) = By + B11) + B (i2) + Bhi1n)
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Vii» € 1> and is € Z4. Remember that, when iy = 1, the HMM parameters involving X4 are zero by
definition thus, also }‘24(1 li12) is equal to zero. By applying formula (6), we see that the 8 parameters
are

&=y,
Bl =n{3 1),
B3 (i2) = 133" (i24),

B (i12) = 0134 124).-

Then by applying formula (5) to each subset of the dependent variables, we should have also the
regression models 13> (i3]i12), 15> (isli12), mp**(3ali12), M3 (@3sli12), and m333% (iausline) for

all values i12 € 112.

The regression models in formula (5) describes the relationships between the dependent variables
in A C T}, and the covariates in pay(7;) foreach h =1, ..., s. However, the first components have no
parents and the paz(7},) is empty, thus the variables in 7, have no covariates to explain them. In this
case we use the HMM parameters:

na(ia) VA C Ty such that pre(T,) = @. (7

Theorem 4.2. The regression parameters in formula (5) and the HMM parameters in formula (7) are
a 1:1 function (a re-parametrization) of the HMM parameters njﬁw, VL eP(V)and VM € H, where
P () denotes the power set.

As a consequence, a parameterization based on the parameters in formulas (5) and (7) is smooth,
since the HMM parameters define a smooth parameterization of the set of all strictly positive prob-
ability distributions P. On the other hand, the parameters are not variation independent because the
marginal sets in H are not ordered decomposable (unless the number of vertices for any component is
at most two).

An SRCGM is represented by linear constraints on the regression parameters in formula (5). In
general, is not necessarily true that, a parameterization is able to represent all the statements in an
independence model faithful to a CG, J(G), see Drton [9], Nicolussi and Colombi [21]. Theorem 4.3
explains how to constrain the parameters according to any missing arc and any labeled arc of the
SCRGM.

Theorem 4.3. Given an SCG G, the induced independence model J (G) is equivalent to the regression
models in formula (5), coded with the baseline aggregation criterion of the categories, where for any
component Ty, with h =1, ..., s, the following constraints holds.

In the full chain graph G*', for any subset A of Tj,:

i. if A is non connected, Vipa,. (1) € Lpa,(13)

AU T . .
A PTGl (1)) = O; ®)

ii. if A is connected, VipaT(Th)\pag(A) S IpaT(Th)\pag(A)v
AUpar(Th) . 1 .
0y PTG ) =Y BAG. ©)

1Cpag(A)
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In any reduced chain graph GR(i}), for any subset A of Ty:

ili. if A is non connected, Vip,, (1) € (K1 X Zpa, (1\1)>

AUpar (T ,. .
0PI G iy (1) = 0; (10)
iv. if A is connected, ¥ipa, (1i)\pagr ; ,(4) €Ki X Tpay tp\agi g, (90D}
AUpar (Th) . . .
Ny P I gl ) = Y BN (11)
1SpagR ;) (A)

Note that, according to (i) and (iii), the regression models involving two or more dependent variables,
that are each other conditionally independent, are set to zero. Instead, according to the (ii) and (iv), the
dependent variables are explained only by their parents.

The constraints (iii) and (iv) come from the linear constraints on HMM parameters that satisfy
the CSIs (see La Rocca and Roverato [13], Nicolussi and Cazzaro [19]). Indeed, given a CSI as
(A., B|C; K; x Zcy), if the variables in the vector X¢ are coded with the baseline criterion, then
the constraints on the HMM parameters are:

ZUUACA(iu,iQ)=0, iy €Ty, i €Z.N(KiNIey), (12)

cCC

VveV={WwC(AUB): ANv#J,BNv#J} and for a marginal set defined by the variables
vVWCCMCAUBUC.

Note that, zero is an admissible value for the parameters in formula (12), without implying any
other CSI, except for when ¢ = @. On the contrary, this framework would fail the hierarchy property.
Besides, according to the parsimonious principle, simpler models can be achieved setting to zero the
parameters with order higher than two.

Example 4.3 (Continuation of Example 4.2). Let us consider the SCRGM represented b y the SCG
G in Figure 1(b). Then the following parameters entirely describe the relationships among all the vari-
ables;

B (ilin) =B + B, ViseDyVipeln
N2 (ialin) = By + B11) + B3 (i2) + Bhlin), ViseTy,Vineln
niP(islinn) = By, VineIn

124 (1 1) = 0, Visy € I34,Vin € Ky x Iy,
34 S4B + B + Bi(i12), Viza € Tsa, Vinn & K1 x I,

M (isslin) = B5 + B (1), VisseTss,Vineln
ni3 B asling = BE + B 1) + B (12) + BH12),  Vias € Tus, Yinn € 1o

maiP (issling = B3> + BiY 1) + B2 (12) + B3 (i12),  Vizas € Tass, Vina € Ipa.

An SCRGM is represented by a set of linear constraints on the HMM parameters. This implies that,
it belongs to the curved exponential family, see Bergsma and Rudas [3], Bartolucci et al. [2]. Besides,
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whatever is the sampling scheme we assume in the data collection, the log-likelihood is proportional
to

10:m) o< Y "n(D)0(i) — Y log(6(0)), (13)
i€l iel
where n(i) is the observed frequency of the cell i € Z and 6 (i) is the logarithm of the expected value
of the cell i. The maximization of this function, under the linear constraints of the Theorem 4.3, can
be achieved through iterative algorithm, for more details, see Aitchison and Silvey [1], Bartolucci et
al. [2], Marchetti and Lupparelli [17]. Further considerations about the convergence of the iterative
algorithm are postponed in Appendix A.1.

Example 4.4. Let us consider the SCRGM represented by the SCG G in Figure 2(a) where the de-
pendent variables are represented by the vertices 2, 3, and 4 in the component 7>, while the single
covariate is represented by the vertex 1 in the component 77. In compliance with Definition 4.1, we
define the class of marginal sets such as {(1), (12), (13), (14), (123), (124), (134), (1234)}. In Exam-
ple 3.4, we showed that, according to the global Markov properties in Definition 3.5, the independence
model 7 (G) is composed of the following list of independencies:

(@) (X2, X4|X1);
(®) (X24, X31X1: {2)});
(©) (X23, X4l X1:{(3)}).
Now by applying Theorem 4.3, we obtain the following constraints on the parameters.

According to (a), we get n%42‘4(i24|i 1) =0foranyi; € 71 and io4 € Zp4. According to (b), we get that

1234 ;s 1234 ;1 1234 ;s . . .
M3 (E23li1 =2) = 037" (i34li1 = 2) = m,33" (i234]i1 =2) =0 for all iz3 € Ip3, i34 € L34, and i34 €

T»34. Finally, according to (c), we get that n£34(i24|i1 =3)= n;42134(i34|i1 =3) = n%§24(i234|i1 =

3) = 0, for all i24 (S 124, i34 (S] I34, and i234 (S] 1234.

Example 4.5. Let us consider the SCRGM represented by the SCG G in Figure 3(a), where the de-
pendent variable is represented by the vertex 4 in the component 7> and the covariates are the vertices
1, 2, and 3 in the component 77. We build the class of marginal sets such as {(123), (1234)}. From the
SCRGM, we can extract the following list of independencies, see the Example 3.5:

(a) (X13, X4]1X2;{(2)}) from the Figure 3(c);
b) (X1, Xa|X23; {(3)} x I3), from the Figure 3(d).

According to (a), when i» = 2, we get that
0 (ialing) = B + B3 ().
Besides, when i> = 3, the regression parameters becomes
Ny (iali1o3) = B + B3 (02) + B3 (i3) + B3 (i23).
Thus, the following formula summarizes all the regression parameters:
i alinn) = B + B3(2) + Lineen (B (1) + Biai12)
+ 1i¢2) (B3(3) + B3 (13) + B3 (i23) + B (i123))

In the previous equations, the symbol 1 is equal to 1 when the condition in the subscript is satisfied
and zero otherwise.
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The independence model faithful to a CRGM is always representable trough constraints on HMM pa-
rameters via an opportune choice of the marginal sets in 7, as proved in Nicolussi [18], Marchetti and
Lupparelli [16]. Note that this result is not necessarily right for chain graphs satisfying other Markov
properties, as shown in Nicolussi and Colombi [21]. In the case of SCRGM, the constraints needed for
the CSIs involve the same parameters needed for the conditional independencies, thus the only limits
on the compatible independence statements are listed in Lemma 1. In the following example, we show
that the same limits comes by also using the HMM parameters.

Example 4.6. Let us consider the SCG in Figure 4. As discussed in Example 3.6, the independence
model 7(G) should contain the statements (X», X3|X1) and (X, X3|X2; K3). According to the first

statement we have the constraints n;? (i) = n}%’ =0 for all i3 € Z»3 and i 123 € Z123. According to
the second statement we have the constraints n123 (i13) + n{%g =0 for all {13 € 713 and i € ;. By

considering together the constraints, since n}%% = 0 the second constraints becomes 771%3 (i13) =0. But,

these two last constraints hold if and only if the statement (X, X3|X>) holds.

4.2. Parameterization for ordinal variables

The considerations performed in Section 3 and especially in Section 4, are typically for unordered
(nominal) variables. To contemplate the order of the categories of the variables, we use parameters
based on a different aggregation criterion, such as the local logit. This aggregation criterion consists in
replacing the cells 14\ 7 in formula (3) with the coordinates ((i 2\ — 1), 1aq\z), where (i g — 1)
denotes the level (i; — 1) for all j € £\J. Example 4.7 shows the form of the HMM parameters when
we use parameters based on local logits.

Example 4.7. Let us consider two variables Xy, V = {1, 2}, both with three ordered values (1, 2, 3)
and the class of marginal sets H = {(1), (12)}. Then, when the variables concerning the whole set of
variables are based on the local logits, each parameter in the vector y is

o=we(Z5) e =(T5)
322 =1o <%) 15(3,2)=10g<ﬂg3;$§;>
o) s

The multivariate system of regression models based on the HMM parameters, such as described
in Theorem 4.1, holds, whatever is the type of logits considered. As a consequence, the results in
Theorems 4.1 and 4.2 still hold also when we use the local criterion.

Formula (2), in Section 3, presents the definition of a CSI as a conditional independence that holds
only when the variables in the conditioning set assume (are equal to) certain categories ic in Kc.
Here, by considering the order of the categories, we define the CSIs like a conditional independence
that holds only when the variables in the conditioning set are equal or lower than a certain value i(..
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Hence, we take into account a subset of CSIs in formula (2) where the class K¢ is composed of all
cells of coordinates (¢ (ij <i}).

Formally, we say that X 4 and X p are independent given X ¢ when the variables in X assume values
lower or equal to the threshold i and we write it as

{Xa, XplXc; <ig). (14)

According to this new definition, the labels in the SCRGM become inequalities.

This new formulation leads to a new constraint on the regression parameters. In particular, by fol-
lowing Nicolussi and Cazzaro [19], we have that whatever the chosen aggregation criterion, the CSIs
in formula (14) are represented by the following constraints on the HMM parameters in formula (3):

iy, i) =0 Vie<iLi,e(KNL),i, e, (15)

YveV={(wvC(AUB): ANv#Y,BNv#J} and Yc C C. Note that, unlike the constraints in
formula (12), here, we set to zero certain parameters and not the sum of them.
By applying these new constraints to the regression parameters, the following result is reached out.

Theorem 4.4. Given an SCRGM, the global stratified Markov properties with inequality labels in
Definition 3.5, are equivalent to the constraints in formula (5),when the parameters concerning the
whole set of variables are based on local logits.

Note that, if we want to focus on a CSI like this:
(Xa, XB|Xc: = i), (16)

it is enough to reverse the order of the modalities.

S. Application

In this section, we present an application on a real data set. In particular, we select a set of variables
intending to investigate the relationships among these by supposing that some groups of variables can
affect others unilaterally. Thus, we suggest an SCRGM, learned from the data, able to describe these
associations. At first, we collect the variables in chain components, splitting the pure response variables
from the pure covariates and the mixed variables.

In compliance with these chain components, we define the class of marginal sets, according to for-
mula (4). Finally, we should test all possible conditional, marginal, and context-specific independencies
and choose the best-fitting model, but this procedure is computationally expensive. However, several
procedures lead to the choice of a model. Undoubtedly, the aim of the analysis plays an important
role. If, for instance, we want to find the system of different independence relationships among the
variables, we can overlook to the nature of the variables (if ordinal or nominal) and use the parameters
concerning the whole set of variables based on the baseline logits and consider the formulation of the
CSlIs in formula (2). In the research of the best-fitting model, the preference is for the plausible models
with the lowest number of free parameters (according to the parsimonious principle). Analysis involv-
ing a large number of variables where the description of each dependence relationship is unnecessary
and of difficult realization, usually adopt this approach. This setting could create a model with a lot
of CSIs holding for many different categories of conditioning variables that are arduous, even to list.
On the other hand, when the aim of the analysis is the interpretation of the dependence relationships
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Algorithm 1 Learning procedure
G =Gy
for y,5 € V and C Cpre(y Ud) do
test the statement (X, X5|X¢) with the likelihood ratio test
if there is the evidence of (X, , Xs|X ) for at least one C then
remove the arc y — § or y <> § from G
end if
end for
Gy, =G
for (y,8) € E1 do
set C = pre(Ty)
for i. € Zc do
test the statement (X, , X;5|C; > i’c) with the likelihood ratio test
if there is the evidence of (X, , X5|C; > i) for at least one i~ then
replace the arc y — § or y <> § with one labeled arc in G,
end if
end for
end for
G3 =G
test the independence model G3
while there is no evidence for the independence model faithful to G3 do
Select one edge (y, ) € (V\E»), set C = pre(T},) and select one index i/C € Zc. Add to G3 the
labeled arc y, § with the label if- and test the corresponding. model
return Gj
end while

among a selected set of variables, it is worthwhile to reduce the possible CSIs to the one defined in
formula (14) and/or in formula (16), expressed in terms of inequalities. This approach could not lead
to the best-fitting model, compared with the previous approach; however, the resulting model is more
meaningful.

In this application, we are inclined to adopt the second point of view, even if a final comparison with
an SCRGM with only CSIs expressed through equality terms is mentioned.

To obtain the best-fitting model in this framework, we first split the variables Xy into groups (corre-
sponding to chain components), and we confer an established direction of the arrow among the compo-
nents. We call Gy the starting chain graph with that partition of the variables and with all possible arcs.
Then we adopt the procedure listed in Algorithm 1. Note that, in the algorithm the symbol E stays for
the set of edges concerning the graph G.

Innovation study survey 2010-2012. The section aims to build a chain regression model that studies
the effect of innovation in some aspects of the enterprise’s life on revenue growth without omitting the
main features. Thus, we collect the following variables from the survey on the innovation status of small
and medium Italian enterprises from 2010 to 2012, ISTAT [12]. At first, as pure response, we consider
the revenue growth variable in 2012, GROW (Yes = 1, No = 0), henceforth denoted as variable X.
Then as mixed variables, we consider the innovation through three dichotomous variables referring to
the period 2010-2012: innovation in products or services or production line or investment in R&D,
IPR (Yes = 1, No = 0), innovation in organization system; IOR (Yes = 1, No = 0); and innovation
in marketing strategies, IMAR (Yes = 1, No = 0), henceforth denoted as variables X, X3, and X4,
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respectively. Finally, the role of purely covariates is entrusted to the variables concerning the firm’s
featuring in 2010-2012: the main market (in revenue terms), MRKT (1 = Regional, 2 = National, 3 =
International); the percentage of graduate employers, DEG (0% F 10% =1, 10% - 50% = 2, 50% +
100% = 3); and the enterprise size, DIM (Small = 1, Medium = 2), henceforth denoted as variables
X5, X¢, and X7, respectively. The survey covers 18697 firms, collectedina2 x 2 x2x2x3 x3x2
contingency table.

To analyze this data set, we build a chain graph with three components according to the na-
ture of the variables; thus, in the first component, we collect the firm’s feature variables (Xs567);
in the second component, the innovations variables (X»34); and in the third component, the
revenue growth variable (X1). According to formula (4), we consider the following marginal
sets: {(5,6,7); (2,5,6,7); (3,5,6,7); (4,5,6,7); (2,3,5,6,7); (2,4,5,6,7); (3,4,5,6,7); (2,3,4,5,
6,7);(1,2,3,4,5,6,7)}. The parameters associated with the dichotomous variables were based on
baseline logits, while the parameters concerning the variables with three levels are based on the local
one.

According to the learning procedure in Algorithm 1, the best-fitting model is represented in Figure 5.
In correspondence to this model, the likelihood ratio test produced the following results Gsg = 155.79,
df =132, p-val = 0.08, and AIC = —108.21. By applying the global stratified Markov properties
to the graph, we obtain:

X1 1L X461 X2357,

X1 L X234] (X567 > (2,3, 1)),
X1 1L Xo461(X357 > (0,2, 1)),
X3 1L X5|(Xe7 > (3, 2)).

In this model, the innovation in marketing strategies, X4, and the percentage of graduated employers,
X6, do not affect the revenue growth of the firms, X, conditioning on the other variables. Furthermore,
there are other weak relationships defined by the CSIs represented by the strata. Firstly, the revenue
growth, X1, is independent of all the types of innovation, X»34, when the primary market where the
firm works is national or international (X5 > 2) and the degree of the graduated employer is high
(X = 3), whatever the firm dimension (X7 > 1). Second, we have that the revenue growth, X1, is
independent of the innovation in product and services, X;, and in marketing strategies, X4, and from
the percentages of graduated employers, X¢, whatever is the innovation in the organization system
(X3 > 0) and the firm dimension (X7 > 1), and when the firm does not work in the regional market.
Finally, the organization system’s innovation, X3, is independent of the market where the firm works,
X5, when the firm is medium (X7 = 2), and when the percentage of graduated employers is the highest
(X6 =3).

These independencies correspond to simplifications on the regression models represented in the
SCRGM in Figure 5. In fact, according to the conditional independence X 1l X4|X23567, we get
that all the covariate ﬂit (i) of the regression model n}/ (i1liv\1) are null for all the subsets ¢ of
(2, 3,5,6,7). Furthermore, /331_t(i3,) is null for the subsets ¢ of (2,4, 5, 6, 7) and for the categories i; =
i24567 N Z;, where i24567 > (1, 1, 1, 3, 1). Similarly, ﬂzl’t(izl) is null for the subsets ¢ of (3,4,5,6,7)
and for the categories i; = i345¢7 N Z;, where i34567 > (0,0, 3, 1, 1). Finally, ,Bé’t(i@) is null for the
subsets ¢ of (2,3,4,5,7) and for the categories i, = i73457 N Z;, where i23457 > (0,0,0, 2, 1). The
values of the regression model that explain the dependent variable X as a function of the remaining
variables in Xy are displayed in Table 2 in Nicolussi and Cazzaro [20].

To support the learning procedure by considering only the CSIs expressed through inequality
terms, such as in formula (14), we report also the best-fitting SCRGM obtained by considering all
the possible CSIs in equality terms in Step 2 of the procedure. Figure 6 displays the graph rep-
resenting the independencies X1 L X4|X23567, X1 1L X3|X24567 = U457 for all i%yse; € Koaser,
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Figure 5. SCRGM with components 771 = (5, 6,7), T, = (2, 3,4) and T3 = (1), with inequality constraints.

X1 1 Xe|X03457 = i/23457 for all i/23457 € Ka3457 X2 1L X7|X56 = (3, 3). Note that the graph is not
exhaustive to explicit the independencies because the list of the categories in the strata is too big to be
displayed. Indeed, the full list is in Table 4 in Nicolussi and Cazzaro [20].

Finally, the output of this application shows a little aspect of what we can derive from the application
of this model. For instance, once fitted, the model can be used to forecast the values of some dependent
variables given the covariate, or again, looking at the regression parameters, it is possible to define a

Figure 6. SCRGM with components 71 = (5,6, 7), T, = (2, 3,4), and T3 = (1), with equality constraints.
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strategy where to invest. The possibilities are several. It depends on the aim of the analysis. The HMM
parameters (that are not listed here) can be used to study the relationships among the variables.

All the analysis were carried out with the statistical software R, (R Core Team [25]), with the help
of the package hmmm, Colombi et al. [7], for testing the HMM models.

6. Conclusions

In this work, we generalized the concept of the chain regression graphical models through the CS in-
dependencies. We provided original methodological results such as the pairwise and global stratified
Markov properties needed to read the independencies from an SCRGM. Further, we listed the condi-
tions for admissible labeled arcs in the SCGs. We proposed a system of regression models faithful to the
SCRGM through opportune constraints. Furthermore, we considered a subset of the SCRGM with in-
equalities constraints in the CSIs. These subclasses of the models have different advantages, especially
when we want to deepen the meaning of the parameters instead of focusing only on the parsimonious
principle. The application showed these two different ways to face the SCRGMs. Besides, we sug-
gested to take advantage of a parameterization based on the HMMMs. This class of models is widely
studied and offer several advantages. Indeed, the chosen parameterization is smooth, but its parameters
are not variation independent. Undoubtedly, investigating further properties of this parameterization
can be considered an interesting challenge for future works. Assuredly, additional context-specific in-
dependence statements make, the already huge model space, larger, and there is no optimal solution
for exploring this vast model space. In this work, we proposed a possible way to investigate this space
well aware of limiting the research to a subspace. A deepen research of algorithms for the learning
procedure, with a study on performance, is a topic for future research.

Appendices

A.l. Further results

Note on the maximum-likelihood estimations. As Bartolucci et al. [2], we put all the HMM param-
eters in the vector by following the lexicographical order. Thus, the linear constraint on the HMM
parameters such as in formula (12) can be expressed as En = 0 for a suitable constraints matrix. All the
considerations carried out about the existence of maximum likelihood estimations, and the convergence
of the iterative algorithm hold if E is a full rank matrix. The row number of E is the number of linear
constraints, while the column number is the number of parameters. In order to have a full-rank matrix,
the rows must be linear independent. When we handle constraints for conditional independence, it is
easy to see this because any row of the matrix has only one element equal to 1 (in the position of the
parameter to constrain), and the other entries are zero. In general, in order to constrain CSIs, the rows
of E must have more than one 1 entries. Wider constraints can include more than one constraint, such
as explained in the proof of Theorem 4.4. In general, this is not a problem, and in the implementation
of the matrix E, it can be useful to change the 1 entries into 0 entries when the row refers to the wider
constraints. Furthermore, this simplification allows us to see that the constraints are not linear depen-
dent easily. See also Nicolussi and Cazzaro [19] for further details. However, some constraints may
imply more reliable conditions, when the addition of constraints for a CSI implies new conditional
independence. Nevertheless, Example 4.6 discuss this topic.
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A.2. Proofs

Proof of Lemma 1. If (A, B|C) € J(P) then P(iaslip,ic) = P(ialic) forallig € Za, ip € Ip, and
ic € Z¢ thus, information about the value of B being irrelevant to determine A. If (A, C|B; Kp) €
J(P) then, P(ialip,ic) = P(ialip) for any iy € Ty, ip € Kp, and ic € Z¢. If both the statements
belong to J(P), the probability P(i4lip,ic) must be equal to P(i4) when ip € Kp and P(iglic)
when ip ¢ Kp. However, since P(islip,ic) does not depend on iz anymore, its values do not dis-
criminate the value of the probability of P(i4lip,ic). This implies that if (A, B|C) € J(P) and
(A, C|B; Kp) € J(P) then also (A, C|B) € J(P). Note that this last statement is stronger than the
CSI (A, C|B; Kp) € J(P). Thus, we prove that it is not possible to include in the same independence
model (A, B|C) and (A, C|B; Kp) € J(P) without including a stronger condition. 0

Proof of Theorem 3.1. First, it is opportune to highlight a consideration. From Theorem 1 of Lauritzen
and Sadeghi [14], the independence models 7 (G £y and all the J(GR(i;)) satisfy all the properties of
Definition 2.1 since the full graph and the reduced graphs are chain graphs. Now we have to prove
that this holds also for the independence models faithful to the SGC 7 (G). Furthermore, the following
proof considers only the case of CSIs such as (A, B|C;i; x Kcy) € J(GR(i))) since it covers also the
conditional independence statements when K¢ = Z¢ and the reference graph is G

(Symmetry). This easily comes from the fact that the 7(GF) and J(GR(i;)) independence mod-
els satisfy this rule. Indeed, (A, B|C;i; x Kc\) € J(GR(ip)) if and only if (B, A|C;i; x Kev) €
J(GR(i;)) and both belong to 7 (G).

(Decomposition). This property comes from the fact that independence models 7 (GF) and
J(GR(i))) satisfy this rule. Indeed, if (A, BUD|C; i; x Kev) € J(GR(i))) then (A, B|C; i) x Key) €
J(GR (1)) and (A, D|C;i; x Key) € J(GR(i))) and all these statements belong to 7 ().

(Weak union). This property comes from the fact that independence models 7 (G%) and 7 (G (i)
satisfy this rule. Indeed, if (A, BUD|C; K¢) € J(GR(i;)) then (A, B|C U D; K¢ x Ip) € J(GR(i)))
and (A, D|C U B; K¢ x Ig) € J(GR(i;)) and all these statements belong to 7 (G).

(Contraction). About this property, we need to discriminate 2 cases.

(case 1): the restriction of the CSIs is limited to the set C, (that is [ € C). Since J(GR(i;)) satis-
fies this property, (A, B|C U D;i; x Zcy x Ip) € J(GR (i) and (A,D|C;i; x Icy) € JGRa)),
if and only if (A, BU D|C;i; x Icy) € J(GR(i))) and these statements hold also in 7(G). In gen-
eral, if (A, B|C U D; Kl x Ip) € J(G) and (A, D|C; IC%) € J(G) then (A, B U D|Kc) € J(G)
where K¢ = ICIC N IC%. This comes from the property R1 in the Definition 3.6. On the other hand, if
(A,BUDIC; Kc) € J(G) then (A, BIC U D; K¢ x Ip) € J(G), from the weak union property, and
(A, D|C; Kc) € J(G), from the decomposition property. To this case it belongs also the special case
where ICé and/or IC% are equal to Z¢.

(case 2): the restriction of the CSIs involves also nodes in D, (thatis mN D # &). From Lemma 1, the
statements (A, B|C U D; Zey x Ki x Ky X Ip\m) € T (GR(i1um)) and (A, D|C; iy x Ko) T (GR (1))
are not compatible.

(Intersection). (case 1): the restriction of the CSIs is limited to the set C, (thatis/ C C).If (A, B|C U
D;ijxZcyxIp) e J(GR(i)) and (A, D|CUB; i xZcyxTIp) € J(GR (i) then (A, BUD|C; i; x
Icy) € J(GR(i;)). Thus, they belong also to 7 (G). In general, if (A, B|C U D; IClc x Ip) € J(G)
and (A, D|C U B; K2 x Ig) € J(G) then (A, BU D|Kc) € J(G) where K¢ = K& N KZ, in force
of the property R2 in Definition 3.6. On the other hand, if (A, BU D|C; K¢) € J(G) then (A, B|C U
D; Kc xZIp)e J(G)and (A, D|CUB; K¢ xZg) € J(G) for the weak union. To this case, it belongs
also the special case where ICIC and/or IC% are equal to Z¢.
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(case 2): the restriction of the CSIs involves also nodes in D, (that is m N D # &). The statements
(A, BICUD: Iey x Ki x K % Tpyw) € T (GR i1um)) and (A, D|C U B1 iy x Koy x Zg) T (GR ()
are not compatible according to Lemma 1.

(Composition) if (A, B|C;i; x Kcy) € J(GR(@i;)) and (A, D|C;i; x Kcy) € J(GR(@i))) then
(A,BUDIC;i; x Kcy) € J(GR(i;)) and all these statements belong to J7(G). In general, if
(A, BIC;K() € T(G) and (A, D|C; KE) € J(G) then (A, BU DIKc) € J(G) where K¢ = K¢ N
KZ. O

Proof of Corollary 3.1. Sadeghi and Lauritzen [30] proved the equivalence between pairwise and
global Markov properties for independence models satisfying all the properties in Definition 2.1. The-
orem 3.1 proved that the independence model faithful to any stratified chain graph satisfies all the
properties in Definition 2.1. (|

Proof of Lemma 2. From condition pS/ in Definition 3.2, the conditioning set of the CSI statement
is pre(Ty), for any y, 8 € Tj,. If there is at least a node & € pre(7;)\(pag(y) N pag(8)), this implies
that (¢ U y) and/or (£ U §) are(is) a non connected set. Thus, there is a set C such that the conditional
independence statement(s) (&, y|C) and/or (&€, §|C) hold(s), and, according to Lemma 1, the CSI and
these conditional independencies are incompatible. As a consequence, [ € pag(y) Npag(3).

From condition pS2 in Definition 3.2, the conditioning set of the CSI statement is pre(7;)\8, for
y € T, and § € pre(Ty). If there is at least a node & € pre(T;,)\(pag(y)) or such that § is not adjacent
to §, this implies that (¢ U y) and/or (£ U§) are(is) a non connected set(s). Thus, the previous reasoning
still holds. O

Proof of Theorem 4.1. By applying formula (3) of Nicolussi and Cazzaro [20] (Corollary A.1) to the
HMM parameters in formula (5) evaluated on the conditional distribution i 4 |ipa, (7;,), We obtain:

AUpagy(Th) ,+ |+ AUpay (Ty,) , .
s PTG i) = > P M ). (17)
tCpar (Th)
Notice that, according to formula (6), the generic addend on the right-hand side is ,8,A (iy). O

Proof of Theorem 4.2. In this proof, we have to show that we can obtain all the HMM parameters
from the parameters describing the regression models in formula (5). Note that proving the opposite is
not necessary because, by definition, the regression parameters are a function of the HMM parameters.

We have to distinguish three cases.

Case 1: the parameters refer to the variables X 4, where A C T}, and pay(7T,) = &. All the HMM
parameters nﬁ belong to the regression models according to formula (7).

Case 2: the parameters refer to the variables X such that £ C (T), U pay (7)) and pay(7y) is not
empty.

At first, we consider the regression parameters in formula (5) when i, (7;,) = 1P3T<Th)’ that is, each
variable in Xpa, (7,) assumes the first category. Since the parameter with at least one variable X ; in the
first category i; = 1; is equal to zero, formula (5) becomes

AUpar (Ty) AUpar (T,)
N4

(i allpay 1) = B =1y (i) (18)
Then, by considering only one variable X ;, such that j € pa;(7}), with i; # 1; and the remaining
pay (Tp)\j setting equal to 15a,.(7;,)\j» We have

AUpar (Ty) AUpar (Ty)

AU Th) ;¢ . . .
0y PTG gy i) = B + BAG ) =) @)+ ;T ). (19)
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Then, from both (18) and (19), we can isolate the terms nﬁUpaT(Th)(i A) and ng;)paT(Th )(i Aj)» Whatever
is the value i;, Viaj € T4;. By applying recursively this approach for all the variables X ; with J C
paz (1), and for all the values i ; € Z;, we obtain all the HMM parameters.

Case 3: the parameters refer to the variables X £ such that LN T}, # @ and LN (pre(Ty)\par (Th)) #
. However, the nodes in £ are m-separates given the nodes in pay (7} ), then these parameters né‘/l are
null as each disjoint set corresponds to an independence statement, (see, for instance, Marchetti and
Lupparelli [17]). O

Proof of Theorem 4.3. Before proceeding, it is worthwhile to remember the three remarks that we
will use in this proof.

First, given an independence like (A, B|C), the probability distribution of X 4 pc obeys the indepen-
dence if, and only if, the HMM parameters ncfl‘;‘c =0,wherea CA,bC B,cCC,a,b# @and M is
any subset of V, see Bergsma and Rudas [3].

Second, given a generic parameter 772/1 (ir), the choice of the unspecified category of the variable
X with j € M\L is arbitrary and we set equal to the first category without loss of generality, see
Nicolussi and Cazzaro [19].

Finally, in force of the consideration in the proof of Theorem 4.2, all the parameters ni‘;‘ are null if
v € Ty and ¢ C pre(Ty)\(par (T1)). As a consequence, when we need to constrain to zero parameters
concerning subset of 7j, U pre(7},) with at least one non-empty element of 7}, we limit the discussion
to the subset 7, U par (T5).

Considering these remarks, now we prove point by point the statements listed in the theorem.

Point i. Looking at pM1 in Definition 3.2, when A =§ U y, with §,y € Tj, A is non connected
set because there is no arc between the two nodes. Then, the parameters nﬁf =0 for ¢t C pay(Ty),
where M = A Upay(T},). Note that we are restricting the conditioning set pre(7},) to the only par (T})
in force of the third consideration. The nﬁ\\;‘ (i ar) is exactly the parameters on the right-hand side of
equation (6); thus, ﬂtA (i) =0, Vt € payp(Ty). By replacing this result in formula (5), we get that

AU Th) o e
'y par ( h)(lAllpaT(Th)) —0.

The same occur when A = {y U U ¢} and there are two missing edge between these three nodes.
Of course one of these is an isolated node, says §, thus A is a non connected set. In force of pMI
we have (X, X5|Xpre(r;,)) and (X¢, Xs|Xpre(r;,)) and in force of the composition property (S6) in
Definition 2.1 we also have (X, X5|Xpre(7;,)). In general, all the non connected subsets A of Ty
represent an independence statement obtained via compositional property.

Point ii. Looking at pM2 in Definition 3.2, when y € T, and § € pre(T},)\pag(y) are two non adja-
cent nodes, n)//\gtt =0 forall t C pag(y), where M =y Upar(Tp).

Remember that a node y € T}, is not adjacent to any node in pre(7;,)\pag,,. For the composi-
tion property in Definition 2.1, we get n%t =0, for any d C pay(T)\pag(y). By using the equiv-
alence in formula (6) the previous assertion becomes ﬂg =0, for any d < pay(Ty)\pag(y). Thus,
the addends in the right-hand side of formula (5) reduce to Zlgpag(y) B!. A further generaliza-
tion can be made by considering all subsets A of 7}, which regression models are not canceled by
property (i). Even in this case, by applying the composition property to pM2, it can be derived that
(X4, Xpre(1;,)\pag (4)| Xpag (4)). Coherently with the previous passages we obtain nﬁ”i @ alipay () =
Ztgpag(A) IBtA

The proofs of (iii) and (iv) follow from what has been said for point (i) and (ii) by considering two
differences. Unlike the missing arcs, the stratum identifies conditional independence statements only
for certain values, those for we can build for a reduced graph G R (i7). Remember that, for any i; € K;
and any stratum, we have a reduced graph G®(i;). Secondly, the rule to constrain to zero the HMM
parameters based on the baseline logits, is presented in formula (12).
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Point iii. For any non-connected set A, ZthaT(Th) nAt @ia,iy) =0, with M = A U pay(T}), for
any ig € Zy and i; € Z, N (K x Tpay (Ty)\1)- By using the regression parameters in formula (6), the

previous sum is exactly the right-hand side of formula (5). Thus, we get nA Upar (Ti) (@ alipay () =

for any ipa,(7,) € K x Zpa,(1y)\1)- Obviously, some non-connected A in GR(i;) can be also non-
connected in G¥'. However, in this case, simply the regression models in formula (5) are still set to zero
according to (i).

Point iv. Let us consider all connected set A € T, in GR(i;) for any i; € K; and for any
stratum. We have that ngpaT(Th)\pag(A) n%(iA,id) =0 for all iy € Zyg N (Ki X Tpap@\0)s
where M = A U pay(T,). By using the equivalence in formula (6) the previous assertion be-
COMeS 3= pay (7)\pag(a) B = O- Thus, nY G Al pay 1) = Yicpaga Bt forall iy € I, 0 (K x
Lpar (T\1)- 0

Proof of Theorem 4.4. To provide the proof of this theorem, we closely follow the proof of Theo-
rem 4.3, remembering that the difference between the two theorems lies in the different types of logits
chosen and the alternative specification of the CSIs. In particular, we have to take into account the
result in Lemma 1 of Nicolussi and Cazzaro [20], formula (2) and Corollary A.1, formula (4).

Point i. As discussed in the proof of Theorem 4.3, for any non-connected subset A of 7}, the HMM
parameters

nQUpaT(Th)( 1) =0 Via €Ty and Vt C pap(Ty), (20)

where A is any nonempty non-connected subset of 7}, in the full chain graph G¥'. When t = @, we get
AUpaT (Ty)
that n

nﬁfpaT(Th 4 (iaj) =0. Let us apply the formula (2) to the previous result, obtaining

(i 4) = 0. Further, by considering the set ¢ composed of only one vertex, say j, we get

AUpar (Ty) AUpar (Ty)
Na

@alij) —my (ialGj—1D)=0. 21

When the variable X; assumes the second category, the above difference becomes equal to
AupaT(Th)(l |l _ 2) AUpaT(Th)

AUpaT(Th)

(ia) = 0. Since the second term on the left-hand side is null, we

get that 1, (ialij =2) =0. Similarly, when the variable X; assumes the third value i; = 3,

AU (Ty) AU (Ty) .
P i plij =3) =y T alij =2) =0.
AUpar (Ty,)

the difference in formula (21) becomes equal to 1,

AUpay (Tp)

But since we just proved that the term 7, (ialij =2)is equal to zero, n,

null. In the same way, we can prove that nAUPdT(T”)( alij)=0foralli; € Z;.
Now we generalize to whatever set t C pay (7). When each variable X; with j € t assumes

the second value i; = 2, in short, i; = 2, the formula (2) becomes nAUpaT(Th)( Aliy =2) —
> icc Al ac\s Eac\s) = 0. All the terms in the sum (left-hand side of the equation) are null because of
J £

@Ealij=3)is

formula (20). This means that nAUpdT(T")(t Ali; = 2) is also equal to zero. When, there is one variable

X ; assuming value i ; = 3, leaving unchanged the categories of the variables X\ ; equal to i, ; =2,

AUpar (Ty)

we can repeat the same process by obtaining 7, (@alinj =2,i; =3) =0. In this way, reduc-

ing one by one the categories of each variable, we can prove that the nAUpaT(Th)( li;) =0 for all
¢ Cpay(Ty) and for all i, € Z;.

Point ii. As discussed in the proof of Theorem 4.3, we need the following constraints on the HMM
parameters

A T) .
A;J[l,)aT( h)(l dp) =0, Viaap € Laap, ¥d C pay(Ty)\pag(A) and Vp C pag(A), (22)
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where A C Tj, in the full chain graph G and where A and d must be necessarily nonempty.
By applying the decomposition in formula (4) in Lemma 1 of Nicolussi and Cazzaro [20], where

L =AUd and C = p to the constraints in formula (22), and by following the same consideration

paT(Th)(l-

performed at point i of this proof, we get that nﬁ d Adlip) is null. This means that, formula

(3) in Corollary A.1 of Nicolussi and Cazzaro [20], in this case, becomes nﬁpaT(Th)(iAﬁpaT(Th)) =
ZJgpag(A) nia}(Th)(iAJ|ipag(A)\/). By using the regression parameters, we get nﬁpaT(Th)(iM

. A/
Lpay (1) = ZJgpag(A) By ().

Point iii. In this case, by considering the new formulation of the CSlIs as in formula (14), instead of
the equality, we have that the CSI holds for all ipa,4) <1 ;ag (a)- By taking into account the considera-

tions performed at point i, it is easy to see that they are still valid Vip,,(4) <1 ;ag (4)- Then we get that

nQUpaT(Th)(iAlic) =0, for all ¢ C pay(Ty) and for all i, <i..

Point iv. Exactly as for point iii, the considerations performed at point ii hold here when the cat-
egories of the conditioning variables are greater than or equal to i ;ag( 4)- Thus, the constraints are

As . .
2 tcpar Tvpag(a) B G =00, Vi, <. 0

Supplementary Material

Additional results for proofs and additional data from application (DOI: 10.3150/20-BEJ1302
SUPP; .pdf). We provide a lemma and a corollary slightly adapted from Nicolussi and Cazzaro [19].
These two results are used in the proofs of Theorem 4.1 and Theorem 4.4. We provide four tables of
parameters concerning the application in Section 5.
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