
Adding Variety in NPCs Behaviour Using Emotions
and Genetic Algorithms: the GENIE Project

Federica Agliata†, Laura Anna Ripamonti∗, Dario Maggiorini∗, and Davide Gadia∗

†Department of Computer Science ∗Department of Computer Science
University of Milan University of Milan

Email: {firstname.lastname}@studenti.unimi.it Email: {firstname.lastname}@unimi.it

Abstract—In recent years we have been observing an increasing
adoption of artificial intelligence in video games. With the
availability of increasingly powerful hardware and advanced
algorithms we can now scale up the quality of the AI available
to every Non Playing Character (NPC). Thanks to this increased
quality, NPCs can be made very believable and able to convey
a compelling user experience. Despite this added quality and
complexity, every NPC can get predictable with time and game
designers are struggling to provide variety in games where many
NPCs are present. Designing a specific, and unique, AI for every
NPC can be a very time and resource consuming task. In this
paper we propose GENIE (Genes Driven Decision Tree) as a
tool to support game designers in the creation of a wide variety
of behaviours. With GENIE, it is possible to define an NPC
behaviour in term of reactions to its internal parameters. These
parameters, in turn, are evaluated and generated using a genetic
algorithm. NPCs can then evolve to different internal states and
interact with the player using each time a different behaviour.

Index Terms—Games, Artificial Intelligence, NPC Behaviour,
Genetic Algorithms

I. INTRODUCTION

As of today, we can observe an increasing adoption of artifi-
cial intelligence inside video games. In modern video games,
artificial intelligence techniques are used to achieve various
tasks. These tasks cover a wide range from pathfinding to
procedural content generation, to machine learning. Among all
the possible tasks, providing complex and believable behaviour
to Non Playing Characters (NPCs) is strategic to convey a
rich and compelling player experience. With the availability of
increasingly powerful hardware, it is now possible to provide
NPCs which are able to perform complex operations and take
elaborate decisions while interacting with the player.

Despite the aforementioned potential to describe very artic-
ulated NPCs behaviour, every NPC will get predictable with
time and game designers are usually struggling to provide
variety in games where many NPCs are present. NPCs are
getting predictable to players whenever the same behaviour
and/or decisions pattern is proposed over a long time: a human
counterpart is not going to find dealing with the artificial
intelligence agent amusing or challenging on the long shot.
Another problem is about providing variety when a population
of NPCs is involved: as a matter of fact, having all the
NPCs behaving in exactly the same way will provide a poor
player experience and, once again, predictability will take over
quickly. Designing a specific, and unique, behaviour for every

NPC can be a very tedious activity for game designers and
may also require a large amount of resources to store the
descriptions of independent behaviours with small differences.

To support game designer in providing behavioural variety
on a population of NPCs we are proposing here a system
based on genetic algorithms. We baptised our system GENIE
(Genes Driven Decision Tree). GENIE allows a game designer
to define a set of possible states for every NPC and represent
them in term of internal parameters. These internal states can
also be seen as the emotional states of each NPC: in the same
vein as human behaviour is affected by emotions felt while
taking decisions, the behaviour of an NPC is affected by its
current state. From a more technical standpoint, the internal
parameters can be used to drive a decision trees representing
the NPC tactical and/or strategical behaviour. Even a small
change in the emotional state will provide a different behaviour
from the same NPC. Of course, shifting the problem from
defining multiple behaviours to defining a set of internal states
is not a real solution. GENIE uses a genetic algorithm to
generate internal states and provide multiple, and changing,
behaviours to a population of NPCs. The fitness function can
be tuned to follow the player reactions and adapt the game
difficulty for an optimal user experience.

GENIE has been implemented using the Unity game en-
gine.Inside the unity editor, the game developer can use an
ad-hoc graphical user interface to design the decision tree and
give a weight to every parameter belonging to the internal,
emotional, state.

In this paper we are going to describe in detail how GENIE
works and, to prove the effectiveness of our solution, we will
present results obtained by testing GENIE on four games
of different genres. Experiments have been performed on a
first person shooter, a stealth, a role-playing, and a roguelike
games. Preliminary results are promising with respect to the
general technique of genetic evolution applied to parametric
decision making.

The remainder of this paper is organised as follows. In
Sec. II relevant related work on the same topic is presented
while GENIE is described in Sec. III. Section IV provides
a report of the experiments we performed to validate our
approach. Section V concludes the paper and outlines future
extensions of the current work.



II. RELATED WORK

When discussing related work, we have to remember clas-
sical AI and AI for video games use similar techniques to
achieve different goals. While classical AI aims to emulate a
human being and recreate a perfect behaviour to the purpose
to solve a given problem, AI in video games needs to recreate
a believable behaviour in a specific context while posing a
challenge to the player. Moreover, this challenge must be the
result of an imperfect behaviour in order to let the player win
with a reasonable effort and progress in the game.

The first historical example of AI applied to games where
the player was supposed to confront NPCs exposing different
behaviours is the game Pac-Man in 1980 [1]. After Pac-Man,
to observe significant improvements in commercial products
we have to wait almost twenty years. In late 90’s, agents
in games started using information from the surroundings to
influence decision making such as in the case of GoldenEye
007 [2], Thief: The Dark Project [3], and Metal Gear Solid [4]
where allies’ status was taken into account by NPCs. Also in
the late 90’s, the newborn genre of Real-Time Strategy (RTS)
introduced the adoption of a very large number of NPCs on
the playfield. With RTS games, NPCs started using interaction
with one another to implement strategies (like in Myth; The
Fallen Lords [5]) and movement in formation (like in Age of
Empire II [6]).

Moving now to a more scientific ground, we should be
considering two kinds of research contributions for this work:
the ones coming from the field of computer science and those
coming from the psychoanalysis field.

In computer science, we can find a large number of contri-
butions addressing the problem of changing behaviour using
an algorithmic approach. Despite this availability, only a subset
of them are strictly related to gaming.

The field of Dynamic Decision-Making (DDM) has already
been very well investigated [7], [8]. DDM is interdependent
decision-making taking place in an environment that changes
over time. The changes can be determined by the decision
maker itself or from events that are outside of its control.
Despite its complexity and interdependence of decisions,
DDM is not exposing different behaviours when the same
environmental conditions are met, but aims to define strategies
to adapt to unplanned environment changes.

Since DDMs are not up to the task at hand, another
opportunity is to offer different behaviours by generating them.
Generative approaches are usually applied to games with the
aim to develop a human-like behaviour for NPCs. As an
interesting example, authors of [9] use cognitive architectures
to address the design of believable bots for First Person
Shooter (FPS) games. A more general approach is discussed
in [10], where the problem of believability is also taken
into account trough a Turing-like tests performed during live
gameplay. In particular, many versions of the Turing test have
been proposed in recent years in order to perform believability
assessment in the recognition of human-like behaviours; see,
e.g., [11] and [12]. Beside FPS games, behaviour generation

has been exploited also for other purposes such as the creation
of characters to perform interactive storytelling, as reported
in [13].

Anyway, generative approaches do not grant a solution to
our problem: a new generated behaviour could be too different
from the previous one and break continuity in use experience.
From this standpoint, a better solution could be to generate
an initial (believable) behaviour and then evolve it. Many
evolutionary approaches has already been applied to games
in various situations. In [14], behaviour trees are evolved and
recombined to raise the competition level of an NPC, while
in [15] a neural network is used to boost performances of
an agent playing an FPS game. Similar concepts has also
been applied outside the field of digital entertainment but with
similar goals, such as in [16], where robot behaviour is evolved
in order to improve survival probability, and [17] to find
optimal end moves for the tabletop game Risk. Nevertheless,
in all the reported examples, evolution is always intended to
improve performances through generations and/or outperform
a human player. While this is reasonable in games such as
racing or chess, the final player experience will be poor in
heavily plot-driven games. Moreover, we are still failing in
providing more variety to the gameplay.

Among all evolutionary strategies, the use of genetic algo-
rithms proved to be an interesting approach to the purpose
of this paper. Since a genetic algorithms evolves a population
by breeding eligible subjects over, time we will not observe
sudden and abrupt behaviour changes between generations.
Moreover, reproduction eligibility can be tuned for optimal
player experience and mutations may boost variety even more.

Genetic algorithms have already been used to evolve soccer
players [18]–[20] for the RoboCup 1 competition, robots to
be trained for space battles [21], opponents in Real-Time
Strategy (RTS) games [22], tuning of FPS bots [23], and
designing chess platers [24]. These approaches have included
both the off-line and on-line optimisation of controllers and
play strategies.

Unfortunately, all the aforementioned applications of GAs
to games are still targeting the evolution of the best possible
player. As already discussed, this is not always the request
coming from a game designer. To the best of our knowledge,
there are no contributions about genetic evolution in games
with the purpose to evolve NPCs targeting a condition which is
deemed optimal for player experience. In our vision, evolution
should not be leading to a specific condition but provide
continuous changes to follow the player skill and keep him
in the game flow.

Moving now to the side of psychological studies, we already
discussed in Sec. I the fact that NPCs internal states can be
regarded as different emotional states. To design and tune these
internal states, we can leverage on a wide existing literature
related to analysis and representation of emotions.

The first studies on the theory of emotions date back
to 1884 and are represented by the James-Lange theory of

1https://www.robocup.org/



emotion from William James and Karl Lange [25]. Following
the James-Lange theory, emotions occur as the result of
physiological reactions to events: people have a physiological
response to environmental stimuli and their interpretation of
that physical response results in an emotional experience. The
James-Lange theory has been disputed by Walter Cannon in
favour of a more centralised approach known as the Cannon-
Bard theory [26]. In the Cannon-Bard theory, emotional ex-
pression results from the function of hypothalamic structures
and emotional feeling results from stimulations of the dorsal
thalamus. As a result, the physiological changes and subjective
feeling of an emotion in response to a stimulus are separate and
independent. A step forward has then been made years later,
in 1962, by Stanley Schachter and Jerome Singer. Schachter
and Singer unified the James-Lange and Cannon-Bard theories
in the two-factor theory of emotion [27]. According to the
two-factor theory of emotion, when an emotion is felt, a
physiological arousal occurs and the person uses the imme-
diate environment to search for emotional cues to label the
physiological arousal. When the brain does not know why it
feels an emotion, it relies on external stimulation for cues on
how to label the emotion. The missing piece in the two-factor
theory is an explanation about what is actually generating
the emotional experience. A possible answer was provided
by Magda Arnold and Richard Lazarus with the appraisal
theory. In the appraisal theory, emotions are extracted from
our evaluations (appraisals or estimates) of events that cause
specific reactions in different people. Essentially, the appraisal
of a situation causes an emotional, or affective, response
that is going to be based on that appraisal. Reasoning and
understanding of one’s emotional reaction becomes important
for future appraisals as well. In particular, Lazarus stated
that, to experience an emotion, thought is enough: emotional
experience is always the result of a cognitive evaluation of
surrounding events [28]. Anyway, a very important contri-
bution, with respect of this paper, is the one provided by
Ira Roseman in late 90’s [29], [30]. Roseman’s theory of
appraisal extends the original theory in a structural way and
holds that there are certain appraisal components that interact
to elicit different emotions. In particular, the combinations of 5
appraisals can trigger 13 qualitatively different emotions in any
given situation. The appraisals are: motivational state (reward-
ing/punishing), situational state (present/absent), probability
(certain/uncertain), legitimacy (positive/negative outcome de-
served), and causal agency (circumstanced other person/self).
The emotions determined by these five appraisals are joy,
relief, hope, liking (intended as friendliness), pride, distress,
sorrow, fear, frustration, disliking (intended as unfriendliness),
anger, regret, and guilt.

Modern psychology defines emotions as reactions – short in
time, but strong in intensity – raising as an answer to external
(i.e., from the environment) or internal (i.e., from the body)
stimuli. These stimuli bring a specific cognitive message and
serve the function to divert the attention. Researchers agree
that emotions can be classified as primary (fundamental) and
secondary. While secondary emotions are difficult to identify,

primary emotions are inborn or acquired during the first stage
of live. Moreover, lists of primary emotions proposed by
various research groups are always covering at least a subset
of Roseman’s classification.

GENIE is leveraging in this approach and classifies emo-
tions in order to describe NPCs internal state as a discrete
elements set.

III. GENIE

GENIE (Genes Driven Decision Tree) is a software tool to
be used within the Unity game engine. The purpose of this
tool is to ease the design of multiple, variated, behaviours for
NPCs in a video game. The designer/developer using GENIE
can describe a basic behaviour of a template NPC by creating
a decision tree using a visual interface (see Fig. 1). Branching

Fig. 1. GENIE interface for decision tree editing.

conditions for the generated tree will be triggered by variables
defining the internal state of each NPC (see Fig 2). This way,

Fig. 2. GENIE panel to set emotional parameters.

each NPC will offer a slightly different behaviour depending
on the internal state and starting from the template.

In particular, to describe the emotional state, we associate
to each emotion a floating point value in the range [0, 1].
In this scale, the value 1 means maximum intensity for an
emotion while 0 means that the emotion is absent in the NPC.
Inside the decision tree, decision nodes can defines a threshold
for each emotion. The current intensity of the emotions, i.e.,
the internal state, will contribute to the branch selection. Of
course, emotions are not the only elements in play when
selecting a branch: decision nodes, depending on the game,
may also need to check the surrounding environment. From



the environment, other contextual information will be extracted
and used; e.g., collisions status, light intensity, or the player
presence and distance.

While the internal state is fixed inside an NPC, emotional
changes will take place when spawning new ones. Emotional
states change over time is achieved by means of a genetic
algorithm. The adoption of a genetic algorithm guarantees a
smooth and uniform transition between generations and allows
random, unpredictable, changes to be added. The intensity of
each emotion is used as a chromosome for the evolution.
Since the main goal of this tool is to achieve variation,
in our opinion it makes little sense to implement a very
sophisticated, and CPU-intensive, genetic algorithm. For this
reason, we implement the genetic crossover using the single-
point crossover algorithm and mutation by selecting a random
chromosome (a random emotion) and setting its value to a
number in the range [0, 1]. The adoption of a lightweight
algorithm is also helpful to improve scalability in games where
thousands of NPC are required, such as RTS games. Anyway,
a separate discussion is required for the selection phase. While
the purpose of the selection phase is very simple: picking
genomes (NPCs) eligible for breeding, this function is always
tightly coupled with game mechanics and player experience.
As an example, an FPS might want a fitness function to
select NPCs with a long lifespan while avoiding those who
already killed the player; this might be reasonable to make the
population challenging for the player, but not too powerful.
For these reasons, GENIE is not implementing any fitness
function by itself, but is providing a C# delegate for the game
developer to use. The delegated function will be used by the
GENIE middleware to perform the selection phase.

The final result of the system described above when applied
to an FPS game might be as follows. If the player is very
skilled, all the NPCs not taking cover (having a low fear
component in the emotional state) will die quickly. The system
might start giving breeding priority to fearful NPCs, the
coming generations will slowly take more cover and adapt to
the player play style. This way, the average NPC lifespan will
increase as a proof the game have become more challenging.
If, on the other side, the game is getting too challenging, NPCs
who killed the player might nor not be selected for breeding
and the next generation will evolve from less dangerous
NPCs. This is going to make the game easier and prevent
player’s frustration. If the player improves in skill, the system
will adapt by selecting again strong NPCs for the following
generation. Furthermore, from time to time, mutation may take
place. When a mutation is performed, an NPC will behave
in an unexpected way. If this new, unexpected, behaviour is
successful (i.e., the NPC survives up to the next generation),
it might get selected for breeding and contribute to the next
generations.

While implementing of GENIE, a number of choices have
been made to find an acceptable compromise between usability
and complexity. One of the most crucial point was about
making this GENIE prototype a completely general purpose
tool or bind it to a specific game genre. On the one hand, a

general purpose tool is much more flexible but can prove too
difficult to manage due to the sheer number of parameters that
comes into play. On the other hand, being specific to a genre
would make it very powerful to use in a specifica case, but also
much less useful in a real production environment. Moreover,
being able to test the effectiveness of our methodology only in
one single case did not make much sense to us. As a result, the
compromise we found, was to have a general purpose tool but,
to increase usability, limited to four mainstream game genres.
The four game genres we selected for this implementation are:
FPS, stealth, role-playing, and roguelike games. For each genre
in this list, we are proposing (after thoughtful discussion with
game designers) a reduced set of emotions deemed useful to
evolve the specific NPCs. The emotions selected of each game
genre are reported in Tab. I. Nevertheless, given the object-

FPS Stealth Role-playing Roguelike
Afraid Bold Anxious Angry
Angry Forgetful Cautious Coward
Bold Paranoid Considerate Greedy

Tactical Strategic Panicked
Yielding Self-Assured

Shy

TABLE I
EMOTIONS ASSOCIATED TO GENRES INSIDE GENIE.

oriented nature of Unity, it is possible for the final user to
easily extend these sets or support new games genre.

Moreover, to make things easier to the developer, we also
decided to implement binary decision trees. This way, the
implementation of decision delegates will be easier, boosting
code reusability, and the trees will be more manageable
from inside the editor. Anyway, this is not going to be an
actual limitation; because it has been demonstrated that the
expressivity of binary decision trees is not a subset of the
generic multi-branch version.

IV. EXPERIMENTAL EVALUATION

To evaluate the actual effectiveness of GENIE, we per-
formed experiments with games implemented using our tool.
A game for every supported genre has been implemented and
tested with actual players.

For the evaluation, we engaged a group of 20 volunteers.
This group was made of Computer Science students with an
age between 23 and 28 years. In the group, we had 18 males
and 2 females. All the subjects declared to be active players
and to be familiar with all the proposed genres.

To perform the experiments, we asked every volunteer to
have a play session with each game and then fill in a feedback
form. With the feedback form we aimed to understand if the
player was actually perceiving a difference in the behaviours of
the NPCs in game. Perceiving differences means, in this case,
that a player is actually taking note of an NPC performing
actions in line with its emotional status. To prove the effec-
tiveness of GENIE, we need to have the majority of actions in
their emotional context being apparent to a large majority of
the players. During analysis, for each experiment (genre), we



classified the couples [action, emotion] in three groups based
on the the share of players that perceived them: 66% or more,
between 33% and 65%, and less than 33%.

In order to be able to compare results, demo levels have been
designed following a common structure. For FPS and stealth
games, where players are usually required to follow a given
path, we adopted a linear level structure where three gameplay
events (missions) are proposed in sequence, as depicted in
Fig. 3. To complete the game, the player must survive all the
events. For role-playing and roguelike levels instead, where

Fig. 3. Linear level organisation for FPS and stealth experiments.

the player has more freedom to roam on the map, we adopted
a non-linear approach as reported in Fig. 4. In this non-linear

Fig. 4. Non-Linear level organisation for role-playing and roguelike experi-
ments.

approach there are three events available in the first part of the
level. After surviving all the events in any order, the player can
access the second part of the level through a bottleneck section.
In the second part, the same pattern encountered before the
bottleneck is proposed again in order to end the level.

In all the games used for testing, fitness functions have been
implemented using a scoring system. A score is associated to
NPC actions; when the fitness function is run, the NPC history
is evaluated and an integer number is returned. NPCs with the
highest score are selected for breeding. As an example, the
scoring system for NPCs in the role-playing experiment is
reported in Tab. II

Action Score
Kill the player +2
Cure allies +1
Inflict basic damage +1
Inflict ability damage +1
Recover life +1
Survive combat for less than 3 seconds -2
Survive combat for 3 to 5 seconds -1
Survive combat for 5 to 7 seconds +0
Survive combat for more than 7 seconds +1

TABLE II
SCORING SYSTEM FOR THE ROLE-PLAYING EXPERIMENT.

In the remainder of this section, we will first describe the
four games we used for evaluation and then experiment results
will be discussed.

A. First Person Shooter Experiment

In an FPS, the player is engaged in a weapon-based combat
simulation using a first-person perspective. During the game, a
sequence of missions must be completed while fighting waves
of NPCs. The artificial intelligence driving the skills of the
NPCs is significative of the level of difficulty offered by the
game. In this kind of game, NPCs should usually vary the
attack style, how they move around, and how they take cover.

For this experiment we implemented a level about a combat
zone in a harbour (Fig. 5). On the map, players and NPCs

Fig. 5. Annotated map for the FPS level.

can find environmental elements offering shelter. Some of
this elements are containers providing also ammunitions (red
rectangles) or safe passage between zones (green rectangles).
Player spawn points are placed under cover and far away from
NPCs spawn points.

During gameplay, a player must confront with waves com-
posed by five NPCs. The player will hold a weapon with
infinite ammunitions while each NPC will have random equip-
ment.

The decision tree for the NPCs is really complex because
a lot of conditions must be evaluated. First, we have to check
if the player is in the range of visibility, then considerations
about the current weapon and other equipment available on
the fields are drawn. Just to give a couple of examples, taking
cover takes precedence if the NPC is afraid to fight while



being bold is pushing to engage fighting even if the NPC have
a melee weapon (the player have always a rifle). A screenshot
of the game when dealing with two tactical-inclined NPCs
(ping particle effect) is shown in Fig. 6.

Fig. 6. Screenshot during the FPS experiment.

B. Stealth Experiment

In a stealth-based game, the player is required to move
while staying undetected across an area guarded by NPCs. The
player is usually subject to a swift death when confronting an
NPC directly. In this kind of games, the difficulty offered to the
player depends on the movement pattern, lever of awareness,
and sensing sensibility of the NPCs. To put variety in a stealth
game, NPCs should vary their pause/movement pattern as well
as their policy about looking for (or chasing) the player.

Our stealth game is set inside a small museum (Fig. 7).
In this museum, guards are deployed to protect the artworks.

Fig. 7. Annotated map for the stealth level.

The player must traverse the map to steal a treasure and then
leave the premise. Along the way, the player needs to retrieve
two keys: one to access treasure and one to open the last exit
door. While doing this, the player must remain unseen from
the NPCs and avoid generating sounds bumping into obstacles.
When the player is detected, all NPCs will converge to the
point where the something has been spotter or a sound heard.

During gameplay, NPCs can be static or patrolling an area
using a pre-determined path. The player is equipped with a
torch to increase environment visibility and a crowbar to stun

guards from the back; both, when used, increases the chances
to be detected. The game ends whenever the player is caught
by a guard.

The decision tree for the stealth experiment is simpler than
in the previous case due to a reduced number of decisions
to take. Nevertheless, it must now also include the possibility
to coordinate with other NPCs. Moreover, decisions are taken
also based on the level of detection (Hi, Medium, or Low,
depending on distance) that each NPC has about the player.
When the player has been detected the number of nearby NPCs
comes into play and the guard will start chasing the player only
when bold; otherwise, it will move away and call for support.

C. Role-Playing Experiment

A Role-Playing Game (RPG) is a game in which players
assume the roles of characters in a fictional setting. In this
kind of video games, each player controls the actions of a
character immersed in a well-defined world. A character must
overcome a sequence of challenges in order to progress in level
and become more powerful. These challenges may be posed
by other players (in Player versus Player, or PvP settings)
or come from the surrounding environment (in Player versus
Environment, or PvE settings). Dealing with NPCs sets us in
a PvE setting.

In RPG games, each NPC usually falls in a specific cat-
egory and has its own statistics. Artificial intelligence must
be specialised for each category, which should also evolve
independently. Differently from the first two genres, NPCs in
a RPG game may also interact peacefully with the player and
are ofter part of the narrative. This means that, beside combat,
the NPC emotional state should have effects on conversations
and relationship.

The RPG game we implemented is located in a dungeon
made of rooms connected by means of corridors (Fig. 8). This

Fig. 8. Annotated map for the RPG level.



dungeon, in the style of fantasy roleplay games, is populated
by fancy creatures. In this game we implemented four different
NPCs: Minion, Melee, Mage, and Healer. The Minion and
Melee are close-combat unit with different attack power, while
Mage is a ranged combat unit, and the Healer will support
other NPCs in the area by healing them.

Like many titles in this genre, the map layout is such that the
player will be required to face enemies of increasing difficulty.
The game ends when the health of the player is depleted.

In this experiment we deal with multiple decision trees: one
for each NPC class. Even if the emotional traits are shared,
each class will behave in its own way, with respect to the same
emotion, during the game. As an example, a cautious Healer
will try to get out of danger before healing others while a
cautious Meele will pay more attention to its own health level.

D. Roguelike Experiment

The roguelike genre is a sub-category of Role-plan genre.
A roguelike game is usually set in a fantasy, or medieval, en-
vironment and requires the player to crawl through a dungeon
to kill monsters (NPCs), collect treasures, and interact with
the environment. This kind of games are usually featuring a
procedural level generation and a permanent death mechanic.

In roguelike games, artificial intelligente of NPCs is typi-
cally limited to movement and attack strategies. With respect
to movement, an NPC should understand when (and how) to
chase or retreat from the player. For the attack phase, the
artificial intelligence is in charge to choose which weapon to
use and if allies are required to engage the player.

Since this genre is linked to RPGs, the level we imple-
mented (Fig. 9) shares some traits (such as the environment
setting and the NPCs deployment style) with the previous
case. Differently from the RPG experiment, the player have to
follow a specific path to reach the final treasure and it is now
required to overcome all the enemies along the way.

The player, in this game, is equipped with a ranged magical
weapon and can collect power ups as loot from slayed NPCs.
A screenshot during gameplay is reported in Fig. 10.

Like in the previous case, in this experiment we are dealing
with a number of decision trees. In particular, we defined here
seven different classes of NPCs, each one with special abilities.
As mentioned, due to the nature of the game, all decision trees
are quite simple and combat-oriented.

E. Experimental Results

As already mentioned, we classified each action associated
to a specific emotion in three groups based on the the share of
players that perceived them. The outcome from the feedback
forms is summarised in Tab. III. As we can see in the table,
a vast majority of the actions relative to each emotion was
apparent to more than two thirds of the players. From these
numbers, it seems that the strategy adopted by GENIE is
successful in producing different behaviours which are evident
to the players.

In order to cross-check this result, we ran another set of
experiments with a different feedback form. In this second set,

Fig. 9. Annotated map for the roguelike level.

Fig. 10. Screenshot during the roguelike experiment.

we aimed to understand if the player could actually tell the
different emotional states of the NPCs. Volunteers have been
instructed in advance about the different emotions available in
the game. Then, after the play session they reported how well
the emotion was represented by the actions of each NPC.

Results show that there is actually a perceivable link be-
tween emotions and actions since the majority of feedbacks

Share of players Experiment
FPS Stealth Role-play Roguelike

less than 33% 1 0 0 0
between 33% and 66% 2 1 3 0
more than 66% 12 6 11 8

TABLE III
SUMMARY OF PERCEIVED ACTIONS DURING GAMEPLAY.



reported a good in-game representation, or better. Anyway, we
observed one exception when analysing the FPS experiment,
as reported in Tag. IV. As we can see, the yielding emotions

Emotion Perception

Poor Fair Good
Very
good Perfect

Afraid 1 1 5 5 1
Angry 0 1 3 8 1
Bold 0 0 8 4 1
Tactical 1 1 7 2 2
Yielding 1 6 5 1 2

TABLE IV
AGGREGATED FEEDBACK ABOUT EMOTION REPRESENTATION FOR THE

FPS EXPERIMENT.

seems to be the only one not well represented, trending to
a fair rating. To understand this phenomenon, we did some
oral interviews with the volunteers. After the interviews, our
hypothesis is that, even if yielding is important for a game
designer to characterise an NPC, the player is not expecting
to actually see it on the battlefield; therefore, attention for that
kind of behaviour was low during the experiment. Anyway,
this is a clear indication that further research about how
emotions and behaviours are attracting the player attention is
required.

V. CONCLUSION AND FUTURE WORK

In this paper we presented GENIE: a tool to support game
designers in the creation of a wide variety of behaviours.
GENIE is based on discrete representation of emotional states
used a genomes for a generic algorithm. Emotional states, used
to drive decision trees, are evolved to adapt to the player needs
and to enrich player experience by offering variety during
gameplay.

Experimental evaluation on four games provided promising
preliminary results supporting the validity of our approach.

Possible extensions of the current work are the inclusion
of other game genres, and a study about how it could be
possible to evolve the emotional state together with the NPC,
like in [31].

REFERENCES

[1] Toru Iwatani, “Pac-Man,” Midway Games, 1980.
[2] Rare Limited, “GoldenEye 007,” Nintendo, 1997.
[3] Tim Stellmach, “Thief: The Dark Project,” Eidos Interactive, 1998.
[4] Hideo Kojima, “Metal Gear Solid,” Konami Computer Entertainment

Japan, 1998.
[5] Jason Jones, “Myth; The Fallen Lords,” Bungie, 1997.
[6] Bruce Shelley, “Age of Empire II,” Microsoft, 1999.
[7] W. D. Edwards, “Dynamic decision theory and probabilistic information

processing,” Human Factors, vol. 4, pp. 59–73, 04 1962.
[8] B. Brehmer, “Dynamic decision making: Human control of complex

systems,” Acta psychologica, vol. 81, pp. 211–41, 01 1993.
[9] R. Arrabales, J. Muñoz, A. Ledezma, G. Gutierrez, and A. Sanchis, A

Machine Consciousness Approach to the Design of Human-Like Bots.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 171–191.

[10] J. M. L. Asensio, J. Peralta, R. Arrabales, M. G. Bedia, P. Cortez, and
A. L. Pea, “Artificial intelligence approaches for the generation and
assessment of believable human-like behaviour in virtual characters,”
Expert Systems with Applications, vol. 41, no. 16, pp. 7281 – 7290,
2014.

[11] P. Hingston, “A turing test for computer game bots,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 1, no. 3, pp. 169–
186, Sep. 2009.

[12] ——, “A new design for a turing test for bots,” in Proceedings of the
2010 IEEE Conference on Computational Intelligence and Games, Aug
2010, pp. 345–350.

[13] M. Cavazza, F. Charles, and S. J. Mead, “Planning characters’ behaviour
in interactive storytelling,” The Journal of Visualization and Computer
Animation, vol. 13, no. 2, pp. 121–131, 2002.

[14] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game defcon,” in Applications of Evolutionary
Computation, C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt,
A. I. Esparcia-Alcazar, C.-K. Goh, J. J. Merelo, F. Neri, M. Preuß,
J. Togelius, and G. N. Yannakakis, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 100–110.

[15] J. Schrum, I. V. Karpov, and R. Miikkulainen, Humanlike
Combat Behavior via Multiobjective Neuroevolution. Springer
Berlin Heidelberg, 2012, pp. 119–150. [Online]. Available:
http://nn.cs.utexas.edu/?schrum:believablebots12

[16] D. Floreano and L. Keller, “Evolution of adaptive behaviour in robots
by means of darwinian selection,” in PLoS biology, 2010.

[17] J. M. Vaccaro and C. C. Guest, “Planning an endgame move set for the
game risk: a comparison of search algorithms,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 6, pp. 641–652, Dec 2005.

[18] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, “Co-
evolving soccer softbot team coordination with genetic programming,”
in RoboCup-97: Robot Soccer World Cup I, H. Kitano, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 398–411.

[19] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone, “Evolving soccer
keepaway players through task decomposition,” Machine Learning,
vol. 59, no. 1, pp. 5–30, May 2005.

[20] S. Luke, “Genetic programming produced competitive soccer softbot
teams for RoboCup97,” in Genetic Programming 1998: Proceedings of
the Third Annual Conference, J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba,
and R. Riolo, Eds. University of Wisconsin, Madison, Wisconsin, USA:
Morgan Kaufmann, 22-25 1998, pp. 214–222.

[21] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevo-
lution in the nero video game,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 6, pp. 653–668, Dec 2005.

[22] S. J. Louis and C. Miles, “Playing to learn: case-injected genetic
algorithms for learning to play computer games,” IEEE Transactions
on Evolutionary Computation, vol. 9, no. 6, pp. 669–681, Dec 2005.

[23] N. Cole, S. J. Louis, and C. Miles, “Using a genetic algorithm to
tune first-person shooter bots,” in Proceedings of the 2004 Congress
on Evolutionary Computation (IEEE Cat. No.04TH8753), vol. 1, June
2004, pp. 139–145 Vol.1.

[24] A. Hauptman and M. Sipper, “Gp-endchess: Using genetic programming
to evolve chess endgame players,” in Genetic Programming, M. Keijzer,
A. Tettamanzi, P. Collet, J. van Hemert, and M. Tomassini, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 120–131.

[25] P. J. Lang, “The varieties of emotional experience: A meditation on
james-lange theory,” Psychological Review, vol. 101, no. 2, pp. 211–
221, 1994.

[26] W. B. Cannon, “The james-lange theory of emotions: A critical exami-
nation and an alternative theory,” The American Journal of Psychology,
vol. 39, no. 1/4, pp. 106–124, 1927.

[27] S. Schachter and J. E. Singer, “Cognitive, social, and physiological
determinants of emotional state,” Psychological Review, vol. 69, no. 5,
pp. 379–399, 1962.

[28] R. Lazarus, J. R. Averill, and E. M. Opton, “Toward a cognitive theory
of emotion,” in Proceedings - Third international symposium on feelings
and emotions, M. Arnold, Ed. New York: Academic Press, 1970.

[29] I. J. Roseman, “Appraisal determinants of discrete emotions,” Cognition
and Emotion, vol. 5, no. 3, pp. 161–200, 1991.

[30] ——, “Appraisal determinants of emotions: Constructing a more accu-
rate and comprehensive theory,” Cognition and Emotion, vol. 10, no. 3,
pp. 241–278, 1996.

[31] A. Guarneri, D. Maggiorini, L. Ripamonti, and M. Trubian, “Golem:
Generator of life embedded into mmos,” The 2018 Conference on
Artificial Life: A Hybrid of the European Conference on Artificial
Life (ECAL) and the International Conference on the Synthesis and
Simulation of Living Systems (ALIFE), no. 25, pp. 585–592, 2013.


