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Abstract: Pulmonary parenchymal and vascular damage are frequently reported in COVID-19
patients and can be assessed with unenhanced chest computed tomography (CT), widely used as
a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we
aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann–Whitney
U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons
(MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed
on emergency department admission were included after retrieving their outcome (discharge or
death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who
died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients
who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus
34.0 mm, p < 0.001). SVM and MLP best models considered the same ten input features, yielding
a 0.747 (precision 0.522, recall 0.800) and 0.844 (precision 0.680, recall 0.567) area under the curve,
respectively. In this model integrating clinical and radiological data, pulmonary artery diameter was
the third most important predictor after age and parenchymal involvement extent, contributing to
reliable in-hospital mortality prediction, highlighting the value of vascular metrics in improving
patient stratification.

Keywords: COVID-19; lung; pulmonary artery; tomography; X-ray computed; machine learning;
support vector machine; neural networks; computer; prognosis

1. Introduction

Since the inception of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) pandemic, chest computed tomography (CT) has been widely used both as a triaging
test on emergency department admission [1–3]—especially in the case of unavailability of
immediate result of reverse transcriptase-polymerase chain reaction (RT-PCR)—and as a
diagnostic tool to monitor Coronavirus Disease 2019 (COVID-19) pneumonia [1,2].

The widely recognized systemic prothrombotic profile of COVID-19, swiftly linked
with worse outcomes [4–11], directly affects pulmonary vasculature [11–20]. In hospital-
ized COVID-19 patients with moderate and severe disease, CT-detected lung parenchymal
involvement [21,22] has been associated with varying degrees of pulmonary arterial vas-
cular damage [10–15], which disrupts vascular dynamics and increases pulmonary artery
(PA) pressure [23–29]. Of note, bedside ultrasound examinations performed during hos-
pitalization have hinted the prognostic value of indirect signs of impaired pulmonary
circulation, such as right ventricular longitudinal strain and increased end-diastolic cham-
ber size [29,30]. However, these parameters are encumbered by operator dependency
and potential overlap with other pre-existing causes of right ventricular dysfunction [31];
moreover, the routine performance of echocardiography in the triage of COVID-19 pa-
tients during pandemic peaks could prove challenging, due to the high volume of patients
referred to emergency departments.

Rather than identifying thrombotic phenomena as a byproduct of pulmonary em-
bolism, ever-increasing evidence points to a direct origin of thrombosis in arterial lung
vasculature [14,32,33], highlighting the need for a more accurate characterization of these
phenomena in their true location [34].

Diagnosis of pulmonary arterial thrombosis requires contrast-enhanced CT angiog-
raphy, which implies the intravenous administration of iodinated contrast agents [35].
However, alterations of pulmonary vascular metrics also detectable with unenhanced CT,
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such as the enlargement of the PA and an increased ratio between diameters of the PA and
of the ascending aorta (AA), are known indirect signs of pulmonary hypertension caused
by fibrotic or thromboembolic processes [36–42]. Notably, these pulmonary vascular met-
rics have been demonstrated to be altered also in COVID-19 patients—when compared to
previous values measured on CT scans acquired before the SARS-CoV-2 pandemic—and to
carry prognostic implications [25–27]. Since unenhanced chest CT is still widely performed
in COVID-19 patients, the integration of CT-derived vascular features with other readily
available clinical and imaging parameters could improve the stratification of COVID-19
patients on emergency department admission, potentially improving patient management
and prognosis.

This multicenter study, conducted in six different hospitals in northern Italy during the
first pandemic peak of 2020, aims to evaluate the prognostic power of a machine learning
model integrating imaging features of lung parenchyma and vasculature with clinical data
of COVID-19 patients routinely retrieved on emergency department admission.

2. Materials and Methods
2.1. Study Population

This multicenter observational study was conducted in six different institutions in
northern Italy: Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara (Center
1); ASST Grande Ospedale Metropolitano Niguarda, Milano (Center 2); Fondazione Po-
liambulanza Istituto Ospedaliero, Brescia (Center 3); ASST Crema—Ospedale Maggiore,
Crema (Center 4); ASST Santi Paolo e Carlo, Milano (Center 5); and IRCCS Istituto Ortope-
dico Galeazzi, Milano (Center 6). Approval for this retrospective study was obtained from
the Ethics Committee of the coordinating center IRCCS Policlinico San Donato (Comitato
Etico IRCCS Ospedale San Raffaele, protocol code COVID19-TCretro, protocol number
77/INT/2020, approved 5 May 2020). Study-specific informed consent was waived due to
the retrospective nature of the study.

We included patients hospitalized in each of these institutions during the study pe-
riod (21 February to 30 April 2020) with RT-PCR-confirmed SARS-CoV-2 infection and
unenhanced chest CT performed on emergency department admission. Authors from each
center reviewed their own institutional electronic databases to retrieve patients’ clinical
data, including: demographics, symptoms, partial pressure of oxygen in arterial blood
(PaO2), comorbidities, smoking history, body mass index, and white blood cells, lympho-
cytes, platelets, and lactate dehydrogenase values. For outcome assessment, censoring was
applied on 1 June 2020, when all patients had either been discharged or had died during
hospitalization.

2.2. Image Acquisition and Analysis

Unenhanced chest CT scans were performed in all six centers in supine position, dur-
ing a single inspiratory breath-hold condition when possible. Table 1 shows the technical
characteristics of the scanners and acquisition parameters.

Radiologists with 7 to 32 years of experience blindly reviewed CT images from their
own institution, assessing lung parenchyma and the presence of pleural effusion and medi-
astinum lymph nodes with short-axis diameters larger than 1 cm [43]. Lung parenchymal
involvement was qualitatively assessed by radiologists on their own institutional digital
imaging and communications in medicine (DICOM) viewer, considering the presence of
parenchymal involvement signs, (i.e., ground-glass opacities (GGOs), consolidations, and
crazy paving pattern) and the volumetric extent of parenchymal involvement, assessed
according to Chung et al. [21]: 0% (absent, 0); 1–25% (minimal, 1); 26–50% (mild, 2); 51–75%
(moderate, 3); and over 75% (severe, 4). As described by Wells et al. [44], PA and AA maxi-
mum diameters were measured on a single axial slice selected at the level of pulmonary
arterial main trunk bifurcation (Figure 1).
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Table 1. Center-specific technical characteristics of the CT scanners and acquisition parameters.

Center Location Vendor Model Acquired
Slices

Slice
Thickness

(mm)

Tube Voltage
(kVp)

Azienda Ospedaliero-
Universitaria Maggiore

della Carità
Novara Philips

Healthcare Ingenuity Core 128 1 120

ASST Grande Ospedale
Metropolitano

Niguarda
Milano Siemens

Healthineers
Somatom

Definition Edge 128 1.5 120

Fondazione
Poliambulanza Istituto

Ospedaliero
Brescia General Electric

Healthcare
LightSpeed RT

16 16 1.25 120

ASST
Crema—Ospedale

Maggiore

Crema
Canon Aquilion CXL 64 1.5 135

General Electric
Healthcare

Revolution
EVO 64 1.25 120

ASST Santi Paolo e
Carlo Milano General Electric

Healthcare
LightSpeed RT

16 16 1.25 120

IRCCS Istituto
Ortopedico Galeazzi Milano Siemens

Healthineers

Somatom
Definition AS

64
64 1.5 120
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2.3. Data Preprocessing and Initial Feature Selection

To build a predictive model of in-hospital mortality, we selected among available
features those with no more than 25% missing data. In these selected features, residual
missing data were imputed with the mean value of the respective feature. Data were
randomly split into a training/validation set (85%) and a testing set (15%). In each set, all
features were rescaled to have null mean and unitary variance.

To prevent overfitting, we used training/validation data to perform a two-step feature
selection process. First, we removed highly correlated features by thresholding the feature
correlation matrix, setting the absolute Pearson’s correlation threshold value at 0.7. Then,
we used the least absolute shrinkage and selection operator (LASSO) to compute feature
importance, i.e., the absolute value of the LASSO regression coefficients [45,46]. The best
α value was determined using a ten-fold cross-validation process. Selected features were
used to develop several machine learning models using both support vector machines
(SVM) and multilayer perceptrons (MLP).

2.4. Support Vector Machines

We initialized the SVM classifier with linear kernel, C value = 1, and balanced class-
weights using all selected features. Then, we performed a systematic hyperparameter
grid-search to find: the optimal SVM kernel among linear, radial basis function, polynomial,
and sigmoid kernels; the best C values among 100 values linearly sampled in the range
1–8; and the best γ value (for nonlinear kernels) among ten logarithmically-sampled (base
10) values in the range 10−10–10−1. Each candidate model (n = 310) was validated using a
ten-fold cross-validation process, accounting for 31,000 fits. The best model was defined as
the one that maximized the average F1 score in validation data. F1 score was selected as
a scoring metric to consider class imbalance. Finally, the best model was refitted on the
entire training/validation set.

Given this initial model and its optimal C (Copt) and γ (γopt) hyperparameters, we
performed an importance-based backward feature selection. We optimized SVM hyper-
parameters for each feature subset using a second systematic grid search strategy, further
fine-tuning C and γ values in narrower ranges. The new search-grid was defined by
selecting 25 C values linearly sampled in the range (Copt ± 2), while 50 γ values were
logarithmically sampled in the range (10log (γopt−1), 10log (γopt+1)) Each one of the 1250
candidate models was validated using a ten-fold cross-validation process. Again, the best
model (i.e., the one that maximized the average F1 score in validation data) was finally
refitted over the entire training/validation set.

2.5. Multilayer Perceptrons

After selecting all features with a non-zero LASSO coefficient, we further selected
features by keeping the most important ones that allowed us to meet the rule of thumb of at
least ten events in our training/validation set for each feature included in our model [47,48].

The general MLP architecture is summarized in Table 2. We initialized the hidden unit
numbers N and M values to 7 and 5, respectively. To prevent dying rectified linear unit
(ReLU) issues, we used LeakyReLU [49] as activation function (α = 0.03), while weights
were initialized using the method proposed by He et al. [50]. To improve model gener-
alizability and prevent overfitting, we added a dropout layer after each fully connected
layer with a dropout rate equal to 0.2. The last layer of the perceptron comprised a single
unit with a sigmoid activation function to encode patient mortality. The initial learning
rate was set to 0.01, being then decreased during training using an exponential decay
schedule of 1000 steps and a base of 0.5. We set binary cross-entropy as the loss function,
adopted the Adam optimizer [51], and set a default batch-size value of 32. The F1 score, the
area under the curve (AUC) at receiving operator characteristic (ROC) analysis, accuracy,
precision, and recall were selected as the performance metrics. The training stopped if the
loss function did not decrease for 25 epochs, then the best weights corresponding to the
loss function minimum were restored. The maximum number of epochs was set to 1000.
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Table 2. Multilayer perceptron summary architecture.

Layer Number of Hidden Units Trainable Parameters

Dense_1 Number of selected features (f) f × (f + 1)
Dropout_1 Number of selected features (f) 0

Dense_2 N N × (f + 1)
Dropout_2 N 0

Dense_3 N N × (N + 1)
Dropout_3 N 0

Dense_4 M M × (N + 1)
Dropout_4 M 0

Dense_5 M M × (M + 1)
Dropout_5 M 0

Dense_6 1 M + 1
N: number of hidden units in the second and third layer of the multilayer perceptron; M: number of hidden units
in the fourth and fifth layer of the multilayer perceptron.

Given this model and its hyperparameters, we performed a systematic grid-search
ten-fold cross-validation to optimize the following hyperparameters: the batch size in (4,
16, 32, 64); the dropout rate in (0.1, 0.2, 0.4); the starting learning rate in (0.1, 0.01, 0.001);
the number of hidden units in the second and third layers (N) in (5, 7, 10); and the number
of hidden units in the fourth and fifth layers (M) in (3, 5, 7). Each one of the 324 candidate
MLPs was validated using a ten-fold cross-validation process (3240 fits). The best model
(i.e., the one that maximized the average F1 score in validation data) was finally refitted
over the entire training/validation set.

2.6. Statistical Analysis

Due to their nonparametric distribution, assessed with the Shapiro–Wilk test, continu-
ous variables were reported as median with interquartile range (IQR), while categorical
variables as total number and percentage. The Mann–Whitney U test was used to compare
means from different groups for continuous variables during univariate explorative analy-
sis. Statistical analyses were performed using SPSS v.26.0 (IBM SPSS Inc., Chicago, IL, USA),
and p values < 0.05 were considered statistically significant. All SVMs and MLPs were
developed using python v.3.7.7 [52], sklearn v.0.23.1 [53], and tensorflow-gpu v.2.2.0 [54] on
a laptop with an Intel Core i7-6500 CPU (2.50 GHz), 8 GB of RAM, and a Nvidia GeForce
940MX GPU.

3. Results
3.1. Population Characteristics

The study population included 897 COVID-19 patients (608 males, 68%; median age
66 years, IQR 55–77 years), hospitalized in six different centers from 21 February to 30
April 2020. A total of 270 patients came from Center 1, 197 from Center 2, 194 from Center
3, 144 from Center 4, 80 from Center 5, and 12 from Center 6.

Symptoms, comorbidities, height, weight, and laboratory parameters were assessed
on emergency department admission and are reported in Table 3, alongside CT-derived
lung and vascular features. The main symptoms observed on emergency department
admission were fever (500/897 patients, 56%), cough (277/897 patients, 31%), and dyspnea
(229/897 patients, 26%). During hospitalization, which lasted a median of 7 days (IQR 4–13
days), 133/897 patients (15%) were admitted to intensive care units (ICU). Low molecular
weight heparin (LMWH) was administered to 296/897 patients (33%): to 88/296 (30%)
at therapeutic dosage, to 177/296 (60%) at prophylactic dosage, while for the remaining
31/296 (10%) dosage data was not available. At censoring for outcome assessment (June 1,
2020), we found that 229/897 (26%) patients had died during hospitalization, while the
remaining 668/897 (74%) had been discharged.
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Table 3. Demographic, clinical, and imaging characteristics of the two sets of patients.

Variable Variable Type Overall
(897 Patients)

Training/Validation Set
(572 Patients)

Test Set
(102 Patients)

Demographics
Sex Categorial 608 M/289 F 389 M/183 F 66 M/36 F

Age (years) Continuous 66.2 (55.1–76.5) 66.9 (55.9–77.0) 66.7 (52.7–79.2)

Comorbidities
Cardiovascular diseases Dichotomic 433 (48%) 320 (56%) 53 (52%)

Diabetes Dichotomic 151 (17%) 113 (20%) 19 (19%)
Oncological history Dichotomic 76 (8%) 52 (9%) 10 (10%)

Chronic kidney insufficiency Dichotomic 52 (6%) 45 (8%) 3 (3%)

Outcome
Deceased patients Dichotomic 229 (26%) 160 (28%) 30 (29%)

CT findings and features

Lung
parenchyma

Ground-glass opacities Dichotomic 681 (76%) 504 (93%) 90 (92%)
Consolidations Dichotomic 434 (48%) 271 (50%) 53 (54%)

Crazy paving pattern Dichotomic 194 (22%) 162 (30%) 36 (37%)
Extent of parenchymal

involvement * Discrete 2 (1–3) 2 (1–3) 2 (1–3)

Bilateral parenchymal
involvement Dichotomic 631 (70%) 502 (93%) 86 (88%)

Vascular
features PA diameter (mm) Continuous 28.0 (25.0–30.0) 28.0 (25.0–30.1) 28.0 (25.0–30.3)

AA diameter (mm) Continuous 34.0 (32.0–37.0) 35.0 (32.0–37.0) 34.0 (31.0–37.4)
PA/AA ratio Continuous 0.81 (0.73–0.89) 0.81 (0.73–0.90) 0.81 (0.74–0.89)

All descriptive statistics are reported as median and interquartile ranges or frequencies for continuous and dichotomic/discrete variables,
respectively. M: males; F: females; PA: pulmonary artery; AA: ascending aorta. * Semi-quantitatively assessed from 0 to 4, according to
Chung et al. [21], as follows: 0% = 0 (absent); 1–25% = 1 (minimal); 26–50% = 2 (mild); 51–75% = 3 (moderate); and over 75% = 4 (severe).

3.2. Explorative Univariate Analysis of Pulmonary Vascular Features

The overall median PA maximum diameter was 28 mm (25–30 mm) and median AA
34 mm (32–37 mm). Patients who died during hospitalization showed significantly higher
median PA maximum diameter (29.0 mm, IQR 26.0–32.0 mm) compared to patients who
survived (27.0 mm, IQR 25.0–30.0 mm, p < 0.001), and significantly higher median AA
maximum diameter (36.6 mm, IQR 34.0–39.0 mm, versus 34.0 mm, IQR 31.0–36.0 mm,
p < 0.001).

3.3. Support Vector Machines and Multilayer Perceptrons

After discarding features with a percentage of missing data higher than 25%, 14 fea-
tures were selected for further processing (Table 3). After this selection step, residual
missing data were clustered in 223 patients, who had almost only input data and were
therefore also removed. Only 674 out of the initial 897 patients (75%) were therefore used to
develop all machine learning models. The percentage of missing data ranged from 0% to 5%
in the remaining features (median 0.4%, IQR 0.1–3.2%). After the initial random database
split, our training/validation dataset was composed of 572 patients, 160 of whom (28%)
died during hospitalization, while the testing set accounted for 102 patients, 30 of whom
died during hospitalization (29%). No features were excluded after Pearson’s correlation
matrix thresholding (Figure 2). Obtained LASSO coefficients for all initial features are
reported in Figure 3.
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Fourteen SVM models were developed using different feature subsets. The best SVM
model took 10 features as inputs (Table S1). The best model had a radial basis function
kernel, with C equal to 5.924 and γ equal to 6.06 × 10−5. After the model was refitted on
the entire training/validation dataset, the final model performances on testing data were:
an F1 score of 0.632, an AUC of 0.747, a precision of 0.522, and a recall of 0.800. All SVMs
had radial basis function kernels, their other hyperparameters and performance being
reported in Table S1, while the ROC curve of the best SVM model is depicted in panel a of
Figure 4.

Due to the high number of events in the training/validation set, MLPs were built
using all features with a non-null LASSO coefficient (n = 10). Therefore, all developed
MLPs have the same input features as the best SVM model. Among the 324 models
resulting from the systematic hyperparameter grid search, the best MLP had the following
hyperparameters: N and M equal to 7 and 3 respectively; a batch-size of 4; a dropout rate
equal to 0.1; and a starting learning rate equal to 0.01. After refitting the best model on the
entire training/validation dataset, the final performance on testing data were: an F1 score
of 0.618, an AUC of 0.844, a precision of 0.680, and a recall of 0.567. The ROC curve of the
best MLP is depicted in panel b of Figure 4.
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4. Discussion

In this retrospective multicenter study, we developed a predictive model of in-hospital
mortality for COVID-19 patients, using clinical and radiological data acquired on emer-
gency department admission. The CT data of 674 patients from six hospitals in northern
Italy were used to extract pulmonary parenchymal and vascular features. While machine
learning models centered on clinical and imaging data have been proposed to aid both
COVID-19 diagnosis and severity stratification [55–59], the inclusion of vascular features
stems from an ever-larger corpus of observations that link vascular (particularly endothe-
lial) impairment in COVID-19 [4–9] to pulmonary thromboembolism [11–13,16–20,23] and
gross damage to pulmonary arterial vessels [25–27].

In a preliminary study on a limited sample size [26] we already observed that COVID-
19 patients have a PA maximum diameter greater than that measured in previous CTs
performed for non-cardiovascular reasons. In that study, enlarged PA diameter was also
associated to death during hospitalization [26]. These observations were confirmed by the
present study already through the explorative univariate analysis of pulmonary vascular
features, where we found that patients who died during hospitalization had a significantly
higher PA maximum diameter. Further, as shown in Figure 3, the LASSO regression coeffi-
cient for the PA maximum diameter was the third highest among investigated predictors
of in-hospital death, after age and the extent of lung parenchymal involvement. It is worth
noting that lung consolidation, appearing in the later stages of COVID-19 pneumonia,
seems to be associated with better prognosis, as highlighted by the negative LASSO re-
gression coefficient. This apparently counterintuitive result, already hinted at by a few
studies [60,61], can be explained by considering that extensive parenchymal involvement
in COVID-19 patients most frequently leads to in-hospital death, leaving no time for pul-
monary damage progression to consolidation. Indeed, consolidation was present in almost
50% of patients from our cohort but was sparsely distributed and was associated with
GGOs in 91% of cases, pointing out how hospital admission occurred at relatively early
stages of COVID-19 pneumonia.

The prognostic role of the PA maximum diameter also shows how the early microvas-
cular damage caused by SARS-CoV-2 infection may represent one of the most insidious
aspects of severe COVID-19 presentations [10]. Notably, SARS-CoV-2-induced microthrom-
bosis in distal branches of the PA can start the disruption of the already fragile coagulation
profile of these patients [5,8,9], but can be difficult to detect even on contrast-enhanced
CT scans [23]. Conversely, the PA diameter is an indirect metric of the thromboembolic
profile of COVID-19 patients that can be easily obtained from unenhanced CT scans. Its
integration into a reliable prognostic model further highlights how features extracted from
CT scans performed without the administration of a contrast agent carry a substantial
prognostic potential in COVID-19 patients, as already hinted at by other studies [62,63].

This study was performed at the early stage of the SARS-CoV-2 pandemic, when pro-
phylactic LMWH was not yet routinely administered. This represents the main limitation of
our study, preventing the investigation of the impact of appropriate treatment—targeting
vascular damage—on COVID-19 patients’ prognosis. Moreover, shortages in ICU beds
affecting all hospitals in northern Italy during the first pandemic peak [64] frequently
restricted ICU admission to relatively younger patients without comorbidities, preventing
us from assessing ICU admission predictive models, since these would have been biased by
such patient selection. Of note, this logistical stress on healthcare systems also precluded
the inclusion of young patients (which were prevalently treated at home), hindered data
collection on admission, and likely impacted the prognosis of the included patients: all
these aspects must be carefully considered when evaluating the generalizability of our
results. From a technical point of view, the main limitation of our study is the lack of a
longitudinal and independent test set, as we randomly sampled test patients from the
original multicenter cohort. Since we aimed first to maximize the heterogeneity of the
training set as much as possible, using retrospective data collected from all centers, a robust
generalizability assessment will need to be conducted prospectively on an independent test
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set. Although commonly reported in published literature [25,37–39,44], another technical
limitation is represented by the manual measurement of the diameters of great vessels on
axial scans: a better approach could be represented by acquiring vessel area measurements
on reformatted oblique reconstructions considering the vessel axis [42]. Moreover, we
focused on a single feature selection technique (i.e., the LASSO) and on few machine
learning models (i.e., SVMs and MLPs) to develop the in-hospital mortality predictor, with
a comparably small batch size in MLPs, although supported by results of systematic hyper-
parameter search. Finally, the use of the mean feature value as an imputation technique
may also lead to suboptimal performance. Indeed, the use of multiple imputations or
machine learning based imputation techniques could improve the predictive power of
developed classifiers.

In conclusion, our study shows how a predictive model integrating simple clinical
and radiological data acquired on admission, such as the PA/AA ratio on unenhanced CT
scans, allowed to predict in-hospital death in COVID-19 patients, highlighting the major
role of pulmonary vascular involvement in the stratification of COVID-19 patients.
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